PROJECTIONS INDUCING AUTOMORPHISMS OF STABLE UHF-ALGEBRAS

KAZUNORI KODAKA
coy Department of Mathematical Sciences, College of Science, Ryukyu University, Nishihara-cho, Okinawa, 903-0213 Japan

(Received 24 October, 1997)

Abstract

Let A be a UHF-algebra and \mathbf{K} the \mathbf{C}^{*}-algebra of all compact operators on a countably infinite-dimensional Hilbert space. In this note we shall find all projections p in A with $p A p \cong A$ and, using these projections, we shall determine the group of automorphisms of $K_{0}(A \otimes \mathbf{K})$ induced by those of $A \otimes \mathbf{K}$ in some cases.

1991 Mathematics Subject Classification 46 L40.
0. Introduction. Let A be a UHF-algebra and \mathbf{K} the C^{*}-algebra of all compact operators on a countably infinite-dimensional Hilbert space. Let p be a projection in $A \otimes \mathbf{K}$ with $p(A \otimes \mathbf{K}) p \cong A$. In [9] we showed that we can construct any automorphism of $A \otimes \mathbf{K}$ using the projection p above, an automorphism of A and a unitary element in $M(A \otimes \mathbf{K})$, where $M(A \otimes \mathbf{K})$ is the multiplier algebra of $A \otimes \mathbf{K}$. But since A is a UHF-algebra, it suffices to find all projections p in A with $p A p \cong A$ in order to determine the group of automorphisms of $K_{0}(A \otimes \mathbf{K})$ induced by those of $A \otimes \mathbf{K}$. By the above result we can compute the Picard group of A in some cases. Furthermore let β be an automorphism of $A \otimes \mathbf{K}$ with $\beta_{*} \neq$ id on $K_{0}(A \otimes \mathbf{K})$. Then, by Rørdam [12] a crossed product $A \otimes \mathbf{K} \times{ }_{\beta} \mathbf{Z}$ is a purely infinite simple \mathbf{C}^{*}-algebra and its isomorphism class can be determined by Elliott, Evans and Kishimoto [5] if the automorphism β_{*} of $K_{0}(A \otimes \mathbf{K})$ is known to us.

Since $A \otimes \mathbf{K}$ is an AF-algebra, we can determine the group of automorphisms of $K_{0}(A \otimes \mathbf{K})$ induced by those of $A \otimes \mathbf{K}$ by Blackadar [2, Theorem 7.3.2]. In fact if $A=M_{2^{\infty}}$, we can easily do it, where $M_{2^{\infty}}$ is the UHF-algebra of type 2^{∞}. However, it seems difficult in general to determine order-preserving automorphisms of the dimension group $K_{0}(A \otimes \mathbf{K})$ and so we apply the method above to determine projections p in A with $p A p \cong A$.

1. Preliminaries. For each $n \in \mathbf{N}$, let M_{n} be the C^{*}-algebra of $n \times n$-matrices over C. For positive integers $m(1), m(2) \geq 2$ let l be a monomorphism of $M_{m(1)}$ into $M_{m(1) m(2)}$ such that $l\left(I_{m(1)}\right)=I_{m(1) m(2)}$, where $I_{m(1)}$ and $I_{m(1) m(2)}$ are the unit elements in $M_{m(1)}$ and $M_{m(1) m(2)}$ respectively. Given a sequence $\{m(n)\}_{n=1}^{\infty}$ of positive integers greater than 1 , let $m(n)!=\prod_{k=1}^{n} m(k)$. We consider the inductive system

$$
M_{m(1)!} \xrightarrow{l} M_{m(2)!} \xrightarrow{l} \cdots \xrightarrow{l} M_{m(n)!} \xrightarrow{l} \cdots .
$$

We call the C^{*}-algebra generated by the inductive system above a UHF-algebra of type $\{m(n)!\}$.

Let A be a UHF-algebra and τ the unique tracial state on A. Then by Blackadar [2], $K_{0}(A)$ is a simple dimension group which is a dense subgroup of \mathbf{Q} containing \mathbf{Z}.

Let τ_{*} be the homomorphism of $K_{0}(A)$ to \mathbf{R} induced by τ. By Blackadar [$\mathbf{1}$, Theorem 3.9] τ_{*} is injective and the positive cone of $K_{0}(A)$ is given by the formula

$$
K_{0}(A)_{+}=\left\{x \in K_{0}(A) \mid \tau_{*}(x) \geq 0\right\}
$$

We identify $K_{0}(A)$ with $\tau_{*}\left(K_{0}(A)\right)$. Since $K_{0}(A)$ is a dense subgroup of \mathbf{Q}, an automorphism of $K_{0}(A)$ is multiplication by a positive rational number.

Lemma 1.1. For any automorphism α of $A, \alpha_{*}=$ id on $K_{0}(A)$.
Proof. This can easily be proved using the facts that, by the uniqueness of trace, α preserves the trace τ and the homomorphism $\tau_{*}: K_{0}(A) \rightarrow \mathbf{R}$ is injective. Q.E.D.

Let \mathbf{K} be the \mathbf{C}^{*}-algebra of all compact operators on a countably infinitedimensional Hilbert space and $\left\{e_{i j}\right\}_{i, j \in \mathbf{Z}}$ matrix units of \mathbf{K}. Let Tr be the canonical trace on \mathbf{K}. Then $\tau \otimes \mathrm{Tr}$ is a densely defined lower semi-continuous trace on $A \otimes \mathbf{K}$ and, as described in Elliott, Evans and Kishimoto [5], it is unique up to a constant multiple. Let β be an automorphism of $A \otimes \mathbf{K}$. We define $s(\beta) \in \mathbf{Q}$ by $(\tau \otimes \operatorname{Tr}) \circ \beta=s(\beta)(\tau \otimes \mathrm{Tr})$. Then an automorphism β_{*} of $K_{0}(A \otimes \mathbf{K})$ is multiplication by the positive rational number $s(\beta)$.

Let $M_{n}(A)$ be the C^{*}-algebra of $n \times n$-matrices over A, for any $n \in \mathbf{N}$; we identify $M_{n}(A)$ with $A \otimes M_{n}$. Let p be a projection in $\cup_{n=1}^{\infty} M_{n}(A) \subset A \otimes \mathbf{K}$ with $p(A \otimes \mathbf{K}) p \cong A$. We denote by χ_{p} an isomorphism of A onto $p(A \otimes \mathbf{K}) p$. By Brown [3, Lemma 2.5], there is a partial isometry $z \in M(A \otimes \mathbf{K} \otimes \mathbf{K})$ such that $z^{*} z=p \otimes 1$ and $z z^{*}=1 \otimes 1 \otimes 1$. Let ψ be an isomorphism of $\mathbf{K} \otimes \mathbf{K}$ onto \mathbf{K} with $\psi_{*}=$ id of $K_{0}(\mathbf{K} \otimes \mathbf{K})$ onto $K_{0}(\mathbf{K})$. Let β_{p} be the automorphism of $A \otimes \mathbf{K}$ defined by

$$
\beta_{p}=(\operatorname{id} \otimes \psi) \circ \operatorname{Ad}(z) \circ\left(\chi_{p} \otimes \mathrm{id}\right)
$$

Lemma 1.2. With the notations above the automorphism $\beta_{p *}$ of $K_{0}(A \otimes \mathbf{K})$ is multiplication by $(\tau \otimes \operatorname{Tr})(p)$.

Proof. It suffices to show that $s\left(\beta_{p}\right)=(\tau \otimes \operatorname{Tr})(p)$. Let $(\tau \otimes \operatorname{Tr})_{*}$ be the homomorphism of $K_{0}(A \otimes \mathbf{K})$ to \mathbf{R} induced by $\tau \otimes \mathrm{Tr}$. We note that $\beta_{p}\left(1 \otimes e_{00}\right)$ is in the ideal of definition of $\tau \otimes \operatorname{Tr}$ by [7, Lemma 1]. Hence

$$
\begin{aligned}
(\tau \otimes \operatorname{Tr}) \circ \beta_{p}\left(1 \otimes e_{00}\right) & =(\tau \otimes \operatorname{Tr})_{*} \circ \beta_{p *}\left(\left[1 \otimes e_{00}\right]\right) \\
& =(\tau \otimes \operatorname{Tr})_{*} \circ(\operatorname{id} \otimes \psi)_{*}\left(\left[z\left(p \otimes e_{00}\right) z^{*}\right]\right) \\
& =(\tau \otimes \operatorname{Tr})_{*} \circ(\operatorname{id} \otimes \psi)_{*}\left(\left[p \otimes e_{00}\right]\right) \\
& =(\tau \otimes \operatorname{Tr})(p) .
\end{aligned}
$$

Since $\quad(\tau \otimes \operatorname{Tr}) \circ \beta_{p}=s\left(\beta_{p}\right)(\tau \otimes \operatorname{Tr}) \quad$ and $\quad(\tau \otimes \operatorname{Tr})\left(1 \otimes e_{00}\right)=1 \quad$ it follows that $s\left(\beta_{p}\right)=(\tau \otimes \operatorname{Tr})(p)$. Q.E.D.

Corollary 1.3. Let β_{p} be as above. If $(\tau \otimes \operatorname{Tr})(p)>1$, there is a projection $q \in A$ with $q A q \cong A$ such that $\beta_{p *}^{-1}=\beta_{q \otimes e_{00} *}$ on $K_{0}(A \otimes \mathbf{K})$.

Proof. By [9, Theorem 4.5 and Remark 2.1], there are an $n \in \mathbf{N}$, a projection $q_{1} \in M_{n}(A)$, an automorphism α of A and a unitary element $w \in M(A \otimes \mathbf{K})$ such that

$$
q_{1}(A \otimes \mathbf{K}) q_{1} \cong A, \quad \beta_{p}^{-1}=\operatorname{Ad}(w) \circ \beta_{q_{1}} \circ(\alpha \otimes \mathrm{id})
$$

where $M(A \otimes \mathbf{K})$ is the multiplier algebra of $A \otimes \mathbf{K}$. By Lemma 1.1 and [$\mathbf{9}$, Lemma 1.1] $\beta_{p * *}^{-1}=\beta_{q_{1} *}$. Hence, by Lemma 1.2, $(\tau \otimes \operatorname{Tr})\left(q_{1}\right)(\tau \otimes \operatorname{Tr})(p)=1$. We note that $\tau(\operatorname{Proj} A)=\tau_{*}\left(K_{0}(A)\right) \cap[0,1]$, where $\operatorname{Proj} A$ is the set of all projections in A. Since A has cancellation, there is a projection $q \in A$ such that $q \otimes e_{00}$ is unitarily equivalent to q_{1} in $(A \otimes \mathbf{K})^{+}$, where $(A \otimes \mathbf{K})^{+}$is the unitized \mathbf{C}^{*}-algebra of $A \otimes \mathbf{K}$. Thus $q A q \cong A$ and $\beta_{p *}^{-1}=\beta_{q \otimes e_{00} *}$ on $K_{0}(A \otimes \mathbf{K})$. Q.E.D.

Let $\operatorname{Aut}\left(K_{0}(A \otimes \mathbf{K})\right)$ be the group of automorphisms of $K_{0}(A \otimes \mathbf{K})$ and let

$$
S=\left\{\beta_{p \otimes e_{00 *}} \in \operatorname{Aut}\left(K_{0}(A \otimes \mathbf{K})\right) \mid p \text { is a projection in } A \text { with } p A p \cong A\right\} .
$$

Corollary 1.4. With the notations above, S is a semigroup of automorphisms of $K_{0}(A \otimes \boldsymbol{K})$ with the unit element.

Proof. Since S is a subset of the group $\operatorname{Aut}\left(K_{0}(A \otimes \mathbf{K})\right)$, it suffices to show that S is invariant under the product of $\operatorname{Aut}\left(K_{0}(A \otimes \mathbf{K})\right)$ and that S has the unit element in $\operatorname{Aut}\left(K_{0}(A \otimes \mathbf{K})\right)$. Since $\tau(1)=1, \beta_{1 \otimes e_{00 *}}$ is the unit element in $\operatorname{Aut}\left(K_{0}(A \otimes \mathbf{K})\right)$. Thus S has the unit element in $\operatorname{Aut}\left(K_{0}(A \otimes \mathbf{K})\right)$. For $j=1,2$, let p_{j} be a projection in A with $p_{j} A p_{j} \cong A$. Then, in the same way as in the proof of Corollary 1.3, we see that there is a projection p_{3} in A such that

$$
\tau\left(p_{3}\right)=\tau\left(p_{1}\right) \tau\left(p_{2}\right), \quad p_{3} A p_{3} \cong A .
$$

Since $\tau\left(p_{3}\right)=\tau\left(p_{1}\right) \tau\left(p_{2}\right)$, by Lemma 1.2 we deduce that $\beta_{p_{3} *}=\beta_{p_{1} *} \circ \beta_{p_{2} *}$. Hence $\beta_{p_{1} *} \circ \beta_{p_{2} *} \in S$. Therefore we obtain the conclusion. Q.E.D.

Remark 1.5. Let A be a UHF-algebra of type $\{m(n)!\}$. By Corollary 1.3 and [9], the group of automorphisms of $K_{0}(A \otimes \mathbf{K})$ induced by those of $A \otimes \mathbf{K}$ is generated by S and, since an automorphism of $K_{0}(A \otimes \mathbf{K})$ is multiplication by a positive rational number, by Lemma 1.2 and Corollary 1.3 we have

$$
S=\{\tau(p) \in \mathbf{Q} \mid p \text { is a projection in } A \text { with } p A p \cong A\} .
$$

Furthermore, by Blackadar [2, Proposition 4.6.6],

$$
S=\left\{\tau(p) \in \mathbf{Q} \mid p \text { is a projection in } \cup_{n=1}^{\infty} M_{m(n)!} \text { with } p A p \cong A\right\}
$$

2. Projections \boldsymbol{p} in \boldsymbol{A} with $\boldsymbol{p} \boldsymbol{A} \boldsymbol{p}$ isomorphic to \boldsymbol{A}. Let A be a UHF-algebra of type $\{m(n)$!\}. Following Glimm [6] we define a function $f(\{m(n)!\})$ whose domain is the prime numbers. For each prime number r, let

$$
f\left(\{m(n)!\}(r)=\sup \left\{k \in \mathbf{N} \mid \text { there is an } n \in \mathbf{N} \text { such that } r^{k} \text { divides } m(n)!\right\} .\right.
$$

Also, for each subset N of \mathbf{N} we denote by $\#(N)$ the number of elements in N.
Lemma 2.1. Let $f(\{m(n)!\})$ be as above and r a prime number. Then the following conditions hold:
(1) $f(\{m(n)!\})(r)=\infty$ if and only if $\#\{n \in N \mid r$ divides $m(n)\}=\infty$,
(2) $f(\{m(n)!\})(r)=0$ if and only if r does not divide $m(n)$ for any $n \in N$,
(3) $f(\{m(n)!\})(r)<\infty$ if and only if there is an $n_{0} \in \boldsymbol{N}$ such that r does not divide $m(n)$ for any $n \geq n_{0}$.

Proof. (1) \Rightarrow : We suppose that $\#\{n \in \mathbf{N} \mid r$ divides $m(n)\}<\infty$. Then there is an $n_{0} \in \mathbf{N}$ such that r does not divide $m(n)$ for any $n \geq n_{0}$. Thus

$$
\begin{aligned}
f(\{m(n)!\})(r)= & \sup \left\{k \in \mathbf{N} \mid \text { there is an } n \in \mathbf{N} \text { such that } r^{k} \text { divides } m(n)!\right\} \\
= & \sup \left\{k \in \mathbf{N} \mid \text { there is an integer } n \text { with } 1 \leq n \leq n_{0}-1 \text { such that } r^{k}\right. \\
& \operatorname{divides} m(n)!\} \\
< & \infty .
\end{aligned}
$$

This is a contradiction. Therefore $\#\{n \in \mathbf{N} \mid r$ divides $m(n)\}=\infty$.
\Leftarrow : For any $k \in \mathbf{N}$ there is a set $\left\{n_{1}, n_{2}, \ldots, n_{k}\right\} \subset\{n \in \mathbf{N} \mid r$ divides $m(n)\}$ with $n_{1}<n_{2}<\ldots<n_{k}$. Since r divides $m\left(n_{j}\right)$, for $j=1,2, \ldots, k, r^{k}$ divides $m\left(n_{k}\right)$!. Thus $f(\{m(n)!\}(r) \geq k$. Since k is an arbitrary positive integer, $f(\{m(n)!\})(r)=\infty$.
$(2) \Rightarrow$: If there is an $n_{0} \in \mathbf{N}$ such that r divides $m\left(n_{0}\right)$, then r divides $m\left(n_{0}\right)!$. Hence $f(\{m(n)!\})(r) \geq 1$. This is a contradiction. Thus r does not divide $m(n)$, for any $n \in \mathbf{N}$.
\Leftarrow : If $f(\{m(n)!\})(r) \geq 1$, then there is an $n_{0} \in \mathbf{N}$ such that r divides $m\left(n_{0}\right)$!. Hence there is an $n_{1} \in \mathbf{N}$ such that r divides $m\left(n_{1}\right)$. This is a contradiction. Thus $f(\{m(n)!\})(r)=0$.
(3) is equivalent to (1). Q.E.D.

Let A be a UHF-algebra of type $\{m(n)!\}$. We suppose that $f(\{m(n)!\})(r)=0$ or ∞, for any prime number r. If $f(\{m(n)!\})(r)=0$, for any prime number r, then $A \cong \mathbf{C}$ and so we also suppose that

$$
\#\{r \mid r \text { is a prime number with } f(\{m(n)!\})(r)=\infty\} \geq 1
$$

Lemma 2.2. With the notations and assumptions above, let n_{0} be a positive integer and p a projection in $M_{m\left(n_{0}\right)!}$ with $\tau(p)=\frac{k}{m\left(n_{0}\right)!}$. Then the following conditions hold.
(1) If $k=1$, then $p A p \cong A$,

We suppose that $k \neq 1$. Let $k=c_{1}^{d_{1}} \ldots c_{h}^{d_{h}}$ be the decomposition of k by prime factors with $d_{j} \neq 0$ for $j=1,2, \ldots, h$.
(2) If $f(\{m(n)!\})\left(c_{j}\right)=\infty$, for $j=1,2, \ldots, h$, then $p A p \cong A$.
(3) If there is an integer j_{0} with $1 \leq j_{0} \leq h$ such that $f(\{m(n)!\})\left(c_{j_{0}}\right)=0$, then $p A p$ is not isomorphic to A.

Proof. (1) For the UHF-algebra $p A p$ we have the inductive system

$$
M_{m\left(n_{0}+1\right)} \longrightarrow M_{m\left(n_{0}+1\right) m\left(n_{0}+2\right)} \longrightarrow \ldots \longrightarrow M_{m\left(n_{0}+1\right) \ldots m\left(n_{0}+n\right)} \longrightarrow \cdots
$$

For any prime number r with $f(\{m(n)!\})(r)=\infty, \#\{n \in \mathbf{N} \mid r$ divides $m(n)\}=\infty$, by Lemma 2.1. Hence $f\left(\left\{m\left(n_{0}+1\right) \ldots m\left(n_{0}+n\right)\right\}\right)(r)=\infty$. Also, for any prime number r with $f(\{m(n)!\})(r)=0, \#\{n \in \mathbf{N} \mid r$ divides $m(n)\}=0$, by Lemma 2.1. Hence $f\left(\left\{m\left(n_{0}+1\right) \ldots m\left(n_{0}+n\right)\right\}\right)(r)=0$. Thus

$$
f(\{m(n)!\})=f\left(\left\{m\left(n_{0}+1\right) \ldots m\left(n_{0}+n\right)\right\}\right) .
$$

Therefore, by Glimm [6, Theorem 1.12], we have $p A p \cong A$.
(2) For the UHF-algebra $p A p$ we have the inductive system

$$
M_{k} \longrightarrow M_{k m\left(n_{0}+1\right)} \longrightarrow \ldots \longrightarrow M_{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)} \longrightarrow \cdots
$$

For any prime number r with $f(\{m(n)!\})(r)=\infty$, we have

$$
f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)(r)=\infty
$$

by Lemma 2.1. For any prime number r with $f(\{m(n)!\})(r)=0$, we have $f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)(r)=0$ since r does not divide k and $m(n)$ for any $n \in \mathbf{N}$. Therefore by Glimm [6, Theorem 1.12] $p A p \cong A$.
(3) Since $c_{j_{0}}$ divides k and does not divide $m(n)$, for any $n \in \mathbf{N}$,

$$
f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)\left(c_{j_{0}}\right)=d_{j_{0}} \geq 1
$$

On the other hand $f(\{m(n)!\})\left(c_{j_{0}}\right)=0$. Hence by Glimm [6, Theorem 1.12] $p A p$ is not isomorphic to A. Q.E.D.

Theorem 2.3. With the same assumptions as in Lemma 2.2, let n_{0} be a positive
 $k=1$ or $k=c_{1}^{d_{1}} \ldots c_{h}^{d_{h}}$ with $f(\{m(n)!\})\left(c_{j}\right)=\infty$ and $d_{j} \neq 0$, for $j=1,2, \ldots, h$.

Proof. This is immediate, by Lemma 2.2. Q.E.D.
Let A be a UHF-algebra of type $\{m(n)!\}$. We suppose that
$1 \leq \#\{r \mid r$ is a prime number with $1 \leq f(\{m(n)!\})(r)<\infty\}<\infty$,
$\#\{r \mid r$ is a prime number with $f(\{m(n)!\})(r)=\infty\}=\infty$.
Let $\left\{r_{j}\right\}_{j=1}^{l}$ be the set of all prime numbers with $1 \leq f(\{m(n)!\})\left(r_{j}\right)<\infty$. We put $t_{j}=f(\{m(n)!\})\left(r_{j}\right)$, for $j=1,2, \ldots, l$. By the assumptions above there is an $n_{0} \in \mathbf{N}$ such that $r_{1}^{t_{1}} \ldots r_{l}^{t_{l}}$ divides $m\left(n_{0}\right)$! and, for any $n \geq n_{0}$ and $j=1,2, \ldots, l, r_{j}$ does not divide $m(n)$. Let n_{1} be any positive integer with $n_{1} \geq n_{0}$ and p a projection in $M_{m\left(n_{1}\right)}$! with $\tau(p)=\frac{k}{m\left(n_{1}\right)!}$. We note that, for the UHF-algebra $p A p$, we have the inductive system

$$
M_{k} \longrightarrow M_{k m\left(n_{0}+1\right)} \longrightarrow \ldots \longrightarrow M_{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)} \longrightarrow \cdots
$$

Lemma 2.4. With the notations and assumptions above, the following conditions hold.
(1) If $k=r_{1}^{t_{1}} \ldots r_{l}^{t_{l}}$, then $p A p \cong A$,
(2) If $r_{1}^{t_{1}} \ldots r_{l}^{t_{l}}$ does not divide k, then $p A p$ is not isomorphic to A.

Proof. (1) Since $f(\{m(n)!\})\left(r_{j}\right)=t_{j}$, for $j=1,2, \ldots, l$, and r_{j} does not divide $m(n)$ for any $n \geq n_{1}$ and $j=1,2, \ldots, l$, we have

$$
f\left(\left\{k m\left(n_{1}+1\right) \ldots m\left(n_{1}+n-1\right)\right\}\right)\left(r_{j}\right)=t_{j} .
$$

Also, by Lemma 2.1,

$$
\begin{array}{cl}
f\left(\left\{k m\left(n_{1}+1\right) \ldots m\left(n_{1}+n-1\right)\right\}\right)(r)=\infty, & \text { if } f(\{m(n)!\})(r)=\infty, \\
f\left(\left\{k m\left(n_{1}+1\right) \ldots m\left(n_{1}+n-1\right)\right\}\right)(r)=0, & \text { if } f(\{m(n)!\})(r)=0 .
\end{array}
$$

Hence, by Glimm [6, Theorem 1.12], $p A p \cong A$.
(2) Since $r_{1}^{t_{1}} \ldots r_{l}^{t_{l}}$ does not divide k, there is a $j_{0} \in \mathbf{N}$ with $1 \leq j_{0} \leq l$ such that $r_{j_{0}}^{t_{j}}$ does not divide k. Hence

$$
\left.f\left(\left\{k m\left(n_{1}+1\right) \ldots m\left(n_{1}+n-1\right)\right\}\right)\left(r_{j_{0}}\right)<t_{j_{0}}=f(\{m(n)!\})\right)\left(r_{j_{0}}\right) .
$$

Thus $p A p$ is not isomorphic to A by Glimm [6, Theorem 1.12]. Q.E.D.
By Lemma 2.4 (2), if $p A p \cong A$, there is a $k_{1} \in \mathbf{N}$ such that $k=r_{1}^{t_{1}} \ldots r_{l}^{t_{l}} k_{1}$.
Lemma 2.5. With the same notations as in Lemma 2.4, we suppose that there is a $k_{1} \in \boldsymbol{N}$ such that $k=r_{1}^{t_{1}} \ldots r_{l}^{t_{l}} k_{1}$. Let $k_{1}=c_{1}^{d_{1}} \ldots c_{h}^{d_{h}}$ be the decomposition of k_{1} by prime factors with $d_{j} \neq 0$, for $j=1,2, \ldots, h$. Then the following conditions hold.
(1) If there is a $j_{0} \in \mathbf{N}$ with $1 \leq j_{0} \leq h$ such that $f(\{m(n)!\})\left(c_{j_{0}}\right)=0$, then $p A p$ is not isomorphic to A.
(2) If $f(\{m(n)!\})\left(c_{j}\right)=\infty$ for $j=1,2, \ldots, h$, then $p A p \cong A$.

Proof. (1) Since $f\left(\left\{k m\left(n_{1}+1\right) \ldots m\left(n_{1}+n-1\right)\right\}\right)\left(c_{j_{0}}\right) \geq 1$, we have

$$
f\left(\left\{k m\left(n_{1}+1\right) \ldots\left(n_{1}+n-1\right)\right\}\right) \neq f(\{m(n)!\})
$$

Thus $p A p$ is not isomorphic to A, by Glimm [6, Theorem 1.12].
(2) By Lemma 2.1, for any prime number r with $f(\{m(n)!\})(r)=\infty$, we have

$$
f\left(\left\{k m\left(n_{1}+1\right) \ldots m\left(n_{1}+n-1\right)\right\}\right)(r)=\infty
$$

Let r be a prime number with $1 \leq f(\{m(n)!\})(r)<\infty$. Then there is a $j_{0} \in \mathbf{N}$ with $1 \leq j_{0} \leq l$ such that $r=r_{j_{0}}$ and that $f(\{m(n)!\})(r)=t_{j_{0}}$. Since $r_{j_{0}}^{t_{j_{0}}}$ divides k and $r_{j_{0}}$ does not divide $m(n)$, for any $n \geq n_{1}, f\left(\left\{k m\left(n_{1}+1\right) \ldots m\left(n_{1}+n-1\right)\right\}\right)(r)=t_{j_{0}}$. Let r be a prime number with $f(\{m(n)!\})(r)=0$. Then $r \neq r_{j}$, for $j=1,2, \ldots, l$, and $r \neq c_{j}$, for $j=1,2, \ldots, h$, since $f(\{m(n)!\})\left(c_{j}\right)=\infty$, for $j=1,2, \ldots, h$. Hence r does not divide k. Hence

$$
f\left(\left\{k m\left(n_{1}+1\right) \ldots m\left(n_{1}+n-1\right)\right\}\right)(r)=0 .
$$

Thus $p A p \cong A$, by Glimm [6, Theorem 1.12]. Q.E.D.
Theorem 2.6. With the notations and assumptions above, let n_{1} be an integer with
 there is a $k_{1} \in \mathbf{N}$ such that $k=r_{1}^{t_{1}} \ldots r_{l}^{t_{l}} k_{1}$ and $k_{1}=1$ or $k_{1}=c_{1}^{d_{1}} \ldots c_{h}^{d_{h}}$ with $f(\{m(n)!\})\left(c_{j}\right)=\infty$ and $d_{j} \neq 0$ for $j=1,2, \ldots, h$.

Proof. This is immediate by Lemmas 2.4 and 2.5 Q.E.D.

Let A be a UHF-algebra of type $\{m(n)!\}$. We suppose that
$\#\{r \mid r$ is a prime number with $1 \leq f(\{m(n)!\})(r)<\infty\}=\infty$,
$\#\{r \mid r$ is a prime number with $f(\{m(n)!\})(r)=\infty\} \geq 1$.

By the assumptions above we may assume that, for any $n \in \mathbf{N}, m(n)$! has a prime number r as a factor with $1 \leq f(\{m(n)!\})(r)<\infty$. Let p be a projection in $M_{m\left(n_{0}\right)!}$ with $\tau(p)=\frac{k}{m\left(n_{0}\right)!}$. For the UHF-algebra $p A p$ we have the inductive system

$$
M_{k} \longrightarrow M_{k m\left(n_{0}+1\right)} \longrightarrow \ldots \longrightarrow M_{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)} \longrightarrow \cdots
$$

By Lemma 2.1 we can easily see that

$$
f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)(r)=\infty
$$

for any prime number r with $f(\{m(n)!\})(r)=\infty$. Let $r_{1}^{s_{1}} \ldots r_{l}^{s_{l}}$ be a factor of $m\left(n_{0}\right)$! with $1 \leq f(\{m(n)!\})\left(r_{j}\right)=t_{j}<\infty$ and $1 \leq s_{j} \leq t_{j}$, for $j=1,2, \ldots, l$, such that r_{j} does not divide $\frac{m\left(n_{0}\right)!}{r_{1}^{1} \ldots r_{l}^{l}}$, for $j=1,2, \ldots, l$, and r does not divide $m\left(n_{0}\right)$!, for any prime number r with $r \neq r_{j}$ for $j=1,2, \ldots, l$ and $1 \leq f(\{m(n)!\})(r)<\infty$.

Lemma 2.7. With the notations and assumptions above, if $r_{1}^{s_{1}} \ldots r_{l}^{s_{l}}$ does not divide k, then $p A p$ is not isomorphic to A.

Proof. Since $f(\{m(n)!\})\left(r_{j}\right)=t_{j}$, for $j=1,2, \ldots, l$, there is an $n_{j} \in \mathbf{N}$ with $n_{j} \geq n_{0}+1$ such that $r_{j}^{t_{j}-s_{j}}$ divides $\frac{m\left(n_{j}\right)!}{m\left(n_{0}\right)!}$. Since $r_{1}^{s_{1}} \ldots r_{l}^{s_{l}}$ does not divide k, there is a $j_{0} \in \mathbf{N}$ with $1 \leq j_{0} \leq l$ such that $r_{j_{0}}^{s_{0}}$ does not divide k. Thus

$$
f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)\left(r_{j_{0}}\right)<s_{j_{0}}+\left(t_{j_{0}}-s_{j_{0}}\right)=t_{j_{0}}
$$

On the other hand $f(\{m(n)!\})\left(r_{j_{0}}\right)=t_{j_{0}}$. Thus $p A p$ is not isomorphic to A by Glimm [6, Theorem 1.12]. Q.E.D.

By Lemma 2.7, if $p A p \cong A$, then there is a $k_{1} \in \mathbf{N}$ such that $k=r_{1}^{s_{1}} \ldots r_{l}^{s_{l}} k_{1}$. So we suppose that there is a $k_{1} \in \mathbf{N}$ such that $k=r_{1}^{s_{1}} \ldots r_{l}^{s_{l}} k_{1}$.

Lemma 2.8. With the notations and assumptions above, if there is a prime number r_{0} with $f(\{m(n)!\})\left(r_{0}\right)<\infty$ such that r_{0} divides k_{1}, then $p A p$ is not isomorphic to A.

Proof. If $f(\{m(n)!\})\left(r_{0}\right)=0$, then $f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)\left(r_{0}\right) \geq 1$, since r_{0} divides k. Thus $p A p$ is not isomorphic to A by Glimm [6, Theorem 1.12]. We suppose that $f(\{m(n)!\})\left(r_{0}\right) \geq 1$. Furthermore, we suppose that there is a $j_{0} \in \mathbf{N}$ with $1 \leq j_{0} \leq l$ such that $r_{0}=r_{j_{0}}$. If $s_{j_{0}}=t_{j_{0}}$, then $r_{j_{0}}^{t_{0}+1}$ divides k, since

$$
k=r_{1}^{s_{1}} \ldots r_{j_{0}}^{t_{j_{0}}+1} \ldots r_{l}^{s_{l}} \frac{k_{1}}{r_{j_{0}}}
$$

Hence

$$
f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)\left(r_{j_{0}}\right)=t_{j_{0}}+1
$$

Since $f(\{m(n)!\})\left(r_{j_{g}}\right)=t_{j_{0}}, p A p$ is not isomorphic to A, by Glimm [6, Theorem 1.12]. If $s_{j_{0}}<t_{j_{0}}$, then $r_{j_{0}}$ divides k, since

$$
k=r_{1}^{s_{1}} \ldots r_{j_{0}}^{s_{0}+1} \ldots r_{l}^{s_{l}} \frac{k_{1}}{r_{j_{0}}}
$$

Furthermore, since $f(\{m(n)!\})\left(r_{j_{0}}\right)=t_{j_{0}}$, there is an $n_{j_{0}} \in \mathbf{N}$ with $n_{j_{0}} \geq n_{0}+1$ such that $r^{t_{0}-s_{j_{0}}}$ divides $\frac{m\left(n_{0}\right)!}{m\left(n_{0}\right)!}$. Thus

$$
f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)\left(r_{j_{0}}\right) \geq s_{j_{0}}+1+t_{j_{0}}-s_{j_{0}}=t_{j_{0}}+1
$$

Hence, by Glimm [6, Theorem 1.12], $p A p$ is not isomorphic to A.
Next, we suppose that $r_{0} \neq r_{j}$, for $j=1,2, \ldots, l$. Then, since r_{0} does not divide $m\left(n_{0}\right)$!, we have

$$
f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)\left(r_{0}\right)=1+f(\{m(n)!\})\left(r_{0}\right)
$$

Thus $p A p$ is not isomorphic to A, by Glimm [6, Theorem 1.12]. Q.E.D.
By Lemmas 2.7 and 2.8 , if $p A p \cong A$, then there is a $k_{1} \in \mathbf{N}$ such that $k=r_{1}^{s_{1}} \ldots r_{l}^{s_{l}} k_{1}$ and $k_{1}=1$ or $k_{1}=c_{1}^{d_{1}} \ldots c_{h}^{d_{h}}$, where c_{j} is a prime number with $f(\{m(n)!\})\left(c_{j}\right)=\infty$ and $d_{j} \neq 0$ for $j=1,2, \ldots, h$.

Lemma 2.9. With the same assumptions as in Lemma 2.8, we suppose that there is a $k_{1} \in \mathbf{N}$ such that $k=r_{1}^{s_{1}} \ldots r_{l}^{s_{l}} k_{1}$ and $k_{1}=1$ or $k_{1}=c_{1}^{d_{1}} \ldots c_{h}^{d_{h}}$, where c_{j} is a prime number with $f(\{m(n)!\})\left(c_{j}\right)=\infty$ and $d_{j} \neq 0$ for $j=1,2, \ldots, h$. Then $p A p \cong A$.

Proof. We suppose that r is a prime number such that $r=r_{j_{0}}$, for some $j_{0} \in \mathbf{N}$, with $1 \leq j_{0} \leq l$. Then, since $f(\{m(n)!\})\left(r_{j_{0}}\right)=t_{j_{0}}$, there is an $n_{j_{0}} \in \mathbf{N}$ with $n_{j_{0}} \geq n_{0}+1$ such that $r^{t_{j_{0}}-s_{j_{0}}}$ divides $\frac{m\left(n_{j}\right)!}{m\left(n_{0}\right)!}$. Since $r_{j_{0}}$ does not divide k_{1}, we have

$$
f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)\left(r_{j_{0}}\right)=s_{j_{0}}+t_{j_{0}}-s_{j_{0}}=t_{j_{0}}=f(\{m(n)!\})\left(r_{j_{0}}\right) .
$$

Next, we suppose that r is a prime number with $r \neq r_{j}$, for $j=1,2, \ldots, l$. In this case we divide a proof into three subcases to show that

$$
f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)(r)=f(\{m(n)!\})(r)
$$

(i) Case of $1 \leq f(\{m(n)!\})(r)<\infty$. Then r does not divide $m\left(n_{0}\right)$!. Hence there is an $n_{1} \in \mathbf{N}$ with $n_{1} \geq n_{0}+1$ such that $r^{t_{0}}$ divides $\frac{m\left(n_{1}\right)!}{m\left(n_{0}\right)!}$, where $t_{0}=f(\{m(n)!\})(r)$. Thus

$$
f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)(r)=t_{0}=f(\{m(n)!\})(r) .
$$

(ii) Case of $f(\{m(n)!\})(r)=0$. Then r does not divide k and $m(n)$, for any $n \in \mathbf{N}$. Thus

$$
f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)(r)=0=f(\{m(n)!\})(r) .
$$

(iii) Case of $f(\{m(n)!\})(r)=\infty$. Then, by Lemma 2.1, there are countably many $n \in \mathbf{N}$ with $n \geq n_{0}+1$ such that r divides $m(n)$. Thus

$$
f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)(r)=\infty=f(\{m(n)!\})(r) .
$$

Therefore, since $f\left(\left\{k m\left(n_{0}+1\right) \ldots m\left(n_{0}+n-1\right)\right\}\right)=f(\{m(n)!\})$, by Glimm [6, Theorem 1.12] $p A p \cong A$. Q.E.D.

Theorem 2.10. Let n_{0} be a positive integer and p a projection in $M_{m\left(n_{0}\right)!}$ with $\tau(p)=\frac{k}{m\left(n_{n}\right)!}$. Let $r_{1}^{s_{1}} \ldots r_{l}^{s_{l}}$ be a factor of $m\left(n_{0}\right)$! with $1 \leq f(\{m(n)!\})\left(r_{j}\right)=t_{j}<\infty$, for $j=1,2 \ldots, l$, such that r_{j} does not divide $\frac{m\left(n_{0}\right)!}{r_{1}^{s_{1}}, \ldots, r_{l}^{\prime!}}$ and r does not divide $m\left(n_{0}\right)!$, for any prime number r with $r \neq r_{j}$ for $j=1,2, \ldots, l$ and $1 \leq f(\{m(n)!\})(r)<\infty$. Then $p A p \cong A$ if and only if there is a $k_{1} \in \mathbf{N}$ such that $k=r_{1}^{s_{1}} \ldots r_{l}^{s_{l}} k_{1}$ and $k_{1}=1$ or $k_{1}=c_{1}^{d_{1}} \ldots c_{h}^{d_{h}}$ with $f(\{m(n)!\})\left(c_{j}\right)=\infty$ and $d_{j} \neq 0$, for $j=1,2, \ldots, h$.

Proof. This is immediate, by Lemmas 2.7, 2.8 and 2.9. Q.E.D.
Let A be a UHF-algebra of type $\{m(n)!\}$. We suppose that
$\#\{r \mid r$ is a prime number with $1 \leq f(\{m(n)!\})(r)<\infty\}=\infty$,
$\#\{r \mid r$ is a prime number with $f(\{m(n)!\})(r)=\infty\}=0$.

In this case k_{1} in the statement of Theorem 2.10 is always equal to 1 , and so $p A p \cong A$ if and only if $\tau(p)=1$. By Remark 1.5 we obtain the following theorem.

Theorem 2.11. With the assumptions above, for any automorphism β of $A \otimes \boldsymbol{K}$, we have $\beta_{*}=\mathrm{id}$ on $K_{0}(A \otimes \boldsymbol{K})$.
3. Examples. Let B be a C^{*}-algebra and $M(B)$ its multiplier algebra. Let $\operatorname{Aut}(B)$ be the group of all automorphisms of B. For each unitary element $w \in M(B)$, let $\operatorname{Ad}(w)$ denote the automorphism of B defined by $\operatorname{Ad}(w)(b)=w b w^{*}$, for any $b \in B$. We call $\operatorname{Ad}(w)$ a generalized inner automorphism of B, and we denote by $\operatorname{Int}(B)$ the group of all generalized inner automorphisms of B. It is easily seen that $\operatorname{Int}(B)$ is a normal subgroup of $\operatorname{Aut}(B)$. We note that if B is unital, $\operatorname{Int}(B)$ is the group of all inner automorphisms of B, since $M(B)=B$. Let $\operatorname{Pic}(B)$ be the Picard group of B. We note that $\operatorname{Pic}(B) \cong \operatorname{Aut}(A \otimes \mathbf{K}) / \operatorname{Int}(A \otimes \mathbf{K})$.

Let A be a UHF-algebra of type $\{m(n)!\}$ and S the semigroup of automorphisms of $K_{0}(A \otimes \mathbf{K})$ defined in Section 1 .

Example 3.1. We suppose that $m(n)=k \in \mathbf{N}$ with $k \geq 2$, for any $n \in \mathbf{N}$; that is, A is a UHF-algebra of type k^{∞}.
(1) If k is a prime number, then by Theorem 2.3 we have

$$
S=\left\{\left.\frac{1}{k^{t}} \right\rvert\, t \in \mathbf{Z} \quad \text { with } \quad t \geq 0\right\}
$$

Hence the group of automorphisms of $K_{0}(A \otimes \mathbf{K})$ induced by those of $A \otimes \mathbf{K}$ is $\left\{\left.\frac{1}{k^{\mid}} \right\rvert\, t \in \mathbf{Z}\right\} \cong \mathbf{Z}$. Also, by Lemma 1.1 and $[\mathbf{8}, \operatorname{Proposition~4],~} \operatorname{Pic}(A)$ is isomorphic to a semidirect product of $\operatorname{Aut}(A) / \operatorname{Int}(A)$ with \mathbf{Z}.
(2) If $k=6$, then by Theorem 2.3 we have

$$
S=\left\{\left.\frac{2^{d_{1}} \cdot 3^{d_{2}}}{6^{t}} \right\rvert\, 1 \leq 2^{d_{1}} \cdot 3^{d_{2}} \leq 6^{t}, \quad d_{1}, d_{2}, t=0,1, \ldots \quad\right\}
$$

Example 3.2 We suppose that
$\#\{r \mid r$ is a prime number with $1 \leq f(\{m(n)!\})(r)<\infty\}=\infty$,
$\#\{r \mid r$ is a prime number with $f(\{m(n)!\})(r)=\infty\}=0$.
Then, by Lemma 2.1, $S=\{1\}$. Hence the group of automorphisms of $K_{0}(A \otimes \mathbf{K})$ induced by those of $A \otimes \mathbf{K}$ is $\{1\}$. Therefore $\operatorname{Pic}(A) \cong \operatorname{Aut}(A) / \operatorname{Int}(A)$, by Lemma 1.1 and [8, Proposition 4].

Remark 3.3. Let A be an AF-algebra by an inductive limit of finite dimensional C^{*}-algebras for which the corresponding limit of K_{0}-groups is

$$
\cdots \longrightarrow \mathbf{Z}^{2} \xrightarrow{\phi_{n}} \mathbf{Z}^{2} \longrightarrow \cdots
$$

where each \mathbf{Z}^{2} is endowed with its natural ordering and

$$
\phi_{n}=\left[\begin{array}{cc}
a_{n} & 1 \\
1 & 0
\end{array}\right]
$$

where $\left[a_{1}, a_{2}, \ldots, a_{n}, \ldots\right]$ is the continued fraction expansion of an irrational number θ. Then, in the same way as in [8], we see that if θ is not quadratic, $\operatorname{Pic}(A) \cong \operatorname{Aut}(A) / \operatorname{Int}(A)$ and that if θ is quadratic, $\operatorname{Pic}(A)$ is isomorphic to a semidirect product of $\operatorname{Aut}(A) / \operatorname{Int}(A)$ with \mathbf{Z}.

REFERENCES

1. B. Blackadar, Traces on simple AF C*-algebras, J. Funct. Anal. 38 (1980), 156-168.
2. B. Blackadar, K-theory for operator algebras, (M. S. R. I. Publications, SpringerVerlag, 1986).
3. L. G. Brown, Stable isomorphism of hereditary subalgebra of C*-algebras, Pacific J. Math. 71 (1977), 335-348.
4. E. G. Effros and C. L. Shen, Approximately finite C^{*}-algebras and continued fractions, Indiana Univ. Math. J. 29 (1980), 191-204.
5. G. A. Elliott, D. E. Evans and A. Kishimoto, Outer conjugacy classes of trace scaling automorphisms of stable UHF-algebras, preprint.
6. J. Glimm, On a certain class in operator algebras, Trans. Amer. Math. Soc. 95 (1960), 318-340.
7. K. Kodaka, Automorphisms of tensor products of irrational rotation C^{*}-algebras and the C*-algebra of compact operators II, J. Operator Theory $\mathbf{3 0}$ (1993), 77-84.
8. K. Kodaka, Picard groups of irrational rotation C*-algebras, J. London Math. Soc. (2) 56 (1997), 179-188.
9. K. Kodaka, Full projections, equivalence bimodules and automorphisms of stable algebras of unital C*-algebras, J. Operator Theory 37 (1997), 357-369.
10. G. K. Pedersen, C*-algebras and their automorphism groups (Academic Press, 1979).
11. M. Pimsner and D. Voiculescu, Imbedding the irrational rotation C^{*}-algebra into an AF-algebra, J. Operator Theory 4 (1980), 201-210.
12. M. Rørdam, Classification of certain infinite simple C^{*}-algebras, preprint.
