PROJECTIONS INDUCING AUTOMORPHISMS OF STABLE UHF-ALGEBRAS

KAZUNORI KODAKA

coy Department of Mathematical Sciences, College of Science, Ryukyu University, Nishihara-cho, Okinawa, 903-0213 Japan

(Received 24 October, 1997)

Abstract. Let A be a UHF-algebra and **K** the C*-algebra of all compact operators on a countably infinite-dimensional Hilbert space. In this note we shall find all projections p in A with $pAp \cong A$ and, using these projections, we shall determine the group of automorphisms of $K_0(A \otimes \mathbf{K})$ induced by those of $A \otimes \mathbf{K}$ in some cases.

1991 Mathematics Subject Classification 46 L40.

0. Introduction. Let A be a UHF-algebra and K the C*-algebra of all compact operators on a countably infinite-dimensional Hilbert space. Let p be a projection in $A \otimes \mathbf{K}$ with $p(A \otimes \mathbf{K})p \cong A$. In [9] we showed that we can construct any automorphism of $A \otimes \mathbf{K}$ using the projection p above, an automorphism of A and a unitary element in $M(A \otimes \mathbf{K})$, where $M(A \otimes \mathbf{K})$ is the multiplier algebra of $A \otimes \mathbf{K}$. But since A is a UHF-algebra, it suffices to find all projections p in A with $pAp \cong A$ in order to determine the group of automorphisms of $K_0(A \otimes \mathbf{K})$ induced by those of $A \otimes \mathbf{K}$. By the above result we can compute the Picard group of A in some cases. Furthermore let β be an automorphism of $A \otimes \mathbf{K} \times_{\beta} \mathbf{Z}$ is a purely infinite simple C*-algebra and its isomorphism class can be determined by Elliott, Evans and Kishimoto [5] if the automorphism β_* of $K_0(A \otimes \mathbf{K})$ is known to us.

Since $A \otimes \mathbf{K}$ is an AF-algebra, we can determine the group of automorphisms of $K_0(A \otimes \mathbf{K})$ induced by those of $A \otimes \mathbf{K}$ by Blackadar [2, Theorem 7.3.2]. In fact if $A = M_{2^{\infty}}$, we can easily do it, where $M_{2^{\infty}}$ is the UHF-algebra of type 2^{∞} . However, it seems difficult in general to determine order-preserving automorphisms of the dimension group $K_0(A \otimes \mathbf{K})$ and so we apply the method above to determine projections p in A with $pAp \cong A$.

1. Preliminaries. For each $n \in \mathbb{N}$, let M_n be the C*-algebra of $n \times n$ -matrices over C. For positive integers m(1), $m(2) \ge 2$ let i be a monomorphism of $M_{m(1)}$ into $M_{m(1)m(2)}$ such that $i(I_{m(1)}) = I_{m(1)m(2)}$, where $I_{m(1)}$ and $I_{m(1)m(2)}$ are the unit elements in $M_{m(1)}$ and $M_{m(1)m(2)}$ respectively. Given a sequence $\{m(n)\}_{n=1}^{\infty}$ of positive integers greater than 1, let $m(n)! = \prod_{k=1}^{n} m(k)$. We consider the inductive system

$$M_{m(1)!} \xrightarrow{i} M_{m(2)!} \xrightarrow{i} \cdots \xrightarrow{i} M_{m(n)!} \xrightarrow{i} \cdots$$

We call the C*-algebra generated by the inductive system above a UHF-algebra of type $\{m(n)!\}$.

Let A be a UHF-algebra and τ the unique tracial state on A. Then by Blackadar [2], $K_0(A)$ is a simple dimension group which is a dense subgroup of Q containing Z.

Let τ_* be the homomorphism of $K_0(A)$ to **R** induced by τ . By Blackadar [1, Theorem 3.9] τ_* is injective and the positive cone of $K_0(A)$ is given by the formula

$$K_0(A)_+ = \{x \in K_0(A) | \tau_*(x) \ge 0\}.$$

We identify $K_0(A)$ with $\tau_*(K_0(A))$. Since $K_0(A)$ is a dense subgroup of **Q**, an automorphism of $K_0(A)$ is multiplication by a positive rational number.

LEMMA 1.1. For any automorphism α of A, $\alpha_* = \text{id on } K_0(A)$.

Proof. This can easily be proved using the facts that, by the uniqueness of trace, α preserves the trace τ and the homomorphism $\tau_* : K_0(A) \to \mathbf{R}$ is injective. Q.E.D.

Let **K** be the C*-algebra of all compact operators on a countably infinitedimensional Hilbert space and $\{e_{ij}\}_{i,j\in\mathbb{Z}}$ matrix units of **K**. Let Tr be the canonical trace on **K**. Then $\tau \otimes \text{Tr}$ is a densely defined lower semi-continuous trace on $A \otimes \mathbf{K}$ and, as described in Elliott, Evans and Kishimoto [5], it is unique up to a constant multiple. Let β be an automorphism of $A \otimes \mathbf{K}$. We define $s(\beta) \in \mathbf{Q}$ by $(\tau \otimes \text{Tr}) \circ \beta = s(\beta)(\tau \otimes \text{Tr})$. Then an automorphism β_* of $K_0(A \otimes \mathbf{K})$ is multiplication by the positive rational number $s(\beta)$.

Let $M_n(A)$ be the C*-algebra of $n \times n$ -matrices over A, for any $n \in \mathbf{N}$; we identify $M_n(A)$ with $A \otimes M_n$. Let p be a projection in $\bigcup_{n=1}^{\infty} M_n(A) \subset A \otimes \mathbf{K}$ with $p(A \otimes \mathbf{K})p \cong A$. We denote by χ_p an isomorphism of A onto $p(A \otimes \mathbf{K})p$. By Brown [3, Lemma 2.5], there is a partial isometry $z \in M(A \otimes \mathbf{K} \otimes \mathbf{K})$ such that $z^*z = p \otimes 1$ and $zz^* = 1 \otimes 1 \otimes 1$. Let ψ be an isomorphism of $\mathbf{K} \otimes \mathbf{K}$ onto \mathbf{K} with $\psi_* = \text{id of } K_0(\mathbf{K} \otimes \mathbf{K})$ onto $K_0(\mathbf{K})$. Let β_p be the automorphism of $A \otimes \mathbf{K}$ defined by

$$\beta_p = (\mathrm{id} \otimes \psi) \circ \mathrm{Ad}(z) \circ (\chi_p \otimes \mathrm{id}).$$

LEMMA 1.2. With the notations above the automorphism β_{p*} of $K_0(A \otimes \mathbf{K})$ is multiplication by $(\tau \otimes \operatorname{Tr})(p)$.

Proof. It suffices to show that $s(\beta_p) = (\tau \otimes \operatorname{Tr})(p)$. Let $(\tau \otimes \operatorname{Tr})_*$ be the homomorphism of $K_0(A \otimes \mathbf{K})$ to **R** induced by $\tau \otimes \operatorname{Tr}$. We note that $\beta_p(1 \otimes e_{00})$ is in the ideal of definition of $\tau \otimes \operatorname{Tr}$ by [7, Lemma 1]. Hence

$$(\tau \otimes \operatorname{Tr}) \circ \beta_p (1 \otimes e_{00}) = (\tau \otimes \operatorname{Tr})_* \circ \beta_{p*} ([1 \otimes e_{00}])$$

= $(\tau \otimes \operatorname{Tr})_* \circ (\operatorname{id} \otimes \psi)_* ([z(p \otimes e_{00})z^*])$
= $(\tau \otimes \operatorname{Tr})_* \circ (\operatorname{id} \otimes \psi)_* ([p \otimes e_{00}])$
= $(\tau \otimes \operatorname{Tr})(p).$

Since $(\tau \otimes \operatorname{Tr}) \circ \beta_p = s(\beta_p)(\tau \otimes \operatorname{Tr})$ and $(\tau \otimes \operatorname{Tr})(1 \otimes e_{00}) = 1$ it follows that $s(\beta_p) = (\tau \otimes \operatorname{Tr})(p)$. Q.E.D.

COROLLARY 1.3. Let β_p be as above. If $(\tau \otimes \operatorname{Tr})(p) > 1$, there is a projection $q \in A$ with $qAq \cong A$ such that $\beta_{p*}^{-1} = \beta_{q \otimes e_{00}*}$ on $K_0(A \otimes \mathbf{K})$.

Proof. By [9, Theorem 4.5 and Remark 2.1], there are an $n \in \mathbb{N}$, a projection $q_1 \in M_n(A)$, an automorphism α of A and a unitary element $w \in M(A \otimes \mathbf{K})$ such that

$$q_1(A \otimes \mathbf{K})q_1 \cong A, \quad \beta_n^{-1} = \mathrm{Ad}(w) \circ \beta_{q_1} \circ (\alpha \otimes \mathrm{id}),$$

where $M(A \otimes \mathbf{K})$ is the multiplier algebra of $A \otimes \mathbf{K}$. By Lemma 1.1 and [9, Lemma 1.1] $\beta_{p*}^{-1} = \beta_{q_1*}$. Hence, by Lemma 1.2, $(\tau \otimes \operatorname{Tr})(q_1)(\tau \otimes \operatorname{Tr})(p) = 1$. We note that $\tau(\operatorname{Proj} A) = \tau_*(K_0(A)) \cap [0, 1]$, where $\operatorname{Proj} A$ is the set of all projections in A. Since A has cancellation, there is a projection $q \in A$ such that $q \otimes e_{00}$ is unitarily equivalent to q_1 in $(A \otimes \mathbf{K})^+$, where $(A \otimes \mathbf{K})^+$ is the unitized C*-algebra of $A \otimes \mathbf{K}$. Thus $qAq \cong A$ and $\beta_{p*}^{-1} = \beta_{q \otimes e_{00}*}$ on $K_0(A \otimes \mathbf{K})$. Q.E.D.

Let Aut($K_0(A \otimes \mathbf{K})$) be the group of automorphisms of $K_0(A \otimes \mathbf{K})$ and let

$$S = \{\beta_{p \otimes e_{00}*} \in \operatorname{Aut}(K_0(A \otimes \mathbf{K})) | p \text{ is a projection in } A \text{ with } pAp \cong A\}.$$

COROLLARY 1.4. With the notations above, S is a semigroup of automorphisms of $K_0(A \otimes \mathbf{K})$ with the unit element.

Proof. Since *S* is a subset of the group $\operatorname{Aut}(K_0(A \otimes \mathbf{K}))$, it suffices to show that *S* is invariant under the product of $\operatorname{Aut}(K_0(A \otimes \mathbf{K}))$ and that *S* has the unit element in $\operatorname{Aut}(K_0(A \otimes \mathbf{K}))$. Since $\tau(1) = 1$, $\beta_{1 \otimes e_{00}*}$ is the unit element in $\operatorname{Aut}(K_0(A \otimes \mathbf{K}))$. Thus *S* has the unit element in $\operatorname{Aut}(K_0(A \otimes \mathbf{K}))$. For j = 1, 2, let p_j be a projection in *A* with $p_jAp_j \cong A$. Then, in the same way as in the proof of Corollary 1.3, we see that there is a projection p_3 in *A* such that

$$\tau(p_3) = \tau(p_1)\tau(p_2), \quad p_3Ap_3 \cong A.$$

Since $\tau(p_3) = \tau(p_1)\tau(p_2)$, by Lemma 1.2 we deduce that $\beta_{p_3*} = \beta_{p_1*} \circ \beta_{p_2*}$. Hence $\beta_{p_1*} \circ \beta_{p_2*} \in S$. Therefore we obtain the conclusion. Q.E.D.

REMARK 1.5. Let A be a UHF-algebra of type $\{m(n)!\}$. By Corollary 1.3 and [9], the group of automorphisms of $K_0(A \otimes \mathbf{K})$ induced by those of $A \otimes \mathbf{K}$ is generated by S and, since an automorphism of $K_0(A \otimes \mathbf{K})$ is multiplication by a positive rational number, by Lemma 1.2 and Corollary 1.3 we have

 $S = \{\tau(p) \in \mathbf{Q} | p \text{ is a projection in } A \text{ with } pAp \cong A\}.$

Furthermore, by Blackadar [2, Proposition 4.6.6],

$$S = \{\tau(p) \in \mathbb{Q} | p \text{ is a projection in } \cup_{n=1}^{\infty} M_{m(n)!} \text{ with } pAp \cong A\}.$$

2. Projections *p* in *A* with *pAp* isomorphic to *A*. Let *A* be a UHF-algebra of type $\{m(n)!\}$. Following Glimm [6] we define a function $f(\{m(n)!\})$ whose domain is the prime numbers. For each prime number *r*, let

$$f({m(n)!}(r) = \sup\{k \in \mathbb{N} | \text{there is an } n \in \mathbb{N} \text{ such that } r^k \text{ divides } m(n)!\}.$$

Also, for each subset N of N we denote by #(N) the number of elements in N.

LEMMA 2.1. Let $f(\{m(n)\})$ be as above and r a prime number. Then the following conditions hold:

KAZUNORI KODAKA

- (1) $f(\{m(n)\})(r) = \infty$ if and only if $\#\{n \in N | r \text{ divides } m(n)\} = \infty$.
- (2) $f(\{m(n)\})(r) = 0$ if and only if r does not divide m(n) for any $n \in N$,
- (3) $f(\{m(n)\})(r) < \infty$ if and only if there is an $n_0 \in N$ such that r does not divide m(n) for any $n > n_0$.

Proof. (1) \Rightarrow : We suppose that $\#\{n \in \mathbb{N} | r \text{ divides } m(n)\} < \infty$. Then there is an $n_0 \in \mathbb{N}$ such that r does not divide m(n) for any $n > n_0$. Thus

 $f({m(n)!})(r) = \sup\{k \in \mathbb{N} | \text{there is an } n \in \mathbb{N} \text{ such that } r^k \text{ divides } m(n)!\}$ = sup{ $k \in \mathbf{N}$ | there is an integer *n* with $1 \le n \le n_0 - 1$ such that r^k divides m(n)! $<\infty$.

This is a contradiction. Therefore $\#\{n \in \mathbb{N} | r \text{ divides } m(n)\} = \infty$.

 \Leftarrow : For any $k \in \mathbb{N}$ there is a set $\{n_1, n_2, \dots, n_k\} \subset \{n \in \mathbb{N} | r \text{ divides } m(n)\}$ with $n_1 < n_2 < \ldots < n_k$. Since r divides $m(n_i)$, for $i = 1, 2, \ldots, k, r^k$ divides $m(n_k)!$. Thus $f({m(n)!}(r) \ge k$. Since k is an arbitrary positive integer, $f({m(n)!})(r) = \infty$.

(2) \Rightarrow : If there is an $n_0 \in \mathbb{N}$ such that r divides $m(n_0)$, then r divides $m(n_0)$!. Hence $f(\{m(n)\})(r) > 1$. This is a contradiction. Thus r does not divide m(n), for any $n \in \mathbb{N}$.

⇐: If $f(\{m(n)\})(r) \ge 1$, then there is an $n_0 \in \mathbb{N}$ such that r divides $m(n_0)$. Hence there is an $n_1 \in \mathbb{N}$ such that r divides $m(n_1)$. This is a contradiction. Thus $f({m(n)!})(r) = 0.$

(3) is equivalent to (1). Q.E.D.

Let A be a UHF-algebra of type $\{m(n)\}$. We suppose that $f(\{m(n)\})(r) = 0$ or ∞ , for any prime number r. If $f(\{m(n)\})(r) = 0$, for any prime number r, then $A \cong \mathbb{C}$ and so we also suppose that

 $\#\{r|r \text{ is a prime number with } f(\{m(n)\})(r) = \infty\} \ge 1.$

LEMMA 2.2. With the notations and assumptions above, let n_0 be a positive integer and p a projection in $M_{m(n_0)!}$ with $\tau(p) = \frac{k}{m(n_0)!}$. Then the following conditions hold.

(1) If k = 1, then $pAp \cong A$, We suppose that $k \neq 1$. Let $k = c_1^{d_1} \dots c_h^{d_h}$ be the decomposition of k by prime factors with $d_i \neq 0$ for j = 1, 2, ..., h.

- (2) If $f(\{m(n)\})(c_i) = \infty$, for j = 1, 2, ..., h, then $pAp \cong A$.
- (3) If there is an integer j_0 with $1 \le j_0 \le h$ such that $f(\{m(n)\})(c_{j_0}) = 0$, then pApis not isomorphic to A.

Proof. (1) For the UHF-algebra *pAp* we have the inductive system

 $M_{m(n_0+1)} \longrightarrow M_{m(n_0+1)m(n_0+2)} \longrightarrow \ldots \longrightarrow M_{m(n_0+1)\dots m(n_0+n)} \longrightarrow \cdots$

For any prime number r with $f(\{m(n)\})(r) = \infty$, $\#\{n \in \mathbb{N} | r \text{ divides } m(n)\} = \infty$, by Lemma 2.1. Hence $f(\{m(n_0 + 1) \dots m(n_0 + n)\})(r) = \infty$. Also, for any prime number r with $f({m(n)})(r) = 0$, $\#\{n \in \mathbb{N} | r \text{ divides } m(n)\} = 0$, by Lemma 2.1. Hence $f({m(n_0 + 1) \dots m(n_0 + n)})(r) = 0$. Thus

 $f(\{m(n)!\}) = f(\{m(n_0 + 1) \dots m(n_0 + n)\}).$

Therefore, by Glimm [6, Theorem 1.12], we have $pAp \cong A$.

(2) For the UHF-algebra pAp we have the inductive system

 $M_k \longrightarrow M_{km(n_0+1)} \longrightarrow \ldots \longrightarrow M_{km(n_0+1)\dots m(n_0+n-1)} \longrightarrow \cdots$

For any prime number *r* with $f(\{m(n)\})(r) = \infty$, we have

$$f(\{km(n_0+1)\dots m(n_0+n-1)\})(r) = \infty,$$

by Lemma 2.1. For any prime number r with $f(\{m(n)\})(r) = 0$, we have $f(\{km(n_0 + 1) \dots m(n_0 + n - 1)\})(r) = 0$ since r does not divide k and m(n) for any $n \in \mathbb{N}$. Therefore by Glimm [6, Theorem 1.12] $pAp \cong A$.

(3) Since c_{i_0} divides k and does not divide m(n), for any $n \in \mathbb{N}$,

 $f(\{km(n_0+1)\dots m(n_0+n-1)\})(c_{i_0}) = d_{i_0} \ge 1.$

On the other hand $f({m(n)!})(c_{j_0}) = 0$. Hence by Glimm [6, Theorem 1.12] pAp is not isomorphic to A. Q.E.D.

THEOREM 2.3. With the same assumptions as in Lemma 2.2, let n_0 be a positive integer and p a projection in $M_{m(n_0)!}$ with $\tau(p) = \frac{k}{m(n_0)!}$. Then $pAp \cong A$ if and only if k = 1 or $k = c_1^{d_1} \dots c_h^{d_h}$ with $f(\{m(n)!\})(c_j) = \infty$ and $d_j \neq 0$, for $j = 1, 2, \dots, h$.

Proof. This is immediate, by Lemma 2.2. Q.E.D.

Let *A* be a UHF-algebra of type $\{m(n)\}$. We suppose that

 $1 \leq \#\{r | r \text{ is a prime number with } 1 \leq f(\{m(n)!\})(r) < \infty\} < \infty,$

 $\#\{r|r \text{ is a prime number with } f(\{m(n)!\})(r) = \infty\} = \infty.$

Let $\{r_j\}_{j=1}^l$ be the set of all prime numbers with $1 \le f(\{m(n)!\})(r_j) < \infty$. We put $t_j = f(\{m(n)!\})(r_j)$, for j = 1, 2, ..., l. By the assumptions above there is an $n_0 \in \mathbb{N}$ such that $r_1^{t_1} \ldots r_l^{t_l}$ divides $m(n_0)!$ and, for any $n \ge n_0$ and j = 1, 2, ..., l, r_j does not divide m(n). Let n_1 be any positive integer with $n_1 \ge n_0$ and p a projection in $M_{m(n_1)!}$ with $\tau(p) = \frac{k}{m(n_1)!}$. We note that, for the UHF-algebra pAp, we have the inductive system

$$M_k \longrightarrow M_{km(n_0+1)} \longrightarrow \ldots \longrightarrow M_{km(n_0+1)\dots m(n_0+n-1)} \longrightarrow \cdots$$

LEMMA 2.4. With the notations and assumptions above, the following conditions hold.

(1) If $k = r_1^{t_1} \dots r_l^{t_l}$, then $pAp \cong A$,

(2) If $r_1^{t_1} \dots r_l^{t_l}$ does not divide k, then pAp is not isomorphic to A.

Proof. (1) Since $f(\{m(n)\})(r_j) = t_j$, for j = 1, 2, ..., l, and r_j does not divide m(n) for any $n \ge n_1$ and j = 1, 2, ..., l, we have

 $f(\{km(n_1+1)\dots m(n_1+n-1)\})(r_i) = t_i.$

Also, by Lemma 2.1,

$$f(\{km(n_1+1)\dots m(n_1+n-1)\})(r) = \infty, \text{ if } f(\{m(n)\})(r) = \infty,$$

$$f(\{km(n_1+1)\dots m(n_1+n-1)\})(r) = 0, \text{ if } f(\{m(n)\})(r) = 0.$$

Hence, by Glimm [6, Theorem 1.12], $pAp \cong A$.

(2) Since $r_1^{t_1} \dots r_l^{t_l}$ does not divide k, there is a $j_0 \in \mathbb{N}$ with $1 \le j_0 \le l$ such that $r_{j_0}^{t_{j_0}}$ does not divide k. Hence

$$f(\{km(n_1+1)\dots m(n_1+n-1)\})(r_{i_0}) < t_{i_0} = f(\{m(n)\})(r_{i_0}).$$

Thus pAp is not isomorphic to A by Glimm [6, Theorem 1.12]. Q.E.D.

By Lemma 2.4 (2), if $pAp \cong A$, there is a $k_1 \in \mathbb{N}$ such that $k = r_1^{t_1} \dots r_l^{t_l} k_1$.

LEMMA 2.5. With the same notations as in Lemma 2.4, we suppose that there is a $k_1 \in N$ such that $k = r_1^{l_1} \dots r_l^{l_l} k_1$. Let $k_1 = c_1^{d_1} \dots c_h^{d_h}$ be the decomposition of k_1 by prime factors with $d_j \neq 0$, for $j = 1, 2, \dots, h$. Then the following conditions hold.

- (1) If there is a $j_0 \in \mathbb{N}$ with $1 \le j_0 \le h$ such that $f(\{m(n)!\})(c_{j_0}) = 0$, then pAp is not isomorphic to A.
- (2) If $f(\{m(n)\})(c_j) = \infty$ for j = 1, 2, ..., h, then $pAp \cong A$.

Proof. (1) Since $f(\{km(n_1 + 1) \dots m(n_1 + n - 1)\})(c_{j_0}) \ge 1$, we have

$$f(\{km(n_1+1)\dots(n_1+n-1)\}) \neq f(\{m(n)!\}).$$

Thus pAp is not isomorphic to A, by Glimm [6, Theorem 1.12].

(2) By Lemma 2.1, for any prime number r with $f({m(n)!})(r) = \infty$, we have

$$f(\{km(n_1+1)\dots m(n_1+n-1)\})(r) = \infty.$$

Let *r* be a prime number with $1 \le f(\{m(n)!\})(r) < \infty$. Then there is a $j_0 \in \mathbb{N}$ with $1 \le j_0 \le l$ such that $r = r_{j_0}$ and that $f(\{m(n)!\})(r) = t_{j_0}$. Since $r_{j_0}^{t_{j_0}}$ divides *k* and r_{j_0} does not divide m(n), for any $n \ge n_1$, $f(\{km(n_1 + 1) \dots m(n_1 + n - 1)\})(r) = t_{j_0}$. Let *r* be a prime number with $f(\{m(n)!\})(r) = 0$. Then $r \ne r_j$, for $j = 1, 2, \dots, l$, and $r \ne c_j$, for $j = 1, 2, \dots, h$, since $f(\{m(n)!\})(c_j) = \infty$, for $j = 1, 2, \dots, h$. Hence *r* does not divide *k*. Hence

$$f(\{km(n_1+1)\dots m(n_1+n-1)\})(r) = 0.$$

Thus $pAp \cong A$, by Glimm [6, Theorem 1.12]. Q.E.D.

THEOREM 2.6. With the notations and assumptions above, let n_1 be an integer with $n_1 \ge n_0$ and p a projection in $M_{m(n_1)!}$ with $\tau(p) = \frac{k}{m(n_1)!}$. Then $pAp \cong A$ if and only if there is a $k_1 \in \mathbb{N}$ such that $k = r_1^{l_1} \dots r_l^{l_l} k_1$ and $k_1 = 1$ or $k_1 = c_1^{d_1} \dots c_h^{d_h}$ with $f(\{m(n)\})(c_j) = \infty$ and $d_j \neq 0$ for $j = 1, 2, \dots, h$.

Proof. This is immediate by Lemmas 2.4 and 2.5 Q.E.D.

Let *A* be a UHF-algebra of type $\{m(n)\}$. We suppose that

 $\#\{r|r \text{ is a prime number with } 1 \le f(\{m(n)!\})(r) < \infty\} = \infty,$

 $\#\{r|r \text{ is a prime number with } f(\{m(n)!\})(r) = \infty\} \ge 1.$

By the assumptions above we may assume that, for any $n \in \mathbb{N}$, m(n)! has a prime number r as a factor with $1 \le f(\{m(n)!\})(r) < \infty$. Let p be a projection in $M_{m(n_0)!}$ with $\tau(p) = \frac{k}{m(n_0)!}$. For the UHF-algebra pAp we have the inductive system

 $M_k \longrightarrow M_{km(n_0+1)} \longrightarrow \ldots \longrightarrow M_{km(n_0+1)\ldots m(n_0+n-1)} \longrightarrow \cdots$

By Lemma 2.1 we can easily see that

$$f(\{km(n_0+1)\dots m(n_0+n-1)\})(r) = \infty,$$

for any prime number r with $f(\{m(n)!\})(r) = \infty$. Let $r_1^{s_1} \dots r_l^{s_l}$ be a factor of $m(n_0)!$ with $1 \le f(\{m(n)!\})(r_j) = t_j < \infty$ and $1 \le s_j \le t_j$, for $j = 1, 2, \dots, l$, such that r_j does not divide $\frac{m(n_0)!}{r_1^{s_1} \dots r_l^{s_l}}$, for $j = 1, 2, \dots, l$, and r does not divide $m(n_0)!$, for any prime number r with $r \ne r_j$ for $j = 1, 2, \dots, l$ and $1 \le f(\{m(n)!\})(r) < \infty$.

LEMMA 2.7. With the notations and assumptions above, if $r_1^{s_1} \dots r_l^{s_l}$ does not divide k, then pAp is not isomorphic to A.

Proof. Since $f(\{m(n)!\})(r_j) = t_j$, for j = 1, 2, ..., l, there is an $n_j \in \mathbb{N}$ with $n_j \ge n_0 + 1$ such that $r_j^{l_j - s_j}$ divides $\frac{m(n_j)!}{m(n_0)!}$. Since $r_1^{s_1} \dots r_l^{s_l}$ does not divide k, there is a $j_0 \in \mathbb{N}$ with $1 \le j_0 \le l$ such that $r_{j_0}^{s_0}$ does not divide k. Thus

$$f(\{km(n_0+1)\dots m(n_0+n-1)\})(r_{j_0}) < s_{j_0} + (t_{j_0} - s_{j_0}) = t_{j_0}.$$

On the other hand $f({m(n)!})(r_{j_0}) = t_{j_0}$. Thus pAp is not isomorphic to A by Glimm [6, Theorem 1.12]. Q.E.D.

By Lemma 2.7, if $pAp \cong A$, then there is a $k_1 \in \mathbb{N}$ such that $k = r_1^{s_1} \dots r_l^{s_l} k_1$. So we suppose that there is a $k_1 \in \mathbb{N}$ such that $k = r_1^{s_1} \dots r_l^{s_l} k_1$.

LEMMA 2.8. With the notations and assumptions above, if there is a prime number r_0 with $f(\{m(n)\})(r_0) < \infty$ such that r_0 divides k_1 , then pAp is not isomorphic to A.

Proof. If $f(\{m(n)!\})(r_0) = 0$, then $f(\{km(n_0 + 1) \dots m(n_0 + n - 1)\})(r_0) \ge 1$, since r_0 divides k. Thus pAp is not isomorphic to A by Glimm [6, Theorem 1.12]. We suppose that $f(\{m(n)!\})(r_0) \ge 1$. Furthermore, we suppose that there is a $j_0 \in \mathbb{N}$ with $1 \le j_0 \le l$ such that $r_0 = r_{j_0}$. If $s_{j_0} = t_{j_0}$, then $r_{j_0}^{l_{j_0}+1}$ divides k, since

$$k = r_1^{s_1} \dots r_{j_0}^{t_{j_0}+1} \dots r_l^{s_l} \frac{k_1}{r_{j_0}}.$$

Hence

$$f(\{km(n_0+1)\dots m(n_0+n-1)\})(r_{i_0}) = t_{i_0}+1.$$

KAZUNORI KODAKA

Since $f(\{m(n)\})(r_{j_0}) = t_{j_0}$, pAp is not isomorphic to A, by Glimm [6, Theorem 1.12]. If $s_{j_0} < t_{j_0}$, then $r_{j_0}^{s_{j_0}+1}$ divides k, since

$$k = r_1^{s_1} \dots r_{j_0}^{s_{j_0}+1} \dots r_l^{s_l} \frac{k_1}{r_{j_0}}.$$

Furthermore, since $f(\{m(n)\})(r_{j_0}) = t_{j_0}$, there is an $n_{j_0} \in \mathbb{N}$ with $n_{j_0} \ge n_0 + 1$ such that $r^{t_{j_0} - s_{j_0}}$ divides $\frac{m(n_{j_0})!}{m(n_0)!}$. Thus

$$f(\{km(n_0+1)\dots m(n_0+n-1)\})(r_{j_0}) \ge s_{j_0}+1+t_{j_0}-s_{j_0}=t_{j_0}+1.$$

Hence, by Glimm [6, Theorem 1.12], *pAp* is not isomorphic to *A*.

Next, we suppose that $r_0 \neq r_j$, for j = 1, 2, ..., l. Then, since r_0 does not divide $m(n_0)!$, we have

$$f(\{km(n_0+1)\dots m(n_0+n-1)\})(r_0) = 1 + f(\{m(n)\})(r_0).$$

Thus pAp is not isomorphic to A, by Glimm [6, Theorem 1.12]. Q.E.D.

By Lemmas 2.7 and 2.8, if $pAp \cong A$, then there is a $k_1 \in \mathbb{N}$ such that $k = r_1^{s_1} \dots r_l^{s_l} k_1$ and $k_1 = 1$ or $k_1 = c_1^{d_1} \dots c_h^{d_h}$, where c_j is a prime number with $f(\{m(n)\})(c_j) = \infty$ and $d_j \neq 0$ for $j = 1, 2, \dots, h$.

LEMMA 2.9. With the same assumptions as in Lemma 2.8, we suppose that there is a $k_1 \in \mathbb{N}$ such that $k = r_1^{s_1} \dots r_l^{s_l} k_1$ and $k_1 = 1$ or $k_1 = c_1^{d_1} \dots c_h^{d_h}$, where c_j is a prime number with $f(\{m(n)\}\})(c_j) = \infty$ and $d_j \neq 0$ for $j = 1, 2, \dots, h$. Then $pAp \cong A$.

Proof. We suppose that r is a prime number such that $r = r_{j_0}$, for some $j_0 \in \mathbf{N}$, with $1 \le j_0 \le l$. Then, since $f(\{m(n)\})(r_{j_0}) = t_{j_0}$, there is an $n_{j_0} \in \mathbf{N}$ with $n_{j_0} \ge n_0 + 1$ such that $r^{t_{j_0}-s_{j_0}}$ divides $\frac{m(n_{j_0})!}{m(n_0)!}$. Since r_{j_0} does not divide k_1 , we have

$$f(\{km(n_0+1)\dots m(n_0+n-1)\})(r_{j_0}) = s_{j_0} + t_{j_0} - s_{j_0} = t_{j_0} = f(\{m(n)\})(r_{j_0}).$$

Next, we suppose that *r* is a prime number with $r \neq r_j$, for j = 1, 2, ..., l. In this case we divide a proof into three subcases to show that

$$f(\{km(n_0+1)\dots m(n_0+n-1)\})(r) = f(\{m(n)\})(r).$$

(i) Case of $1 \le f(\{m(n)!\})(r) < \infty$. Then *r* does not divide $m(n_0)!$. Hence there is an $n_1 \in \mathbb{N}$ with $n_1 \ge n_0 + 1$ such that r^{t_0} divides $\frac{m(n_1)!}{m(n_0)!}$, where $t_0 = f(\{m(n)!\})(r)$. Thus

$$f(\{km(n_0+1)\dots m(n_0+n-1)\})(r) = t_0 = f(\{m(n)\})(r)$$

(ii) Case of $f({m(n)!})(r) = 0$. Then r does not divide k and m(n), for any $n \in \mathbb{N}$. Thus

$$f(\{km(n_0+1)\dots m(n_0+n-1)\})(r) = 0 = f(\{m(n)\})(r)$$

(iii) Case of $f({m(n)!})(r) = \infty$. Then, by Lemma 2.1, there are countably many $n \in \mathbb{N}$ with $n \ge n_0 + 1$ such that r divides m(n). Thus

352

 $f(\{km(n_0+1)\dots m(n_0+n-1)\})(r) = \infty = f(\{m(n)\})(r).$

Therefore, since $f(\{km(n_0 + 1) \dots m(n_0 + n - 1)\}) = f(\{m(n)\})$, by Glimm [6, Theorem 1.12] $pAp \cong A$. Q.E.D.

THEOREM 2.10. Let n_0 be a positive integer and p a projection in $M_{m(n_0)!}$ with $\tau(p) = \frac{k}{m(n_0)!}$. Let $r_1^{s_1} \dots r_l^{s_l}$ be a factor of $m(n_0)!$ with $1 \le f(\{m(n)!\})(r_j) = t_j < \infty$, for $j = 1, 2, \dots, l$, such that r_j does not divide $\frac{m(n_0)!}{r_1^{s_1}, \dots, r_l^{s_l}}$ and r does not divide $m(n_0)!$, for any prime number r with $r \ne r_j$ for $j = 1, 2, \dots, l$ and $1 \le f(\{m(n)!\})(r) < \infty$. Then $pAp \cong A$ if and only if there is a $k_1 \in \mathbb{N}$ such that $k = r_1^{s_1} \dots r_l^{s_l} k_1$ and $k_1 = 1$ or $k_1 = c_1^{d_1} \dots c_h^{d_h}$ with $f(\{m(n)!\})(c_j) = \infty$ and $d_j \ne 0$, for $j = 1, 2, \dots, h$.

Proof. This is immediate, by Lemmas 2.7, 2.8 and 2.9. Q.E.D.

Let A be a UHF-algebra of type $\{m(n)\}$. We suppose that

 $\#\{r|r \text{ is a prime number with } 1 \le f(\{m(n)!\})(r) < \infty\} = \infty,$

 $\#\{r|r \text{ is a prime number with } f(\{m(n)!\})(r) = \infty\} = 0.$

In this case k_1 in the statement of Theorem 2.10 is always equal to 1, and so $pAp \cong A$ if and only if $\tau(p) = 1$. By Remark 1.5 we obtain the following theorem.

THEOREM 2.11. With the assumptions above, for any automorphism β of $A \otimes K$, we have $\beta_* = \text{id on } K_0(A \otimes K)$.

3. Examples. Let *B* be a C*-algebra and M(B) its multiplier algebra. Let Aut(*B*) be the group of all automorphisms of *B*. For each unitary element $w \in M(B)$, let Ad(*w*) denote the automorphism of *B* defined by Ad(*w*)(*b*) = *wbw*^{*}, for any $b \in B$. We call Ad(*w*) a *generalized inner automorphism* of *B*, and we denote by Int(*B*) the group of all generalized inner automorphisms of *B*. It is easily seen that Int(*B*) is a normal subgroup of Aut(*B*). We note that if *B* is unital, Int(*B*) is the group of all inner automorphisms of *B*. Let Pic(*B*) be the Picard group of *B*. We note that Pic(*B*) \cong Aut($A \otimes \mathbf{K}$)/Int($A \otimes \mathbf{K}$).

Let A be a UHF-algebra of type $\{m(n)\}$ and S the semigroup of automorphisms of $K_0(A \otimes \mathbf{K})$ defined in Section 1.

EXAMPLE 3.1. We suppose that $m(n) = k \in \mathbb{N}$ with $k \ge 2$, for any $n \in \mathbb{N}$; that is, A is a UHF-algebra of type k^{∞} .

(1) If k is a prime number, then by Theorem 2.3 we have

$$S = \left\{ \frac{1}{k^t} | t \in \mathbf{Z} \quad \text{with} \quad t \ge 0 \right\}.$$

Hence the group of automorphisms of $K_0(A \otimes \mathbf{K})$ induced by those of $A \otimes \mathbf{K}$ is $\{\frac{1}{k^t} | t \in \mathbf{Z}\} \cong \mathbf{Z}$. Also, by Lemma 1.1 and [8, Proposition 4], Pic(A) is isomorphic to a semidirect product of Aut(A)/Int(A) with \mathbf{Z} .

(2) If k = 6, then by Theorem 2.3 we have

$$S = \{\frac{2^{d_1} \cdot 3^{d_2}}{6^t} | 1 \le 2^{d_1} \cdot 3^{d_2} \le 6^t, \quad d_1, d_2, t = 0, 1, \dots \}$$

EXAMPLE 3.2 We suppose that

 $\#\{r|r \text{ is a prime number with } 1 \le f(\{m(n)!\})(r) < \infty\} = \infty,$

 $\#\{r|r \text{ is a prime number with } f(\{m(n)!\})(r) = \infty\} = 0.$

Then, by Lemma 2.1, $S = \{1\}$. Hence the group of automorphisms of $K_0(A \otimes \mathbf{K})$ induced by those of $A \otimes \mathbf{K}$ is $\{1\}$. Therefore $\operatorname{Pic}(A) \cong \operatorname{Aut}(A)/\operatorname{Int}(A)$, by Lemma 1.1 and [8, Proposition 4].

REMARK 3.3. Let *A* be an AF-algebra by an inductive limit of finite dimensional C*-algebras for which the corresponding limit of K_0 -groups is

$$\cdots \longrightarrow \mathbf{Z}^2 \xrightarrow{\phi_n} \mathbf{Z}^2 \longrightarrow \cdots$$
,

where each \mathbf{Z}^2 is endowed with its natural ordering and

$$\phi_n = \begin{bmatrix} a_n & 1\\ 1 & 0 \end{bmatrix},$$

where $[a_1, a_2, \ldots, a_n, \ldots]$ is the continued fraction expansion of an irrational number θ . Then, in the same way as in [8], we see that if θ is not quadratic, $Pic(A) \cong Aut(A)/Int(A)$ and that if θ is quadratic, Pic(A) is isomorphic to a semidirect product of Aut(A)/Int(A) with Z.

REFERENCES

1. B. Blackadar, Traces on simple AF C*-algebras, J. Funct. Anal. 38 (1980), 156-168.

2. B. Blackadar, K-theory for operator algebras, (M. S. R. I. Publications, Springer-Verlag, 1986).

3. L. G. Brown, Stable isomorphism of hereditary subalgebra of C*-algebras, *Pacific J. Math.* **71** (1977), 335–348.

4. E. G. Effros and C. L. Shen, Approximately finite C*-algebras and continued fractions, *Indiana Univ. Math. J.* 29 (1980), 191–204.

5. G. A. Elliott, D. E. Evans and A. Kishimoto, Outer conjugacy classes of trace scaling automorphisms of stable UHF-algebras, preprint.

6. J. Glimm, On a certain class in operator algebras, *Trans. Amer. Math. Soc.* 95 (1960), 318–340.

7. K. Kodaka, Automorphisms of tensor products of irrational rotation C*-algebras and the C*-algebra of compact operators II, *J. Operator Theory* **30** (1993), 77–84.

8. K. Kodaka, Picard groups of irrational rotation C*-algebras, J. London Math. Soc. (2) 56 (1997), 179–188.

9. K. Kodaka, Full projections, equivalence bimodules and automorphisms of stable algebras of unital C*-algebras, J. Operator Theory 37 (1997), 357–369.

10. G. K. Pedersen, C*-algebras and their automorphism groups (Academic Press, 1979).

11. M. Pimsner and D. Voiculescu, Imbedding the irrational rotation C*-algebra into an AF-algebra, *J. Operator Theory* **4** (1980), 201–210.

12. M. Rørdam, Classification of certain infinite simple C*-algebras, preprint.

354