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Abstract. We construct all Ae-codimension 1 multi-germs of analytic (or smooth) maps
ðkn;T Þ ! ðkp; 0Þ, with nX p � 1, ðn; pÞ nice dimensions, k ¼ C orR, by augmentation and con-
catenation operations, starting from mono-germs (jT j ¼ 1) and one 0-dimensional bi-germ. As
an application, we prove general statements for multi-germs of corank W 1: every one has a real
form with real perturbation carrying the vanishing homology of the complexi¢cation, every
one is quasihomogeneous, and when n ¼ p � 1 every one has image Milnor number equal to
1 (this last is already known when nX p).
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1 Introduction

In the theory of singularities of analytic mappings, a stable perturbation of an
unstable germ plays a similar role to the Milnor ¢bre in the theory of isolated
hypersurface singularities ^ it is the ‘nearby stable object’ associated to the unstable
germ. And the discriminants and images of stable perturbations carry the vanishing
homology most naturally associated with unstable map-germs.? This translation
made, the analogy with the theory of isolated hypersurface singularities is consid-
erable; for example, in many cases one ¢nds the same Milnor^Tjurina type relation
between the rank of the vanishing homology and the deformation-theoretic
codimension of the germ. In this paper we investigate the topology of the dis-
criminants of stable perturbations ft of multi-germs f : ðkn;SÞ ! ðkp; 0Þ with
nX p � 1, where S � kn is a ¢nite set, and where k ¼ R or C. When n ¼ p � 1
‘discriminant’ of course means ‘image’.

? Implicit in the term ‘stable perturbation’ there are certain choices of representative,
analogous to the choices in the construction of the Milnor fibre of an isolated hypersurface
singularity; for a discussion, see e.g. the introduction to [9].
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When k ¼ C, the discriminant Dð ftÞ has the homotopy type of a wedge of
ðp � 1Þ-spheres ([6, 24]). The number of these spheres is called the discriminant
Milnor number, mD, when nX p and the image Milnor number, mI , when
n ¼ p � 1.When nX p and ðn; pÞ are in Mather’s range of nice dimensions ([20]),
it is known ([6]) that mDð f Þ and the Ae-codimension of f satisfy the Milnor^Tjurina
relation: mDð f ÞXAe-codimensionð f Þ with equality if f is weighted homogeneous
in some coordinate system. In case n ¼ p � 1, the same relation, with mI in place
of mD, is only known to hold when n ¼ 1 ([25]) and n ¼ 2 ([13, 24]). Nevertheless
there is evidence that it holds in higher dimensions (see e.g. [12]):

CONJECTURE I. This relation (and in particular equality in the quasihomogeneous
case) holds in all nice dimensions ðn; n þ 1Þ.

Here we are concerned with this conjecture, and also with another: suppose that
g: ðRn;SÞ ! ðRp; 0Þ is a real analytic map germ of ¢nite Ae-codimension, with a
stable perturbation gt. Suppose also that the complexi¢cation gC;t of gt is a stable
perturbation of the complexi¢cation gC of g. We say that gt is a good real
perturbation of g if rankHp�1ðDðgtÞ;ZÞ ¼ rankHp�1ðDðgC;tÞ;ZÞ (in which case
the inclusion of real in complex induces an isomorphism on the vanishing homology
of the discriminant).

CONJECTURE II. For every Ae-codimension 1 equivalence class of map-germs in
the nice dimensions, there exists a real form with a good real perturbation. That
is, the vanishing topology of all codimension 1 complex singularities is ‘visible over
R’.

We remark that the corresponding statement holds for isolated complete
intersection singularities (ICIS’s); an ICIS of Tjurina number 1 is necessarily a
non-degenerate hypersurface singularity, and in fact in dimension > 0, this is the
only type of ICIS whose vanishing homology is visible over R. This is easy to see:
if Xt is the Milnor ¢bre of an ICIS X0 of dimension n,then its real part Xt;R is
an oriented n-manifold, and so rk HnðXt;R; ;Z2Þ is equal to the number of compact
connected components without boundary. Thus if rk HnðXt;R;Z2Þ ¼ mðX0Þ, then

X
k

rk HkðXt;R;Z2ÞX rk HnðXt;R;Z2Þ þ rk H0ðXt;R;Z2ÞX 2m:

The sum of the complex mod 2 Betti numbers is 1þ m; Smith theory (cf. e.g., [2]) says
that this sum is no less than the sum of the real mod 2 Betti numbers, and hence
unless n ¼ 0, the only possibility is that m ¼ 1.
There are ¢ve codimension 1 equivalence classes (see Figure 2) of map-germs

ðC
2;SÞ ! ðC

3; 0Þ; for map-germs ðC
3;SÞ ! ðC

4; 0Þ there are eight, and for
map-germs ðC4;SÞ ! ðC

5; 0Þ there are eleven.

122 T. COOPER, D. MOND AND R.WIK ATIQUE

https://doi.org/10.1023/A:1014930205374 Published online by Cambridge University Press

https://doi.org/10.1023/A:1014930205374


Conjecture II is known to hold for mono-germs ðCn; 0Þ ! ðC
p; 0Þ (with nX p and

ðn; pÞ nice dimensions) of corank 1 ([23]). It also holds for (mono- and multi-) germs
ðC

2;SÞ ! ðC
3; 0Þ ([8]; Goryunov’s diagrams of good real perturbations are

reproduced in Figure 2 below). Every real germ ðC;SÞ ! ðC
2; 0Þ has a good real

perturbation ([1, 10]), but once n > 1, map-germs ðCn;SÞ ! ðC
nþ1; 0Þ with good

real perturbations become the exception ([16]).
Our main results here provide evidence for both conjectures. We show

THEOREM 7.2. Every multi-germ f : ðCn;SÞ ! ðC
nþ1; 0Þ of corank 1 and

Ae-codimension 1 has mI ð f Þ ¼ 1.

THEOREM 7.3. Every A-equivalence class of multi-germ f : ðCn;SÞ ! ðC
p; 0Þ

(nX p � 1; ðn; pÞ nice dimensions) of corank 1 and Ae-codimension 1 has a real form
with a good real perturbation.

We prove both of these theorems ¢rst for ‘mono-germs’ (jSj ¼ 1) (in Section 4) and
then by an inductive procedure which constructs codimension 1 multi-germs from
simpler ingredients. This procedure yields an inductive classi¢cation of multi-germs
of codimension 1. In Section 5 we show that all codimension 1 multi-germs can
be constructed from codimension 1 multi-germs with fewer branches and in a lower
dimension, and from trivial unfoldings of Morse singularities (in case nX p) or
immersions (in case p ¼ n þ 1) by means of three standard operations. These are
augmentation, described in Section 2, and two concatenation operations, described
in Section 3.
We feel that these operations, of augmentation and concatenation, are themselves

of independent interest. They can be seen at work, generating the lists of
Ae-codimension 1 germs from surfaces to 3 space, and from surfaces to surfaces,
in Figures 2 and 3. See also Figure 4.
We end this introduction with an elementary lemma which nevertheless highlights

an important property of codimension 1 germs. Before stating it, we ¢x our notation:
a map-germ f : ðkn;SÞ ! ðkp; 0Þ (where k ¼ R or C), gives rise to a diagram

Tkn �!
d f

Tkp???ypn pp

???y
kn �!

f
kp

We set

ykn;S ¼ Okn;S �module of germs at S of vector fields on kn;

ykp;0 ¼ Okp;0 �module of germs at 0 of vector fields on kp;

yð f Þ ¼ Okn;S �module of germs x: ðkn;SÞ ! Tkp such that pp � x ¼ f ;

¼ fd=dtð ftÞjt¼0: ft is a germ of 1-parameter family with f0 ¼ f g
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and de¢ne

t f : ykn;S ! yð f Þ by tf ðwÞ ¼ df � w;

of : ykp;0 ! yð f Þ by of ðZÞ ¼ Z � f

and

TAe f ¼
yð f Þ

t f ðykn;SÞ þ o f ðykp;0Þ
:

Except for our use of y where Wall uses V , our notation is the same as that of the
survey paper [31], to which we refer the reader for further de¢nitions and a summary
of the basic theory.

LEMMA 1.1. If f : ðCn;SÞ ! ðC
p; 0Þ is a germ of Ae-codimension 1, then any stable

unfolding of f is Ae-versal.
Proof. Let F ðx; uÞ ¼ ð fuðxÞ; uÞ be a d-parameter unfolding of f . By [17] XV 2.1 or

[31] 3.3, F is stable iff

TAe f þOp @ fu=@u1

����
u¼0

; . . . ; @fu=@ud

����
u¼0

� �
¼ yð f Þ?

Since TAe f is an Op-module, we therefore cannot have @fu=@uiju¼0 2 TAe f for all i.
Hence for some i, TAe f þCf@fu=@uiju¼0g ¼ yð f Þ, and F is versal. &

The results in this paper concerning map-germs ðCn;SÞ ! ðC
nþ1; 0Þ, and the

results of Sections 2 and 5, were ¢rst proved in the PhD thesis ([4]) of the ¢rst author.

2. Augmentations

Let f : ðCn;SÞ ! ðC
p; 0Þ be a multi-germ of Ae-codimension 1 where S is a ¢nite

subset of Cn. Let

F : ðC�C
n; f0g � SÞ ! ðC�C

p; ð0; 0ÞÞ

ðu; xÞ 7! ðu; fuðxÞÞ

be an Ae-versal unfolding of f . De¢ne AF : ðC�C
n; f0g � SÞ ! ðC�C

p; ð0; 0ÞÞ
byAF ðl; xÞ ¼ ðl; fl2 ðxÞÞ.

PROPOSITION 2.1. The A-equivalence class of AF is independent of the choice of
miniversal unfolding F of f . It depends only on the A-equivalence class of f .

?Our preferred reference, [17], deals only with real, smooth, germs, whereas here we are refer-
ring to complex analytic germs. In fact Martinet’s proofs for the smooth category can be trans-
ferred verbatim to the complex analytic category, since their method (integrating vector fields)
always produces flows in the appropriate category.
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Proof. Let F ðt; xÞ ¼ ðt; ftðxÞÞ and Gðs; xÞ ¼ ðs; gsðxÞÞ be two 1-parameter versal
unfoldings of f . From the de¢nition of versality it follows immediately that there
exist diffeomorphisms Fðt; xÞ ¼ ðt;ftðxÞÞ and Cðt; yÞ ¼ ðt;ctðyÞÞ and a base-change
diffeomorphism a: ðC; 0Þ ! ðC; 0Þ such that a�ðF Þðt; xÞ ¼ C � G � F (where a�ðF Þ
is the unfolding ðt; xÞ7!ðt; faðtÞðxÞ). An easy calculation shows that there exists
b: ðC; 0Þ ! ðC; 0Þ (also invertible) such that aðt2Þ ¼ bðtÞ2; now writing
AFðt; xÞ ¼ ðt;ft2ðxÞÞ and ACðt; yÞ ¼ ðt;ct2ðyÞÞ we have b

�
ðAF Þ ¼ AC � AG � AF.

Equivalence of germs entails equivalence of their miniversal unfoldings, so the
second statement follows. &

We shall write Af for the A-equivalence class of AF . We call Af the augmentation
of f and say that a multi-germ is an augmentation if it is the augmentation of some
multi-germ f . A multi-germ that is not an augmentation is called primitive.

EXAMPLE 2.2. The ¢ve Ae-codimension 1 multi-germs from C
2 to C

3 are:

(I) A quadruple intersection of immersed sheets, in which each three are in general
position, such as

ðx; yÞ 7! ðx; y; 0Þ; ðx; yÞ 7! ðx; 0; yÞ; ðx; yÞ 7! ð0; x; yÞ;

ðx; yÞ 7! ðx; y; y þ xÞ

(II) The intersection of three immersed sheets which are pairwise transverse, but
with each one having ¢rst order tangency to the intersection of the other two,
such as

ðx; yÞ 7! ðx; y; 0Þ; ðx; yÞ 7! ðx; 0; yÞ; ðx; yÞ 7! ðx; y þ x2; y � x2Þ:

(III) The nontransverse contact of two immersed sheets, such as

ðx; yÞ 7! ðx; y; 0Þ; ðx; yÞ 7! ðx; y; x2 þ y2Þ:

(IV) An immersed sheet meeting a Whitney umbrella in such a way that it is
transverse to the image of the derivative and to the curve of double points
of the umbrella, such as

ðx; yÞ 7! ðx; y; xÞ; ðx; yÞ 7! ðy2; xy; xÞ:

(V) S1, ðx; yÞ 7! ðx; y2; y3 þ x2yÞ. In the versal deformation ðx; yÞ 7!
ðx; y2; y3 þ x2y þ tyÞ, two Whitney umbrellas appear when t < 0, so this
singularity is sometimes known as the birth of two Whitney umbrellas.

This classi¢cation, and the pictures shown in Figure 2 below, ¢rst appeared in [8].
Details can be found in [32]. A topological description was independently obtained
by D. Roseman in [29], as Reidemeister moves in higher-dimensional knot theory,
and in, e.g., [3] Scott Carter refers to the transition through these singularities
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as ‘Roseman moves’. The reader may enjoy deriving this classi¢cation as an exercise
in the application of the main results of this paper.
(I) and (IV) are primitive. (V) is the augmentation of the cusp t 7! ðt2; t3Þ, (III) is

the augmentation of a tacnode (two curves simply tangent at a point), which itself
is the augmentation of the map from two copies of C0 to C sending both points
to 0 2 C, and (II) is the augmentation of three lines meeting pairwise transversely
at a point.
Pictures of the images of good real perturbations of these germs, showing the

process of augmentation, are shown in Figure 2.

EXAMPLE 2.3. The ¢ve Ae-codimension 1 multi-germs from C
2 to C

2 are

(I) The fold tacnode ^ a bi-germ consisting of two folds whose discriminant curves
have a simple tangency;

(II) The fold triple-point: a tri-germ consisting of three folds whose discriminants
meet pairwise transversely at a point;

(III) The lips: ðx; yÞ 7! ðx; y3 þ x2yÞ;
(IV) A bi-germ consisting of a fold and a cusp, with the discriminant of the fold

transverse to the limiting tangent line to the discriminant of the cusp.
(V) The swallowtail: ðx; yÞ 7! ðx; y4 þ xyÞ;

(III) is the augmentation of y 7! y3; (I) is the augmentation of the bi-germ consisting
of the two branches x 7! x2 andy 7! y2; (II), (IV) and (V) are all primitive.
Codimension 1 mono-germs from the plane to the plane were ¢rst classi¢ed by

Gaffney and Ruas (unpublished); the ¢rst published account (also for maps
ðC

n; 0Þ ! ðC
p; 0Þ, nX p) is probably in Goryunov’s paper [7]. A proof can also

be found in [23]. The classi¢cation of codimension 1 multi-germs from the plane
to the plane is then an easy exercise.
Pictures of the discriminants of good real perturbations of these germs are shown,

in the same order from left to right, in Figure 3.

DEFINITION/NOTATION 2.4. A transverse ¢bre square is a diagram

X �!
F

Yx???j

x???i

X0 �!
f

Y0

in which i \j F , X0 ’ X �Y Y0 and f is right-equivalent to the natural projection
X �Y Y0 ! Y0. Given such a transverse ¢bre square, we will sometimes refer to
f as the pull-back of F by i and denote it by i�ðF Þ.
Every germ f having a stable unfolding F can be recovered from F by transverse

¢bre product. In [5], Jim Damon showed that if F , f and i are as in 2.4 then
the Ae-codimension of f is equal to the KDðF Þ;e-codimension of i, where the latter
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is de¢ned to be the complex vector space dimension of

NKDðF Þ;ei :¼
yðiÞ

ti ðyY0 Þ þ i�ðDerðlogDðF ÞÞÞ

(withDðF Þ the discriminant of F ). This result will be referred to as Damon’s theorem.

THEOREM 2.5. A f has Ae-codimension 1.
Proof. The diagram

C
nþ1

�!
F

C
pþ1x???id
x??? g

C
nþ1

�!
A f

C
pþ1

where gðl; yÞ ¼ ðl2; yÞ, is a transverse ¢bres quare. Therefore by Damon’s theorem,
the Ae-codimension of A f is equal to the KDðF Þ;e-codimension of g, where DðF Þ
is the discriminant of F . The diagram

C
nþ1

�!
F

C
pþ1x???i1

x???i2

C
n

�!
f

C
p

where i1 and i2 are inclusions, is also a transverse ¢bre square. So the
KDðF Þ;e-codimension of i2 is equal to the Ae-codimension of f and therefore is 1.
Because i2 is a standard coordinate immersion, an easy calculation shows

NKDðF Þ;ei2 ¼
Op

duði�2ðDerðlogDðF ÞÞÞÞ
;

where duði�2ðDerðlogDðF ÞÞÞÞ is the module consisting of the coef¢cients of @=@u of the
elements of i�2ðDerðlogDðF ÞÞÞ. A similar calculation gives

NKDðF Þ;eg ¼
Opþ1

duðg�ðDerðlogDðF ÞÞÞÞ þ ðlÞ
;

where the ðlÞ in the denominator comes from @g=@l. ClearlyNKDðF Þ;ei2 andNKDðF Þ;eg
are isomorphic. &

The following result is a partial converse:

PROPOSITION 2.6. Suppose that Gðl; xÞ ¼ ðl; glðxÞÞ is a one-parameter stable
unfolding of a multi-germ g ¼ g0 and suppose that hðl; xÞ ¼ ðl; gl2 ðxÞÞ has
Ae-codimension 1. Then g has Ae-codimension 1 and G is a versal unfolding of g.
Thus h is the augmentation of g.
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Proof. It is immediate from the calculation in the proof of Theorem 2.5 that g has
Ae-codimension 1. Versality of G now follows by Lemma 1.1. &

Given a stable map f : ðCn;SÞ ! ðC
p; 0Þ let Pf (the ‘prism’ on f ) be the trivial

1-parameter unfolding of f . We shall say that a map-germ is a prism if it is
A-equivalent toPg for some germ g.
An easy calculation with tangent spaces shows

PROPOSITION 2.7. Let F ðl; xÞ ¼ ðl; flðxÞÞ be an Ae-versal unfolding of an
Ae-codimension 1 multi-germ f . Then Gðm; l; xÞ ¼ ðm; l; fl2þmðxÞÞ is an Ae-versal
unfolding of g ¼ AF . &

Since Gðm; l; xÞ ¼ ðm; l; fl2þmðxÞÞ is an unfolding of F ðm; xÞ ¼ ðm; fmðxÞÞ and F is
stable then G is A-equivalent to PF . Therefore if a multi-germ is an augmentation,
its miniversal unfolding is a prism. The converse is also true:

THEOREM 2.8. Let g be a multi-germ of Ae-codimension 1 and suppose that the
miniversal unfolding G of g is a prism. Then g is an augmentation.

Proof. There is a unique natural number ‘ and a stable multi-germ h, unique up to
A-equivalence, such that Gðl; xÞ ¼ ðl; glðxÞÞ is A-equivalent to P‘h and h is not a
prism.
We have the following commutative diagram

C
n;S �����!

g
C

p; 0???y
???yi

C�C
n; f0g � S �����!

ðl;glðxÞÞ
C�C

p; ð0; 0Þ???yf
???yc

C
‘
�C

nþ1�‘; f0g � S0 ��� ��!
id

C‘�h
C

‘
�C

pþ1�‘; ð0; 0Þ???y
???yp

C
nþ1�‘;S0 ��� ��!

h
C

pþ1�‘; 0

where i is the standard inclusion, f and c are diffeomorphisms, p is the natural
projection and S0 is a subset ofCnþ1�‘of the same cardinality as S. Each of the three
squares of the diagram is a transverse ¢bre square so the outside rectangle is a
transverse ¢bre square as well. The Ae-codimension of g is equal to the
KDðhÞ;e-codimension of p � c � i where DðhÞ is the discriminant of h. Since h is stable
it is Thom transversal so any vector ¢eld in DerðlogDðhÞÞ lifts, by 6.14 of [14]. Since
h is not a prism, DerðlogDðhÞÞ � mpþ1�‘yðp þ 1� ‘Þ. So,

TKDðhÞ;eðp � c � iÞ � TKeðp � c � iÞ
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and the Ke-codimension of p � c � i is 0 or 1. It cannot be 0, as this would make
p � c � i a submersion and g stable. Therefore p � c � i is a quadratic singularity,
A-equivalent to

ðy1; . . . ; ypÞ 7!
g

y1; . . . ; yp�‘;
Xp

i¼pþ1�‘

y2i

 !

Let F and C be germs of diffeomorphisms such that C � ðp � c � iÞ ¼ g � F.
Let ppþ1�‘: C

pþ1�‘
! C be the projection onto the last coordinate. Then

dðppþ1�‘ �C � ðp � c � iÞÞð0Þ ¼ 0 and since h is transverse to p � c � i,
dðppþ1�‘ �C � hÞðS0Þ 6¼ 0. It follows that for l near 0,

ðppþ1�‘ �C � hÞ�1ðlÞ ffi C
n�‘ and ðppþ1�‘ �CÞ

�1
ðlÞ ffi C

p�‘:

De¢ne

hl ¼ h
����
ðppþ1�‘�C�hÞ�1ðlÞ

: Cn�‘
! C

p�‘:

Then hðl; xÞ ¼ ðl; hlðxÞÞ is an unfolding of h0. Since the outside rectangle of the above
diagram is a transverse ¢bre square, g is A-equivalent to the germ ðl1; . . . ; l‘; xÞ 7!
ðl1; . . . ; l‘; hP‘

i¼1
l2i
ðxÞÞ. Therefore, g is an augmentation by Proposition 2.6. &

3. Concatenation

In this section we describe two basic operations, by which we ‘concatenate’ stable
unfoldings of (multi-) germs to create new multi-germs. There is no reason to require
purity of dimension in multi-germs, and we allow different branches to have domains
of different dimension. We therefore will not distinguish in our notation between
image Milnor number and discriminant Milnor number: both will be denoted
mD. In what follows it will be useful to use the notation f f ; gg for the germ obtained
by putting together germs f and g with the same target. That is, if
f : ðX1;SÞ! ðY ; 0Þ and g: ðX2;T Þ! ðY ; 0Þ are germs, then f f ; gg is the multi-germ
ðX1 q X2;S q T Þ! ðY ; 0Þ whose branches are those of f together with those of g.
Throughout this section we assume that we are in the nice dimensions; thus, every

stable unfolding ð flðxÞ; lÞ of a germ f0 is a ‘stabilisation’, in the sense that for almost
all l, fl is stable.
The ¢rst concatenation operation is monic: from a multi-germ withm branches we

get a new multi-germ with m þ 1 branches, in which the extra branch is a fold or an
immersion. Later we introduce a binary concatenation operation, in which we
combine two codimension 1 multi-germs to get a new multi-germ.

THEOREM 3.1. Let f : ðCn;SÞ ! ðC
p; 0Þ be a map-germ of ¢nite Ae-codimension

with a stable unfolding F on the single parameter t, let 0W k 2 Z and let
g: ðCp

�C
k; 0Þ ! ðC

p
�C; 0Þ be the fold map ðy; vÞ 7! ðy;

Pk
j¼1 v2j Þ. Then
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(1) Ae � codimðg�ðF ÞÞ ¼ Ae � codimð f Þ ¼ Ae � codimðfF ; ggÞ
(2) mDðg

�ðF ÞÞ ¼ mDðfF ; ggÞ ¼ mDð f Þ
(3) both g�ðF Þ and fF ; gg have 1-parameter stable unfoldings.

Proof. (1) Let i: ðCp; 0Þ ! ðC
p
�C; 0Þ be the standard inclusion inducing f from

F . By Damon’s theorem the Ae-codimension of f is equal to the vector-space
dimension of NKDðF Þ;ei :¼ yðiÞ=tiðyCpÞ þ i�ðDerðlogDðF ÞÞÞ. As i is an immersion,
projecting to the last component gives an isomorphism NKDðF Þ;ei ’
OC

p;0=dtði�ðDerðlogDðF ÞÞÞÞ. Again by Damon’s theorem, the Ae-codimension of
g�ðF Þ is equal to the dimension of NKDðF Þ;eg; since

tgðy
C

p
�C

k Þ ¼
Xp

‘¼1

O
C

p
�C

k
@

@y‘
þ
Xk

j¼1

O
C

p
�C

k � vj
@

@t
;

it follows, again by projecting to the last component, that

NKDðF Þ;eg ’ O
C

p
�C

k;0=ðv1; � � � ; vkÞ þ dtðg�ðDerðlogDðF ÞÞÞÞ;

this in turn is isomorphic to OC
p;0=dtði�ðDerðlogDðF ÞÞÞÞ, and thus to NKDðF Þ;ei. This

proves the ¢rst equality in (1).
To prove the second equality in (1), we use the exact sequence

0 !
yðgÞ

tgðy
C

p
�C

kÞ þ ogðDerðlogDðF ÞÞÞ
! NAefF ; gg ! NAeF ! 0

which results from the fact that DerðlogDðF ÞÞ is the kernel of oF : yCp
�C!

yðF Þ=tF ðyCn
�CÞ. Since F is stable, NAefF ; gg is isomorphic to

yðgÞ=tgðy
C

p
�C

k Þ þ ogðDerðlogDðF ÞÞÞ:

This in turn is isomorphic to

O
C

p
�C

k;0=ðv1; . . . ; vkÞ þ dtðogðDerðlogDðF ÞÞÞÞ;

by projection to the last component, and thus, evidently, to
OC

p;0=dtði�ðDerðlogDðF ÞÞÞÞ; i.e. to NKDðF Þ;ei.
(2) For l 6¼ 0, the map gl de¢ned by glðy; vÞ ¼ ðy;

P
v2j þ lÞ is logarithmically

transverse to DðF Þ. Thus g�lðF Þ is a stable perturbation of g�ðF Þ. Its discriminant
is g�1l ðDðF ÞÞ. There are now two cases, k > 0 and k ¼ 0.
If k > 0, g�1l ðDðF ÞÞ ¢bres over DðF Þ with typical ¢bre diffeomorphic to the Milnor

¢bre Xg of g, and contractible ¢bres over the points ofDðF Þ \ DðglÞ. SinceDðF Þ itself
is contractible, it follows that g�1l ðDðF ÞÞ is homotopy-equivalent to the space
obtained from DðF Þ � Xg by gluing in a k-ball to each ¢bre over DðF Þ \ DðglÞ to
kill its homotopy. A Mayer^Vietoris argument now shows that the rank of
Hpþk�1ðg�1l ðDðF ÞÞÞ is equal to the rank ofHp�1ðDðF Þ \ DðglÞÞ. Since fF ; glg is a stable
perturbation of fF ; gg, a second Mayer^Vietoris argument shows that
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HpðDðF Þ [ DðglÞÞ ’ Hp�1ðDðF Þ \ DðglÞÞ; thus

mDðg
�ðF ÞÞ ¼ rank Hpþk�1ðg�1l ðDðF ÞÞÞ ¼ rank HpðDðF Þ [ DðglÞÞ ¼ mDfF ; gg:

The second equality of (2) follows from the fact that DðglÞ ¼ ilðC
p
Þ ¼ Dði�lðF ÞÞ,

where il: C
p
! C

p
�C is de¢ned by y 7! ðy; lÞ. For il is logarithmically transverse

to DðF Þ, and thus i�1l ðDðF ÞÞ (for l 6¼ 0) is the discriminant of a stable perturbation
i�lðF Þ of f .
If k ¼ 0, the situation is much simpler: g�1l ðDðF ÞÞ is diffeomorphic to

DðglÞ \ DðF Þ, and the assertion is proved by a similar Mayer^Vietoris argument.
(3) The unfoldingG ¼ ðgl; lÞ of g induces from F � idC a stable unfolding of g�ðF Þ,

since it is logarithmically transverse to DðF Þ �C. The unfolding fF � idC;Gg of
fF ; gg is stable, since the analytic stratum C

p
�C � ð1; 1Þ of G is transverse to

the analytic stratum of F � idC. &

In particular, if the germ f satis¢es Conjecture 1, then so does fF ; gg. In fact, as we
shall now see, our proof of 3.1 shows that the same goes for the existence of good real
perturbations (Conjecture 2, in the case of map-germs of codimension 1).

THEOREM 3.2. If f has a good real perturbation then so does fF ; gg, and vice versa.
Proof. Replace C by R everywhere in the topological part of the proof of 3.1.

The Mayer^Vietoris argument shows that

rankHpðDRðF Þ [ DRðglÞÞ ¼ rankHp�1ðDRðF Þ \ DRðglÞÞ ¼ rankHp�1ðDð ftÞÞ;

so that if either side has, for t > 0 or for t < 0, rank equal to the rank of the homology
of the complexi¢cation, then so, by 3.1, does the other. &

THEOREM 3.3. Suppose that the germ f of Theorem 3.3 has Ae-codimension 1.
Then up to A-equivalence, the bi-germ h ¼ fF ; gg obtained is independent of the
choice of stable unfolding F.

Proof. Any stable 1-parameter unfolding of f is also Ae-versal. Thus, given two
such, F 0 and F 00, by the semi-uniqueness of mini-versal unfoldings there are a
diffeomorphism a: ðC; 0Þ ! ðC; 0Þ and unfoldings of the identity

f: ðCn
�C;S � f0gÞ ! ðC

n
�C;S � f0gÞ

and

C: ðCp
�C; f0g � f0gÞ ! ðC

p
�C; f0g � f0gÞ

such that C � F 0 � F ¼ a�ðF 00Þ; where a�ðF 00Þ is the unfolding ðx; lÞ 7! ðf 00ðx; aðlÞÞ; lÞ.
This equality can be rewritten

ð1� aÞ �C � F 0 � F � ð1� a�1Þ ¼ F 00;

and therefore to conclude that fF 0; gg and fF 00; gg are A-equivalent, it remains only
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to show that we can ¢nd a diffeomorphism y such that

ð1� aÞ �C � g � y ¼ g:

In fact we construct y�1. Since

ð1� aÞ �C � gðy; vÞ ¼ c y;
X

v2j
� �

; a
X

v2j
� �� �

;

we look for a diffeomorphism b: ðCk; 0Þ ! ðC
k; 0Þ such that a

P
v2j

� �
¼P

ðbjðv1; . . . ; vkÞÞ
2. This seems easiest to do by working directly with power series;

for example, when k ¼ 2, and assuming for ease of notation that a0ð0Þ ¼ 1, we
can take

bðv1:v2Þ ¼ ðv1ð1þ a2ðv21 þ 2v
2
2Þ þ a3ðv41 þ 3v

2
1v
2
2 þ 3v

4
2Þ þ � � �Þ

1=2;

v2ð1þ a2v22 þ a3v42 þ � � �Þ
1=2
Þ;

where the ai are the coef¢cients of the Taylor series of a. Now we ¢nd that

c y;
X

v2j
� �

; a
X

v2j
� �� �

¼ g c y;
X

v2j
� �

; bðvÞ
� �

;

the right-hand side of this equality is the composite of g with a diffeomorphism of
its domain, and so we are done. &

When f hasAe-codimension 1, the germ g�ðF Þ obtained by applying the procedure
of Theorem 3.1 is the k-fold augmentation of f , Akf . It will be useful to have a
notation for the multi-germ fF ; gg: we will denote it by Ckð f Þ. Both Akf and
Ckð f Þ are well-de¢ned as A-equivalence classes, by 2.1 and 3.3.

EXAMPLE 3.4. Let f ¼ f f1; f2; f3; f4g be the stable multi-germ parametrising the
union of the four coordinate hyperplanes fxi ¼ 0g in C

4 (in descending order of
i), and let gðx; y; zÞ ¼ ðx; y; z; z þ y þ xkÞ. Then by successive de-concatenation,the
codimension and image Milnor number of the 5-germ f f ; gg are equal to those
of the 4-germ g�ð f Þ and the 3-germ ðg�ð f1ÞÞ

�
ðfg�ð f2Þ; g�ð f3Þ; g�ð f4ÞgÞ. The latter is

equivalent to

x 7! ðx;�xkÞ; x 7! ðx; 0Þ; x 7! ð0; xÞ

Figure 1.
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This has Ae-codimension and image Milnor number equal to k ^ an r-branch
parametrised curve-germ in the plane has mI ¼ d� r þ 1. It also has a good real
perturbation, shown in Figure 1 when k ¼ 4.

EXAMPLE 3.5.

Figure 2. Via A ¼ Augmentation and C0 ¼ Concatenation, the double-point and the cusp generate all
codimension 1 equivalence classes from 2-space to 3-space (whose good real perturbations are shown
in the right-hand column).
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EXAMPLE 3.6.

EXAMPLE 3.7. The bi-germ consisting of a cross cap together with an immersed
plane transverse to the parametrisation of the cross-cap, and making contact of
degree k with the double line in the cross-cap (cf. 7.5 in [22], and 3.3 in [32]) is
obtained by applying C0 to the germ t 7! ðt2; t2kþ1Þ parametrising the kth order cusp.

The second type of concatenation is a binary operation: given germs
f0: ðC

m;SÞ! ðC
a; 0Þ and g0: ðC

n;T Þ ! ðC
b; 0Þ with 1-parameter stable unfoldings

F and G, we form a multi-germ h with jSj þ jT j branches, by putting together germs
equivalent to idCa � F and G � id

C
b in such a way that their analytic strata

(see Section 5) meet subtransversely in C
aþbþ1.

THEOREM 3.8. Suppose the two map-germs F ðy; sÞ ¼ ð fsðyÞ; sÞ and Gðx; sÞ ¼
ðgsðxÞ; sÞ are stable, and let h be de¢ned by

ðX ; y; uÞ 7! ðX ; fuðyÞ; uÞ; ðx;Y ; uÞ 7! ðguðxÞ;Y ; uÞ:

Then provided Ae-codim ðhÞ < 1, we have

(1) Ae-codim ðhÞXAe-codim ð f0Þ � Ae-codim ðg0Þ; with equality if and only if
either s 2 dsðDerðlogDðGÞÞÞ or t 2 dtðDerðlogDðF ÞÞÞ;

(2) h has a 1-parameter stable unfolding;
(3) mDðhÞ ¼ mDðf0Þ � mDðg0Þ:

Proof. (1) and (2): we compute the codimension of h by Damon’s theorem. The
multi-germ

H:
ðX ; s; y; tÞ 7! ðX ; s; ftðyÞ; tÞ;
ðx; s;Y ; tÞ 7! ðgsðxÞ; s;Y ; tÞ

�

Figure 3. Generation of codimension 1 germs of maps from the plane to the plane.
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is stable, as tðF Þ \j tðGÞ, and after a change of coordinates can be seen as an
unfolding of h (which proves (2)). Our map h is induced from H by

i: Ca
�C

b
�C ! C

a
�C�C

b
�C;

iðX ;Y ; uÞ ¼ ðX ; u;Y ; uÞ:

The discriminant of H is the ‘product-union’ (Jim Damon’s term)

ðDðGÞ �C
b
�CÞ

[
ðC

a
�C� DðF ÞÞ;

so if x0; . . . ; xb generate DerðlogDðF ÞÞ and Z0; . . . ; Za generate DerðlogDðGÞÞ then
(considering the xi as belonging to yða þ 1þ b þ 1=a þ 1Þ and the Zi as belonging
to yða þ 1þ b þ 1=b þ 1Þ), we have

NKDðHÞ;ei ¼ yðiÞ=h@=@Xi; @=@Yj; @=@s þ @=@ti þ hx0; . . . ; xb; Z0; . . . ; Zai:

Denote dsðDerðlogDðGÞÞÞ and dtðDerðlogDðF ÞÞÞ by I and J respectively. By the map
ðds; dtÞ, NKDðHÞ;ei projects isomorphically to

M :¼
Oaþbþ1h@=@s; @=@ti

h@=@s þ @=@ti þ hfaðX ; uÞ@=@s : aðX ; sÞ 2 Igi þ hfbðY ; uÞ@=@t : bðY ; tÞ 2 Jgi
:

As f0 is induced from F by gðyÞ ¼ ðy; 0Þ, and g0 is induced from G by sðxÞ ¼ ðx; 0Þ,

NAe f0 ’ yðgÞ=tgðybÞ þ g�ðDerðlogDðF ÞÞÞ ’
dt
Ob=g�ðJÞ

and

NAeg0 ’ yðsÞ=tsðyaÞ þ s�ðDerðlogDðGÞÞÞ ’
ds
Oa=s�ðIÞ:

Now, suppose that s 2 I . Then M is isomorphic to

M0 :¼
Oaþbh@=@s; @=@ti

h@=@s þ @=@ti þ Oaþbs�ðIÞ@=@s þ Oaþbg�ðJÞ@=@t
:

The reason thatM ’ M0 is that u@=@s 2 faðX ; uÞ@=@s : aðX ; tÞ 2 dsðDerðlogDðGÞÞÞg is
in the denominator, and thus (since @=@s þ @=@t is in the denominator), so is u@=@t.
Evidently, if t 2 J thenM ’ M0, by the same argument. An easy argument shows

that the converse is true: if M ’ M0 then either s 2 I or t 2 J.
The module M0 is itself isomorphic to

Oaþb

s�ðIÞ þ g�ðJÞ

via the map ds � dt

a@=@s þ b@=@t 7! a� b;
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and ¢nally, provided the left-hand side is ¢nite-dimensional,

Oaþb

s�ðIÞ þ g�ðJÞ
’

Oa

s�ðIÞ
�C

Ob

g�ðJÞ
:

This completes the proof of (1).
(3) We postpone proof of this until Section 6 ^ see, in particular, Proposition

6.6. &

Remark 3.9. Let f0: ðC
n;SÞ ! ðC

p; 0Þ be a germ with a 1-parameter stable
unfolding F , and suppose nX p and ðn; pÞ are nice dimensions. Then the condition
in the proposition, that t 2 dtðDerðlogDðF ÞÞÞ, is equivalent to having
mDðf0Þ ¼ Ae-codimð f0Þ ^ see [26], Corollary 7.4. The proof uses coherence of the
Gauss^Manin connection.

Now suppose both f0 and g0 have Ae-codimension 1. By analogy with augmen-
tation and the ¢rst type of concatenation, one might expect the result of this second
type of concatenation to be independent, up toA-equivalence, of the choice of stable
unfoldings F and G. Somewhat surprisingly, this is true over C but false over R.

EXAMPLE 3.10. Let f0ðyÞ ¼ y3, g0ðxÞ ¼ x3, and take F 0ðy; uÞ ¼ ðy3 þ uy; uÞ,
F 00ðy; uÞ ¼ ðy3 � yu; uÞ, Gðx; uÞ ¼ ðx3 þ ux; uÞ. Then the multi-germs

h0: ðX ; y; uÞ 7! ðX ; y3 þ uy; uÞ;
ðx;Y ; uÞ 7! ðx3 þ ux;Y ; uÞ

�

and

h00: ðX ; y; uÞ 7! ðX ; y3 � uy; uÞ;
ðx;Y ; uÞ 7! ðx3 þ ux;Y ; uÞ

�

are not equivalent over R. The discriminant of h0 consistsof two components, each
the product of a ¢rst-order cusp with a line, and both ‘opening downwards’ (in
the direction of the negative u axis). This germ h0 does not have a good real
perturbation. On the other hand, in the germ h00 one cusp opens upwards and
the other downwards, and h00 does have a good real perturbation, shown in
Figure 4.

PROPOSITION 3.11. Suppose that the germs f0 and g0 in Theorem 3.8 both have
Ae-codimension 1. Then over C,and up to A-equivalence, the germ h produced by
the recipe of Theorem 3.8 is independent of choice of the 1-parameter stable
unfoldings F and G.

Proof. Suppose that F 0 and F 00 are 1-parameter stable unfoldings of f0, and letG be
a 1-parameter stable unfolding of g0. Applying the concatenation operation, we
obtain multi-germs h0 and h00, the ¢rst using F 0 and G, the second F 00 and G. We
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wish to show that the two are A-equivalent. Let hl be the linear interpolation
between them: hl ¼ ð1� lh0Þ þ lh00. We use a Mather^Yau type argument (cf. [21]).

Step 1. For no value ofl is the germ hl stable.
For the analytic strata of its branches idCn � Fl and G always meet at
0 2 C

a
�C

b
�C, and always have dimensions whose sum is less than a þ b þ 1,

unless for some value of l Fl is a trivial unfolding of f0. In the latter case Fl itself
is not stable, so that once again hl cannot be stable. It also follows that for those
l such that hl has Ae-codimension 1, TA hl ¼ TK hl.

Step 2. The set of points fl 2 C : Ae-codimensionðhlÞ > 1g is Zariski-closed inC,
so that its complement, L1 :¼ fl 2 C : Ae-codimensionðhlÞ ¼ 1g, is Zariski-open,
and connected. It is non-empty, by the hypothesis that the two germs h0and h00 have
Ae-codimension 1.

Step 3. Choose an integer k such that in the appropriate multi-jet space rJkðX ;Y Þ,
the JkA-orbit of the k-jet of every codimension 1 germ coincides with the set of
k-jets of its A-orbit. We use Mather’s Lemma ([18], 3.1) to show that the set
JkL1 :¼ f jkhl : l 2 L1g lies in a single JkA-orbit, from which the proposition
follows. It is necessary to check only that TsJkL1 � TJkAs for all s 2 L1. But
JkL1 lies in a single contact orbit, and for each l 2 L1, the A-tangent space of
hl is equal to its contact tangent space. It follows that TsJkL1 � TJkAs for all
s 2 L1, as required. &

The argument of this proof in fact proves the following result, which we will use
later:

LEMMA 3.12. For any given (complex) contact class W �r Jkðn; pÞ there is at most
one A-orbit which is open in W. &

Figure 4. Discriminant of a good real perturbation of a binary concatenation of two cubic functions. A
2-cycle carrying the vanishing homology is outlined in black.
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In the light of 3.11, we will refer to the A-equivalence class of multi-germ obtained
from codimension 1 multi-germs f0 and g0 by this binary concatenation operation
as Bð f0; g0Þ.

QUESTION. How many different A-equivalence classes of germs h over R can
different choices of miniversal unfoldings F ;G of f0 and g0 give rise to?

Our ¢nal result here is

PROPOSITION 3.13. If the germs f0 and g0 both have good real perturbations, then
so does Bð f0; g0Þ.

The proof will be given in Section 6, (see in particular Proposition 6.8).

Remark 3.14. It would be interesting to understand the effect on monodromy
groups of augmentation and concatenation. There is a ‘natural’ choice of
1-parameter stable unfolding of Af0, Ckð f0Þ and of Bð f0; g0Þ, re£ecting the choice
of stable unfolding used in their construction. Presumably the monodromy action
in the case of Bð f0; g0Þ is the tensor product of the monodromy action in the chosen
1-parameter unfoldings F and G, as in the classical Thom^Sebastiani theorem.

4. Ae-Codimension 1 Germs ðCn; 0Þ ! ðC
nþ1; 0Þ

In this section we ¢rst classify Ae-codimension 1 mono-germs of co-rank 1 and then
show that each has image Milnor number 1. The argument runs roughly as follows:
let

Dkð f Þ ¼ closurefðx1; . . . ; xkÞ 2 ðC
n;SÞkjxi 6¼ xj for i 6¼ j; f ðxiÞ ¼ f ðxjÞ8i; jg;

then by results of [15], f is stable if and only if Dkð f Þ is smooth of dimension
n � k þ 1 for 2W kW n þ 1, and f has ¢nite Ae-codimension if and only if each
Dkð f Þ is an isolated complete intersection singularity of dimension n � k þ 1, again
for 0W kW n þ 1. Moreover, if ft is a stable perturbation of f , thenDkð ftÞ is a Milnor
¢bre ofDkð f Þ. There is an obvious symmetric group action on Dkð f Þ, permuting the
copies of ðCn;SÞ, and in fact a spectral sequence ([9]) computes the homology of the
image of ft from the Sk-alternating part of the homology of Dkð ftÞ. It turns out
that if f has Ae-codimension 1, then just one of the Dkð f Þ is singular, and in fact
has a Morse singularity. Since the symmetric group action on the Jacobian algebra
is therefore trivial, from a theorem of Orlik and Solomon and Wall it follows that
the vanishing homology of Dkð ftÞ is alternating, and thus by the spectral sequence
the image Milnor number is 1. The symmetry of Dkð f Þ also accounts for the exist-
ence of a good real perturbation. Essentially, the point is that an Sk-invariant Morse
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function in k real variables is either a sum of squares or the negative of a sum of
squares.
Now we proceed with the classi¢cation. Let ‘ > 0, take coordinates

ðu1; . . . ; u‘�1; v1; . . . ; v‘�1; xÞ onC2‘�1, and de¢ne a map f ‘: ðC2‘�1; 0Þ ! ðC
2‘; 0Þ by

f ‘ðu; v; xÞ ¼ u; v; x‘þ1 þ
X‘�1
i¼1

uixi; x‘þ2 þ
X‘�1
i¼1

vixi

 !
:

LEMMA 4.1. The map-germ f ‘ just described has Ae-codimension 1, and the
following property:

ð�Þ Dkð f ‘Þ is smooth for 2W kW ‘, D‘þ1ð f ‘Þ has a Morse singularity, and Dkð f ‘Þ is
empty for k > ‘þ 1.

Proof. Recall from [15] 2.1 the determinantal equations hk
j;i of Dkð f ‘Þ:

hk
j;i ¼

1 x1 � � � xi�1
1 f ‘

j ðu; v; x1Þ xiþ1
1 � � � xk�1

1
�

�

�

1 xk � � � xi�1
k f ‘

j ðu; v; xkÞ xiþ1
1 � � � xk�1

k

����������

����������
vdM

for 1W iW k � 1 and 2‘� 1W j W 2‘, where vdM is the van der Monde determinant
of x1; � � � ; xk, and f ‘

j is the j’th component of f ‘. An easy calculation shows

hk
2‘�1;i ¼ ui þOð2Þ for i ¼ 2; . . . ; ‘� 1;

hk
2‘;i ¼ vi þOð2Þ for i ¼ 2; . . . ; ‘� 1;

so that Dkðf ‘Þ is smooth for 2W kW ‘. Moreover,

h‘þ12‘�1;‘ ¼ x1 þ � � � þ x‘þ1 and h‘þ12‘;‘ ¼
X‘þ1
i;j¼1

xixj:

We may take the h‘þ1j;i for 2W iW ‘� 1, together with x1; . . . ; x‘þ1, as coordinates;
then D‘þ1ð f Þ is embedded in x1; . . . ; x‘þ1-space with equations h‘þ12‘�1;‘ and h‘þ12‘;‘.
Now h‘þ12‘�1;‘ is nonsingular, and

h‘þ12‘;‘ �
1
2
ðh‘þ12‘�1;‘Þ

2
¼ �

1
2

X‘þ1
i¼1

x2i ;

so D‘þ1ð f ‘Þ has a Morse singularity at the origin.
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Calculation of the Ae-codimension of f ‘ is straightforward; it may easily be
checked using nothing more than Nakayama’s Lemma that

TAe f ‘ ¼ yð f Þ n fx‘@=@Y2; x‘�1@=@v1; . . . ; x@=@v‘�1g þ

þ hx‘�1@=@v1 þ x‘@=@Y2; . . . ; x@=@v‘�1 þ x‘@=@Y2i

(here yð f Þ n fmonomialsg means the subspace of yð f Þ generated by the natural
monomial generators except for those listed). The calculation is carried out in detail
in [4]. &

Note that since f ‘ has Ae-codimension 1, its A-orbit is open in its K-orbit. Note
also that from the expression for TAe f ‘ given in the proof, it follows that the stable
germ

F ðl; u; v; xÞ ¼ l; u; v; x‘þ1 þ
X‘�1
i¼1

uixi; x‘þ2 þ
X‘�1
i¼1

vixi þ lx‘

 !

is an Ae-versal unfolding of f ‘.
Since for corank 1 germs ðCn; 0Þ ! ðC

nþ1; 0Þ the multiplicity determines the con-
tact class, it follows from Lemma 3.12 that we have

COROLLARY 4.2. If f : ðC2‘�1; 0Þ ! ðC
2‘; 0Þ has corank 1, multiplicity ‘þ 1 and

Ae-codimension 1, then f is A-equivalent to the germ f ‘ of Lemma 4.1. &

PROPOSITION 4.3. If f : ðCn; 0Þ ! ðC
nþ1; 0Þ has corank 1, multiplicity ‘þ 1 and

Ae-codimension 1 then it is equivalent to

f ‘
q : ðu; v;w; xÞ 7! u; v;w; x‘þ1 þ

X‘�1
i¼1

uixi; x‘þ2 þ
X‘�1
i¼1

vixi þ qðwÞx‘

 !

where q is a nondegenerate quadratic form.
Proof. Note that f ‘

q is (overC) equivalent to the k-fold augmentation Akf ‘, where
k ¼ n � 2‘. The hypothesis forces nX 2‘� 1, since the minimal target dimension of a
stable corank 1 germ of multiplicity ‘þ 1 is 2‘þ 1. Since f hasAe-codimension 1, its
versal unfolding G : ðCn

�C; 0Þ ! ðC
nþ1

�C; 0Þ is an n � 2‘þ 1-fold prism on a
minimal stable map-germ of multiplicity ‘þ 1. From this it follows by
Theorem 2.8 that f is equivalent to an n � 2‘þ 1-fold augmentation of an
Ae-codimension 1 germ f0: ðC

2‘�1; 0Þ ! ðC
2‘; 0Þ of multiplicity ‘þ 1 and corank

1. By the previous corollary, f0 is equivalent to the germ f ‘ of 4.1; since the germ
F described after Lemma 4.1 is a versal unfolding of f ‘, f is equivalent to the germ
obtained by replacing the unfolding term lx‘ in the last component of F by
qðwÞx‘, where q is a nondegenerate quadratic form in new variables wi, as
required. &
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PROPOSITION 4.4. If f : ðCn; 0Þ ! ðC
nþ1; 0Þ has corank 1 and Ae-codimension 1

then mI ð f Þ ¼ 1, and there is a real form with a good real perturbation.
Proof. Let ft be a stable perturbation of f , with image Yt. By [9] Theorem 2.5,

HnðYt;QÞ ’ "kAltkHn�kþ1ðDkð ftÞ;QÞ; ð1Þ

where AltkHn�kþ1ðDkðftÞ;QÞ means the subspace of Hn�kþ1ðDkð ftÞ;QÞ on which the
symmetric group Sk acts by its sign representation. Now Dkð ftÞ is a Milnor ¢bre
of Dkð f Þ; since f has property ð�Þ of Lemma 4.1, (1) reduces to

HnðYt;QÞ ’ Alt‘þ1Hn�‘ðD‘þ1ð ftÞ;QÞ:

As D‘þ1ð f Þ has a Morse singularity, Hn�‘ðD‘þ1ðftÞ;QÞ ’ Q; it remains to show that
the representation of S‘þ1 on Hn�‘ðD‘þ1ðftÞ;QÞ is the sign representation. This can
easily be seen by an explicit calculation with the normal form given; but there is
another argument which explains better why it is true. As D‘þ1ð f Þ is an
S‘þ1-invariant hypersurface singularity, by the theorem of Orlik and Solomon
and Wall ([27, 30]),

Hn�‘ðD‘þ1ð ftÞ;QÞ ’ JacD‘þ1ð f Þ �Q ^‘ðV Þ
�

as S‘þ1 representations, where V is an S‘þ1-invariant smooth space containing
D‘þ1ð f Þ as a hypersurface, and JacD‘þ1ð f Þ is the Jacobian algebra of D‘þ1ð f Þ. Since
D‘þ1ð f Þ is Morse, its Jacobian algebra is a trivial 1-dimensional representation
of S‘þ1, so Hn�‘ðD‘þ1ð ftÞ;QÞ ’ ^‘ðV Þ

�. In fact we take V ¼ D‘þ1ðGÞ where G is
a 1-parameter stable unfolding of f ; as noted above, G is right-left equivalent to
a prism on F , and in particular the S‘þ1-action on D‘þ1ðGÞ is equivalent to a trivial
extension of the standard Weyl action A‘, in which S‘þ1 acts on fðx1; � � � ; x‘þ1Þ:P

i xi ¼ 0g by permuting coordinates. Hence ^‘ðV Þ
� is just the sign representation

of S‘þ1and (as vector spaces)

H2‘�1ðYt;QÞ ’ Alt‘þ1Hn�‘ðD‘þ1ð ftÞ;QÞ ¼ Q

so that mI ð f Þ ¼ 1.
In the real case, we apply (1) to a real stable perturbation ft;R of f , replacing

Dkð ftÞ by Dkð fR;tÞ. Consider ¢rst the case n ¼ 2‘� 1, so f is equivalent to the germ
f ‘ of 4.1. Let f ‘

R;t be a stable perturbation. Evidently Dkð f ‘
R;tÞ is contractible for

2W k < ‘þ 1, and D‘þ1ð f ‘
R;tÞ is a real Milnor ¢bre of a ‘� 1-dimensional Morse

singularity; hence it is a homotopy p-sphere for some p between �1 and ‘� 1.
We have to show that either for t > 0 or t < 0 it is an ‘� 1-sphere. This follows
from the fact that D‘þ1ð f ‘Þ has a Morse singularity and an S‘þ1-invariant de¢ning
equation, in a space in which the representation of S‘þ1 is equivalent to the Weyl
representation A‘ described above. Since the representation is irreducible, the stable
manifold and unstable manifold of the gradient £ow must be equal to 0 and V or V
and 0 respectively, and any S‘þ1-invariant quadratic form must have index 0 or
‘. Since the versal unfolding F of f ‘ is a stable map, D‘þ1ðF Þ is smooth, and thus
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projection to the parameter space cuts out distinct real Milnor ¢bres for t > 0 and
t < 0. Hence at least one of these is an ‘-sphere. The inclusion D‘þ1ð f ‘

R;tÞ,!

D‘þ1ð f ‘
t Þ then induces an S‘þ1-equivariant homotopy equivalence, so that the rep-

resentation of S‘þ1 on H‘�1ðD‘þ1ðf ‘
R;tÞÞ is once again the sign representation.

In the general case, let f ‘
q R;t be a stable perturbation of f ‘

q . By taking q ¼
P

i w2i ,
then D‘þ1ð f ‘

t Þ is an ‘� 1þ d-dimensional sphere, where d ¼ n � 2‘þ 1 is the
number of w-variables in the expression for f ‘

q in 4.3. In fact D‘þ1ð f ‘
q R;tÞ is the join

of D‘þ1ðR;tÞ and q�1ðtÞ, and the representation of S‘þ1 on its cohomology is just
the sign representation as before. &

Remark 4.5. The argument just used shows that if f : ðCn; 0Þ ! ðC
nþ1; 0Þ has

corank 1 and multiplicity ‘þ 1, and has a 1-parameter stable unfolding F , and
if Dkð f Þ is singular, then mI ð f ÞX ‘þ 2� k. For from the fact that Dkð f Þ is singular
it follows that Djð f Þ is singular, for kW j W ‘þ 1. As Djð f Þ is a hypersurface in the
smooth space DjðF Þ, the argument used above can be applied. The Jacobian algebra
of each singular Dkð f Þ has an Sk-invariant subspace of dimension at least 1 (since
the constants form a one-dimensional trivial representation), and hence by the
theorem of Wall (rather than the earlier result of Orlik and Solomon, which applies
only to weighted homogeneneous hypersurface singularities) the alternating part
of the middle homology of the Milnor ¢breDkð ftÞ has rank at least 1. The conclusion
then follows by (1).

5. Ae-Codimension 1 Multi-germs

In this section we show that in Mather’s nice dimensions (cf. [19, 20]) all
Ae-codimension 1 multi-germs can be constructed by concatenation and
augmentation, beginning with stable germs and with primitive Ae-codimension 1
mono-germs.
Submersive branches of multi-germs play a trivial role in classi¢cation and

deformation theory, and we will ignore them in what follows. In particular ‘a
multi-germ with k branches’ means a multi-germ with k nonsubmersive branches.
For a multi-germ f : ðCn;SÞ ! ðC

p; 0Þ with branches f ð1Þ; . . . ; f ðsÞ, de¢ne

tð f Þ ¼ ev0½ðof Þ�1f f �mpyð f Þ þ tf ðyðnÞSÞg%

where ev0: yðpÞ ! T0C
p is evaluation at 0, and

t0ð f Þ ¼ ev0½ðof Þ�1ftf ðyðnÞSÞg%

In fact t0ð f Þ ¼ ev0ðDerðlogDð f ÞÞÞ where Dð f Þ is the discriminant (or image) of f .
The following result is due to Mather [18].
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PROPOSITION 5.1. The multi-germ f is stable if and only if each f ðiÞ is stable and
tð f ð1ÞÞ; . . . ; tð f ðsÞÞ have regular intersection with respect to T0C

p. Moreover, in this
case tð f Þ ¼ \itð f ðiÞÞ. &

We now investigate the geometrical signi¢cance of t0.

LEMMA 5.2. If f : ðCn;SÞ ! ðC
p; 0Þ; is stable, then tð f Þ ¼ t0ð f Þ. &

LEMMA 5.3. If f ¼ idCm � g (i.e. f ¼ Pmg), then t0ð f Þ ¼ T0C
m
" t0ðgÞ. &

LEMMA 5.4. If dimCt0ð f Þ ¼ m, then there is a germ g, not a prism, such that
f &A Pmg. Moreover, if f and c are diffeomorphisms such that
f � f ¼ c � ðidCm � gÞ, then t0ð f Þ ¼ dc0ðT0C

m
� f0gÞ.

Proof. Suppose tf ðxÞ ¼ of ðZÞ. If Zð0Þ 6¼ 0 then also xðsÞ 6¼ 0 for s 2 S, and the
orbits of x and Z can be incorporated as coordinate lines into new coordinate systems
on C

n;S and C
p; 0; now the lemma just reduces to the Thom^Levine Lemma (see,

e.g., [28]), and f &A Pg1 for some germ g1. Now apply the same procedure to
g1. After m iterations, we arrive eventually at a g with t0ðgÞ ¼ 0, which is therefore
not a prism. &

PROPOSITION 5.5. If f : ðCn;SÞ ! ðC
p; 0Þ and g: ðCm;T Þ ! ðC

q; 0Þ are multi-
germs neither of which are prisms and if Pkf is A-equivalent to P‘g then
jSj ¼ jT j, n ¼ m, p ¼ q, k ¼ ‘ and f is A-equivalent to g. Furthermore, if the
A-equivalence between Pkf and P‘g is given by diffeomorphisms f and c as in
the following diagram then cðCk

� f0gÞ ¼ C
‘
� f0g

C
k
�C

n; f0g � S ���� !
id

Ck�f
C

k
�C

p; ð0; 0Þ????yf
????yc

C
‘
�C

m; f0g � T ���� !
id

C‘�g
C

‘
�C

q; ð0; 0Þ &

Given a multi-germ f , by Proposition 5.5 there is a well de¢ned maximal
sub-manifold of the target along which f is trivial (i.e. a prism). It is known as
the analytic stratum of f , and coincides with the set-germ of points y 2 C

p; 0 such
that the germ f : ðCn; f �1ðyÞ \ Cf Þ ! ðC

p; yÞ is A-equivalent to f : ðCn;SÞ !
ðC

p; 0Þ. Moreover, t0ð f Þ is the tangent space at 0 to the analytic stratum of f .

PROPOSITION 5.6. Let f : ðCn;SÞ ! ðC
p; 0Þ and g: ðCn;T Þ ! ðC

p; 0Þ be multi-
germs, and suppose that h ¼ ff ; gg has Ae-codimension 1. Let c be a germ of a
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1-parameter family of maps ðCp; 0Þ !C
p such that c0 ¼ idCp and

ev0
dct

dt

����
t¼0

� �
62 t0ð f Þ þ t0ðgÞ;

and write Gðl; xÞ ¼ ðl; ðcl � gÞðxÞÞ. Then H :¼ fidC � f ;Gg is a versal unfolding of h.
Proof.WriteHðl; xÞ ¼ ðl; hlðxÞÞ. If v ¼ dhl=dljl¼0 2 TAeh, then v ¼ thðxÞ þ ohðZÞ

for some x 2 yðnÞS[T and Z 2 yðpÞ. It follows that

of ðZÞ ¼ tf ð�xÞ and tgð�xÞ ¼ og Z�
dct

dt

����
t¼0

� �

and therefore ev0ðdct=dtjt¼0Þ 2 t0ð f Þ þ t0ðgÞ, which contradicts our hypotheses. Since
dhl=dljl¼0 62 TAeh and h has Ae-codimension 1, H is a versal unfolding of h. &

COROLLARY 5.7. If h: ðCn;SÞ ! ðC
p; 0Þ is a multi-germ ofAe-codimension 1, then

for every proper subset S0 of S, the restriction of h to a multi-germ ðC
n;S0Þ ! ðC

p; 0Þ
is stable.

Proof. Let S ¼ S0 [ S00 with S0 \ S00 ¼ ;. Let h0 and h00 be the multi-germs of h at S0

and S00 respectively. Suppose that one of h0 and h00 is not stable, say h0. Then h0 has
Ae-codimension 1. Since it is therefore not a prism, by Lemma 5.4 t0ðh0Þ ¼ 0. As
h00 is not a submersion, we may choose v 2 T0C

p
nt0ðh00Þ. Extend v to a vector ¢eld

onCp and integrate it to give a germ of a 1-parameter family ct of diffeomorphisms
of ðCp; 0Þ satisfying the conditions of Proposition 5.6. Therefore H, as described
in Proposition 5.6, is a versal unfolding of h. But then idC � h0 is a versal unfolding
of h0 and so h0 is stable, a contradiction. Therefore h0 and h00 are stable. &

A ¢nite set E1; . . . ;Es of vector subspaces of a ¢nite-dimensional vector space F
has almost regular intersection (with respect to F ) if

codimðE1 \ . . . \ EsÞ ¼ codimE1 þ � � � þ codimEs � 1:

LEMMA 5.8. E1; . . . ;Es have almost regular intersection if and only if the cokernel of
the natural mapping

F ! ðF=E1Þ " . . ." ðF=EsÞ

has dimension 1. &

PROPOSITION 5.9. Let h ¼ f f ; gg be an Ae-codimension 1 multi-germ. Then tð f Þ
and tðgÞ have almost regular intersection with respect to T0C

p.
Proof. LetH be a versal unfolding of h.H restricts to a versal unfolding F of f and

a versal unfoldingG of g. Since f is stable, F is equivalent to a prism on f and, hence,

T0C
p=tð f Þ ffi T0ðC�C

p
Þ=tðF Þ
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We have the following commutative diagram

T0C
p

���!
T0C

p

tð f Þ
"

T0C
p

tðgÞ???y
???y

T0ðC�C
p
Þ ���!

T0ðC�C
p
Þ

tðF Þ
"

T0ðC�C
p
Þ

tðGÞ

in which the right-hand map is bijective and the bottom map is surjective by
Proposition 5.1. So the top map has cokernel of codimension at most 1. Were it
surjective, then tð f Þ and tðgÞ would be transverse, and h would be stable. Hence,
the dimension of the cokernel is 1, proving the proposition. &

COROLLARY 5.10. If h is a multi-germ of Ae-codimension 1 with branches
hð1Þ; . . . ; hðrÞ, rX 2, then tðhð1ÞÞ; . . . ; tðhðrÞÞ have almost regular intersection with
respect to T0C

p. &

COROLARY 5.11. Let h ¼ f f ; gg have Ae-codimension 1. Then the codimension of
tð f Þ þ tðgÞ in T0C

p is 1. &

It is natural to ask how we can tell when our codimension 1 multi-germ is primitive.

PROPOSITION 5.12. Let h ¼ f f ; gg be an Ae-codimension 1 multi-germ, and let
k ¼ dimC tð f Þ \ tðgÞ. Then h is a k-fold augmentation of a primitive map-germ.

Proof. By Corollary 5.10 we can choose v 2 T0C
p
n ðtð f Þ þ tðgÞÞ. Choose a germ

of a one parameter family ct of diffeomorphisms of ðC
p; 0Þ such that

ev0ðdct=dtjt¼0Þ ¼ v. Then choose a versal unfolding H of h as in Proposition 5.6.
If L is the ¢rst coordinate in the target C�C

p of H then

tðF Þ ¼ C
@

@L
" tð f Þ and tðGÞ ¼ C

@

@L
þ v

� �
" tðgÞ:

Since tðHÞ ¼ tðF Þ \ tðGÞ it follows that tðHÞ ¼ tð f Þ \ tðgÞ. Therefore, by
Proposition 5.5, H is a prism and by Theorem 2.8 h is an augmentation. &

COROLLARY 5.13. Suppose that h ¼ ff ; gg is a primitive Ae-codimension 1
multi-germ. Then there is a decomposition T0C

p
¼ tð f Þ " tðgÞ "Cv:

Proof. Immediate from Corollary 5.11 and Proposition 5.12. &

EXAMPLE 5.14. Using 5.12 we classify codimension 1 multi-germs of immersions.
If f : Cn;S ! C

nþ1 has all of its r branches immersions, then the same is true of
a 1-parameter versal unfolding F . As F is stable, these r branches meet in general
position, with intersection L of dimension n þ 1� r. Clearly L ¼ tðF Þ; thus, by 5.12
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f is the n þ 1� r-fold augmentation of a germ f0: C
r�1;S ! C

r; 0, evidently also
consisting of r immersions. As f0 has Ae-codimension 1, each r � 1-tuple of its
immersions is in general position (but see also 5.9). It follows that f0 is equivalent
to the germ consisting of a parametrisation of the r coordinate hyperplanes, together
with one extra immersive branch ðx1; . . . ; xr�1Þ 7! ðx1; . . . ; xr�1;

P
i xiÞ. This has a

versal unfolding in which only the last immersion is deformed, to
ðx1; . . . ; xr�1Þ 7! ðx1 þ t; . . . ; xr�1 þ t;

P
i xi þ tÞ. Thus f is equivalent to the germ

consisting of a parametrisation of the ¢rst r � 1 hyperplanes together with an
additional immersion of the form

ðx1; . . . ; xr�1; u1; . . . ; unþr�1Þ

7! x1 þ
X

j

u2j ; . . . ; xr�1 þ
X

j

u2j ;
X

i

xi þ
X

j

u2j ; u1; . . . ; un�rþ1

 !
:

In the real case, the only change in the classi¢cation is that
P

j u2j must be replaced byP
j (u2j , giving ðn � r þ 1Þ=2 different classes if n þ r � 1 is even, or ðn þ rÞ=2 if

n � r þ 1 is odd.
The second germ in the list shown in the right-hand column in Figure 2 is of this

type.
For the remainder of this section we assume that we are given a primitive

multi-germ f of Ae-codimension 1. In view of Corollary 5.13, by a change of
coordinates we can arrange that the analytic stratum of f becomes
C

a
� f0g � f0g, that of g becomes f0g �C

b
� f0g and v becomes ð0; 0; 1Þ 2 C

a
�

C
b
�C. We shall suppose for the remainder of this section that this change of

coordinates has been made.
We say that a multi-germ f is transverse to a vector subspace V of T0C

p if
every branch of f is transverse to V . Our analysis of multi-germs h ¼ f f ; gg from
now on falls into two cases, characterised by whether g is or is not transverse
to tð f Þ.

Case 1. g is not transverse to tð f Þ.

LEMMA 5.15. A stable map germ of rank zero is either a Morse singularity, or either
the domain or the codomain has dimension zero. &

PROPOSITION 5.16. Let h ¼ f f ; gg be a primitiveAe-codimension 1 multi-germ, and
suppose that g is not transverse to tð f Þ. Then

(1) if moreover g and f are transverse, it follows that

(a) g has precisely one branch, which is either a prism on a Morse singularity or
an immersion.
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(b) After a change of coordinates, h takes the form

f : ðCn�1
�C;S0 � f0gÞ ! ðC

p�1
�C; 0Þ; f ðx; uÞ ¼ ð fuðxÞ; uÞ;

g: ðCp�1
�C

k; 0Þ ! ðC
p�1

�C; 0Þ; gðl; vÞ ¼ ðl;
P

j v2j Þ;

where f is an Ae-versal unfolding of f0; thus h ¼ Ckð f0Þ. In particular,
f \j tðgÞ.

(2) if g and f are not transverse, then p ¼ 1, and f and g are both Morse
functions.

Proof. (1) If g has more than one branch, then by Corollary 5.7 the multi-germ
consisting of f together with any one branch gðiÞ of g is stable. Hence,
tðgðiÞÞ \j tð f Þ, so gðiÞ \j tð f Þ, so g \j tð f Þ. This contradiction implies that g has only
one branch.
Now suppose that Imageðdgð0ÞÞ is bigger than tðgÞ. Then we can construct a

1-parameter deformation ht of h by ¢xing f and composing g with a 1-parameter
rotation about tðgÞ, in such a way that for t 6¼ 0, g becomes transverse to tð f Þ. Since
tðgÞ remains nontransverse to tð f Þ, ht is not stable even for t 6¼ 0. But neither is it
equivalent to h ¼ h0. This is impossible, since h has A-codimension 1. Hence,
Imageðdgð0ÞÞ ¼ tðgÞ, and so g is a prism on a germ of rank 0. By 5.15, g is either
a prism on a Morse function or an immersion.
(2) The codimension of tðgÞ is now 1, so by Corollary 5.13we must have tð f Þ ¼ f0g.

Thus, we have a decomposition of the target asCp�1
�C where Cp�1

� f0g is the
analytic stratum of g. There is a neighbourhood U of 0 in C

p�1 such that for all
u 2 U , the pullback of g along the inclusion of the subset fug �C is a Morse
singularity and so by a coordinate change in the source we can reduce this pullback
to the form

Pm
i¼1 x2i . In fact the changes of coordinates in the source depend ana-

lytically on u and so together they give a change of coordinates in the source which
reduces g to the form

C
p�1

�C
k

! C
p�1

�C;

ðl; v1; . . . ; vkÞ 7! l;
Xm

j¼1

v2j

 !
:

Now suppose that f is transverse to g. Then by a change of coordinates in the
source of f we can now bring f to the desired form. Evidently f is now a stable
1-parameter unfolding of f0, so we can view h as Ckð f0Þ; ¢nally, by Theorem 3.1

Ae-codimð f0Þ ¼ Ae-codimðhÞ ¼ 1:

On the other hand, if f is not transverse to g then we can apply the previous argu-
ment with the roles of f and g reversed, to conclude that p ¼ 1 and thus that f
and g are both Morse singularities. &
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EXAMPLE 5.17. The germ f0 of Example 5.14 is obtained (up to A-equivalence) by
applying the concatenation operation C0 (de¢ned using Theorem 3.3) r � 1 times
to the bi-germ consisting of coincident embeddings of two copies of C0 in C.

To complete our analysis of codimension 1 multi-germs, by 5.16 it remains to
consider only

Case 2. f \j tðgÞ and g\j tð f Þ. Recall that we were able to decompose the target
C

p as C
a
�C

b
�C, with tð f Þ ¼ C

a
� f0g � f0g and tðgÞ ¼ f0g �C

b
� f0g. Let

z1; . . . ; zaþbþ1 be coordinates on C
a
�C

b
�C. Since f is transverse to tðgÞ, we

can take zaþbþ1 � f as a coordinate, u, on the domain of f , and similarly, as g is
transverse to tð f Þ, we can take v ¼ zaþbþ1 � g as a coordinate on the domain of
g. A coordinate change now brings f f ; gg to the form

ðX ; y; uÞ 7! ðX ; fuðyÞ; uÞ; ðx;Y ; uÞ 7! ðgu;Y ðxÞ;Y ; uÞ:

Note that we have reduced f to a prism on a 1-parameter unfolding (using the fact
that Ca

� f0g � f0g is the analytic stratum of f ), but that we have not done the same
for g ^ yet. A naive coordinate change to reduce g to a prism on a 1-parameter
unfolding would take f out of its normal form. Nevertheless, we claim that h is
A-equivalent to a binary concatenation of twoAe-codimension 1 germs, as described
in Section 3. As a ¢rst step, we prove:

LEMMA 5.18. Suppose that h is an Ae-codimension 1 germ in the semi-normal form

ðX ; y; uÞ 7! ðX ; fuðyÞ; uÞ; ðx;Y ; uÞ 7! ðgu;Y ðxÞ;Y ; uÞ:

Then

(1) the Ae-codimension of the germs g0 and f0 is equal to 1, and the germs
g: ðx; vÞ 7! ðgv;0ðxÞ; vÞ and f : ðy; uÞ 7! ð fuðyÞ; uÞ are Ae-versal unfoldings of g0
and f0.

(2) If also h is primitive, then so are g0 and f0.

Proof. We give the proof for g0 and g; the proof for f0 and f is identical.
Step 1. The unfolding H of h given by

ðX ; y; u; vÞ 7!
F

ðX ; fuðyÞ; u þ v; vÞ;

ðx;Y ; s; vÞ 7!
g�idC

ðgðx;Y ; sÞ; vÞ

is Ae-versal, by Lemma 1.1. For it is not in¢nitesimally trivial, and h has
Ae-codimension 1.

Step 2. Let G be an unfolding of g0, and let ~GG be the direct sum unfolding of G and
g. Clearly G can be induced from ~GG. Consider the unfolding ~HH of h, given by
~HH ¼ fF � id

C
d ; ~GGg. As the 1-parameter unfolding H of h is versal, ~HH must be

isomorphic to an unfolding induced from H. This means ~GG is isomorphic to an
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unfolding induced from g � idC. Any such unfolding is isomorphic to an unfolding
induced from g. Hence, g is a versal unfolding of g0. The Kodaira^Spencer map
of g, from T0C

b
�C to the Ae-normal space of g0, is therefore surjective. But

as g is trivial along f0g �C
b
� f0g, the Kodaira^Spencer map is identically zero

along C
b
� f0g. Hence, the restriction of the Kodaira^Spencer map to f0g �C is

surjective, and g is Ae-versal.

If also h is primitive, then tð f Þ \ tðgÞ ¼ f0g, by 5.12, and so the analytic stratum of
the versal unfolding ðx; vÞ 7! ðx; gvðxÞÞ must be reduced to f0g also. It follows from
2.8 that g0 must be primitive. &

COROLLARY 5.19. Suppose that f f ; gg is a multi-germ ofAe-codimension 1, with f
transverse to tðgÞ and g transverse to tð f Þ. Then the pull-back of f by tðgÞ, and the
pullback of g by tð f Þ, are both germs of Ae-codimension 1.

Proof. When f f ; gg is put in the semi-normal form of the Proposition, these
pull-backs are just f0 and g0, and the proposition establishes that they have
Ae-codimension 1. However, the statement is evidently independent of choice of
coordinates. &

We would like to be able to put the germ h ¼ f f ; gg of 5.18 into a normal form,

ð f : ðX ; y; uÞ 7! ðX ; fuðyÞ; uÞ;
G : ðx;Y ; vÞ 7! ððgvðxÞ;Y ; vÞ;

but it is not clear that this is always possible. The problem is as follows: now that we
have established that ðx; uÞ 7! ðg0;uðxÞ; uÞ is a versal unfolding of g0, it follows that
there exists a submersion g: Cb

�C ! C, and germs of families of diffeomorphisms
fY ;u;cY ;u such that

gY ;u ¼ cY ;u � g0;gðY ;uÞ � fY ;u;

nevertheless, in order to transform h from its semi-normal form to the desired nor-
mal form, the cY ;u and fY ;u would have to satisfy the stronger requirement that
gY ;u ¼ cY ;u � g0;u � fY ;u: This can be done under certain assumptions of
quasihomogeneity, which we now explain.
A map f : Cn

! C
p is weighted homogeneous if there are positive integers

o1; . . . ;on (the weights) and d1; . . . ; dp (the degrees) such that for 0 6¼ m 2 C,

f ðmo1x1; . . . ; monxnÞ ¼ ðmd1f1ðxÞ; . . . ; mdp fpðxÞÞ:

A germ f is quasihomogeneous if it is A-equivalent to a weighted homogeneous
map-germ. A multi-germ is quasihomogeneous if its branches are quasihomogeneous
with the same degrees.
Let f : ðCn;SÞ ! ðC

p; 0Þ be a quasihomogeneous multi-germ ofAe-codimension
1. When ðn; pÞ are in the range of nice dimensions, we can ¢nd a quasihomogeneous
versal unfolding F ðl; xÞ ¼ ðl; flðxÞÞ of f such that the degree r of the unfolding
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parameter is positive. In fact, if the degree is non-positive, then F is topologically
trivial and therefore f is topologically stable. But this is a contradition since in
the nice dimensions topological stability is equivalent to stability. Let
r; d1; . . . ; dp be the degrees of the components of F and let r;wðiÞ

1 ; . . . ;wðiÞ
nðiÞ be the

weights in the source of the ith branch of F . For m 2 C de¢ne cm: C
p
! C

p by
cmðy1; . . . ; ypÞ ¼ ðmd1y1; . . . ; mdp ypÞ and de¢ne Cm: C

pþ1
! C

pþ1 by
Cmðl; yÞ ¼ ðmrl;cmðyÞÞ. Let f

ðiÞ
m and F

ðiÞ
m be the analogues of these maps in the source

of the ith branch of f and F respectively. If fm has branches fðiÞ
m then

fmrl � fm ¼ cm � fl.

LEMMA 5.20. Let %ff and ~ff be quasihomogeneous A-equivalent multi-germs from C
n

toCp (ðn; pÞ nice dimensions) of Ae-codimension 1. Let

%FF ðl1; . . . ; ld ; xÞ ¼ ðl1; . . . ; ld ; %ffl1;...;ld ðxÞÞ

be a versal unfolding of %ff with analytic stratum f0g �C
d�1

� f0g and let
~FF ðm; xÞ ¼ ðm; ~ffmðxÞÞ be a versal unfolding of ~ff . Then there are families of diffeo-
morphisms al of Cn and bl of Cp, l 2 C

d , such that the following diagram commutes

C�C
d�1

�C
n

�!
%FF

C�C
d�1

�C
p???ya

???yb
C�C

n
�!
~FF

C�C
p;

where aðm; n; xÞ ¼ ðm; aðm;nÞðxÞÞ and bðm; n; yÞ ¼ ðm; bðm;nÞðyÞÞ.
Proof. We may suppose that ~ff and ~FF are quasihomogeneous as maps. Let f and

c be diffeomorphisms such that c � %ff ¼ ~ff � f. Then F 0 ¼ ðid
C

d � cÞ � %FF�
ðid

C
d � fÞ�1 : Cd

�C
n
! C

d
�C

p is a versal unfolding of ~ff with analytic stratum
f0g �C

d
� f0g. Since ~FF is a miniversal unfolding, there is a submersion

g: Cd
! C and there are families of diffeomorphisms %ffl of C

n and %ccl of C
p,

l 2 C
d , such that the following diagram commutes.

C�C
d�1

�C
n

����!
F 0

C�C
d�1

�C
p????yG� %ffl

????yG� %ccl

C�C
d�1

�C
n

����!
~FF�id

Cd�1

C�C
d�1

�C
p

where Gðm; nÞ ¼ ðgðm; nÞ; nÞ.
We have g�1ð0Þ ¼ f0g �C

d�1, so G is a diffeomorphism by the inverse function
theorem. Since G commutes with projection ontoCd�1, G�1 does also, so there exists
g0; g00: Cd

! C such that G�1ðm; nÞ ¼ ðg0ðm; nÞ; nÞ and g0 ¼ mg00 where
m: C�C

d�1
! C is the projection onto the ¢rst coordinate. Also g0 is a submersion
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and so g00 is nonzero in a neighbourhood of the origin. We have

ðg0 � cr
ffiffiffiffiffi
g00

p
Þ � ð ~FF � id

C
d�1 Þ ¼ ~FF � ðg0 � fr

ffiffiffiffiffi
g00

p
Þ;

where fr
ffiffiffiffiffi
g00

p
and cr

ffiffiffiffiffi
g00

p
are as stated just before this proposition. Thus the following

diagram commutes

C�C
d�1

�C
n

�!
F 0

C�C
d�1

�C
p????y%aa

????y %bb
C�C

n
�!
~FF

C�C
p;

where %aa ¼ ðg0 � fr
ffiffiffiffiffi
g00

p
Þ � ðG� %fflÞ and %bb ¼ ðg0 � cr

ffiffiffiffiffi
g00

p
Þ � ðG� %cclÞ.

Now the proposition follows by choosing a ¼ %aa � ðid� fÞ and b ¼ %bb � ðid� cÞ.
&

Now we can continue with the task of reducing a primitiveAe-codimension 1 germ
in the semi-normal form

ðX ; y; uÞ 7! ðX ; fuðyÞ; uÞ; ðx;Y ; vÞ 7! ðgY ;vðxÞ;Y ; vÞ

to the normal form

ðX ; y; uÞ 7! ðX ; fuðyÞ; uÞ; ðx;Y ; vÞ 7! ðgvðxÞ;Y ; vÞ:

We make the additional hypothesis that g0 is quasihomogeneous, and is not
topologically stable. Then in appropriate coordinates it has an Ae-versal unfolding
whose unfolding parameter has positive weight. Thus we can apply 5.20, to deduce
that the unfolding g of g0 is isomorphic to a prism on the unfolding
g: ðx; uÞ 7! ðg0;uðxÞ; uÞ. That is, there are diffeomorphisms F: ðCa

�C
b
�C;T Þ!

ðC
a
�C

b
�C;T Þ, of the form Fðx;Y ; uÞ ¼ ðfY ;uðxÞ;Y ; uÞ, and

C: ðCa
�C

b
�C; 0Þ!ðC

a
�C

b
�C; 0Þ of the form CðX ;Y ; uÞ ¼ ðcY ;uðX Þ;Y ; uÞ,

such that gY ;uðxÞ ¼ cY ;u � g0;u � fY ;u. Composing with F in the source of g, and
C on the target of f f ; gg, we bring f f ; gg to the form

ðX ; y; uÞ 7! ðcfuðyÞ;uðX Þ; fuðyÞ; uÞ; ðx;Y ; vÞ 7! ðg0;vðxÞ;Y ; vÞ;

and now if we take the ¢rst a coordinates ofC � f as new coordinates on the domain
of f , we bring f f ; gg to the desired normal form. We have proved

THEOREM 5.21. If h ¼ f f ; gg is a multi-germ of Ae codimension1, in which f is
transverse to tðgÞ and g is transverse to tð f Þ,and if either the pullback of f by
tðgÞ or the pullback of g by tð f Þ is quasihomogeneous and not topologically stable,
then f f ; gg is equivalent to a binary concatenation Bð f0; g0Þ; that is, to a germ of
the form

ðX ; y; uÞ 7! ðX ; fuðyÞ; uÞ; ðx;Y ; vÞ 7! ðgvðxÞ;Y ; vÞ: &
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We now summarise the results of this section:

THEOREM 5.22. Let h ¼ f f ; gg be a primitive Ae-codimension 1 map-germ in the
nice dimensions (with no submersive branches).Then f and g are both stable (5.7).
Also

(1) If f and g are not transverse, then (5.16) h is equivalent to

ðx1; . . . ; xnÞ 7!
X

i

x2i ; ðy1; . . . ; ymÞ 7!
X

y2j :

Now assume f \j g.
(2) If g is not transverse to tð f Þ, then (5.16) f is transverse to tðgÞ, and h is equivalent to

ðx1; . . . ; xn; uÞ 7! ðfuðxÞ; uÞ; ðl1; . . . ; lp�1; v1; . . . ; vkÞ 7! l;
X

i

v2i

 !

(so f f ; gg is equivalent to Ckð f0Þ).
(3) If g\j tð f Þ and f \j tðgÞ,then (5.21) f f ; gg is equivalent to a germ of the form

ðX ; y; uÞ 7! ðX ; fuðyÞ; uÞ; ðx;Y ; vÞ 7! ðgY ;vðxÞ;Y ; vÞ;

where the target is decomposed as Ca
�C

b
�C, and f0 and g0 are primitive. If also

the pullback of g by tð f Þ or the pullback of f by tðgÞ is quasihomogeneous then
f f ; gg is equivalent to

ðX ; y; uÞ 7! ðX ; fuðyÞ; uÞ; ðx;Y ; vÞ 7! ðgvðxÞ;Y ; vÞ;

i.e. to Bð f0; g0Þ.
&

Remark 5.23. If we replace C by R and analytic maps by smooth ones, then the
results obtained so far still hold modulo the following alterations: in the real case
we de¢ne two augmentations: Aþ

F ðl; xÞ ¼ ðl; fl2 ðxÞÞ and A�
F ðl; xÞ ¼ ðl; f

�l2 ðxÞÞ. In
the proof of Proposition 5.20, if r is even then we cannot necessarily de¢ne r ffip pro-
perly. Consequently we may have to de¢ne

aðm; n; xÞ ¼ ð�m; aðm;nÞðxÞÞ and bðm; n; yÞ ¼ ð�m; bðm;nÞðyÞÞ

in order for the diagram to commute.

6. Topology

Let f : ðCn;SÞ ! ðC
p; 0Þ (nX p � 1, ðn; pÞ nice dimensions and S a ¢nite set) be a

¢nitely A-determined multi-germ. A stabilisation of f is a 1-parameter unfolding
F : ðC�C

n; f0g � SÞ ! ðC�C
p; ð0; 0ÞÞwith the property that there is a represen-

tative F : U ! V (our notation will not distinguish between germ and
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representative) and a positive real number d such that for l 2 Bdð0Þ n f0g, the map
fl: Ul ! Vl is in¢nitesimally stable (hereUl ¼ U \ ðflg �C

n
Þ and

Vl ¼ V \ ðflg �C
p
Þ), F jP

ðF Þ is proper, ¢nite to one and generically one to one,

and that F�1ð0; 0Þ \
P
ðF Þ ¼ f0g � S. It follows that the discriminant DðF Þ of F is a

closed analytic subset ofV . The mapping fl is a stable perturbation of f .
Consider the canonical strati¢cation of DðF Þ and choose e > 0 such that for all e0

with 0 < e0W e, Dð f Þ ffi DðF Þ \ ðf0g �C
p
Þ is strati¢ed transverse to the sphere

Se0 � C
p of centre 0 and radius e0. Such e is called a Milnor radius for Dð f Þ. By

Thom’s First Isotopy Lemma, Dð f Þ \ Be is a cone on its boundary Dð f Þ \ Se. It
follows that there is a d > 0 such that for l 2 Bd � C, DðF Þ is strati¢ed transverse
to flg � Se (we call such a d a perturbation limit for F with respect to Be). For
l 2 Bd, the discriminant of fl is de¢ned to be Dð flÞ \ Be, or, in other words,
DðF Þ \ ðflg � BeÞ.
For e1; . . . ; ep > 0 de¢ne the set Pe1;...;epð0Þ to be the polycylinder

fðy1; . . . ; ypÞ 2 C
p = jyij < ei 8ig. We shall also use the term ‘Milnor radius for

Dð f Þ’ for an e > 0 such that for all e1; . . . ; ep with 0 < ei < e (8i), Dð f Þ is strati¢ed
transverse to the boundary of the polycylinder Pe1;...;epð0Þ. The results described above
apply with such a polycylinder replacing Be and the discriminant de¢ned this way is
the same.
Let p: DðF Þ ! C be the projection to the parameter spaceC. It follows by [6] that

p induces a locally trivial ¢bration

ððBdnf0gÞ � BeÞ \ DðF Þ ! Bdnf0g:

LEMMA 6.1. Let A;B be contractible open subsets of a topological space X, and
A0;B0 be contractible open subsets of X 0. Suppose that A \ B and A0 \ B0 are homotopy
equivalent, and moreover thatA \ B has collared neighbourhoods in both A and B, and
A0 \ B0 has collared neighbourhoods in both A0 and B0. Then A [ B and A0 [ B0are
homotopy equivalent. &

Suppose f hasAe-codimension 1. Let F ðl; xÞ ¼ ðl; flðxÞÞ be a proper representative
of a miniversal unfolding of f . Form 2 C de¢ne gmðl; xÞ ¼ ðl; fl2þmðxÞÞ. Then
Gðm; l; xÞ ¼ ðm; l; fl2þmðxÞÞ is a proper representative of a miniversal unfolding of
g ¼ AF f .

THEOREM 6.2. With the above notation, for m 6¼ 0 6¼ l the discriminant of gm is
homotopy equivalent to the suspension of the discriminant of fl.

Proof. Let e > 0 be a Milnor radius for both f and F , also let d > 0 be a per-
turbation limit for F with respect to Pe;...;eð0Þ � C

p.
Let e0 > 0 be a Milnor radius for g and let d0 > 0 be a perturbation limit for G with

respect to Pe00;e;...;eð0Þ � C
pþ1, where e00 ¼ minfe;

ffiffiffiffiffiffiffiffi
d=2

p
g.
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Fix m0 2 C and consider

p: Dðgm0Þ \ Pe00;e;...;eð0Þ ! C

be the projection onto the ¢rst coordinate. For a convenient choice of m0 we have

(i) The ¢bre of p over l 2 Be00 ð0Þ is naturally homeomorphic to Dð fl2þm0
Þ \ Pe;...;eð0Þ

which is the discriminant of fl2þm0
.

(ii) Suppose that the square roots of�m0 are inBe00 ð0Þ, say a and b.Then the restriction
of p to p�1ðBe00 ð0Þnfa; bgÞ is a locally trivial ¢bration.

Let A and B be contractible open subsets of Be00 ð0Þ with contractible (nonempty)
intersection such that a 2 AnB and b 2 BnA.
By standard arguments we can conclude that p�1ðA [ BÞ is homotopy equivalent

to the discriminant of gm0 and p
�1ðA \ BÞ is homotopy equivalent to the discriminant

of fl; we can also assume that p�1ðA \ BÞ is collared in both p�1ðAÞ and p�1ðBÞ. Since
the suspension of any space D can be divided into two contractible subspaces whose
intersection has collared neighbourhoods and is homotopy equivalent to D, by
Lemma 6.1 we have only to prove that p�1ðAÞ and p�1ðBÞ are contractible. At a,
gðlÞ ¼ l2 þ m0 is a diffeomorphism and induces a homeomorphism between
p�1ðg�1ðBd00 ð0ÞÞÞ and DðF Þ \ Pd00;e;...;eð0Þ for some d00 > 0. Therefore p�1ðAÞ is con-
tractible since it is homeomorphic to p�1ðg�1ðBd00 ð0ÞÞÞ and DðF Þ \ Pd00;e;...;eð0Þ is a
cone. Similarly, p�1ðBÞ is contractible. &
We now determine the homotopy-type of the discriminant of a stable perturbation

of a concatenation.

PROPOSITION 6.3. Let f0 be a multi-germ of ¢nite Ae-codimension, which has a
1-parameter stable unfolding F. The discriminant of a stable perturbation of the
multi-germ Ckð f0Þ (i.e. fF ; gg, where gðy; vÞ ¼ ðy;

P
v2i Þ) is homotopy equivalent to

the suspension of the discriminant of a stable perturbation of f0.
Proof. A stable perturbation hl of h has branches F and glðy; vÞ ¼ ðy;

P
v2i þ lÞ.

The discriminant of hl is the union of two contractible spaces: the discriminant
of F and the discriminant of gl. The intersection of these sets is the discriminant
of ~ffm, which is a stable perturbation of ~ff0. The proposition now follows from
Lemma 6.1 in the same way as Theorem 6.2. &

In order to deal with the discriminant of a binary concatenation Bð f0; g0Þ, we need
some topological results.
Let X and Y be topological spaces. The join of X and Y , X � Y , is the space

ðX � Y � IÞ= & where ðx; y; lÞ & ðx0; y0; l0Þ if and only if either l ¼ l0 ¼ 0 and
y ¼ y0 or l ¼ l0 ¼ 1 and x ¼ x0.

LEMMA 6.4. If X1 is homotopy equivalent to X2 and Y1 is homotopy equivalent to Y2
then X1 � Y1 is homotopy equivalent to X2 � Y2. &
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COROLLARY 6.5. If X1 is homotopy equivalent to X2 then SðX1Þ is homotopy
equivalent to SðX2Þ. &

PROPOSITION 6.6. Suppose that h ¼ Bð f0; g0Þ is a binary concatenation,

ðX ; y; uÞ 7!
f

ðX ; fuðyÞ; uÞ; ðx;Y ; vÞ 7!
g

ðgvðxÞ;Y ; vÞ

of germs f0 and g0 of ¢nite codimension, as described in Theorem 3.8. Let H be the
stable unfolding of h given by

ðX ; y; u; tÞ 7!
F

ðX ; fuðyÞ; u þ t; tÞ; ðx;Y ; v; tÞ 7!
g�idC

ðgvðxÞ;Y ; v; tÞ:

Then for t 6¼ 0 the discriminant of the stable perturbation ht of h is homotopy equiv-
alent to the suspension of Dð f�tÞ � DðgtÞ, and thus mDðhÞ ¼ mDð f0Þ � mDðg0Þ.

Proof. The discriminant of ht is the union of the (contractible) discriminants of
ðX ; y; uÞ 7! ðX ; fuðyÞ; u þ tÞ and ðX ; y; vÞ 7! ðgvðxÞ;Y ; vÞ. It is preferable to
re-parametrise the ¢rst as the image of ðX ; y; uÞ 7! ðX ; fu�tðyÞ; uÞ. Call these two
spaces D1 and D2. By 6.1, D1 [ D2 is homotopy equivalent to the suspension of
D1 \ D2. Let e > 0 be a Milnor radius for f0 and g0, and let Pf ¼ Pe;...;eð0Þ � C

b

and Pg ¼ Pe;...;eð0Þ � C
a. Thus, we have to show that inside a suitable Milnor

polycyclinder Pf � Pg � Bð0; e0Þ � C
a
�C

b
�C, and for 0 < jtj < d << e,

D1 \ D2 is homotopy equivalent to the join of Dð f�tÞ \ Pf and DðgtÞ \ Pg. This
follows by a standard argument from the following three facts:

(1) The projection ph: C
a
�C

b
�C ! C induces a locally trivial ¢bration

D1 \ D2 \ p�1h ðBdnf0; tgÞ ! Bdnf0; tg;

whose ¢bre is homotopy equivalent to DðgtÞ � Dð f�tÞ.
(2) The ¢bre of ph over t is DðgtÞ � Dð f0Þ; because Dð f0Þ is contractible, this is

homotopy equivalent to DðgtÞ.
(3) The ¢bre of ph over 0 is Dðg0Þ � Dð f�tÞ; because Dðg0Þ is contractible, this is

homotopy equivalent to Dð f�tÞ.

Let ½0; t% denote the line-segment joining 0 and t in C. Clearly there is a
deformation-retraction Bd ! ½0; t%; since ph is locally trivial on the complement
of ½0; t%, this lifts to a deformation-retraction D ¼ p�1h ðBdÞ ! p�1ð½0; t%. By (1), (2),
(3) above, p�1ð½0; t% is homotopy equivalent to DðgtÞ � Dð f�tÞ. &

Now we consider the real case; we refer the reader to Figure 5, for an example.
Let f : ðRn;SÞ ! ðRp; 0Þ (nX p � 1, ðn; pÞ nice dimensions) be a multi-germ of
Ae-codimension 1and let F ðl; xÞ ¼ ðl; flðxÞÞ be a miniversal unfolding. Up to home-
omorphism, there are two (possibly equivalent) choices for the discriminant of
fl: one with positive l and one with negative l. We shall call these Dþð f Þ and
D�ð f Þ, respectively. Recall from 5.23 that in the real case, f has two augmentations
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g ¼ Aþ
F and ~gg ¼ A�

F with stable perturbations gmðl; xÞ ¼ ðl; fl2þmðxÞÞ and
~ggmðl; xÞ ¼ ðl; f

�l2þmðxÞÞ respectively.

PROPOSITION 6.7. With the above notation

ðiÞ DþðgÞ ffi Dþð f Þ; ðiiÞ D�ðgÞ ffi SðD�ð f ÞÞ;
ðiiiÞ Dþð~ggÞ ffi SðDþð f ÞÞ; ðivÞ D�ð~ggÞ ffi D�ð f Þ:

In particular, if f has a good real perturbation then so does one of its two
augmentations.

Proof. By symmetry it is suf¢cient to show just the ¢rst two homotopy
equivalences. Case (ii) is analogous to Theorem 6.2 but if we follow the same proof
in (i), then since �m0 has no real square roots, DþðgmÞ is a ¢bre bundle over
Be00 ð0Þ with ¢bre Dþð flÞ. But the total space of a bundle over a contractible space
is homotopy equivalent to the ¢bre. &

We now describe the topology of a discriminant of a stable perturbation overR of
a real germ in the normal forms of Theorem 5.22 (see Remark 5.23).
Proposition 6.3 holds in a slightly different version. Here we have to consider the

two discriminants of a stable perturbation of h as well as the two discriminants
of a stable perturbation of f0. We leave the straightforward details to the reader,
although we recall that in Theorem 3.2 we have already shown that if f0 has a good
real perturbation then so does Ckð f0Þ. Finally, although we have made no attempt

Figure 5. Example of real version of Theorem 6.2: the cusp x 7! ðx2;x3Þ, and its versal unfolding
ðx; tÞ 7! ðx2;x3 þ tx; tÞ; its augmentation is the germ S2: ðx; tÞ 7! ðx2;x3 þ t2x; tÞ.
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to determine the number of inequivalent real forms of a binary concatenations of two
real Ae-codimension 1 multi-germs, the proof of Proposition 6.6 shows

PROPOSITION 6.8. Suppose h ¼ Bð f0; g0Þ is a binary concatenation of two real
multi-germs. Then the discriminant of a stable perturbation of h (over R) is homotopy
equivalent to one of the following four spaces:

SðDþð f0Þ � Dþðg0ÞÞ; SðD�ð f0Þ � Dþðg0ÞÞ;
SðDþð f0Þ � D�ðg0ÞÞ; SðD�ð f0Þ � D�ðg0ÞÞ:

In particular, if f0 and g0 have good real perturbations, then so does at least one real
form of Bð f0; g0Þ. &

EXAMPLE 6.9. Consider the bi-germ consisting of two prisms on Whitney cusps,
each transverse to the analytic stratum of the other:

h: f ðl; x; mÞ ¼ ðl; x3 þ mx; mÞ;
gðz; d; mÞ ¼ ðz3 � mz; d; mÞ:

�

The discriminant of each is the product with a line of a plane ¢rst-order cusp. The
real discriminant of a stable perturbation ht of h (in which t is added to the third
component of g) is thus the union of two prisms, drawn with dotted lines in
Figure 4; its homology is carried by the curvilinear tetrahedron drawn with a solid
line.
The intersection ofDðhtÞwith the horizontal plane Lm, for 0 < m < t, is the union of

two pairs of parallel lines, R� Dð ~ffmÞ and Dð~ggmÞ �R (since each of Dð ~ffmÞ and Dð~ggmÞ
consists just of a pair of points). Lm \ DðhmÞ retracts to a rectangle,the intersection
of Lm with the (boundary of the) curvilinear tetrahedron. This rectangle is the join
of Dð ~ffmÞ and Dð~ggmÞ.

7. Proofs of the Main Theorems

THEOREM 7.1. Let h: ðCn;T Þ ! ðC
p; 0Þ (nX p � 1, ðn; pÞ nice dimensions) be a

multi-germ of Ae-codimension 1 and corank 1. Then h is quasihomogeneous.
Proof. We may suppose h primitive and ignore any submersive branches. The

proof is by induction on the number, jT j, of components of h.

If jT j ¼ 1, h is quasihomogeneous by results of Victor Goryunov in [7] when nX p
and by our Proposition 4.3 when p ¼ n þ 1.
Suppose h ¼ f f ; gg has more than one branch. If g is not transverse to tð f Þ, then

by Theorem 5.22, either f and g are both prisms onMorse singularities, or h is equiv-
alent to Ckð f0Þ for some Ae-codimension 1 germ f0. In the ¢rst case h is plainly
quasihomogeneous. In the second, we apply the inductive hypothsis to conclude that
f0 is quasihomogeneous. Since we are in the nice dimensions, f0 has a
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quasihomogeneous versal unfolding ~ff , and by Proposition 5.16, h is equivalent to
Ckðf0Þ. Clearly this is quasihomogeneous.
If f is transverse to tðgÞ and vice versa, then by Corollary 5.19 the pullback f0 of f

by tðgÞ, and the pull-back g0 of g by tð f Þ, both have codimension 1. By the induction
hypothesis, f0 and g0 are both quasihomogeneous. By Theorem 5.21, f f ; gg is equiv-
alent to Bð f0; g0Þ; again, as we are in the nice dimensions, f0 and g0 have weighted
homogeneous Ae-versal unfoldings with unfolding parameter with positive weight;
a representative of Bð f0; g0Þ constructed from these ingredients is evidently weighted
homogeneous. &

In the next result, we do not distinguish between mI and mD, for the reasons
described at the start of Section 3.

THEOREM 7.2. If h: ðCn;T Þ ! ðC
p; 0Þ (nX p � 1, n; p nice dimensions) has

corank 1 and Ae-codimension 1 then mDðhÞ ¼ 1.
Proof. The proof follows exactly the same scheme as the preceding proof. The

starting point for the induction is now the fact that mono-germs of Ae-codimension
1 have mI or mD equal to 1, by our Proposition 4.4 for n ¼ p � 1, and by the fact
(proved in [6]) that mD ¼ Ae-codimension in the nice dimensions, for quasi-
homogeneous germs ðCn;SÞ ! ðC

p; 0Þ with nX p.
We may suppose h primitive; for by Theorem 6.2 DððAhÞtÞ ’ SðDðhtÞÞ, where the

suf¢x t indicates stable perturbation and S is suspension.
Since the result is already proven in case all branches have nX p, we assume at

least one branch has n ¼ p � 1. Hence by induction and Theorem 5.22 h is equivalent
either to Ckð f0Þ or to Bð f0; g0Þ, where f0 and g0 are quasihomogeneous
Ae-codimension 1 germs. The conclusion now follows by Theorem 3.1(2) for
Ckðf0Þ and by Theorem 3.8(3) for Bðf0; g0Þ. &

THEOREM 7.3. Let h: ðCn;T Þ ! ðC
p; 0Þ (nX p � 1, ðn; pÞ nice dimensions) be a

multi-germ of Ae-codimension 1 and corank 1. Then there exists a real form with
a good real perturbation.

Proof. Again, the proof is by induction on jT j. The result is proven for
mono-germs in [23] (for nX p) and in 4.4 above for the case p ¼ n þ 1. The inductive
steps follow, using the classi¢cation Theorem 5.22, by 3.2, 3.13 and 6.8. &
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