ATMOSPHERIC RADIOCARBON FOR THE PERIOD 1950–2010

Quan Hua1 • Mike Barbetti2 • Andrzej Z Rakowski3

ABSTRACT. We present a compilation of tropospheric 14CO$_2$ for the period 1950–2010, based on published radiocarbon data from selected records of atmospheric CO$_2$ sampling and tree-ring series. This compilation is a new version of the compilation by Hua and Barbetti (2004) and consists of yearly summer data sets for zonal, hemispheric, and global levels of atmospheric 14C. In addition, compiled (and extended) monthly data sets for 5 atmospheric zones (3 in the Northern Hemisphere and 2 in the Southern Hemisphere) are reported. The annual data sets are for use in regional and global carbon model calculations, while the extended monthly data sets serve as calibration curves for 14C dating of recent, short-lived terrestrial organic materials.

INTRODUCTION

Bomb radiocarbon has been long recognized as an excellent tracer for the study of atmospheric transport, ocean circulation, exchanges between the carbon reservoirs, and the global carbon cycle (Nydal 1968; Oeschgner et al. 1975; Broecker et al. 1980; Druffel and Suess 1983; Druffel 1997; Levin and Hesshaimer 2000; Randerson et al. 2002; Hua and Barbetti 2004, 2007; Levin et al. 2010). In addition, the application of bomb 14C in various other research disciplines has grown significantly in the last 2 decades. In particular, atmospheric bomb 14C has been used in forensic studies (Wild et al. 1998; Zoppi et al. 2004; Nakamura et al. 2007; Buchholz and Spalding 2010; Alkass et al. 2011; Ubelaker and Parra 2011; Ehleringer et al. 2012), in biomedical research (Spalding et al. 2005, 2008; Bhardwaj et al. 2006; Lynnerup et al. 2008), and in soil carbon studies (Quideau et al. 2000; Bruen et al. 2005; Koirabashi et al. 2009; Trumbore 2009; Rabbi et al. 2013), to build reliable chronologies for recent terrestrial archives and materials (Hua 2009; English et al. 2010; Hodge et al. 2011; Clarke et al. 2012; Hua et al. 2012a), to validate tree-ring ages (Fichtler et al. 2003; Vieira et al. 2005; Bowman et al. 2011; Pearson et al. 2011), to date recent trees having no annual growth rings (Worbes and Junk 1989; Pousset and Schrag 2005; Lovelock et al. 2010), and to determine biogenic and fossil fractions of industrial CO$_2$ emissions (Mohn et al. 2008, 2012; Felner and Rechberger 2009; Palstra and Meijer 2010).

This paper presents a new compilation of tropospheric 14CO$_2$ (or tropospheric 14C in short) for the last 60 yr (1950–2010), covering a short interval before the onset of bomb 14C in the mid-1950s, the bomb-peak period during the 1960s, and the post-bomb era up to very recent time. The compiled data in this paper are a new and extended version of the atmospheric 14C data for 1955–2001 published by Hua and Barbetti (2004), and are intended to facilitate the fast-growing demand in the applications of atmospheric bomb 14C.

ZONAL TROPOSPHERIC 14CO$_2$

Tropospheric $\Delta ^{14}$C started rising in 1955 due to influences of aboveground nuclear detonations (Figure 1). (We use $\Delta ^{14}$C to represent the fractionation- and age-corrected deviation from the standard pre-industrial atmospheric 14C concentration [Δ of Stuiver and Polach 1977].) $\Delta ^{14}$C levels increased steadily in most years and reached maximum values in the mid-1960s. In particular, bomb 14C in northern mid- to high latitudes peaked at 1963–1964 with a value at almost double its pre-bomb level (Nydal 1968; Levin et al. 1985). Since then, atmospheric $\Delta ^{14}$C has decreased due to the

1Australian Nuclear Science and Technology Organisation (ANSTO), Locked Bag 2001, Kirrawee DC, NSW 2232, Australia. Corresponding author. Email: qxh@ansto.gov.au.
2Faculty of Agriculture, Natural Resources and Environment, Naresuan University, Phitsanulok 65000, Thailand.
3Leibniz Laboratory for Radiometric Dating and Isotope Research, University of Kiel, Germany.
absence of major atmospheric nuclear explosions, and rapid exchange between the atmosphere, oceans, and biosphere. Combustion of fossil fuel free of \(^{14}C \) has also contributed to the decrease of atmospheric \(\Delta ^{14}C \), especially since the late 1980s (Levin et al. 2010) and early 1990s (Graven et al. 2012a). Currently, atmospheric \(\Delta ^{14}C \) is slightly higher than its pre-bomb value.

Most of the atmospheric nuclear tests were carried out in the Northern Hemisphere (NH), resulting in a large \(^{14}C \) gradient in the troposphere (between north and south, and between high latitudes and low latitudes) during the early bomb period from the mid-1950s to late 1960s. This significantly increased the \(^{14}C \) contrast between the regional tropospheric air masses that shaped the spatial distribution of bomb \(^{14}C \) when excess \(^{14}C \) was transferred southwards. Hua and Barbetti (2004, 2007) demonstrated that the \(\Delta ^{14}C \) levels in the troposphere during the early bomb period were strongly influenced by atmospheric circulation. As a result, the spatial distribution of bomb \(^{14}C \) during this period did not have a simple latitudinal gradient but consisted of 3 different zones in the NH and 1 zone for the whole Southern Hemisphere (SH). With the availability of a new and reliable long record of bomb \(^{14}C \) in teak tree rings from Muna Island, Sulawesi, Indonesia (5°S, 122°E) located in the SH and north of the mean winter position of the Intertropical Convergence Zone (ITCZ), Hua et al. (2012b) were able to compare this record to those representing the above 4 zones (Figure 1).

For most of the time from the mid-1950s to mid-1960s, Muna \(\Delta ^{14}C \) values were much higher than those of other SH records due to the influence of the winter Asian monsoon, which carried NH air masses containing much more \(^{14}C \) than those from the SH to Muna during the growing season of its tree rings (Hua et al. 2012b). In contrast, Muna \(\Delta ^{14}C \) values were significantly lower than those from Doi Inthanon, Thailand, during the above period. These led Hua et al. (2012b) to suggest a revision of the zonal distribution of bomb \(^{14}C \) during the early bomb period defined by Hua and Barbetti (2004) to include 2 SH zones that are separated by the mean winter position of the ITCZ (Figure 2).
Atmospheric 14C for the Period 1950–2010

Figure 1 shows a large 14C gradient in the troposphere between 1955 and the late 1960s, indicating 5 different 14C levels: 3 in the NH (NH zones 1, 2, and 3) and 2 in the SH (SH zones 3 and 1-2). The highest tropospheric 14C during this period was in NH zone 1, where most of the excess 14C was injected from the stratosphere to the troposphere (Nydal and Gislefoss 1996). The level of tropospheric 14C decreased from north to south as the excess 14C was transferred southwards by atmospheric circulation, with NH zones 1 and 2 separated by the Ferrel cell–Hadley cell boundaries, and NH zones 2 and 3 by the mean summer position of the ITCZ (Figure 2). As excess 14C was transferred to the tropics, the seasonally switching monsoons mixed air masses from the NH with those from the SH, which resulted in lower 14C levels for NH zone 3 and higher 14C levels for SH zone 3 compared to those at similar latitudes in the NH and SH, respectively. The spatial distribution of bomb 14C in the SH should probably consist of 3 zones similar to those for the NH. However, the 14C excess became diffused after it was transported over SH zone 3 and the broad and seasonally moving ITCZ (Hua et al. 1999, 2003). As a consequence, the atmospheric 14C level of the region south of the winter ITCZ was almost uniform and significantly lower than that of SH zone 3 (Figure 1). We therefore consider this region as only 1 zone (instead of 2 zones) for the early bomb period and designate it as SH zone 1-2 (Figure 2). According to Wang (2009), for the modern timescale the ITCZ in the Atlantic and the eastern Pacific is always located north of the Equator with only minor seasonal shifts, while the ITCZ over the western Pacific, the Indian Ocean, Africa and continental South America migrates seasonally far away from the Equator. Therefore, SH zone 3 is not defined for the Atlantic and the eastern Pacific (Figure 2).

The boundary between NH zone 1 and NH zone 2 shown in Figure 2 is not accurately determined due to the limited spatial extent of 14C records currently available. According to Hua and Barbetti (2004), this boundary around 40°N may vary in latitude from one place to another. In particular, this boundary has to be south of China Lake (36°N, 118°W) but north of Santiago de Compostela (42°N, 8°W). In Figure 2, the Equator was used as the boundary between NH zone 3 and SH zone 3 or SH zone 1-2. This is because vegetation in these zones grows most vigorously during different times of the year: boreal summers for NH zone 3 and austral summers for SH zones 3 and 1-2. One may argue that the above growing periods of vegetation are correct for the seasonal tropics (from ~5°N

Figure 2 World map showing zonal atmospheric bomb 14C. The mean positions of the summer and winter ITCZ are adapted from Linacre and Geerts (1997).
to the summer ITCZ, and from \(-5^\circ S\) to the winter ITCZ), but cannot apply to the aseasonal tropics between \(-5^\circ N\) and \(-5^\circ S\) where rainfall occurs and vegetation grows almost year round (McGregor and Nieuwolt 1998). However, there are no \(^{14}\text{C}\) records currently available for the aseasonal tropics for a better determination of the boundary between NH zone 3 and SH zone 3.

Bomb \(^{14}\text{C}\) approached a global equilibrium in the late 1960s (Telegadas 1971; Manning et al. 1990) and since 1973 there have been similar \(^{14}\text{C}\) values in all locations as zonal \(\Delta^{14}\text{C}\) levels overlap with each other within 1\(\sigma\) uncertainties (see Table S1 in the online Supplementary Material).

DATA SETS USED FOR THE COMPILATION

Similar to Hua and Barbetti (2004), our compilation of atmospheric \(^{14}\text{C}\) was based on comprehensive and reliable \(^{14}\text{C}\) data derived from atmospheric samples and tree rings. Only data sets that were not strongly influenced by local combustion of fossil fuel were chosen. This includes the data sets used in the compilation of Hua and Barbetti (2004), and atmospheric records and tree-ring \(^{14}\text{C}\) data from clean-air sites that have recently been made available such as Point Barrow (71\(^\circ\)N, 157\(^\circ\)W), Hawaii (20\(^\circ\)N, 156\(^\circ\)W), Cape Matatula (14\(^\circ\)S, 171\(^\circ\)W), and the South Pole (90\(^\circ\)S, 25\(^\circ\)W) from Graven et al. (2012b); Jungfraujoch (46\(^\circ\)N, 8\(^\circ\)E; Levin and Kromer 2004); Niepołomice (50\(^\circ\)N, 20\(^\circ\)E; Rakowski et al. 2013); Niwot Ridge (40\(^\circ\)N, 106\(^\circ\)W; Turnbull et al. 2007); and Muna Island (5\(^\circ\)S, 122\(^\circ\)E; Hua et al. 2012b).

As one of the aims of the present paper is to compile tropospheric \(^{14}\text{C}\) data for age calibration, our criterion for including an atmospheric or tree-ring record that is slightly influenced by fossil fuel burning is that the dilution effect for that record is not larger than the typical 1\(\sigma\) uncertainty of 3–7\(\‰\) associated with \(^{14}\text{C}\) analysis of terrestrial samples growing during the last 60 yr. The Schauinsland (48\(^\circ\)N, 8\(^\circ\)E; Levin and Kromer 2004) atmospheric record is slightly influenced by local/regional fossil-fuel \(\text{CO}_2\) emissions. The long-term mean of \(^{13}\text{C}\)-free fossil-fuel \(\text{CO}_2\) contribution to this record is 1.4 ppm (1 ppm in summer and 1.7 ppm in winter) for the period 1986–2001, which is equivalent to a dilution effect of ~4\(\‰\) (Levin et al. 2003). Thus, the Schauinsland record was included in our compilation. The Kasprowy Wierch (49\(^\circ\)N, 20\(^\circ\)E) atmospheric record is also slightly influenced by fossil-fuel burning with a mean fossil \(\text{CO}_2\) contribution of ~1 ppm in summer and 3–4 ppm in winter for the period late 2007–2009 (Zimnoch et al. 2012). Such contamination is equivalent to a dilution effect of ~3\(\‰\) in summer and 8–11\(\‰\) in winter. Based on the above criterion, only \(^{14}\text{C}\) data during summer for Kasprowy Wierch were used for our compilation. Tree-ring \(^{14}\text{C}\) data from Obrigheim (49\(^\circ\)N, 9\(^\circ\)E) are influenced by local/regional combustion of fossil fuel with a mean dilution effect of 15\(\‰\) for 1967–1982 (Levin et al. 1985). Therefore, this tree-ring record was excluded from our compilation. All \(^{14}\text{C}\) records including atmospheric \(\text{CO}_2\) samples and tree rings employed for the reconstruction of summer and monthly \(^{14}\text{C}\) data sets are shown in Table 1.

COMPILED SUMMER \(^{14}\text{C}\) DATA SETS

We present in this section the compilation of data sets for zonal, hemispheric, and global \(^{14}\text{C}\) levels for the period 1950–2010. These data sets represent atmospheric \(^{14}\text{C}\) during summer months only (May–August for the NH and November–February for the SH). This approach has a clear advantage because it allows an extension of the atmospheric \(^{14}\text{C}\) records, using tree-ring \(^{14}\text{C}\) data when atmospheric \(^{14}\text{C}\) data are sparse (e.g. the pre-bomb and early bomb period during the 1950s).
Table 1 14C records used for the compilation of zonal, hemispheric, and global summer values, and extended monthly data sets.a

<table>
<thead>
<tr>
<th>Period 1950–1972</th>
<th>Period from 1973 onwards</th>
</tr>
</thead>
<tbody>
<tr>
<td>NH zone 1</td>
<td>NH zone 2</td>
</tr>
<tr>
<td>Atmospheric samples</td>
<td>Atmospheric samples</td>
</tr>
<tr>
<td>Tree rings</td>
<td>Tree rings</td>
</tr>
<tr>
<td>NH zone 3</td>
<td>Atmospheric samples</td>
</tr>
<tr>
<td>Atmospheric samples</td>
<td>Doi Inthanon, Thailand (19°N, 99°E; 1973–1975) [15]</td>
</tr>
<tr>
<td>Debre Zeit, Ethiopia (9°N, 39°E; 1963–1969) [1]</td>
<td>Tree rings</td>
</tr>
<tr>
<td>Tree rings</td>
<td>Schauinsland, Germany (48°N, 8°E; 1974–1976) [27]</td>
</tr>
</tbody>
</table>

a https://doi.org/10.2458/azu_js_rc.v55i2.16177
Table 1 \(^{14}\)C records used for the compilation of zonal, hemispheric, and global summer values, and extended monthly data sets. a (Continued)

<table>
<thead>
<tr>
<th>Period 1950–1972</th>
<th>Period from 1973 onwards</th>
</tr>
</thead>
<tbody>
<tr>
<td>SH zone 3</td>
<td>Atmospheric samples</td>
</tr>
<tr>
<td>Tree rings</td>
<td>Suva, Fiji (18(^{\circ})S, 178(^{\circ})E; 1973–1975) [18]</td>
</tr>
<tr>
<td>Muna Island, Indonesia (5(^{\circ})S, 122(^{\circ})E; 1950–1972) [17]</td>
<td>Cape Matatula, American Samoa (14(^{\circ})S, 171(^{\circ})W; 2001–2007) [22]</td>
</tr>
<tr>
<td>SH zone 1-2</td>
<td>Fianarantsoa, Madagascar (21(^{\circ})S, 47(^{\circ})E; 1973–1978) [1]</td>
</tr>
<tr>
<td>Atmospheric samples</td>
<td>Pretoria, South Africa (26(^{\circ})S, 28(^{\circ})E; 1973–1994) [19]</td>
</tr>
<tr>
<td>Suva, Fiji (18(^{\circ})S, 178(^{\circ})E; 1958–1972) [18]</td>
<td>Wellington, New Zealand (41(^{\circ})S 175(^{\circ})E; 1973–2011) [19]</td>
</tr>
<tr>
<td>Wellington, New Zealand (41(^{\circ})S, 175(^{\circ})E; 1954–1972) [18]</td>
<td>Cape Grim, Australia (41(^{\circ})S, 145(^{\circ})E; 1993–2008) [29]</td>
</tr>
<tr>
<td>Campbell Island, New Zealand (53(^{\circ})S, 169(^{\circ})E; 1970–1971) [18]</td>
<td>Campbell Island, New Zealand (53(^{\circ})S, 169(^{\circ})E; 1973–1977) [18]</td>
</tr>
<tr>
<td>Tree rings</td>
<td>Tree rings</td>
</tr>
</tbody>
</table>
Data Sets for the Northern Hemisphere

For the period 1950–1972, 3 separate data sets of atmospheric 14C were compiled for the NH (NH zones 1, 2, and 3). As there have been similar Δ^{14}C values between locations from 1973 onwards as mentioned above, we compiled only 1 data set for the NH for this period.

For an atmospheric 14C record, the mean value for summer months (May–August) for a particular year was calculated only if there were data available for at least 3 out of 4 months for the season. The summer mean values for the atmospheric record are weighted averages based on the 14C uncertainty and on the sampling duration of an individual sample (if the latter was available). The uncertainty associated with the summer mean value is the larger of the error of the mean and the standard error. We chose the standard error rather than the standard deviation here because the former value was usually comparable with tree-ring 14C uncertainties. This approach is necessary to produce unbiased weighted zonal mean values in the next step of calculation when mean values of atmospheric records and tree-ring data were used.

The average summer value for a particular zone in the NH in a particular year is the weighted average value based on the uncertainty associated with the summer mean of the individual record. The uncertainty associated with the average summer value is the larger of the error of the mean and the standard deviation. These criteria and methods were also employed for calculation of Southern Hemispheric and global data sets.

Weighted summer mean values for the NH for 1950–1972 were calculated from the 3 zonal summer means, with weights consisting of uncertainties associated with the zonal summer value and zonal surface area. The percentages of zonal surface areas within the NH for NH zones 1, 2, and 3 were taken as 17%, 46%, and 37%, respectively.

Compiled zonal atmospheric Δ^{14}C data sets for NH zones 1, 2, and 3 for the boreal summer season (May–August) for the period 1950–2010 are presented in Table S2a in the online Supplementary Material and depicted in Figure 3. These zonal data sets together with individual 14C records available in each zone are shown in Figures S1–S3 in the online Supplementary Material. The compiled hemispheric Δ^{14}C data set for the NH for boreal summers (May–August) for the period 1950–2010 is also presented in Table S2a and illustrated in Figure 4.

Data Sets for the Southern Hemisphere

For the period 1950–1972, 2 separate data sets of atmospheric 14C were compiled for the SH (SH zones 3 and 1-2). For the period from 1973 onwards, only 1 data set for the SH was compiled. We employed the same methods that were used for the NH for the calculation of the summer mean values for SH zones 3 and 1-2, and the whole of the SH for 1950–2011. The relative percentages of zonal surface areas for SH zones 3 and 1-2 were taken as 15% and 85%, respectively, when calculating SH summer averages for 1950–1972.

Compiled zonal atmospheric Δ^{14}C data sets for SH zones 3 and 1-2 for the austral summer season (November–February) for the period 1950–2011 are presented in Table S2b in the online Supplementary Material and also illustrated in Figure 3. These zonal data sets together with individual 14C records available in each zone are shown in Figures S4–S5 in the online Supplementary Material. The compiled hemispheric Δ^{14}C data set for the SH for austral summers (November–February) for the period 1950–2011 is also presented in Table S2b and illustrated in Figure 4.
Figure 3 Compiled summer atmospheric 14C curves for 5 different zones (NH zone 1, NH zone 2, NH zone 3, SH zone 3, and SH zone 1-2). The compiled data sets are presented in Tables S2a–b.

Figure 4 Compiled summer hemispheric and global 14C curves. The compiled data sets are presented in Tables S2a–c.
Global Atmospheric 14C Data Set

The compiled data sets for the NH (Table S2a) and the SH (Table S2b) have different timespans: the middle of a calendar year for the NH and the beginning of the following year for the SH. We therefore compiled zonal Δ^{14}C values for the SH for the middle of a calendar year. When compiled zonal Δ^{14}C values for the SH for boreal summers (May–August) were not available, we estimated these values by linear interpolation of the compiled zonal data sets for the SH for austral summers (November–February) presented in Table S2b. The zonal values for the SH for boreal summers (May–August) are presented in Table S2c in the online Supplementary Material.

As a result of the large 14C gradient in the northern troposphere for the early bomb period, the uncertainties associated with the compiled hemispheric average values for the NH are usually larger than those for the SH for boreal summers for that period (Hua and Barbetti 2004). The global weighted means for boreal summers for 1950–1972 would therefore be biased and close to the SH averages if the above 2 hemispheric data sets were used for the compilation of the global 14C data.

We therefore compiled the global weighted means for boreal summers for 1950–1972 using the 5 zonal data sets as the uncertainties associated with the 3 zonal values for the NH for boreal summers (see Tables S2a and S2c) were almost comparable to those associated with the 2 corresponding zonal values for the SH (see Table S2c). The percentages of zonal surface areas for NH zones 1, 2, and 3, and SH zones 3 and 1-2 were taken as 8.5%, 23%, 18.5%, 7.5%, and 42.5%, respectively.

For the period 1973 onwards, the global mean values were calculated from 2 hemispheric data sets, the NH and SH means for boreal summers, which are presented in Table S2c. The compiled global average values for 1950–2010 are also reported in Table S2c. Global 14C mean values for boreal summer months (May–August) for the period 1950–2010 are also shown in Figure 4.

COMPiled (EXTENDED) MONTHLY 14C DATA SETS

Five compiled zonal data sets are presented in this section. The data sets were compiled mainly from monthly mean values derived from atmospheric 14C records. As most of those atmospheric 14C records are available only from the late 1950s or early 1960s onwards, these compiled data sets were then extended to 1950 using compiled summer 14C data based on tree rings.

The calculation of zonal monthly mean values consisted of 2 stages: calculation of monthly values for each atmospheric record and calculation of zonal monthly means. For each month, the monthly value for each record was the weighted mean of a number of individual samples if more than 1 sample was available for that month. The weights for calculating monthly values were the 14C uncertainties and the sampling duration (if available) of individual samples. The uncertainty associated with a monthly mean was the larger value of the error of the mean and the standard error. The monthly mean value for a particular zone in a particular year is the weighted average value based on the uncertainty associated with the monthly mean of the individual record. The uncertainty associated with the zonal monthly mean value is the larger of the error of the mean and the standard deviation.

The 14C records from atmospheric CO$_2$ samples employed for the reconstruction of zonal monthly 14C for the NH and SH are shown in Table 1. For NH zone 1, the compiled monthly data, from February 1959 to August 2009, were extended to mid-1950 using the compiled summer data for NH zone 1 for 1950–1958 reported in Table S2a. These summer (May–August) values were based on tree-ring 14C.
Regarding NH zone 2, the compiled monthly data of March 1963–August 2009 were extended back to mid-1950 using the tree-ring-based summer data for NH zone 2 for 1950–1962 reported in Table S2a. For NH zone 3, the compiled monthly data are from May 1963 to July 1969 and January 1973 to August 2009. The tree-ring-based summer 14C data for NH zone 3 for 1950–1962 and 1970–1972, reported in Table S2a, were used to fill the gap and extend the monthly data back to mid-1950.

Regarding SH zone 3, the compiled monthly data set of January 1973–March 2011 was extended to 1950 using the tree-ring-based summer (November–February) data for SH zone 3 for 1950–1972 reported in Table S2b.

For SH zone 1-2, the compiled monthly data set was from June 1950 to March 2011. However, as the data were sparse for the pre-bomb period, we also included the tree-ring-based summer (November–February) 14C data for SH zone 1-2 for 1953–1954, which are reported in Table S2b.

The extended monthly data for NH zones 1, 2, and 3 (1950–August 2009) and SH zones 3 and 1-2 (1950–March 2011), in Δ^{14}C and F^{14}C (Reimer et al. 2004), are presented in Tables S3a–e in the online Supplementary Material. Because these extended monthly 14C data sets are used for age calibration, Figure 5 shows these compiled data sets in F^{14}C rather than Δ^{14}C (an age-corrected value as mentioned above).

![Figure 5 Compiled (extended) monthly atmospheric 14C curves for 5 different zones (NH zone 1, NH zone 2, NH zone 3, SH zone 3, and SH zone 1-2). The compiled data sets are reported in Tables S3a–e (online Supplementary Material).](https://doi.org/10.2458/azu_js_rc.v55i2.16177)

COMPARISON BETWEEN THE NEWLY COMPILED DATA AND THOSE OF HUA AND BARBETTI (2004)

There are 3 main differences between the data of Hua and Barbetti (2004) and the data presented herein: (a) The new compilation of tropospheric 14C in this paper contains 5 zones (3 in the NH and 2 in the SH) compared to 4 zones (3 in the NH and 1 for the SH) for the compilation of Hua and Bar-
Atmospheric 14C for the Period 1950–2010

betti (2004). That means SH zone 3, shown in Figure 2, is a new zone; (b) The compiled data in this study cover the periods 1950–2010 and 1950–2011 for the NH and SH, respectively, while the respective periods in Hua and Barbetti (2004) are 1955–1999 and 1955–2001. In other words, this new compilation extended the data 5 yr into the pre-bomb period and ~10 yr into more recent times; and (c) The period of which 1 data set of each hemisphere was compiled is from 1973 onwards for this compilation and from 1970 onwards for that of Hua and Barbetti (2004).

Summer 14C Data Sets

For the overlapping periods (1955–1999 for the NH and 1955–2001 for the SH), the new compiled zonal data agree well with those of Hua and Barbetti (2004), with 95% of the data agreeing within 1σ uncertainties and most of the remainder within 2σ uncertainties. Similarly, the new compiled hemispheric and global data have a good concordance with the 2004 data, with 97% of the data agreeing within 1σ uncertainties and the remaining data within 2σ uncertainties.

Extended Monthly 14C Data Sets

The overlapping periods of the compiled extended monthly data sets (from this study and from Hua and Barbetti [2004]) are mid-1955 to January 1997 for the NH zones, and early 1955 to December 1996 for SH zone 1-2. In these periods, the new compiled extended monthly data agree well with those of Hua and Barbetti (2004), with 99% of the data agreeing within 1σ uncertainties and the remainder within 2σ uncertainties.

CONCLUSION

A new comprehensive compilation of tropospheric 14C for the last 60 yr (1950–2010) is now available. The compiled data sets cover ~5 yr before the influence of bomb 14C, the atmospheric bomb-detonation period from the mid-1950s until 1962, the rise of tropospheric 14C in the mid-1960s as significant excess bomb 14C was injected from the stratosphere, and the post-bomb era up to very recent times. The new compilation consists of summer and mostly monthly data sets for use in carbon cycle studies and dating of recent, short-lived terrestrial organic materials, respectively. The extended monthly data sets are used in the CALIBomb (http://calib.qub.ac.uk/CALIBomb/) and OxCal (http://c14.arch.ox.ac.uk) software packages for age calibration. The Supplemental Material accompanying the online version of this article can be found at https://journals.uair.arizona.edu/index.php/radiocarbon/article/view/16177.

ACKNOWLEDGMENTS

We thank S Hankin for the preparation of Figure 2, G Brailsford and S Nichol for giving us permission to use the NIWA Baring Head (Wellington) data from June 2005 to March 2011, K Rozanski and T Kuc for their provision of tabulated data for Kasprowy Wierch, and Y Yamada for the clarification of Shika-machi data for 1957–1958. We also thank our colleagues in atmospheric, tree-ring, and 14C studies for discussions and comments over many years. Three anonymous reviewers provided helpful, critical, and constructive comments that improved the manuscript.

REFERENCES

https://doi.org/10.2458/azu_js_rc.552.16177 Published online by Cambridge University Press
Q Hua et al.

Hua Q, McDonald J, Redwood D, Drysdale R, Lee S, Fallon S, Hellstrom J. 2012a. Robust chronological re-

