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Abstract. We construct all A,-codimension 1 multi-germs of analytic (or smooth) maps
(k", T) — (k',0),withn = p — 1, (n, p) nice dimensions, k = C or R, by augmentation and con-
catenation operations, starting from mono-germs (|7'| = 1) and one 0-dimensional bi-germ. As
an application, we prove general statements for multi-germs of corank < 1: every one has a real
form with real perturbation carrying the vanishing homology of the complexification, every
one is quasihomogeneous, and when n = p — 1 every one has image Milnor number equal to
1 (this last is already known when n > p).
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1 Introduction

In the theory of singularities of analytic mappings, a stable perturbation of an
unstable germ plays a similar role to the Milnor fibre in the theory of isolated
hypersurface singularities — it is the ‘nearby stable object’ associated to the unstable
germ. And the discriminants and images of stable perturbations carry the vanishing
homology most naturally associated with unstable map-germs.* This translation
made, the analogy with the theory of isolated hypersurface singularities is consid-
erable; for example, in many cases one finds the same Milnor-Tjurina type relation
between the rank of the vanishing homology and the deformation-theoretic
codimension of the germ. In this paper we investigate the topology of the dis-
criminants of stable perturbations f; of multi-germs f: (k",S) — (k”,0) with
n>=p—1, where S C k" is a finite set, and where k=R or C. When n=p —1
‘discriminant’ of course means ‘image’.

* Implicit in the term ‘stable perturbation’ there are certain choices of representative,

analogous to the choices in the construction of the Milnor fibre of an isolated hypersurface
singularity; for a discussion, see e.g. the introduction to [9].
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When k= C, the discriminant D(f;) has the homotopy type of a wedge of
(p — 1)-spheres ([6, 24]). The number of these spheres is called the discriminant
Milnor number, u,, when n>=p and the image Milnor number, yu;, when
n=p—1.When n > p and (n, p) are in Mather’s range of nice dimensions ([20]),
it is known ([6]) that u,(f) and the A,-codimension of f satisfy the Milnor-Tjurina
relation: u,(f) = A.-codimension(f) with equality if f is weighted homogeneous
in some coordinate system. In case n = p — 1, the same relation, with g; in place
of u,, is only known to hold when n =1 ([25]) and n = 2 ([13, 24]). Nevertheless
there is evidence that it holds in higher dimensions (see e.g. [12]):

CONIJECTUREIL. This relation (and in particular equality in the quasihomogeneous
case) holds in all nice dimensions (n, n + 1).

Here we are concerned with this conjecture, and also with another: suppose that
g (R",S) — (R”,0) is a real analytic map germ of finite A,-codimension, with a
stable perturbation g,. Suppose also that the complexification g¢, of g, is a stable
perturbation of the complexification g of g. We say that g, is a good real
perturbation of g if rank H, ((D(g;); Z) = rank H,_(D(gc,); Z) (in which case
the inclusion of real in complex induces an isomorphism on the vanishing homology
of the discriminant).

CONIJECTURE II. For every A,-codimension 1 equivalence class of map-germs in
the nice dimensions, there exists a real form with a good real perturbation. That

is, the vanishing topology of all codimension 1 complex singularities is ‘visible over
R’.

We remark that the corresponding statement holds for isolated complete
intersection singularities (ICIS’s); an ICIS of Tjurina number 1 is necessarily a
non-degenerate hypersurface singularity, and in fact in dimension > 0, this is the
only type of ICIS whose vanishing homology is visible over R. This is easy to see:
if X; is the Milnor fibre of an ICIS X, of dimension n,then its real part X; g is
an oriented n-manifold, and so rk H,(X; r,; Z>) is equal to the number of compact
connected components without boundary. Thus if rk H,(X, r; Z2) = u(Xo), then

> otk Hi(X,w; Zo) = 1k Hy(Xo ;s Z2) + 1k Ho(Xor; Z2) > 24,
k

The sum of the complex mod 2 Betti numbers is 1 + y; Smith theory (cf. e.g., [2]) says
that this sum is no less than the sum of the real mod 2 Betti numbers, and hence
unless n = 0, the only possibility is that u = 1.

There are five codimension 1 equivalence classes (see Figure 2) of map-germs
(C*, S) = (C*,0); for map-germs (C*,S) — (C* 0) there are eight, and for
map-germs (C*, ) — (C°,0) there are eleven.
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Conjecture II is known to hold for mono-germs (C", 0) — (C”, 0) (withn > p and
(n, p) nice dimensions) of corank 1 ([23]). It also holds for (mono- and multi-) germs
(C2 ,8) — (C3, 0) ([8]; Goryunov’s diagrams of good real perturbations are
reproduced in Figure 2 below). Every real germ (C, S) — (Cz, 0) has a good real
perturbation ([1, 10]), but once n > 1, map-germs (C", S) — (C"',0) with good
real perturbations become the exception ([16]).

Our main results here provide evidence for both conjectures. We show

THEOREM 7.2. Every multi-germ f: (C",S) — (C"™,0) of corank 1 and
A.-codimension 1 has p;(f)=1.

THEOREM 7.3. Every A-equivalence class of multi-germ f: (C", S) — (C?,0)
(n = p — 1, (n, p) nice dimensions) of corank 1 and A.-codimension 1 has a real form
with a good real perturbation.

We prove both of these theorems first for ‘mono-germs’ (|.S| = 1) (in Section 4) and
then by an inductive procedure which constructs codimension 1 multi-germs from
simpler ingredients. This procedure yields an inductive classification of multi-germs
of codimension 1. In Section 5 we show that all codimension 1 multi-germs can
be constructed from codimension 1 multi-germs with fewer branches and in a lower
dimension, and from trivial unfoldings of Morse singularities (in case n = p) or
immersions (in case p = n+ 1) by means of three standard operations. These are
augmentation, described in Section 2, and two concatenation operations, described
in Section 3.

We feel that these operations, of augmentation and concatenation, are themselves
of independent interest. They can be seen at work, generating the lists of
A.-codimension 1 germs from surfaces to 3 space, and from surfaces to surfaces,
in Figures 2 and 3. See also Figure 4.

We end this introduction with an elementary lemma which nevertheless highlights
an important property of codimension 1 germs. Before stating it, we fix our notation:
a map-germ f: (k", S) — (k”,0) (where k = R or C), gives rise to a diagram

L e

Jrnn T[pl

o L e
We set

Orr s = O s — module of germs at S of vector fields on k",

0.0 = O o — module of germs at 0 of vector fields on &,

0(f) = Opn,s —module of germs &: (K", S) — Tk” such that m,0 & =f,
= {d/d«(f1);=o: f1 is @ germ of 1-parameter family with fo = f}
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and define

1f: Ops = 0(f) by tf(x) =df oy,

of 1 Oo — 0(f) by of(n)=nof

and

0(f)
tf(Orns) + o f (O )

Except for our use of 6§ where Wall uses V, our notation is the same as that of the
survey paper [31], to which we refer the reader for further definitions and a summary
of the basic theory.

TA.f =

LEMMA 1.1. If f: (C", S) — (C*,0) is a germ of A.-codimension 1, then any stable
unfolding of f is A.-versal.

Proof. Let F(x, u) = (f,(x), u) be a d-parameter unfolding of f. By [17] XV 2.1 or
[31] 3.3, F is stable iff

e O/ Oug
u=0

TA.f + Op{afu/aul

}=9(f)*

u=0

Since T'A. f is an O,-module, we therefore cannot have 9f,/du;|,—o € T\ A. f for all i.
Hence for some i, TA.f + C{3f,/0u;l,—o} = 0(f ), and F is versal. O

The results in this paper concerning map-germs (C", S) — (C"',0), and the
results of Sections 2 and 5, were first proved in the PhD thesis ([4]) of the first author.

2. Augmentations

Let /2 (C", S) — (C,0) be a multi-germ of A.-codimension 1 where S is a finite
subset of C". Let

F: (Cx C" {0} xS) — (Cx Cr (0,0)
(u, x) 1= (u, fu(x))

be an A,-versal unfolding of f. Define Ap: (C x C", {0} x S) — (C x CF,(0, 0))
by Ar(, X) = (. f2(x).

PROPOSITION 2.1. The A-equivalence class of Ar is independent of the choice of
miniversal unfolding F of f. It depends only on the A-equivalence class of f.

*Our preferred reference, [17], deals only with real, smooth, germs, whereas here we are refer-
ring to complex analytic germs. In fact Martinet’s proofs for the smooth category can be trans-

ferred verbatim to the complex analytic category, since their method (integrating vector fields)
always produces flows in the appropriate category.
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Proof. Let F(t, x) = (¢, fi(x)) and G(s, x) = (s, gs(x)) be two l-parameter versal
unfoldings of f. From the definition of versality it follows immediately that there
exist diffeomorphisms (7, x) = (¢, ¢,(x)) and ¥(¢, y) = (¢, ¥ ,(»)) and a base-change
diffeomorphism a: (C, 0) — (C, 0) such that o*(F)(¢, x) = ¥ o G o ® (where o*(F)
is the unfolding (¢, x)i— (¢, fus(x)). An easy calculation shows that there exists
B: (C,0) - (C,0) (also invertible) such that o(?) = f(s)>; now writing
Ag(t, x) = (1, p2(x)) and Aw(t, y) = (¢, Y 2(y)) we have f*(AFr) = Ay o Ag o Ag.

Equivalence of germs entails equivalence of their miniversal unfoldings, so the
second statement follows. O

We shall write Af for the A-equivalence class of Ar. We call Af the augmentation
of f and say that a multi-germ is an augmentation if it is the augmentation of some
multi-germ f. A multi-germ that is not an augmentation is called primitive.

EXAMPLE 2.2. The five A,-codimension 1 multi-germs from C? to C* are:

(I) A quadruple intersection of immersed sheets, in which each three are in general
position, such as

(., 3) = (x. .0, ()= (x0y).  (xp—>0xy),
(X, )= (x, p, ¥y + x)
(IT) The intersection of three immersed sheets which are pairwise transverse, but

with each one having first order tangency to the intersection of the other two,
such as

)= (60,0, )00, (R (ny Xy =),

(III) The nontransverse contact of two immersed sheets, such as

(e )= (61,00, (e p) = (o p, 27 407

(IV) An immersed sheet meeting a Whitney umbrella in such a way that it is
transverse to the image of the derivative and to the curve of double points
of the umbrella, such as

()= (6 p, %), (%) (07X, ).

(V) S1, ()= (x,»*,» +x%). In the versal deformation (x,y)—
(x, %, 9> + x>y +ty), two Whitney umbrellas appear when ¢ <0, so this
singularity is sometimes known as the birth of two Whitney umbrellas.

This classification, and the pictures shown in Figure 2 below, first appeared in [8].
Details can be found in [32]. A topological description was independently obtained
by D. Roseman in [29], as Reidemeister moves in higher-dimensional knot theory,
and in, e.g., [3] Scott Carter refers to the transition through these singularities
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as ‘Roseman moves’. The reader may enjoy deriving this classification as an exercise
in the application of the main results of this paper.

(I) and (IV) are primitive. (V) is the augmentation of the cusp t1— (¢2, ), (III) is
the augmentation of a tacnode (two curves simply tangent at a point), which itself
is the augmentation of the map from two copies of C%to C sending both points
to 0 € C, and (II) is the augmentation of three lines meeting pairwise transversely
at a point.

Pictures of the images of good real perturbations of these germs, showing the
process of augmentation, are shown in Figure 2.

EXAMPLE 2.3. The five A.-codimension 1 multi-germs from C? to C? are

(I) The fold tacnode — a bi-germ consisting of two folds whose discriminant curves
have a simple tangency;
(IT) The fold triple-point: a tri-germ consisting of three folds whose discriminants
meet pairwise transversely at a point;
(III) The lips: (x, y)i— (x, y* + x%p);
(IV) A bi-germ consisting of a fold and a cusp, with the discriminant of the fold
transverse to the limiting tangent line to the discriminant of the cusp.
(V) The swallowtail: (x, y)i— (x, y* + xp);

(II1) is the augmentation of y i— y?; (I) is the augmentation of the bi-germ consisting
of the two branches xi— x? andyi— y?; (II), (IV) and (V) are all primitive.

Codimension 1 mono-germs from the plane to the plane were first classified by
Gaffney and Ruas (unpublished); the first published account (also for maps
(C",0) — (C?,0), n = p) is probably in Goryunov’s paper [7]. A proof can also
be found in [23]. The classification of codimension 1 multi-germs from the plane
to the plane is then an easy exercise.

Pictures of the discriminants of good real perturbations of these germs are shown,
in the same order from left to right, in Figure 3.

DEFINITION/NOTATION 2.4. A transverse fibre square is a diagram

¥y 5Ly
|
X L v

in which i h F, Xy ~ X xy Y, and f is right-equivalent to the natural projection
X xy Yy — Y. Given such a transverse fibre square, we will sometimes refer to
f as the pull-back of F by i and denote it by *(F).

Every germ f having a stable unfolding F can be recovered from F by transverse
fibre product. In [5], Jim Damon showed that if F, f and i are as in 2.4 then
the A,-codimension of f is equal to the Kp).-codimension of i, where the latter
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is defined to be the complex vector space dimension of

0(i)
1i(0y,) + i*(Der(log D(F)))

N}CD(F)’(),I' =
(with D(F) the discriminant of F'). This result will be referred to as Damon’s theorem.
THEOREM 2.5. Af has A.-codimension 1.

Proof. The diagram

F

CnJrl Cp+1
[ E
7

CIH—I A_j> Cp+1

where y(4, y) = (A%, ), is a transverse fibres quare. Therefore by Damon’s theorem,
the A.-codimension of Af is equal to the Kp(r).-codimension of y, where D(F)
is the discriminant of F. The diagram

F

CnJrl Cp+1
F
o Lo

where #; and i are inclusions, is also a transverse fibre square. So the
K p(r),.-codimension of i, is equal to the A,-codimension of /" and therefore is 1.
Because i, is a standard coordinate immersion, an easy calculation shows

O
du(i5(Der(log D(F))))’

NEpy,elr =
where du(ij(Der(log D(F)))) is the module consisting of the coefficients of 3/du of the
elements of i5(Der(log D(F))). A similar calculation gives

Op+1
du(y*(Der(log D(F)))) + ()’

NEpr).ey =

where the (1) in the denominator comes from dy/9d4. Clearly NKpr)..i» and NKpr) .y
are isomorphic. O

The following result is a partial converse:
PROPOSITION 2.6. Suppose that G(4, x) = (4, g,(x)) is a one-parameter stable
unfolding of a multi-germ g =gy and suppose that h(/,x) = (4,g,(x)) has

A.-codimension 1. Then g has A.-codimension 1 and G is a versal unfolding of g.
Thus h is the augmentation of g.
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Proof. It is immediate from the calculation in the proof of Theorem 2.5 that g has
A.-codimension 1. Versality of G now follows by Lemma 1.1. O

Given a stable map f: (C", S) — (C?,0) let Pf(the ‘prism’ on f) be the trivial
I-parameter unfolding of f. We shall say that a map-germ is a prism if it is
A-equivalent toPg for some germ g.

An easy calculation with tangent spaces shows

PROPOSITION 2.7. Let F(A,x)= (4, f,(x)) be an A.-versal unfolding of an
A.-codimension 1 multi-germ f. Then G(u, 4, x) = (u, /l,fizﬂ(x)) is an Ac-versal
unfolding of g = Ar. O

Since G(u, 4, x) = (u, i,flzﬂ(x)) is an unfolding of F(u, x) = (u, fu(x)) and F is
stable then G is A-equivalent to PF. Therefore if a multi-germ is an augmentation,
its miniversal unfolding is a prism. The converse is also true:

THEOREM 2.8. Let g be a multi-germ of A.-codimension 1 and suppose that the
miniversal unfolding G of g is a prism. Then g is an augmentation.

Proof. There is a unique natural number ¢ and a stable multi-germ /4, unique up to
A-equivalence, such that G(/, x) = (4, g,(x)) is A-equivalent to P’k and 4 is not a
prism.

We have the following commutative diagram

g

c", s — Cr,0
n (4.g:(x))

CxC" {0} xS /0 C x C?,(0,0)
J J

id .o xh
Clx O™ ) x & —2 ¢t x €1t (0, 0)

T

crl-t s h Pt o
where i is the standard inclusion, ¢ and y are diffeomorphisms, 7 is the natural
projection and S is a subset of C""'~“of the same cardinality as S. Each of the three
squares of the diagram is a transverse fibre square so the outside rectangle is a
transverse fibre square as well. The A.-codimension of g is equal to the
K pgiy,.-codimension of m o Y o i where D(h) is the discriminant of 4. Since / is stable
it is Thom transversal so any vector field in Der(log D(h)) lifts, by 6.14 of [14]. Since
h is not a prism, Der(log D(h)) € m,11-0(p + 1 — £). So,

TICD(h),e(n © W © l) C TK(no ‘// © l)
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and the KC.-codimension of mo oiis 0 or 1. It cannot be 0, as this would make
moy oi a submersion and g stable. Therefore 7oy oi is a quadratic singularity,
A-equivalent to

P
.
01, yp) = (yl,...,y,,g, Z y?)

i=p+1-£

Let ® and W be germs of diffeomorphisms such that Yo (nroy oi) =70 ®.

Let 7y CF 1=t C be the projection onto the last coordinate. Then
dmpri—coPo(moyoi))(0)=0 and since h is transverse to moyoi,
d(mpy1—¢ oW o h)(S") # 0. It follows that for A near 0,

(Tp1coWol) ' (W)= C™" and (410 W) () = C°
Define

h, =h O ot
(p1-e0Woh) ™' (2)
Then A(4, x) = (4, hy(x)) is an unfolding of /. Since the outside rectangle of the above
diagram is a transverse fibre square, g is A-equivalent to the germ (4, ..., 4¢, X)I—
(A1, ..y Ae, hzy ;;(x)). Therefore, g is an augmentation by Proposition 2.6. ]

i=1""1

3. Concatenation

In this section we describe two basic operations, by which we ‘concatenate’ stable
unfoldings of (multi-) germs to create new multi-germs. There is no reason to require
purity of dimension in multi-germs, and we allow different branches to have domains
of different dimension. We therefore will not distinguish in our notation between
image Milnor number and discriminant Milnor number: both will be denoted
ua- In what follows it will be useful to use the notation {f, g} for the germ obtained
by putting together germs f and g with the same target. That is, if
f:(X1,8)— (Y,0)and g: (X», T)— (Y, 0) are germs, then {f, g} is the multi-germ
(X1 U X,, SUT)— (Y,0) whose branches are those of f/ together with those of g.

Throughout this section we assume that we are in the nice dimensions; thus, every
stable unfolding (f;(x), A) of a germ f; is a ‘stabilisation’, in the sense that for almost
all 4, f; is stable.

The first concatenation operation is monic: from a multi-germ with m branches we
get a new multi-germ with m + 1 branches, in which the extra branch is a fold or an
immersion. Later we introduce a binary concatenation operation, in which we
combine two codimension 1 multi-germs to get a new multi-germ.

THEOREM 3.1. Let f: (C", S) — (C?,0) be a map-germ of finite A.-codimension

with a stable unfolding F on the single parameter t, let 0 <ke 7 and let
g (TP x C*,0) — (CF x C,0) be the fold map (v, v)— (1, Zj]le v]?). Then
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() A, —codim(g*(F)) = A, — codim(f') = A, — codim({F, g})
(2) A" (F) = uma({F. g} = ua(f)
(3) both g“(F) and {F, g} have 1-parameter stable unfoldings.

Proof. (1) Let i: (C?,0) — (C? x C, 0) be the standard inclusion inducing f from
F. By Damon’s theorem the A.,-codimension of f* is equal to the vector-space
dimension of NKp) i := 0(i)/ti(0cr) + i*(Der(log D(F))). As i is an immersion,
projecting to the last component gives an isomorphism NKpp) .l >
Oc¢po/dt(i*(Der(log D(F)))). Again by Damon’s theorem, the A,-codimension of
g*(F) is equal to the dimension of NKp).g; since

p k
9 3
180crc) =) Ocpyr e § DOtV n
=1 j=1

it follows, again by projecting to the last component, that
NEpr).e& = Ocpyct o/ V15 -+ -, i) + di(g"(Der(log D(F))));

this in turn is isomorphic to O¢r o/dt(i*(Der(log D(F)))), and thus to NKp(r).i. This
proves the first equality in (1).
To prove the second equality in (1), we use the exact sequence

N 0(g)
tg(e;gpx(;k) + wg(Der(log D(F)))

— NAAF, g} > NAF — 0

which results from the fact that Der(log D(F)) is the kernel of @F: Ocp ¢ —
O(F)/tF(Ocr ). Since F is stable, NA{F, g} is isomorphic to

0(2)/18(0 1 . ) + wg(Der(log D(F))).
This in turn is isomorphic to
O‘CPXC/(,O/(VI’ AR Vk) + dt(wg(Der(lOg D(F))))a

by projection to the last component, and thus, evidently, to
Ocr o/dt(i*(Der(log D(F)))), i.e. to NKpr)l.

(2) For A #0, the map g, defined by g,(y,v) = (y,>_ vf + 2) is logarithmically
transverse to D(F). Thus gj(F) is a stable perturbation of g*(F). Its discriminant
is g;l(D(F)). There are now two cases, k > 0 and k = 0.

Ifk >0, g;l(D(F )) fibres over D(F) with typical fibre diffeomorphic to the Milnor
fibre X, of g, and contractible fibres over the points of D(£) N D(g;). Since D(F) itself
is contractible, it follows that g;l(D(F)) is homotopy-equivalent to the space
obtained from D(F) x X, by gluing in a k-ball to each fibre over D(F) N D(g;) to
kill its homotopy. A Mayer—Vietoris argument now shows that the rank of
H,11—1(g; ' (D(F))) is equal to the rank of H,_;(D(F) N D(g;)). Since {F, g;} is a stable
perturbation of {F,g}, a second Mayer—Vietoris argument shows that
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Hy(D(F)U D(g;)) ~ H, 1(D(F) N D(g;)); thus

1a(g*(F)) = rank H, 4_1(g; ' (D(F))) = rank H,(D(F) U D(g;)) = us{F. g}.

The second equality of (2) follows from the fact that D(g;) = i;(C") = D(i%(F)),
where i;: CF — CF x Cis defined by yi— (y, A). For i; is logarithmically transverse
to D(F), and thus i; /(D(F)) (for 4 # 0) is the discriminant of a stable perturbation
i5(F) of f.

If k=0, the situation is much simpler: g;'(D(F)) is diffeomorphic to
D(g;) N D(F), and the assertion is proved by a similar Mayer—Vietoris argument.

(3) The unfolding G = (g;, /) of g induces from F x id a stable unfolding of g*(F),
since it is logarithmically transverse to D(F) x C. The unfolding {F x id¢, G} of
{F,g} is stable, since the analytic stratum C” x C.(1,1) of G is transverse to
the analytic stratum of F x id¢. O

In particular, if the germ f satisfies Conjecture 1, then so does {F, g}. In fact, as we
shall now see, our proof of 3.1 shows that the same goes for the existence of good real
perturbations (Conjecture 2, in the case of map-germs of codimension 1).

THEOREM 3.2. If f has a good real perturbation then so does {F, g}, and vice versa.
Proof. Replace C by R everywhere in the topological part of the proof of 3.1.
The Mayer—Vietoris argument shows that

rank H,(Dgr(F) U Dr(g;)) = rank H, {(Dr(F) N Dr(g;)) = rank H,_1(D(f))),

so that if either side has, for ¢ > 0 or for ¢ < 0, rank equal to the rank of the homology
of the complexification, then so, by 3.1, does the other. O

THEOREM 3.3. Suppose that the germ f of Theorem 3.3 has A.-codimension 1.
Then up to A-equivalence, the bi-germ h = {F, g} obtained is independent of the
choice of stable unfolding F.

Proof. Any stable 1-parameter unfolding of f is also A,-versal. Thus, given two
such, F’ and F”, by the semi-uniqueness of mini-versal unfoldings there are a
diffeomorphism o: (C, 0) — (C, 0) and unfoldings of the identity

¢: (C"x C,S x {0}) — (C"x C, S x {0})
and
¥ (CF x C, {0} x {0}) = (C7 x C, {0} x {0})

such that W o F' o ® = o*(F”), where o*(F") is the unfolding (x, A) i— (f”(x, a(4)), 1).
This equality can be rewritten

(Ixa)oPoF o®o(l xal)y=F",

and therefore to conclude that {F’, g} and {F”, g} are A-equivalent, it remains only
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to show that we can find a diffeomorphism 6 such that

(Ixa)oPogol=g.
In fact we construct 0~'. Since

(U xmo¥ogl,n=(y(rnY7).«X %))

we look for a diffeomorphism f: (CF,0) — (C*,0) such that a(z vf)z

> (B, ve))*. This seems easiest to do by working directly with power series;
for example, when k =2, and assuming for ease of notation that o/(0) = 1, we
can take

Pvi.vy) = (vi(1 + cxz(v% + 2v§) + oc3(v? + 3v%v§ + 3v‘2‘) + .- ~)1/2,
Va1 + 0av3 + o3vd + - ),

where the o; are the coefficients of the Taylor series of . Now we find that

(0 22007)-(27)) = (v (0 227). p0):

the right-hand side of this equality is the composite of g with a diffeomorphism of
its domain, and so we are done. O

When f has A,-codimension 1, the germ g*(F) obtained by applying the procedure
of Theorem 3.1 is the k-fold augmentation of f, AXf. It will be useful to have a
notation for the multi-germ {F,g}: we will denote it by Ci(f). Both 4*f and
Ci(f) are well-defined as A-equivalence classes, by 2.1 and 3.3.

EXAMPLE 3.4. Let f = {f1, />, /3, f4} be the stable multi-germ parametrising the
union of the four coordinate hyperplanes {x; = 0} in ct (in descending order of
i), and let g(x, y, z) = (x, y, z, z + y + x¥). Then by successive de-concatenation,the
codimension and image Milnor number of the 5-germ {f, g} are equal to those

of the 4-germ g*(f) and the 3-germ (g*(f1))*({g*(f2), £*(f3), £*(f4)}). The latter is
equivalent to

xi— (x, —x5), xi— (x,0), x+— (0, x)

LN N
N

Figure 1.
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This has A,-codimension and image Milnor number equal to & — an r-branch
parametrised curve-germ in the plane has y; = 6 —r + 1. It also has a good real
perturbation, shown in Figure 1 when k = 4.

EXAMPLE 3.5.

Figure 2. Via A = Augmentation and C, = Concatenation, the double-point and the cusp generate all
codimension 1 equivalence classes from 2-space to 3-space (whose good real perturbations are shown
in the right-hand column).
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EXAMPLE 3.6.

.......................................................................................................................................

Figure 3. Generation of codimension 1 germs of maps from the plane to the plane.

EXAMPLE 3.7. The bi-germ consisting of a cross cap together with an immersed
plane transverse to the parametrisation of the cross-cap, and making contact of
degree k with the double line in the cross-cap (cf. 7.5 in [22], and 3.3 in [32]) is
obtained by applying Cy to the germ 71— (#2, £***1) parametrising the kth order cusp.

The second type of concatenation is a binary operation: given germs
fo: (C™, 8) = (C*,0) and go: (C", T) — (C”, 0) with 1-parameter stable unfoldings
F and G, we form a multi-germ % with |S| + |T| branches, by putting together germs
equivalent to idge x F and G xid» in such a way that their analytic strata
(see Section 5) meet subtransversely in C4T0*1,

THEOREM 3.8. Suppose the two map-germs F(y,s) = (f,(»),s) and G(x,s) =
(gs(x), s) are stable, and let h be defined by

X, y,w)— (X, £,(»), u), (x, Y, u)— (gu(x), Y, u).

Then provided A.-codim (h) < oo, we have

() A,-codim (h) = A,-codim (fy) x A.-codim (go), with equality if and only if
either s € ds(Der(log D(G))) or t € dt(Der(log D(F)));
(2) h has a I-parameter stable unfolding,

B)  ualh) = pafo) x ua(go)-

Proof. (1) and (2): we compute the codimension of 4 by Damon’s theorem. The
multi-germ

o [ (05,000 (X5, £0), 1),
(s, Y, )= (g5(x), s, Y, 0)
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is stable, as t(F) M t(G), and after a change of coordinates can be seen as an
unfolding of 4 (which proves (2)). Our map 4 is induced from H by

i C'x C"x C— C*xCxCxC,
(X, Y, u)y=X,u, Y,u).

The discriminant of H is the ‘product-union’ (Jim Damon’s term)
(D(G) x C” x C)|_J(C* x C x D(F)),

so if &g, ..., &, generate Der(log D(F)) and 1, ..., #, generate Der(log D(G)) then
(considering the ¢&; as belonging to 0(a+ 1+ b+ 1/a+ 1) and the #; as belonging
to da+1+b+1/b+ 1)), we have

NEp.ei = 0(i)/(9/3X;, 8/0Y;, 3/0s + 3/8t) + (Eos ..., Epa Mg - - M)

Denote ds(Der(log D(G))) and d#(Der(log D(F))) by I and J respectively. By the map
(ds, dt), NKpm),.i projects isomorphically to

M = Outp+1(0/0s, 3/01)
T (0/ds 4+ 8/0t) + ({ou( X, u)d/ds : (X, 5) € I}) + {B(Y,u)d/ot: (Y, 1) e J})’

As fj is induced from F by y(y) = (», 0), and gq is induced from G by a(x) = (x, 0),

d
NA. fo = 0()/1(0p) + 7y*(Der(log D(F))) = Oy /7*(J)
and
NAugo = 0(0)/16(0,) + *(Der(log D(G))) = O, /a*(I).
Now, suppose that s € I. Then M is isomorphic to

O415(0/ s, 9/ 01)
(335 + 3/31) + Ourpo*(1)3)ds + Ouipy*(J)djdt"

M() =

The reason that M >~ M, is that ud/ds € {o(X, u)d/ds : (X, t) € ds(Der(log D(G)))} is
in the denominator, and thus (since d/ds + /9t is in the denominator), so is ud/oz.
Evidently, if ¢ € J then M >~ M, by the same argument. An easy argument shows
that the converse is true: if M ~ M, then either s € or t € J.
The module M| is itself isomorphic to

Oa+h
a*(I) +y*(J)

via the map ds — d¢

%d/3s + 3/dt— o — B,
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and finally, provided the left-hand side is finite-dimensional,

Oa+b ~ Oa ® ) Ob
o (D) + )~ a* (D)~ ()

This completes the proof of (1).
(3) We postpone proof of this until Section 6 — see, in particular, Proposition
6.6. ]

Remark 3.9. Let f5: (C",S) — (C?,0) be a germ with a 1-parameter stable
unfolding F, and suppose n = p and (n, p) are nice dimensions. Then the condition
in the proposition, that ¢ e d#Der(logD(F))), is equivalent to having
ua(fo) = A.~-codim(fy) — see [26], Corollary 7.4. The proof uses coherence of the
Gauss—Manin connection.

Now suppose both fy and gy have A.-codimension 1. By analogy with augmen-
tation and the first type of concatenation, one might expect the result of this second
type of concatenation to be independent, up to A-equivalence, of the choice of stable
unfoldings F and G. Somewhat surprisingly, this is true over C but false over R.

EXAMPLE 3.10. Let fo(y) =)°, go(x) =x°, and take F'(y,u)= (° + uy,u),
F'(y,u) = (»® — yu, u), G(x, u) = (x> + ux, u). Then the multi-germs

/. (vaiu)lﬁ(X’Jﬁ—i_uy’u)’
NG Y u)— (3 4 ux, Y, u)

and

pe L&y i (X —up.w),
N Y u) = (3 4 ux, Y, u)

are not equivalent over R. The discriminant of /' consistsof two components, each
the product of a first-order cusp with a line, and both ‘opening downwards’ (in
the direction of the negative u axis). This germ /#’ does not have a good real
perturbation. On the other hand, in the germ /4" one cusp opens upwards and
the other downwards, and /%” does have a good real perturbation, shown in
Figure 4.

PROPOSITION 3.11. Suppose that the germs fy and gy in Theorem 3.8 both have
A.-codimension 1. Then over C,and up to A-equivalence, the germ h produced by
the recipe of Theorem 3.8 is independent of choice of the I-parameter stable
unfoldings F and G.

Proof. Suppose that F’ and F” are 1-parameter stable unfoldings of fj, and let G be
a l-parameter stable unfolding of gyo. Applying the concatenation operation, we
obtain multi-germs /' and /”, the first using F’ and G, the second F” and G. We
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Figure 4. Discriminant of a good real perturbation of a binary concatenation of two cubic functions. A
2-cycle carrying the vanishing homology is outlined in black.

wish to show that the two are .A-equivalent. Let /; be the linear interpolation
between them: /; = (1 — A#') + Ah”. We use a Mather—Yau type argument (cf. [21]).

Step 1. For no value of/ is the germ /; stable.

For the analytic strata of its branches ide» x F) and G always meet at
0eC'x C’x C, and always have dimensions whose sum is less than a + b+ 1,
unless for some value of /1 F) is a trivial unfolding of fy. In the latter case F; itself
is not stable, so that once again /s; cannot be stable. It also follows that for those
A such that /; has A,-codimension 1, TAh, = TKh;.

Step 2. The set of points {1 € C : A,-codimension(/;) > 1} is Zariski-closed in C,
so that its complement, A; := {1 € C: A,-codimension(/;) = 1}, is Zariski-open,
and connected. It is non-empty, by the hypothesis that the two germs /’and 4" have
A,-codimension 1.

Step 3. Choose an integer k such that in the appropriate multi-jet space ,J*(X, Y),
the J*A-orbit of the k-jet of every codimension 1 germ coincides with the set of
k-jets of its A-orbit. We use Mather’s Lemma ([18], 3.1) to show that the set
JEAy = {j*h; : 2 € Ay} lies in a single J*A-orbit, from which the proposition
follows. It is necessary to check only that T,JA; c TJ*Ac for all ¢ € A;. But
JEA; lies in a single contact orbit, and for each A € A;, the A-tangent space of
h; is equal to its contact tangent space. It follows that 7,J¥A, c TJ*Ac for all
g € A1, as required. O

The argument of this proof in fact proves the following result, which we will use
later:

LEMMA 3.12. For any given (complex) contact class W C, J¥(n, p) there is at most
one A-orbit which is open in W. OJ
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In the light of 3.11, we will refer to the .A-equivalence class of multi-germ obtained
from codimension 1 multi-germs f; and g( by this binary concatenation operation

as B(fo. g)-

QUESTION. How many different .4-equivalence classes of germs /1 over R can
different choices of miniversal unfoldings F, G of fy and gy give rise to?

Our final result here is

PROPOSITION 3.13. If the germs fy and gy both have good real perturbations, then
so does B(fo, o).

The proof will be given in Section 6, (see in particular Proposition 6.8).

Remark 3.14. It would be interesting to understand the effect on monodromy
groups of augmentation and concatenation. There is a ‘natural’ choice of
I-parameter stable unfolding of Afy, Cix(fo) and of B(fy, g¢), reflecting the choice
of stable unfolding used in their construction. Presumably the monodromy action
in the case of B(fy, go) is the tensor product of the monodromy action in the chosen
I-parameter unfoldings F and G, as in the classical Thom—Sebastiani theorem.

4. A,-Codimension 1 Germs (C",0) — (C"™1,0)

In this section we first classify .4,-codimension 1 mono-germs of co-rank 1 and then
show that each has image Milnor number 1. The argument runs roughly as follows:
let

DF(f) = closure{(x1, ..., xx) € (C", $)F|x; # x; fori##j, f(x;) =f(x)Vi,j};

then by results of [15], f is stable if and only if D*(f) is smooth of dimension
n—k+1for 2<k<n+1, and f has finite A,-codimension if and only if each
DK(f)is an isolated complete intersection singularity of dimension n — k + 1, again
for 0 < k < n+ 1. Moreover, if f; is a stable perturbation of £, then D¥( £;) is a Milnor
fibre of D*(f). There is an obvious symmetric group action on D*( /'), permuting the
copies of (C", S), and in fact a spectral sequence ([9]) computes the homology of the
image of f; from the Si-alternating part of the homology of D(f;). It turns out
that if f has A.-codimension 1, then just one of the D*(f) is singular, and in fact
has a Morse singularity. Since the symmetric group action on the Jacobian algebra
is therefore trivial, from a theorem of Orlik and Solomon and Wall it follows that
the vanishing homology of DX(f;) is alternating, and thus by the spectral sequence
the image Milnor number is 1. The symmetry of D¥(f) also accounts for the exist-
ence of a good real perturbation. Essentially, the point is that an Sx-invariant Morse
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function in k real variables is either a sum of squares or the negative of a sum of
squares.

Now we proceed with the classification. Let ¢ > 0, take coordinates
Ui, U1, V1, ..., ve_1,x)on C**7! and define a map /¢ (C*',0) - (C*, 0) by

-1 -1
fu, v, x) = (u, v, x4+ E wx', x4 E v,x’).
1 i1

LEMMA 4.1. The map-germ f* just described has A.-codimension 1, and the
following property:

(%) DF(fY) is smooth for 2 < k < £ D'(f*) has a Morse singularity, and D*(f*) is
empty for k > £+ 1.

Proof. Recall from [15] 2.1 the determinantal equations /2§, of D*(f*):

1 g +1 k-1
Uoxg o X7 flav,x) X
1 g i+1 k-1
e — Uoxe -t ffuvex) o X
)t vdM

forl <i<k—1land2¢—1<j<2¢ where vdM is the van der Monde determinant
of x1,---, xx, and ];K is the j’th component of f*. An easy calculation shows

hg@ l,i:ui—i—O(Z) fori:2,...,Z—l,
i, =v+0@2) fori=2,... 61,

so that D¥(f%) is smooth for 2 < k < £. Moreover,
e+l

s
Wflie=x1+- +xen and 2”—§:x,xj

We may take the h“rl for 2 <i < ¢—1, together with xi, ..., xy11, as coordinates;
then D“FI(f) is embedded in X1, ..., Xer1-space with equations 457!, , and A%}
Now hgj_llyz is nonsingular, and

1[+1
jras e+1 _ 2
ZEZ__(h%lZ —_52 Xis

i=1

so D*1(f*) has a Morse singularity at the origin.
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Calculation of the A.,-codimension of f* is straightforward; it may easily be
checked using nothing more than Nakayama’s Lemma that

TAS =00/ )\ (x9/9Y2, x " 0/dv1, ..., x0/dver) +
+ (<19 3v + XD/, . X0/Dvey + xD/0Y2)

(here O(f)\ {monomials} means the subspace of 6(f) generated by the natural
monomial generators except for those listed). The calculation is carried out in detail
in [4]. [

Note that since f* has A,-codimension 1, its A-orbit is open in its K-orbit. Note
also that from the expression for T'A, f¢ given in the proof, it follows that the stable
germ

-1 -1
F(,u,v,x) = (2, w, v, XUy Tux, X 4 Z vix' + /lxz)
1 i1

is an A,-versal unfolding of f*.
Since for corank 1 germs (C", 0) — (C”“, 0) the multiplicity determines the con-
tact class, it follows from Lemma 3.12 that we have

COROLLARY 4.2. I f: (C**71,0) = (C**, 0) has corank 1, multiplicity € + 1 and
A.-codimension 1, then f is A-equivalent to the germ f* of Lemma 4.1. O

PROPOSITION 4.3. If f: (C",0) — (C"*',0) has corank 1, multiplicity €+ 1 and
A.-codimension 1 then it is equivalent to

o1 -1
fql: (u, v, w, X)1— (u, v, w, x4 Z wx', X Z vixi 4 q(w)xe)

i=1 i=1

where q is a nondegenerate quadratic form.

Proof. Note that f; is (over C) equivalent to the k-fold augmentation 4¥f*, where
k = n — 2¢. The hypothesis forces n > 2¢ — 1, since the minimal target dimension of a
stable corank 1 germ of multiplicity £ + 11is 2¢ + 1. Since f has .A,-codimension 1, its
versal unfolding G : (C" x C,0) — (C""!' x C,0) is an n — 2¢ + 1-fold prism on a
minimal stable map-germ of multiplicity ¢+ 1. From this it follows by
Theorem 2.8 that f is equivalent to an n— 2¢+ 1-fold augmentation of an
A.-codimension 1 germ f: (C*7',0) — (C*,0) of multiplicity £+ 1 and corank
1. By the previous corollary, f; is equivalent to the germ f* of 4.1; since the germ
F described after Lemma 4.1 is a versal unfolding of f*, f is equivalent to the germ
obtained by replacing the unfolding term Ax’ in the last component of F by
g(w)xt, where ¢ is a nondegenerate quadratic form in new variables w;, as
required. O
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PROPOSITION 4.4. If f: (C",0) — (C"™',0) has corank 1 and A.-codimension 1
then p;(f) =1, and there is a real form with a good real perturbation.
Proof. Let f; be a stable perturbation of f, with image Y;. By [9] Theorem 2.5,

H"(Y;; Q) ~ @, Alty H 1 (DF(f,); Q), (1)

where Alty H"*+1(D¥(f;); Q) means the subspace of H"**1(D¥(£,); Q) on which the
symmetric group S, acts by its sign representation. Now D*(f;) is a Milnor fibre
of D¥(f); since f has property (x) of Lemma 4.1, (1) reduces to

H"(Y;; Q) ~ Alte  H'Y(D(f); Q).

As D'1(f) has a Morse singularity, H"-¢(D**!(f;); Q) ~ Q; it remains to show that
the representation of S,.; on H"~¢(D**'(f;); Q) is the sign representation. This can
easily be seen by an explicit calculation with the normal form given; but there is
another argument which explains better why it is true. As D*!(f) is an
S¢r1-invariant hypersurface singularity, by the theorem of Orlik and Solomon
and Wall ([27, 30)),

H"™“(D"(f,); Q) = Jacpen(ry ®0 A(V)*

as Sy, representations, where V is an S,yi-invariant smooth space containing
D1(f) as a hypersurface, and Jacpea(ry is the Jacobian algebra of D“1(f). Since
D“FI(f) is Morse, its Jacobian algebra is a trivial 1-dimensional representation
of Spi1, so H™Y(D™(f,); Q) =~ AYV)*. In fact we take V = D*"'(G) where G is
a l-parameter stable unfolding of f; as noted above, G is right-left equivalent to
a prism on F, and in particular the S, -action on D**!(G) is equivalent to a trivial
extension of the standard Weyl action A,, in which S,.; acts on {(xy, -, Xp11):
Y. x; = 0} by permuting coordinates. Hence A‘(})* is just the sign representation
of Sgr1and (as vector spaces)

H* (Y3 Q) = Al H' (D (£); 0) = ©

so that u,;(f)=1.

In the real case, we apply (1) to a real stable perturbation f; g of f, replacing
D*(f;) by D*(fw.;). Consider first the case n = 2¢ — 1, so f is equivalent to the germ
S of 4.1. Let f£, be a stable perturbation. Evidently D*(f{ ) is contractible for
2<k<t+1,and D'(f{ ) is a real Milnor fibre of a £ — 1-dimensional Morse
singularity; hence it is a homotopy p-sphere for some p between —1 and ¢ — 1.
We have to show that either for # > 0 or # < 0 it is an £ — 1-sphere. This follows
from the fact that D+!(f*) has a Morse singularity and an S, -invariant defining
equation, in a space in which the representation of S,y is equivalent to the Weyl
representation A, described above. Since the representation is irreducible, the stable
manifold and unstable manifold of the gradient flow must be equal to 0 and V or V'
and 0 respectively, and any Sy, -invariant quadratic form must have index 0 or
¢. Since the versal unfolding F of f* is a stable map, D**!(F) is smooth, and thus
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projection to the parameter space cuts out distinct real Milnor fibres for ¢ > 0 and
t < 0. Hence at least one of these is an £-sphere. The inclusion D‘*!( fﬁ),)f—)
D*1(f*) then induces an S, -equivariant homotopy equivalence, so that the rep-
resentation of Sy on H'(D!(f{ ) is once again the sign representation.
In the general case, letfq‘zR,I be a stable perturbation of f[f By taking g =}, w2,
then D*!(ff) is an £ — 1 + d-dimensional sphere, where d =n—2¢+ 1 is the
number of w-variables in the expression for ff in 4.3. In fact D‘“rl(fq‘Z Rr.,) is the join
of D“‘(R’,) and ¢~ '(7), and the representation of S, on its cohomology is just
the sign representation as before. O

Remark 4.5. The argument just used shows that if f: (C",0) — (C"*' 0) has
corank 1 and multiplicity ¢ + 1, and has a 1-parameter stable unfolding F, and
if D*(f')is singular, then p;(f) = € + 2 — k. For from the fact that D*(f") is singular
it follows that D/( f) is singular, for k <j < £+ 1. As D/(f) is a hypersurface in the
smooth space DV/(F), the argument used above can be applied. The Jacobian algebra
of each singular D*(f') has an Si-invariant subspace of dimension at least 1 (since
the constants form a one-dimensional trivial representation), and hence by the
theorem of Wall (rather than the earlier result of Orlik and Solomon, which applies
only to weighted homogeneneous hypersurface singularities) the alternating part
of the middle homology of the Milnor fibre D¥( f;) has rank at least 1. The conclusion
then follows by (1).

5. A,-Codimension 1 Multi-germs

In this section we show that in Mather’s nice dimensions (cf. [19, 20]) all
A.-codimension 1 multi-germs can be constructed by concatenation and
augmentation, beginning with stable germs and with primitive .4,-codimension 1
mono-germs.

Submersive branches of multi-germs play a trivial role in classification and
deformation theory, and we will ignore them in what follows. In particular ‘a
multi-germ with k& branches’ means a multi-germ with k& nonsubmersive branches.

For a multi-germ f: (C", §) — (C”, 0) with branches /U, ..., f®, define

w(f) = evol(wf) " {/*mp0(f) + 1f (0(n)s)}]
where evy: 0(p) — ToCF is evaluation at 0, and
7(f) = evol(wf) i/ (Om)5))]

In fact 7/(f') = evg(Der(log D(f'))) where D(f) is the discriminant (or image) of f.
The following result is due to Mather [18].
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PROPOSITION 5.1. The multi-germ f is stable if and only if each f© is stable and
(fM), ..., 1(fY) have regular intersection with respect to ToCF. Moreover, in this

case ©(f) = Nit(fD). O
We now investigate the geometrical significance of 7’.

LEMMA 5.2. If f: (C", S) — (CF,0), is stable, then t1(f) =7(f). O

LEMMA 5.3. If f =ide» x g (i.e. f = P"g), then U(f) = ToC" @ 7(g). O

LEMMA 5.4. If dim¢t'(f) = m, then there is a germ g, not a prism, such that
f~4P"  Moreover, if ¢ and 1 are diffeomorphisms such that
fop=yo(den xg) then 7(f) = dy(ToC" x {0}).

Proof. Suppose tf (&) = of (). If n(0) # 0 then also &(s) # 0 for s € S, and the
orbits of £ and # can be incorporated as coordinate lines into new coordinate systems
on C", S and C”, 0; now the lemma just reduces to the Thom-Levine Lemma (see,
e.g., [28]), and f ~4 Pg; for some germ g;. Now apply the same procedure to
g1. After m iterations, we arrive eventually at a g with 7/(g) = 0, which is therefore
not a prism. O

PROPOSITION 5.5. If f: (C",S) — (CF,0) and g: (C", T) — (C4,0) are multi-
germs neither of which are prisms and if P*f is A-equivalent to P'g then
IS|=I|T|, n=m, p=gq, k=2¢ and [ is A-equivalent to g. Furthermore, if the
A-equivalence between P¥f and P'g is given by diffeomorphisms ¢ and W as in
the following diagram then w(Ck x {0}) = C* x {0}

id g xf
CExC"{0yx S —— CrxCr (0,0

) I

ideexg

Clx C" () x T ——5 ¢ x €7, (0,0) O

Given a multi-germ f, by Proposition 5.5 there is a well defined maximal
sub-manifold of the target along which f is trivial (i.e. a prism). It is known as
the analytic stratum of f, and coincides with the set-germ of points y € C”, 0 such
that the germ f: (C",f~'(»)) N Cr) — (C’,y) is A-equivalent to f: (C",S) —
(C?,0). Moreover, 7/(f) is the tangent space at 0 to the analytic stratum of f.

PROPOSITION 5.6. Let f: (C",S) — (CF,0) and g: (C", T) — (C?,0) be multi-
germs, and suppose that h ={f, g} has A.-codimension 1. Let \y be a germ of a

https://doi.org/10.1023/A:1014930205374 Published online by Cambridge University Press


https://doi.org/10.1023/A:1014930205374

144 T. COOPER, D. MOND AND R. WIK ATIQUE

1-parameter family of maps (CF,0) —C such that , = idcr and

evo (V1
O\ dr
and write G(A, x) = (4, (Y, 0 g)(x)). Then H := {id¢ x f, G} is a versal unfolding of h.

Proof. Write H(Z, x) = (4, hy(x)). If v =dh, /dA|;—y € T Ach, then v = th(&) + wh(n)
for some ¢ € O(n)g,r and y € 0(p). 1t follows that
-

_dv
ds

and therefore evo(dy,/d¢|,—o) € 7'(f') + 7'(g), which contradicts our hypotheses. Since

dhy/dA| =g &€ T AN and h has A.-codimension 1, H is a versal unfolding of 4. []

) ¢ () +7(9),

=0

of () = /(&) and zg(—@:wg(

COROLLARY 5.7. Ifh: (C", S) — (C?, 0)is a multi-germ of A,-codimension I, then
for every proper subset S' of S, the restriction of h to a multi-germ (C", §") — (C*, 0)
is stable.

Proof. Let S = S"US” with S’ N S” = @. Let &’ and /" be the multi-germs of /1 at S’
and S” respectively. Suppose that one of 4/ and /" is not stable, say /. Then /' has
A,-codimension 1. Since it is therefore not a prism, by Lemma 5.4 7/(#') = 0. As
K" is not a submersion, we may choose v € TyC”\7'(%”). Extend v to a vector field
on(” and integrate it to give a germ of a 1-parameter family , of diffeomorphisms
of (C?,0) satisfying the conditions of Proposition 5.6. Therefore H, as described
in Proposition 5.6, is a versal unfolding of /. But then id¢ x /' is a versal unfolding
of i/ and so /' is stable, a contradiction. Therefore 4 and /” are stable. [

A finite set Ej, ..., E; of vector subspaces of a finite-dimensional vector space F
has almost regular intersection (with respect to F) if

codim(E; N...N Ey) = codimE] + - - - + codimE — 1.

LEMMA 5.8. E\, ..., E;have almost regular intersection if and only if the cokernel of
the natural mapping

F— (F/IEN®...®(F/E)

has dimension 1. O

PROPOSITION 5.9. Let h = {f, g} be an A.-codimension 1 multi-germ. Then t(f")
and 1(g) have almost regular intersection with respect to ToC?.

Proof. Let H be a versal unfolding of 4. H restricts to a versal unfolding F of f and
a versal unfolding G of g. Since f is stable, F is equivalent to a prism on f and, hence,

ToC? /1(f) =2 To(C x CPy/z(F)
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We have the following commutative diagram

T,C? © T,
W) T @)

J l

To(C x CF)  To(C x CP)
©(F) 7(G)

T() Cp R

T()(CX Cp)

in which the right-hand map is bijective and the bottom map is surjective by
Proposition 5.1. So the top map has cokernel of codimension at most 1. Were it
surjective, then 7(f) and 1(g) would be transverse, and 4 would be stable. Hence,
the dimension of the cokernel is 1, proving the proposition. O

COROLLARY 5.10. If h is a multi-germ of A.-codimension 1 with branches
WY hD =2, then t(hM), ..., ©(h") have almost regular intersection with
respect to TyC’. I

COROLARY 5.11. Let h = {f, g} have A,-codimension 1. Then the codimension of
©(f) +(g) in ToC? is 1. ]

It is natural to ask how we can tell when our codimension 1 multi-germ is primitive.

PROPOSITION 5.12. Let h ={f, g} be an A,-codimension 1 multi-germ, and let
k =dimg ©(f)N1(g). Then h is a k-fold augmentation of a primitive map-germ.

Proof. By Corollary 5.10 we can choose v € ToC? \ (z(f) + 1(g)). Choose a germ
of a one parameter family , of diffeomorphisms of (C’,0) such that
evo(dyr,/dt|,_g) = v. Then choose a versal unfolding H of / as in Proposition 5.6.
If A is the first coordinate in the target C x C? of H then

r(F):C%@r(f) and r(G):C(%—f-v)@r(g).

Since t(H) =1(F)N1(G) it follows that t(H)=1(f)N1(g). Therefore, by
Proposition 5.5, H is a prism and by Theorem 2.8 /4 is an augmentation. O

COROLLARY 5.13. Suppose that h=1{f,g} is a primitive A.-codimension 1
multi-germ. Then there is a decomposition TyCF = 1(f) @ 1(g) @ Cv.
Proof. Immediate from Corollary 5.11 and Proposition 5.12. O

EXAMPLE 5.14. Using 5.12 we classify codimension 1 multi-germs of immersions.
Iff:C", S — C™! has all of its r branches immersions, then the same is true of
a l-parameter versal unfolding F. As F is stable, these r branches meet in general
position, with intersection L of dimension n + 1 — r. Clearly L = ©(F); thus, by 5.12
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£ is the n+ 1 — r-fold augmentation of a germ fy: C"~', § — C’, 0, evidently also
consisting of r immersions. As fy has A4.-codimension 1, each r — 1-tuple of its
immersions is in general position (but see also 5.9). It follows that f; is equivalent
to the germ consisting of a parametrisation of the r coordinate hyperplanes, together
with one extra immersive branch (xi, ..., X,—1) = (X1, ..., X.—1, ), X;). This has a
versal unfolding in which only the last immersion is deformed, to
X1y ey X)) > (8o X + 8, ), X+ 1) Thus f is equivalent to the germ
consisting of a parametrisation of the first r — 1 hyperplanes together with an
additional immersion of the form

(xla ceey Xp—1, UL, "'»unJrrfl)

2 2 2
= (Xl + E Uiyoooy Xp—1 + E u;, E Xi + E ujau17~'~’un—r+]>~
J J i J

In the real case, the only change in the classification is that Zj ujz must be replaced by
Z/ :buf, giving (n —r + 1)/2 different classes if n+r—1 is even, or (n+r)/2 if
n—r+11is odd.

The second germ in the list shown in the right-hand column in Figure 2 is of this
type.

For the remainder of this section we assume that we are given a primitive
multi-germ f of A,-codimension 1. In view of Corollary 5.13, by a change of
coordinates we can arrange that the analytic stratum of f becomes
C“ x {0} x {0}, that of g becomes {0} x C” x {0} and v becomes (0,0, 1) € C*x
C’ x C. We shall suppose for the remainder of this section that this change of
coordinates has been made.

We say that a multi-germ f is transverse to a vector subspace V of T,C’ if
every branch of f is transverse to V. Our analysis of multi-germs & = {f, g} from
now on falls into two cases, characterised by whether g is or is not transverse

to (f).

Case 1. g is not transverse to 7(f').

LEMMA 5.15. 4 stable map germ of rank zero is either a Morse singularity, or either
the domain or the codomain has dimension zero. ]

PROPOSITION 5.16. Let h = {f, g} be a primitive A.-codimension 1 multi-germ, and
suppose that g is not transverse to 1(f ). Then

(1) if moreover g and f are transverse, it follows that

(a) ghasprecisely one branch, which is either a prism on a Morse singularity or
an immersion.
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(b) After a change of coordinates, h takes the form

(€7 % C, S x {0)) — (C77' % C,0), f(x,u) = (fu(x), ),
g (O % C0) > (7' x C,0), ghv) =),

where f is an A,-versal unfolding of fo; thus h = Ci(fo). In particular,
).

(2) if g and f are not transverse, then p=1, and [ and g are both Morse
functions.

Proof. (1) If g has more than one branch, then by Corollary 5.7 the multi-germ
consisting of f together with any one branch g’ of g is stable. Hence,
(g M t(f), so g?Mw(f), so g Mz(f). This contradiction implies that g has only
one branch.

Now suppose that Image(dg(0)) is bigger than t(g). Then we can construct a
1-parameter deformation %, of & by fixing f and composing g with a 1-parameter
rotation about 7(g), in such a way that for ¢t # 0, g becomes transverse to z(f'). Since
7(g) remains nontransverse to (f'), /, is not stable even for ¢z ## 0. But neither is it
equivalent to /& = hy. This is impossible, since & has A-codimension 1. Hence,
Image(dg(0)) = t(g), and so g is a prism on a germ of rank 0. By 5.15, g is either
a prism on a Morse function or an immersion.

(2) The codimension of 7(g) is now 1, so by Corollary 5.13we must have t(f') = {0}.
Thus, we have a decomposition of the target asC”~' x C where C”~! x {0} is the
analytic stratum of g. There is a neighbourhood U of 0 in C? ~! such that for all
u € U, the pullback of g along the inclusion of the subset {u} x C is a Morse
singularity and so by a coordinate change in the source we can reduce this pullback
to the form Y7, x2. In fact the changes of coordinates in the source depend ana-
lytically on u and so together they give a change of coordinates in the source which
reduces g to the form

o'xct > o'xC,

m
v,y vg) 1= (/1, Zv,z)
=1

Now suppose that f is transverse to g. Then by a change of coordinates in the
source of f we can now bring f to the desired form. Evidently f is now a stable
1-parameter unfolding of fy, so we can view & as Ci(fp); finally, by Theorem 3.1

A.-codim( fo) = A.-codim(h) = 1.

On the other hand, if f is not transverse to g then we can apply the previous argu-
ment with the roles of /" and g reversed, to conclude that p = 1 and thus that f
and g are both Morse singularities. O
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EXAMPLE 5.17. The germ f, of Example 5.14 is obtained (up to .4-equivalence) by
applying the concatenation operation Cj (defined using Theorem 3.3) r — 1 times
to the bi-germ consisting of coincident embeddings of two copies of C%in C.

To complete our analysis of codimension 1 multi-germs, by 5.16 it remains to
consider only

Case 2. f N 1(g) and gh 1(f). Recall that we were able to decompose the target
CF as C*x CP x C, with 7(f) = C* x {0} x {0} and t(g) = {0} x C’ x {0}. Let
Zl, ..., Zashs1 be coordinates on C“ x C’ x C. Since f is transverse to 1(g), we
can take z,,;.1 of as a coordinate, u, on the domain of f, and similarly, as g is
transverse to t(f), we can take v =z,,;,.1 og as a coordinate on the domain of
g. A coordinate change now brings {f, g} to the form

(X’ Y, Ll) = (X,ﬁ((y), u)’ (X, Y’ u) = (gu,Y(x)’ Y’ Ll)

Note that we have reduced f to a prism on a 1-parameter unfolding (using the fact
that C* x {0} x {0} is the analytic stratum of /'), but that we have not done the same
for g — yet. A naive coordinate change to reduce g to a prism on a l-parameter
unfolding would take f* out of its normal form. Nevertheless, we claim that /4 is
A-equivalent to a binary concatenation of two A,-codimension 1 germs, as described
in Section 3. As a first step, we prove:

LEMMA 5.18. Suppose that h is an A,-codimension 1 germ in the semi-normal form
X,y = (X, fu),w), (x5 Y, )~ (guy(x), Y, u).

Then

(1) the A.-codimension of the germs gy and fy is equal to 1, and the germs
g (x, V)= (g,.0(x), v) and f: (v, u)— (f,(), u) are A.-versal unfoldings of go
and fy.

(2) If also h is primitive, then so are gy and f.

Proof. We give the proof for gy and g; the proof for fy and f is identical.
Step 1. The unfolding H of & given by

F

(X7 y7 u’ V) = (vau(y)’ u + Vv V),
xid

(x, V,5,v) ‘5 (g(x, Y, 5),v)

is A.-versal, by Lemma 1.1. For it is not infinitesimally trivial, and / has
A.-codimension 1.

Step 2. Let G be an unfolding of gy, and let G be the direct sum unfolding of G and
g. Clearly G can be induced from G. Consider the unfolding H of h, given by
H={F x id -, G}. As the I-parameter unfolding H of & ~is. versal, H must be
isomorphic to an unfolding induced from H. This means G is isomorphic to an
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unfolding induced from g x id¢. Any such unfolding is isomorphic to an unfolding
induced from g. Hence, g is a versal unfolding of gy. The Kodaira—Spencer map
of g, from ToCb x C to the A.-normal space of g, is therefore surjective. But
as g is trivial along {0} x CP x {0}, the Kodaira—Spencer map is identically zero
along CP x {0}. Hence, the restriction of the Kodaira—Spencer map to {0} x C is
surjective, and g is A.-versal.

If also 4 is primitive, then (f) N z(g) = {0}, by 5.12, and so the analytic stratum of
the versal unfolding (x, v) 1— (x, g,(x)) must be reduced to {0} also. It follows from
2.8 that gy must be primitive. O

COROLLARY 5.19. Suppose that { f, g} is a multi-germ of A.-codimension 1, with f
transverse to 1(g) and g transverse to ©(f). Then the pull-back of f by t(g), and the
pullback of g by t(f), are both germs of A.-codimension 1.

Proof. When {f, g} is put in the semi-normal form of the Proposition, these
pull-backs are just f, and gy, and the proposition establishes that they have
A.-codimension 1. However, the statement is evidently independent of choice of
coordinates. ]

We would like to be able to put the germ 4 = {f, g} of 5.18 into a normal form,

(f: (X, p,uw) — (X, fuy), w),
G:(x,Y,v) —> ((g(x),7,v),

but it is not clear that this is always possible. The problem is as follows: now that we
have established that (x, u)t— (go.4(x), 1) is a versal unfolding of gy, it follows that
there exists a submersion y: C* x C — C, and germs of families of diffeomorphisms
¢y Wy, such that

8Yu = l//Y,u o VO,*,‘(Y,u) o (rbY,u;

nevertheless, in order to transform /4 from its semi-normal form to the desired nor-
mal form, the ¥y, and ¢, would have to satisfy the stronger requirement that
gyu=Wy,©%u,°®Py, This can be done under certain assumptions of
quasihomogeneity, which we now explain.

A map f: C" — CF is weighted homogeneous if there are positive integers
o1, ..., o, (the weights) and d|, ..., d, (the degrees) such that for 0 # u € C,

f(,u“"xl, L ,u‘“"x,,) — ('ud1f1(x), e, udpﬁ](x)).

A germ f is quasihomogeneous if it is A-equivalent to a weighted homogeneous
map-germ. A multi-germ is quasihomogeneous if its branches are quasihomogeneous
with the same degrees.

Let f: (C", S) — (C?,0) be a quasihomogeneous multi-germ of A.-codimension
1. When (n, p) are in the range of nice dimensions, we can find a quasihomogeneous
versal unfolding F(4, x) = (4, f,(x)) of f such that the degree r of the unfolding
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parameter is positive. In fact, if the degree is non-positive, then F' is topologically
trivial and therefore f is topologically stable. But this is a contradition since in
the nice dimensions topological stability is equivalent to stability. Let

r.dy,...,d, be the degrees of the components of F and let r, w(’) o, ('2 be the
Welghts in the source of the i branch of F. For ue C deﬁne Y, &7 — C by
V0n o) =y u®y,)  and  define CP“ Crtt by

H(} »)=Waiy,(). Let qb(’) and (D(’) be the analogues of these maps in the source
of the i branch of f and F respectlvely If ¢, has branches qb(’) then

fu/uoqs,u l//,uOfA

LEMMA 5.20. Let f andf be quasihomogeneous A-equivalent multi-germs from C"
toCF ((n, p) nice dimensions) of A.-codimension 1. Let

F(;Ll,...,/ld,x)z(;Ll,---7/1d7ﬂ1 ,,,,, /ld(x))

be a versal unfolding of f with analytic stratum {0} x Ch ' x {0} and let
F(p, x) = (u, fu(x)) be a versal unfolding of f. Then there are families of diffeo-
morphisms a; of C" and B; of CP, 1. € C, such that the following diagram commutes

CxClxcr L oxciixer

£ b
cxcr L ox@,

where o(i, v, X) = (it, %u()) and B, v, 7) = (1, fun())

Proof. We may suppose that f and F are quasihomogeneous as maps. Let ¢ and
Vv be dlffeomorphlsms such that Yof =fo¢. Then F = (idee x ¥)o Fo
(id e x $)"': C? x C" — C x C” is a versal unfolding of f with analytic stratum
{0} x C? x {0}. Since F is a miniversal unfolding, there is a submersion
7: C? - C and there are families of diffeomorphisms ¢, of C" and y,; of C”,
/€ C?, such that the following diagram commutes.

P

CxC ' ——— CxCH'xcr

IVFX(;);_ [rxll—//«.

F><d

CxCilxcr 9 CxCHlxcr

where I'(u, v) = (y(u, v), v).

We have y~1(0) = {0} x Ci ! soTisa diffeomorphism by the inverse function
theorem. Since I' commutes with projection onto C4=!, T does also, so there exists
Y,y C! > C such that I 'u,v)=@(uv),v) and 9§ =py’ where
w Cx C4' = Cisthe projection onto the first coordinate. Also y’ is a submersion
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and so 9” is nonzero in a neighbourhood of the origin. We have

(0 x Yry/y") o (F x id ) = F o (v x ¢ryy"),

where ¢ry/y” and yr./y” are as stated just before this proposition. Thus the following
diagram commutes

4

CxClxcr 5 oxclxer

L

cxct 5L oxc,
where & = (7' x ¢r/77) o (T x ¢;) and B = (7 x yry/7") o (T x ;).
Now the proposition follows by choosing o = a o (id x ¢) and f = fo (id x V).
]

Now we can continue with the task of reducing a primitive .A,-codimension 1 germ
in the semi-normal form

(Xv Y, Ll) = (Xv.f;l(y)’ M), (X, Ya V) = (gY,V(x)v Y9 V)

to the normal form

X,y )= (X, fu). ), (6, Y, v)i=>(g(x), ¥, v).

We make the additional hypothesis that gy is quasihomogeneous, and is not
topologically stable. Then in appropriate coordinates it has an .4,-versal unfolding
whose unfolding parameter has positive weight. Thus we can apply 5.20, to deduce
that the unfolding g of gy is isomorphic to a prism on the unfolding
g: (x,u)1—> (go..(x), u). That is, there are diffeomorphisms ®: (C* x C’ x C, T)—
(C* x C’ x C, T), of the form Ox, Y, u) = (¢dy,(x), Y, u), and
Y (C* x C’ x C, 0) —(C* x Ch x C, 0) of the form W(X, Y,u) = (Yy (X), Y, u),
such that gy ,(x) =¥y, 0 gouo ¢y, Composing with ® in the source of g, and
¥ on the target of {f, g}, we bring {f, g} to the form

(X, Y, Ll) = (lpﬁ,(y),tl(X)’fu(y)v H), (X, Y9 V) = (go,l’(x)7 Y9 V),

and now if we take the first « coordinates of ¥ o f" as new coordinates on the domain
of f, we bring {f, g} to the desired normal form. We have proved

THEOREM 5.21. If h = {f, g} is a multi-germ of A, codimensionl, in which f is
transverse to 1(g) and g is transverse to t(f ),and if either the pullback of f by
t(g) or the pullback of g by 1(f) is quasihomogeneous and not topologically stable,
then {f, g} is equivalent to a binary concatenation B(fy, go), that is, to a germ of
the form

X,y )= (X, fu),w), (6, Y, v) > (gu(x), Y, v). O
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We now summarise the results of this section:

THEOREM 5.22. Let h ={f, g} be a primitive A.,-codimension 1 map-germ in the
nice dimensions (with no submersive branches).Then [ and g are both stable (5.7).
Also

() If f and g are not transverse, then (5.16) h is equivalent to

(X1, ..., Xp) 1> lez (T A T Zy/z
i

Now assume f M g.
(2) If gisnottransverse to t(f"), then (5.16) f is transverse to 1(g), and h is equivalent to

(X1, ..., Xpy w) 1= (fu(x), u), A1y oo Ap1, V1, oo i) 1> ()L, Z v,z)

o {f, g} is equivalent to Cy(fy)).
(3) If gh(f)and f N 1(g),then (5.21) {f, g} is equivalent to a germ of the form

(X’ Y, u) = (X’fu(y)v Ll), (X, Y’ V) = (gY,V(x)’ Y? V)’

where the target is decomposed as C* x C? x C, and fo and gy are primitive. If also
the pullback of g by 1(f") or the pullback of f by 1(g) is quasihomogeneous then
{f, g} is equivalent to

X,y w) = (X, fu)w), (5 Y, )= (8u(x), Y, v),

i.e. to B(fy,go).
]

Remark 5.23. If we replace C by R and analytic maps by smooth ones, then the
results obtained so far still hold modulo the following alterations: in the real case
we define two augmentations: A} (4, x) = (4,f2(x)) and Az (4, x) = (A, f_;2(x)). In
the proof of Proposition 5.20, if r is even then we cannot necessarily define r, /- pro-
perly. Consequently we may have to define

OC(,LL, v, X) = (—,u, O((M,v)(X)) and ﬂ(.u’ v, y) = (_.uv ﬁ(y,v)(y))

in order for the diagram to commute.

6. Topology

Let /: (C",S) — (C’,0) (n>=p—1, (n, p) nice dimensions and S a finite set) be a
finitely .A-determined multi-germ. A stabilisation of f is a 1-parameter unfolding
F: (Cx C", {0} x S) = (C x C7,(0,0)) with the property that there is a represen-
tative F: U — V (our notation will not distinguish between germ and
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representative) and a positive real number 6 such that for A € Bs(0) \ {0}, the map
fi: U, — V, is  infinitesimally  stable (hereU; = UN ({4} x C")  and
V, =V n{i} x C"), FlZ(F) is proper, finite to one and generically one to one,
and that F~1(0,0) N Y (F) = {0} x S. It follows that the discriminant D(F) of F is a
closed analytic subset of V. The mapping f; is a stable perturbation of f.

Consider the canonical stratification of D(F) and choose ¢ > 0 such that for all ¢
with 0 <& <e, D(f) = DF)N {0} x CP) is stratified transverse to the sphere
Sy C C? of centre 0 and radius ¢. Such ¢ is called a Milnor radius for D(f). By
Thom’s First Isotopy Lemma, D(f) N B; is a cone on its boundary D(f )N S,. It
follows that there is a 6 > 0 such that for A € Bs C C, D(F) is stratified transverse
to {4} x S, (we call such a 6 a perturbation limit for F with respect to B;). For
A € Bs, the discriminant of f, is defined to be D(f;)N B,, or, in other words,
D(F)N ({A} x By).

For ¢,...,8, >0 define the set P, ,(0) to be the polycylinder
{1, ..., yp) € € /|yil <& Vi}. We shall also use the term ‘Milnor radius for
D(f) for an ¢ > 0 such that for all ¢, ..., ¢, with 0 < ¢ < & (Vi), D(f) is stratified
transverse to the boundary of the polycylinder P, . . (0). The results described above
apply with such a polycylinder replacing B, and the discriminant defined this way is
the same.

Let n: D(F) — C be the projection to the parameter space C. It follows by [6] that
7 induces a locally trivial fibration

((Bs\{0}) x B;) N D(F) — B;\{0}.

LEMMA 6.1. Let A, B be contractible open subsets of a topological space X, and
A, B' be contractible open subsets of X'. Suppose that AN Band A’ N B’ are homotopy
equivalent, and moreover thatA N B has collared neighbourhoods in both A and B, and
A' N B has collared neighbourhoods in both A and B'. Then AU B and A’ U B'are
homotopy equivalent. O

Suppose f has A.-codimension 1. Let F(4, x) = (4, f;,(x)) be a proper representative
of a miniversal unfolding of f. Forue C define g.(4,x) =(4,f; +#(x)). Then
G, A, x) = (1, 4, f2 +M(x)) is a proper representative of a miniversal unfolding of
g=Arf.

THEOREM 6.2. With the above notation, for u # 0 # A the discriminant of g, is
homotopy equivalent to the suspension of the discriminant of f;.

Proof. Let ¢ > 0 be a Milnor radius for both f and F, also let 6 > 0 be a per-
turbation limit for F with respect to P, __.(0) € C’.

Let ¢ > 0 be a Milnor radius for g and let 8’ > 0 be a perturbation limit for G with
respect to Py, . .(0) C CP*! where ¢ = minfe, \/5/_2}.
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Fix uy € C and consider
T D(guo) N Ps”,s,...,s(o) - G

be the projection onto the first coordinate. For a convenient choice of p, we have

(i) The fibre of 7 over 4 € B;»(0) is naturally homeomorphic to D(f):
which is the discriminant of 1., .

(i1) Suppose that the square roots of —p are inB,(0), say @ and b. Then the restriction
of 7 to n='(B,(0)\{a, b}) is a locally trivial fibration.

)N Ps....(0)

+Ho

Let A and B be contractible open subsets of B, (0) with contractible (nonempty)
intersection such that a« € A\B and b € B\ A.

By standard arguments we can conclude that 7='(4 U B) is homotopy equivalent
to the discriminant of g, and n-1(4 N B) is homotopy equivalent to the discriminant
of f;; we can also assume that 7= (4 N B) is collared in both n'(4) and n~'(B). Since
the suspension of any space D can be divided into two contractible subspaces whose
intersection has collared neighbourhoods and is homotopy equivalent to D, by
Lemma 6.1 we have only to prove that n='(4) and n~!(B) are contractible. At a,
9(A) =12+, is a diffeomorphism and induces a homeomorphism between
n~1(y7(By(0))) and D(F)N Py, _,(0) for some 6" > 0. Therefore n~!(4) is con-
tractible since it is homeomorphic to n~!(y~!(By(0))) and D(F)N Py, ,(0) is a
cone. Similarly, n~!(B) is contractible. O

We now determine the homotopy-type of the discriminant of a stable perturbation
of a concatenation.

PROPOSITION 6.3. Let fy be a multi-germ of finite A.-codimension, which has a
1-parameter stable unfolding F. The discriminant of a stable perturbation of the
multi-germ Ci(fo) (i.e. {F, g}, where g(y,v) = (v, Y_v?}) is homotopy equivalent to
the suspension of the discriminant of a stable perturbation of fy.

Proof. A stable perturbation /; of & has branches F and g;(y, v) = (y, > v? + 1).
The discriminant of /; is the union of two contractible spaces: the discriminant
of F and the discriminant of g,. The intersection of these sets is the discriminant
of f"#, which is a stable perturbation of fo. The proposition now follows from
Lemma 6.1 in the same way as Theorem 6.2. O

In order to deal with the discriminant of a binary concatenation B( fy, go), we need
some topological results.

Let X and Y be topological spaces. The join of X and Y, X x Y, is the space
(X x Y xI)/ ~ where (x,y,1) ~ (x,y,2) if and only if either A =2 =0 and
y=y ori=4=1and x=Xx.

LEMMA 6.4. If X| is homotopy equivalent to X, and Y| is homotopy equivalent to Y,
then X\ * Y| is homotopy equivalent to X, x Y>. O
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COROLLARY 6.5. If X is homotopy equivalent to X, then S(X1) is homotopy
equivalent to S(X3). O

PROPOSITION 6.6. Suppose that h = B(fy, go) is a binary concatenation,

Xoyw) s> (X L)), (6 Y. 0) S (gu(x). Y. )

of germs fy and gy of finite codimension, as described in Theorem 3.8. Let H be the
stable unfolding of h given by

xid
Xy, ) (XL u+60), (o Yo 0) 55 (@), Y, v, 0).

Then for t # 0 the discriminant of the stable perturbation h, of h is homotopy equiv-
alent to the suspension of D(f—;) * D(g;), and thus pu,(h) = ux(fo) x ua(go)-

Proof. The discriminant of /, is the union of the (contractible) discriminants of
X,y,u)— X, f,(0),u+1t) and (X,yp,v)i—(g,(x),Y,v). It is preferable to
re-parametrise the first as the image of (X, y, u)— (X, f,_/(»), u). Call these two
spaces D; and D,. By 6.1, D; U D, is homotopy equivalent to the suspension of
Dy N D;. Let ¢ > 0 be a Milnor radius for f; and go, and let Py = P,
and Py, =P, ,(0) € C Thus, we have to show that inside a suitable Milnor
polycyclinder Py x P, x B(0,¢) C C* x C'x C, and for O0<|<d<<sg,
D1 N D, is homotopy equivalent to the join of D(f_,) N Py and D(g;) N P,. This
follows by a standard argument from the following three facts:

(1) The projection m;: C* x C* x C — C induces a locally trivial fibration
Dy 0 Dy N (Bo\{0, 1)) — Bs\{0. 1),

whose fibre is homotopy equivalent to D(g,) x D(f-;).

(2) The fibre of =, over ¢ is D(g;) x D(fy); because D(fp) is contractible, this is
homotopy equivalent to D(g;).

(3) The fibre of m; over 0 is D(gg) x D(f_,); because D(gy) is contractible, this is
homotopy equivalent to D(f_,).

Let [0, 7] denote the line-segment joining 0 and ¢ in C. Clearly there is a
deformation-retraction Bs — [0, 7]; since 7, is locally trivial on the complement
of [0, 7], this lifts to a deformation-retraction D = n,jl(B(;) — ([0, 1]. By (1), (2),
(3) above, n~1([0, 7] is homotopy equivalent to D(g;) * D(f_,). O

Now we consider the real case; we refer the reader to Figure 5, for an example.
Let f/: (R",S)— (R?,0) (n>p—1, (n,p) nice dimensions) be a multi-germ of
A.-codimension land let F(/, x) = (4, f;(x)) be a miniversal unfolding. Up to home-
omorphism, there are two (possibly equivalent) choices for the discriminant of
f;: one with positive A and one with negative 1. We shall call these D(f) and
D=(f"), respectively. Recall from 5.23 that in the real case, f has two augmentations
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(A) Image of good real (B) Image of versal
perturbation of cusp unfolding of cusp

><> (C) Image of good
real perturb-
Images : ation of augmen-
Oi Ilnembers tation of cusp =
of 1- is homotopy
paran]leter equivalent to
versa o \ suspension of (A)
deformation : Image of cusp
of cusp ' \
N
\ -
N
e }

Figure 5. Example of real version of Theorem 6.2: the cusp xi— (x?,x), and its versal unfolding
(x, ) = (¥, X3 + tx, #); its augmentation is the germ Sy: (x, 1) = (X2, x> + 2x, 1).

g=A} and g=A; with stable perturbations g,(4,x)= (i,ﬂz+u(x)) and
gu(2, x) = (4 f (X)) respectively.

PROPOSITION 6.7. With the above notation

(i) D*(g)=D*(f), (i) D™(g) = S(D™(f)),
(i) DF(g) = S(DT(f). (v) D7 (g) =D (/).

In particular, if f has a good real perturbation then so does one of its two
augmentations.

Proof. By symmetry it is sufficient to show just the first two homotopy
equivalences. Case (ii) is analogous to Theorem 6.2 but if we follow the same proof
in (i), then since —u, has no real square roots, D*(g,) is a fibre bundle over
B.»(0) with fibre D*(f;). But the total space of a bundle over a contractible space
is homotopy equivalent to the fibre. O

We now describe the topology of a discriminant of a stable perturbation over R of
a real germ in the normal forms of Theorem 5.22 (see Remark 5.23).

Proposition 6.3 holds in a slightly different version. Here we have to consider the
two discriminants of a stable perturbation of /4 as well as the two discriminants
of a stable perturbation of f;. We leave the straightforward details to the reader,
although we recall that in Theorem 3.2 we have already shown that if f; has a good
real perturbation then so does Ci(fy). Finally, although we have made no attempt
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to determine the number of inequivalent real forms of a binary concatenations of two
real A,-codimension 1 multi-germs, the proof of Proposition 6.6 shows

PROPOSITION 6.8. Suppose h = B(fy, go) is a binary concatenation of two real
multi-germs. Then the discriminant of a stable perturbation of h (over R) is homotopy
equivalent to one of the following four spaces:

S(D*(fo) * D(g0)),  S(D(fo) * D*(g0)),
S(D(fo) * D™(g0)),  S(D™(fo) * D™(g0)).

In particular, if fy and gy have good real perturbations, then so does at least one real

Jorm of B(fo, go)- O

EXAMPLE 6.9. Consider the bi-germ consisting of two prisms on Whitney cusps,
each transverse to the analytic stratum of the other:

I {f(i, X, ) = (4, X + o, p),
gz, 0, p) = (Z3 — uz, 0, ).

The discriminant of each is the product with a line of a plane first-order cusp. The
real discriminant of a stable perturbation /4, of / (in which ¢ is added to the third
component of g) is thus the union of two prisms, drawn with dotted lines in
Figure 4; its homology is carried by the curvilinear tetrahedron drawn with a solid
line.

The intersection of D(h,) with the horizontal plane L,, for 0 < u < ¢, is the union of
two pairs of parallel lines, R x D(f,,) and D(g,) x R (since each of D(fu) and D(g,)
consists just of a pair of points). L, N D(h,) retracts to a rectangle,the intersection
of L, with the (boundary of the) curvilinear tetrahedron. This rectangle is the join
of D(f,) and D(g,).

7. Proofs of the Main Theorems

THEOREM 7.1. Let h: (C", T) — (C?,0) (n = p — 1, (n, p) nice dimensions) be a
multi-germ of A.-codimension 1 and corank 1. Then h is quasihomogeneous.

Proof. We may suppose / primitive and ignore any submersive branches. The
proof is by induction on the number, |T|, of components of /.

If |T| = 1, his quasihomogeneous by results of Victor Goryunov in [7] when n = p
and by our Proposition 4.3 when p =n+ 1.

Suppose & = {f, g} has more than one branch. If g is not transverse to t(f ), then
by Theorem 5.22, either f and g are both prisms on Morse singularities, or / is equiv-
alent to Ci(fp) for some A.-codimension 1 germ fy. In the first case % is plainly
quasihomogeneous. In the second, we apply the inductive hypothsis to conclude that
fo 1s quasihomogeneous. Since we are in the nice dimensions, f; has a
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quasihomogeneous versal unfolding j; , and by Proposition 5.16, & is equivalent to
Ci(fo). Clearly this is quasihomogeneous.

If f is transverse to 7(g) and vice versa, then by Corollary 5.19 the pullback f, of f
by 1(g), and the pull-back gy of g by ©(f'), both have codimension 1. By the induction
hypothesis, f; and gy are both quasihomogeneous. By Theorem 5.21, {f, g} is equiv-
alent to B(fy, go); again, as we are in the nice dimensions, fy and gy have weighted
homogeneous A.-versal unfoldings with unfolding parameter with positive weight;
a representative of B(fy, go) constructed from these ingredients is evidently weighted
homogeneous. O

In the next result, we do not distinguish between u; and u,, for the reasons
described at the start of Section 3.

THEOREM 7.2. If h: (C",T) — (CP,0) (n=p—1, n,p nice dimensions) has
corank 1 and A,-codimension 1 then pu(h) = 1.

Proof. The proof follows exactly the same scheme as the preceding proof. The
starting point for the induction is now the fact that mono-germs of A.-codimension
1 have u; or u, equal to 1, by our Proposition 4.4 for n = p — 1, and by the fact
(proved in [6]) that u, = A,-codimension in the nice dimensions, for quasi-
homogeneous germs (C", §) — (C7,0) with n > p.

We may suppose /1 primitive; for by Theorem 6.2 D((A4h),) ~ S(D(h,)), where the
suffix 7 indicates stable perturbation and S is suspension.

Since the result is already proven in case all branches have n > p, we assume at
least one branch has n = p — 1. Hence by induction and Theorem 5.22 / is equivalent
either to Ci(fy) or to B(fy,go), where f; and gy are quasihomogeneous
A.-codimension 1 germs. The conclusion now follows by Theorem 3.1(2) for
Ci(fo) and by Theorem 3.8(3) for B(fo, go)- O

THEOREM 7.3. Let h: (C", T) — (C?,0) (n>=p— 1, (n, p) nice dimensions) be a
multi-germ of A,-codimension 1 and corank 1. Then there exists a real form with
a good real perturbation.

Proof. Again, the proof is by induction on |7|. The result is proven for
mono-germs in [23] (for n = p) and in 4.4 above for the case p = n + 1. The inductive
steps follow, using the classification Theorem 5.22, by 3.2, 3.13 and 6.8. O
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