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Abstract

We discuss intersections of subnormal subgroups and formation projectors in finite (not necessarily
soluble) groups.

1980 Mathematics subject classification (Amer. Math. Soc.): 20 D 10.

In [8] Huppert has shown that F n NM = ( F n N)(F n M) for each .^projec-
tor F and all normal subgroups N, M of a finite soluble group, and he has
derived some consequences of this property of .^projectors. Apart from a few
miscellaneous results (in Section 1) and a general lemma on Schunck class
projectors (in Section 2), in the present paper we are mainly concerned with
improving Huppert's results from Section 2 of [8] and generalising them to
arbitrary finite groups, for which purpose we have to apply the theory of
projectors in finite groups as developed in [3]. Therefore the reader is assumed to
be familiar with definitions and results from [3]; furthermore, the notation used in
the present paper is as explained in [3].

1. Subnormal subgroups and Schunck class projectors

One of the main results of [3] (namely, 4.2) states that Projj£.(<7) ¥= 0 for any
Schunck class J(? and each group G, where

Proji (G) = { H < G\N0,Nlt...,Nm< G, N0<G, Ni+1<HNt

(i = 0, . . . , m - 1) ^ H e ?xo}AHNm)}.
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32 Peter Forster [21

Basically, the definition of H e Proj^(G) says that firstly, H
whenever N<G, and secondly, that this property is inherited by H, HN (in place
of H, G). Here we shall prove the following refinement.

1.1. PROPOSITION. Let Jf? be a Schunck class, suppose that G is a group with
subnormal subgroup S, and let H e Proj\J,(G). Then H e Proj.J>«i/,

PROOF. By way of contradiction assume that G is a counterexample of least
order, and let M be a minimal normal subgroup of G. From HM/M e
Proj^(G/M) and from SM/M<<G/M we get

(*) HM/M <E Proji ((H, S)M/M).

As H e PTO&(HM), this together with [3, 3.3] yields that H e PTO&((H, S)M)
for all minimal normal subgroups M of G. In case that (H, S)M < G for some
M, the desired contradiction is a consequence of our choice of G. Therefore,
suppose that (H, S)M = G =£ ( # , 5) for each minimal normal subgroup M of
G. By [3, 1.1], G is necessarily primitive. In addition, if G e ^ , U ̂ m , then
(H,S) is a maximal subgroup of G which complements each minimal normal
subgroup. In view of the canonical isomorphism G/M = (H, S)M/M = (H, S),
a contradiction emerges from (*). Hence G e ^ n . Then from S n M<<M we see
that either S = 1, or that S (~\ M contains one of the simple direct factors of M,
in which case G = (H,S)M = (H,S). In both cases, however, i / clearly belongs

Recall that a Fitting class is a class ^ of finite groups which is closed under
taking subnormal subgroups and normal products; moreover, the set of ^injec-
tors of a finite group G is defined to be

Injjr(G)= { F < G | f n 5 e Max^ (5) for each S<<G).

Clearly, if Inj^-(G) * 0 for all G e S, then ^ must be a Fitting class, whereas
the converse apparently does not hold true.

1.2. THEOREM. Let & be a Schunck class as-well as a Fitting class. Then
Proj^(G) = Inj^G) for each G e £ if and only if &= {1}, J^= Sp for some
prime p, or &= S.

PROOF. Clearly, &= Q&= Sn&= P2 (where J^= J*"2 is a consequence of
Projjr= Inj^-); and any class & satisfying these conditions may be written as
&= Sx, the class of all finite groups all of whose composition factors belong to
2C, where 3C is the class of all groups occurring as composition factors of groups
in &. We aim to show that either 9C= 0, %= {Cp} for some prime p, or 3C
comprises all finite simple groups (including those of prime order).
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[ 3 ] Subnormal subgroups and formation projectors 33

It is well known that for each non-abelian finite simple group E, and for every
prime p dividing \E\, there is a group E9 p such that E^ p/<^(E^ p) = E, and
O ( £ $ / , ) # l i s a />-group (see, for example, [6]). Therefore, if IT is the set of all
primes dividing the orders of JEgroups, then E9&= Q&= Sn&= No&= &
shows that Sp c & for all p e m, and then &2 = & gives £fw c Sfv&= &<z Sw.

Next we claim that for any simple group E, Max^-(is) is a set of isomorphic
subgroups of E; and we observe that it suffices to prove this assertion in case that
|TT| > 2. As soon as this assertion will have been proved, the proof of the theorem
can be completed as follows. From ^ c ^"c Sv and the assertion, one derives
easily that Maxjr(£) = Injjr(£) coincides with Hall^(£), whence \ir\ > 2 im-
plies that 7T contains all primes (cf. [4, 4.1], which, by virtue of the proof given in
[4], still holds under the present weaker hypothesis). This in turn gives E e
Hallw(£) = Injjr(£) c & for every finite simple group E, and we are done.

In order to prove the above claim we assume that £ is a simple (necessarily
non-abelian) group with two non-isomorphic ^maximal subgroups A and B. We
shall consider the regular wreath product

and we shall employ the usual notations; specifically, if D < E, then D, denotes
the subgroup of Et (the ith component of the base group E* = Exx • • • xEp)
which is isomorphically mapped onto D by the canonical isomorphism from Et

to E. Now note that {1, E*,X) is the set of all normal subgroups of X. Hence
any ^maximal subgroup of X containing an J^injector of E * is an ^injector of
X. We can find an ^injector of E* = E1 X • • • XEp by taking ^injectors Ft of
Et (i = 1, ...,/>) and forming their direct product: this assertion follows easily
from J*"= Q&. Furthermore, the ^injectors of the simple group E are precisely
its ^maximal subgroups. Hence, taking F1 = A1 and Ft = Bt (i = 2,..., p), we
see that there is some F e Injjr(Z) such that Fn E* = Fxx ••• xFp = A1X
B2X ••• XBp. From X/E* = C f e ^ we get that X = FE*, whence F per-
mutes transitively the simple direct factors of E*, and so acts transitively on
{F1,...,Fp}. This yields the contradiction that B = B2 — A{ = A for some

Observe that in the above theorem we did not require .^projectors (or
.^injectors) to form a set of conjugate subgroups.

The next theorem generalises results of Huppert [8] and Ti Yen [13] on finite
soluble groups.

1.3. THEOREM. For a Schunck class 3V the following three statements are
equivalent.

(i) je= R0JT.
(ii) H n NXN2 = (Hn N^H n N2) whenever H e Proj^(G) andNv N2<G.
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(iii) H n NXN2 = (H n N^H n N2) whenever Gisa group such that Cov^G)
* 0 , H e Cov^(G), andNv N2<G.

PROOF, (i) => (ii). This is shown in much the same way as [8, 2.1], except that
one has to appeal to [3, 6.1a] in order to show that H e Proj^(G) and N<G
imply that H e Projjr(fflV). Indeed, in the crucial step of the proof this property
of projectors for saturated formations is necessary in order to derive that
G = HNX = HN2, after N1C\ N2 = \ has been seen by means of a rather formal
argument, using induction on \G\.

(ii) =» (iii). This is trivial.
(iii) => (i). Assume that R0J(f¥= 3V and choose G e R0J(f\Jlf of least order.

Then there are two distinct minimal normal subgroups of G, Mx and M2 say,
such that G/Af, e j f (/ = 1,2). Moreover, there exists N<G such that G/N e
b(3V). Clearly MtN/N is a minimal normal subgroup of G/N, and MtN = Mt X
N.

If G/N e ^ " j , then we let H be a maximal subgroup of G with coreG(/f) = N,
and from G = HMt we see that i / e Projjr(G) (using [3, 5.6a]). Thus H e
Cov^G) is a consequence of maximality of H in G. This yields the contradiction
that H n M1M2 >NH MXM2 * 1 = (N n MjXJV n A/2) = ( # n MiXtf n
Af2). A similar argument applies if G/N e ^ I n , since then H again complements
both Mx and Af2 and is maximal in G. Thus G/N e ^ n , and we get a
contradiction as follows (cf. [3,1.1b]):

JV = CG(MtN/N) > M3_tN = MtN (i = 1,2).

In view of the above theorem, it is clear that for any saturated formation &,
each finite group G has a unique largest normal subgroup T^G) the intersection
of which with each element of Projjr(G) is 1; note that Proj£ = Proj^ for
saturated formations !F [3, 6.1a]. Clearly Tjr(G) is a characteristic subgroup of
G.

1.4. COROLLARY. T^G) < G^, 13,{G)N/N < T^(G/N), and
Ty{G)/Nfor all N<G contained in T

PROOF. Since F e Projjr(G) covers G/G*, we have
n T

^ ) ( ^ ( ) n F ^ G ^ n F ) G ^ = T^(G) n
If iV<G, then

) n FJV/JV = Cl>(G)# n

n /") (# n F)JV/iV = N/N;
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if, in addition, N < 1>(G), then we put T/N = T^(G/N) and get

TDF^NnF^ 1>(G) n f = l ,

whence T < T

Huppert [8] has asked whether there is a neat description of TJF(G). Indeed,
one might wonder whether Tjr(G) is a "pregroup functor" (see [12]); i.e., does
there exist a "subgroup functor" fy such that T^(G) = coreG(F) for any
F G /jr(G)? (A subgroup functor / associates to every group G a set /(G) of
subgroups of G such that f(G/N) = f(G)N/N for all N<G.) However, even for
finite soluble groups there is no such fy.

1.5. EXAMPLE. Let G = SL(2,3), and let J/~ be the class of all nilpotent groups.
Then there does not exist a subgroup F of G such that T^-(G) = corec(F) and
T>(G/Z(G)) = corec/Z(G)(FZ(G)/Z(G)).

As observed in [8], from 1.3 one gets the following

1.6. COROLLARY. Let & be a saturated formation. For each F e Proj^G),
define a map <$ from the lattice of normal subgroups of G to the lattice of normal
subgroups ofFby $G

F(N) = F n N (N<G). Then <t% is a lattice homomorphism.

Huppert [8] then goes on to give a partial answer to the question of surjectivity
of <f>% which was raised in view of some results of Wielandt [14]. In Section 3 we
shall give a generalisation of Huppert's [8, 2.7] (or rather of what emerges from
Huppert's proof of [8, 2.7]). Prior to that we have to add a result on the basic
properties of projectors to those contained in [3].

2. A lemma on projectors

The introduction in [3] of Projj^(G), and the characterisation of Schunck
classes Jt? by the property that ProjJ^(G) ^ 0 for all groups G, was aimed at
providing a substitute for CoVj^G) (which may be empty), so that in proofs of
statements relating to Schunck classes and their projectors induction would
become a more powerful tool: not only can one pass to quotients of G, one can
also pass to a sufficiently large set of subgroups of G when dealing with elements
of Projj^(G) rather than Projjr(G). Here we supplement the results from [3] by
showing that' + -projectors' of the subgroups X of G involved in the definition of

(i.e., ' +-projectors' of those X^G which are required to satisfy

https://doi.org/10.1017/S1446788700033930 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700033930


36 Peter FSrster [61

H e Vrojjp(X) in order that H < G be in Proj^(G)), and the subgroups X
themselves, enjoy some more useful properties.

2.1. PROPOSITION. Let 34? be a Schunck class, and let X ^ G be such that
(i) H < X for some H <= Proj^,(G), and
(ii) X = HNm, where Nlt...,Nm^G satisfy Nt4G, Ni+1<HNt (/ = 1,.. . ,

m - 1).
(a) (H e ) Proj^(X) c Proj+,(G), a«J P ro j^* ) c Proj^G).
(b) IfY^Xis such that

(i') AT < y /or some AT e Proj>( AT), a/w/
(ii') Y=KMn, where Mlt...,MH<X satisfy MX<X, Mi+l<KMi (i =

1,..,«-1),
then we have Y = KLm+n, where Lt = Nlt...,Lm = Nm, Lm+l = Mlt...,Lm+n

= Mn satisfy LX<G, Li+1<KLt (i = 1 , . . . , m + n - 1).

(Note that the (trivial) special case of (b) when H = K asserts just the defining
property of Projj^(G) as a subset of Projjr(G).)

PROOF, (a) Induction on m justifies the assumption that m = 1: note that
H e Projj^iflV,) (i = 1,. . . , m). That is to say, X = HN for some N<G; in
particular, X/N = HN/N e Proji(G/2V). If L e ProJi(A'), then [3, 3.3] may
be applied to show that L e Proj^.(G).

Since Projj^. < Projj^, the same argument works with L e Projjr(X) instead of

(b) X/iVm = HNJNm e e { ^ } c j f a n d ^ G Proji( Jf) yield that X = KNm.
From HNm_i = HNmNm_1 = JQVm_lf i.e., Z = /?(Z n ^ . 0 , we conclude simi-
larly that X = A:(Z n #„,_!>, and «Vm_x = XNm_x = HN^. More generally,
induction proves that KNt = XNt = HNt, i = 1,. . . , m. It remains to observe that

3. Formation projectors and normal subgroups

In this and in the next section, & shall always denote a saturated formation,
X ( ^ ) shall be its characteristic, and -^(p) its full and integrated /?-local
definition.

Moreover, we shall frequently, and without further reference, exploit the fact
that Projjr= Projjr, which follows from b(&) n &>m = 0 (cf. [3,1.1b]).

Before stating our first main result, (namely, 3.3 below) we shall record a
consequence of the situation that is dealt with in that theorem.
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3.1 LEMMA. / / G is a group with the property that F n G ^ = 1 for each
F e Projjr(G), then Proj^G) = Cov(G).

PROOF. Let F e Projjr(G); we must show that F e Covjr(G). We may, of
course, assume that G^# 1, and choose M < Gy minimal normal in G. By
means of induction on \G\, [3, 3.3] applies, showing that we may, in fact, assume
that M = Gy; note that (FM)*< M. Now let F < U < G; we have to verify
that 1/ = FU* Since l//f/ n G ^ s UGsr/G^= FG*r/G*= G/G**- JF, it fol-
lows that f/JF< 1/ n G^. If U*= (/ n G^, then Dedekind's identity gives the
desired result, while U* < U n G"̂  forces any ^projector V of 1/ to intersect
£/ n G^ non-trivially; any Fo e Maxjr(G) containing F, however, is already an
^projector of G ([3, 5.5]; we have observed above that b(&) n &m = 0 ) , yet

Our proof of 3.1 clearly relies on the hypothesis being a condition on all
^projectors, although we do not know of a counterexample against the corre-
sponding statement with respect to a fixed ^projector.

3.2. REMARK. If Fn G^= 1 for each G && and each F e Proj^G), then
J*"= {1} or&=S.

PROOF. Unless &= {1}, there exists a prime p such that Cp, the group of order
p, belongs to !F. Considering ^"# {1} only, we shall show that b(^) D ^ n = 0 .
This will yield the desired conclusion, for in this case G e / implies that
f - v G e f for any non-abelian simple group E (where ^ denotes the regular
wreath product), and thus G e &(q) for each prime q, which together with
b(^) C\9>n= 0 forces b(&) to be empty.

If G e b(^) n ^ and F e Proj^(G), then there exists a faithful, irreducible
GF(/>)[G]-module V such that VF possesses a trivial irreducible submodule T.
Therefore, letting H be the semidirect product GV, we have that H*= S(G)F
and FT n /f ̂  = T * 1, and yet FT = F X Cp e& is contained in an ^projec-
tor of # , which is a contradiction.

3.3. THEOREM. Lef G be a finite group. Then the following four statements are
equivalent.

(i) F n G*= 1 /or a«y F e Projjr(G).
(ii) F n 1/^=1 whenever F e Projjr(G) and F ^ U < G.
(iii) </>̂  w surjective for any F e Projjr(G), a«rf G doej no/ involve a section X/Y

such that
(1) there exist Nlt...,Nm^ G andF* e Proj^r(G) satisfying N^G, Ni+1<F*Nt

(i=l,...,m-l)andX= F*Nm, and
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(2) (2a) S(X/Y) = S(F*Y/Y) = (F*Y/Y) n (X/Y)* is a minimal normal
p-subgroup of F *Y/Y for some prime p, and (X/Y)*/S(X/Y) is a minimal
normal p'-subgroup of (X/Y)/S(X/Y) with AatF.((X/Y)*/8(X/Y)) $
<F(q) for all qe ^([X/Y]*/S[X/Y]), or
(2b) S(X/Y) = (X/Y)* is a non-abelian minimal normal subgroup of X/Y,
and S(F*Y/Y) = F*Y/YC\ S(X/Y) is the unique minimal normal sub-
group of F*Y/Y.

(iv) 4>$ is surjective for any F e Projjr(G), and G does not involve a section X/Y
such that (2) holds for some F* e Proj^(G) contained in X.

PROOF, (i) => (ii). This is a trivial consequence of U* < U n G*.
(ii) =» (iv). Surjectivity of <$ is evident from G = FG* and F n G*T= 1. If

Y<X < G and if F* G Projjr(G), then we may apply 1.3 to get that

F*Y/Yn(z/y)jr= F*Y/7n X*Y/Y = (F* n jsf')(F*n y)y/r= 1.
Hence (2) is not valid for X, Y, F*. (Note that 3.1 ensures that 1.3 is indeed
applicable, whence F* e Projjr(^).)

(iv) => (iii). (iii) is a special case of (iv).
(iii) => (i). From 2.1 one deduces easily that the condition that G must not

involve a section X/Y satisfying (1) and (2) is inherited by any H < G such that
H = F*Ln for some F* e ProjJF(G), LX<G, Li+1<F% (i = 1,. . . , n - 1). Since
<f>" is clearly surjective whenever F < H < G and F e Proj^(G), we may apply
2.1a to get that Proj^(#) c Projjr(G) for all H ^ G, subject to the aforemen-
tioned condition, thus proving the surjectivity of $" for all F e Projjr(^) for
these subgroups H of G. Therefore (iii) is inherited by all such subgroups H of G
and is readily seen to be inherited by quotients of G as well.

Now choosing G as a counterexample of least order, with ^projector F such
that F n G** 1, we see that

F*K/Kn(H/K)*r= K/K (or equivalently, F* n /fJF<
AT) whenever .ff/K is a proper section of G such that

(*) H = FfLB for suitable Lv...,Ln4: G, where F* e Projjr(G)
satisfies L^G, LI+1<F*L, (i = l , . . . ,n - 1), and F* e
Proj^tf) .

As in Huppert's proof of [8, 2.7], this together with 1.3 can be applied to infer
that

S = S(G) is minima! normal in G, and F n S = F n G # > l ;
(**) moreover, F Pi S(G) = S(F) is the unique minimal normal

subgroup of F.

Next we claim that

(***) G*/S is minimal normal in G/S.
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Assume this to be false, and note that S < G*\ otherwise a contradiction
against the Galois-Ore Theorem (in case that S is abelian) or the non-existence of
a section X/Y satisfying (1) and (2b) (in case that S is non-abelian) would
emerge; in the latter case (**) has to be applied. Therefore we may consider a
normal subgroup N of G such that S < N < G*. We put H = FN and let E be
the characteristic of S (i.e., the simple component of S). In view of (*), FS < G
and F e Proj^(FS) yield that FS = FiFS)*and F n (FS)*= 1; in particular,
S = (Fn S^FS)* is a split extension. Hence F n S = S/iFS)* is a direct
product of copies of E. The same argument may be applied to H instead of FS,
giving H = FH*, F n H*= 1, N = (F n iV)//^ (where F n N = F (~\ S), (F
nN)n HSF= 1, and N/H*= F n N = F n S e D0{E). Therefore jVc<>{£} j s

a normal subgroup of G contained in H*, whence H*C\ S = (FS)*< S to-
gether with (**) forces ND<>{E] to be trivial; that is to say, N = E X ••• XE.

Case 1. E is a group of prime order p.
Now S(F), the unique minimal normal subgroup of F, is a />-group, whence

Op,(F) = l and F<E&(p). However, we have that H = FN, where f e
/ / ) and N < Op(^), from which we see that H = FN e SpS^{p) =
Q&r coincides with f, which violates FC\N = F(^G^=Fr\S^S<N

(see (••)).

Case 2. £ is non-abelian.
Now N = EX •• • XE is necessarily a direct product of minimal normal

subgroups of G, which is a contradiction against S(G) = S < N.
Thus (***) holds, and we are left to show that 5 is abelian, and that G*/S is a

w(5)'-group. In view of (**) and (***), this would produce a contradiction
against (***), since in this case X/Y = G/\ would satisfy (1) and (2a), as we
shall see below.

First assume that S is non-abelian, say of characteristic E. We have shown
above that F C\ S e Q{S} Q Da{E], and so we may infer from (**) that
F e &(q) for each q e ir(E). Since we could have chosen F subject to the
condition that \F n G*\ be maximal we obtain a contradiction by considering
some Fo e Projjr(Nra(i))) for a non-trivial P e SylpdFS)*). Indeed, Fo covers
FS/iFS)*^ F e &(p) (for it covers Nra(P)/Nra(i>) n ( i t f ) ^ FS/(FS)*),
it intersects (FS)* non-trivially, and it is contained in an ^projector of FS and
thus of G (cf. [3, 5.5]).

This proves that S is an elementary abelian p-group for some prime p.
Consequently, FS e £p&(p) c Jf, and hence FS = F.

Further, as f e f ( / i ) , a similar argument applied to G^/S in place of S
yields that the former group is a />'-group: simply consider a minimal supplement
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H/P of (NG(i>) n G*)/P in N G (P ) /P , where P/S is a Sylow /^-subgroup of
G*/S, and then observe that (H n G*)/T < $(H/P) and # / # n G^s F/S.

Finally, another argument of the same kind shows that AutF{G^/S) £ ^{q)
for each q e ir(G*/S).

3.4. REMARK. /« statement (iv) 0/ 3.3, condition (2a) way Z>e modified by writing
'q-subgroup (q ̂  p a prime)' instead of 'p'-subgroup'. This can be shown by
means of 3.1 together with the elementary properties of projectors and covering
subgroups for saturated formations described in [3, Sections 3 and 5].

3.5. COROLLARY. Suppose that & admits a local definition f such thatf(p) = f(q)
for all primes p, q.

( a ) F n G ' = l for each F e Proj^-(G) if and only if for each F e Proj^G),
<j>F is surjective, and for every X s£ G containing F and satisfying X = FNm for
suitable subgroups Nv...,Nm^G such that N^G, Ni+1<FNt (i = 1,. . . , n - 1),
and for every Y<X, X/Yis not a group in b{&) n 0>1Y with FY/Y n S(X/Y) =
S(FY/Y) minimal normal in FY/Y.

(b) IfG^Sfor &<z y, then F C\G*=\for each F e Projjr(G) if and only if
<$>G

F is surjective for each F e Projjr(G).

PROOF, (a) is easily derived from 3.3, for a section X/Y of G satisfying (1) and
(2a) would violate f(p) = f(q): the Frattini argument, applied to H/Y e
HaH^iX/Y^/SiX/Y)) would yield that X/Y, F*Y/Y e &lt whence
(F*Y/Y)/S(F*Y/Y)ef(p)=f(q).

(b) If G <E S?, then G'S't0} n ^ n = 0> whence the result is immediate from
(a).

Now suppose that ^"c 9>. It will suffice to show that a group H e fc(if') n ̂ n

such that for any F e Projjc(/f), F n S(i/) is the unique minimal normal
subgroup of F or is 1, and F n S(H) # 1 for at least one such F, cannot exist.
By the way of contradiction, let H be such a group and choose F e ProjV(i/)
subject to the condition that \F n S(H)\ * 1 be minimal. Since F e J^c y , it
follows that S(.F) = Ff l S(#) is an elementary abelian p-gcoup for some prime

P-
Put A" = NH(S(F)) > F. Then F < K: indeed, otherwise S(F) = F n S(^) =

A" n S(/f) = N ^ ^ ^ ^ F ) ) would be a self-normalising abelian Sylow /^-subgroup
of S(H) = S(H)', which contradicts a well-known result of Burnside. Now we
can choose L < K containing F as a maximal subgroup. Put T = L n S(H), and
note that 7 /S(F) is a (necessarily minimal) normal subgroup of L/S(F) which
is complemented by the maximal subgroup F/S(F). By Lemma 3.12 below,
F/S(F) G &c. Sf implies that 7/S(F) is elementary abelian, say of characteris-
tic q. As Op,(F) = 1, F e Projjr(^) belongs to &{p), from which q # p is
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immediate. Let Q e Sylq(T). By the Frattini argument, L = NL(Q)T =

Case 1. fiL(Q) < L.
In this case F = NF(Q)S(F) ¥= NF(Q), and so the unique minimal normal

subgroup S(F) of F is complemented. Therefore F is a primitive soluble group
and, in particular, F/S(F) = F/CF(S(F)) e/(/>) = / (?) . We conclude that
L/S(F)= (F/S(F))(0S(F)/S(F)) is in &, too. Hence any F* e ProjJF(L)
covers 7yS(F); without loss of generality Q < F* for some F * e Proj^L).
Clearly, F * is contained in an ^projector F* of H [3, 4.1]. Moreover, F* Pi
S(H) > F * n r > g # l , whence F* n S(.//) is a minimal normal ^-subgroup
of F*. Since F* = F*(S(#) n F*), and since F* acts irreducibly on Q < F* n
S(i/), we must have that F* n S(H) coincides with Q, i.e., F* = F* ^
Proj^H). Since L/C, where C = coreL(NL(Q)), is a primitive soluble group
with minimal normal subgroup S(F)C/C, and since Q = QC/C (for £> < C
would yield that [Q,S(F)] = 1 and L = NL(Q)S(F) = NL(Q)), we get from
Gaschiitz [7] that \Q\ < |S(F)|. This yields a contradiction against our choice of
F: F* G Proj^(/0 satisfies 1 * |F* n S (^ ) | = |<2| < |F n

2.
In this case L = FQ is a split extension. If S(F) ^ $(F) , then F would be

primitive, and an argument as before would show that Q was an ^central
minimal normal subgroup of L, from which L G ^ " would follow. This con-
tradicts L> F& Proj^tf). Hence S(F) < $(F) . Since S(F)<K, we have
S(F) < $(A"), too. Now, if S(F) £ S y l / S ^ ) ) , we could have arranged for L
to be a subgroup of Nff(Op(F)) (which is contained in N/f(S(F)), for S(F) =
Op(F) n S(tf)). Therefore we may assume that S(F) e Syl/)(S(i/)), or that
L < NW(O,(F)). In the former case, N ^ ^ F ) ) = S(F) X Oy(NS{/f)(S(F))),
because S(F) < $(NH(S(F))) permits application of the Frattini argument,
giving that a Hall /^'-subgroup of the (^-soluble) group NS(//)(S(F)) is normal in
K. Now we see again that S(F) e Syl/)(S(/f)) is contained in ^ N ^ ^ ^ ^ F ) ) ) ,
which contradicts Burnside's Theorem as above. Thus we are left with the case
L < NW(O,(^)), in which we see that L/CL(Q) s F/CF(Q) e Q{F/Op(F)}
c QRof(p) = f(p) = f(q). Consequently, Q is ^central in L, and we have
L G / , which we have already seen to be impossible.

3.6. REMARK. A saturated formation & admits a local definition f with f(p) =
f{q) for all primes p, q, if and only if&= j^Jt? for a suitable formation J(f.
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PROOF. If f(p)=f(q) for all primes p, q, then clearly JTsfQ LF(f)
where JT= /(/?) n J*" for all primes p. Also .Fn 6(^TJf) = 0 , since G e
Z>(^Of) c ^ , u # n (JTJC is a saturated formation) should satisfy G/CG(S(G))
e J?7. Conversely, if &= JfXP, then we may take /(p) = Jf for all primes p.

Since Proj^G) = Projjrn#,(G) for all G e y , the part of 3.5b dealing with
G e y is a (fairly easy) special case of the part dealing with ^"c Sf; in view of
the conjugacy of all ^projectors of a finite soluble group, the former result is just
part (A) of Huppert [8, 2.7].

Part (B) of [8, 2.7] gives the same conclusion, but the condition on local
definitions of & is replaced by the requirement that & be closed under taking
subgroups and, in addition, contain Aat(H/K) whenever H/K is a (soluble)
chief factor of some ^group. This hypothesis, however, requires either that &
contain no non-supersoluble groups, or that &*= S. Indeed, if a non-cyclic
abelian group is a chief factor of an ^group, then GL(«, p) e & for some prime
p and some natural number n # 1, and for each natural number m we infer that
Gm = GL(n, p) X — X GL(n, p) e &(p). Consequently, GmVm e & for ev-
ery irreducible GF(/?)[Gm]-module Vm, and here m can be chosen with d =
dimGF(/))J^, being arbitrarily large. Finally, Sd < GL(d, p)G& for any (suffi-
ciently large) d and !F= S& yield the desired conclusion: observe that either
^"c Sf or that there is an ^group with abelian chief factor of rank greater than 1
(e.g., a suitable Frattini extension of a group from &c\ &n).

When &= S, Huppert's result is trivial, while the case when !F consists of
supersoluble groups can be handled easily, using 3.3.

We record another consequence of 3.3; a different proof of this result will be
given in [2].

3.7. COROLLARY. <f>£ is surjective for each finite group G and every F e Proj^G)
if and only if &= {1} or&= S.

PROOF. Aiming at an application of 3.3 and 3.2, we shall prove that a triple G,
H = X/Y, and F = F*X/Y as in condition (iii) of 3.3 cannot exist. If H and F
are such groups, however, we may form the regular wreath product H * = E^H,
where E = PSL(2,/?2) for some p e ir(S(F)). Let P e Syl/>(£). Then FP* e
fp&iP) ^ & is contained in an ^projector F* of H*. Since P is not contained
in any non-soluble proper subgroup of E, from the surjectivity of </>£» it is easy to
deduce by means of [4, 4.1] that F* = FP* with minimal normal subgroup P*\
but this is absurd, for we have P* = © GF(p)[F] with n ¥= 1.
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An examination of the first part of the proof of 3.3 provides a proof of the
following reduction theorem (from which the reader may derive an analogue of
3.5).

3.8. COROLLARY. Let F e Prqj^(G). Then the following two statements are
equivalent.

(i)fn G*= 1.
(ii) 4% is surjective, and G involves no section X/Y such that F e Projjr( X), and

such that
either S(X/Y) is minimal normal in X/Y, S(FY/Y) is minimal normal in
FY/Y, and (X/Y)*/S(X/Y) is minimal normal in (X/Y)/S(X/Y),
or X/Y <E b{&) n ^ n and S(FY/Y) = FY/Y n S(X/7) is minimal nor-
mal in FY/Y.

3.9. EXAMPLES. (1) Let J^= h(B) (= {F e S\B £ Q{F}}), where B e 0>n

has a maximal subgroup F complementing the non-abelian unique minimal
normal subgroup S(B) of B. (Examples of such groups B have been constructed
in [5].) Then FeProj j r(5) , and F n B*= F n S(B) = I, but there is an
F* G Projjr(fi) such that F* n B** 1.

By Kovacs's Theorem in [5, Addendum], we have B = E^NF, the twisted
wreath product, where F is a group with subgroups X and Y such that Y<X,
X/Y = E is simple, coref(X) = 1, and X < K whenever K > Y is a subgroup
of # normalised by N = N^-Y) n NF(y). (There are two misprints in the
statement of Kovacs's Theorem in [5]: in the first line, lX<Y' should read
'Y<X\ and in the third line, 'X' should read 'N = NH(X) n NH(r)'.)

As Lafuente [10] has observed, F is necessarily a primitive group of type II,
and S(F) involves a section isomorphic to E (consider K = YM, where M is a
minimal normal subgroup of F). Now consider NB(P), where l # P e
Sylp(S(B)), and use the fact that N ^ P ) / ^ , ^ ) = 5 /S(5) = f £ &(p).

(2) Let ^" be the class of all /7-groups for a prime />, and let £ be a
non-abelian finite simple group with Sylow /^-subgroup of order p. Then <j>f is
surjective for each P e PTO)JT(E) = Sylp(E), but £*"= E, and P n £̂ =sfc 1.

Therefore the hypothesis concerning the sections X/Y of G which satisfy (1)
and (2b) in our Theorem 3.3 is not redundant. Similar examples may be found to
show that the hypothesis concerning sections which satisfy (1) and (2a) must not
be omitted.

Incidentally, 3.9(2) also provides a counterexample to 2.8 of Huppert [8].
Adding the hypothesis of /^-solubility, however, leads to a correct statement:

3.10. PROPOSITION. Let F e Proj^(G) = Sylp(G), where G denotes a p-soluble
group. If <$>G

F is an epimorphism, then G e Sp,SpSp,.
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PROOF. Since the hypothesis is inherited by quotients of G (which we have seen
previously), a counterexample G of least order is a />-soluble group in b($p,$p£p,),
and it satisfies Op,(G) = 1. Hence G = HV is a split extension, where H e
Sp'SpSp,\SpSp, acts faithfully and irreducibly on its module V over GF(p). In
order that 4% be surjective, F = O p ( G ) < i r has to be cyclic, in which case
H = AutG(F) is isomorphic to a //-group (namely, a subgroup of the cyclic
group of order p — 1). Thus we have obtained a contradiction.

To conclude this section, we briefly comment on the injectivity of $>%

3.11. PROPOSITION. The following statements are equivalent.
(i) b(&) does not contain a primitive group the socle of which is complemented by

a maximal subgroup.
(ii) F n S(G) * 1 for each G e b(&) and every F e Projjr(G).
(iii) tfjr is injectivefor each G e ^ and every F

(Note that any of the above three conditions immediately implies that
^ii-)

PROOF, (i) =» (ii). Assume that G ^ b(S^) is & group of least order such that
F n S(G) = 1 for some F e Proj^(G). Let F < / / «s G with F maximal in # .
From G = FS(G) and F n S(G) = 1 we deduce that J/ = F(/f n S(G)), where
/ / H S(G) is minimal normal in H and intersects F trivially. In this situation it is
easy to see that F e Projjr(#). Consequently, H/coieH(F) e ft(^) has a
maximal subgroup F/coreH(F) e Projjr(/?/core//(F)). This contradicts either
(i) (if H = G) or the choice of G as a minimal counterexample (if H # G).

(ii) => (iii). Let the pair F, G be a counterexample such that \G\ is minimal.
Then there are X,Y<G satisfying Fn X = FnY and X* Y. Replacing Y by
X n y, we see that y < X, and then we may suppose that Y = 1. Furthermore, as
Ff l J f = F n y = 1 and F e Proj^FX), X is minimal normal in G = FX, and
X = G*! Now it is easily seen that G/coreG(F) is primitive (although F is not
necessarily maximal in G), and that it belongs to b(^). Finally, upon observing
that G/coreG(F) is a counterexample, too, we obtain a contradiction to (ii).

(iii) =» (i). This is trivial.

The following lemma contains some elementary information on those groups
mentioned in 3.11(i) whose socle is non-abelian. (A more complete result, due to
Kovacs, is formulated in [5]; see also [9].)

3.12. LEMMA. Let G = FM be a group with maximal subgroup F complementing
the nonabelian minimal normal subgroup M of G. Let M = E1X • • • XEn be the
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decomposition of M as a direct product of simple groups Et = E, and put N =
tiF(Ej). Then, to within isomorphism, we have G = E^NF, the twisted wreath
product with respect to the given action of N on E = Ev Moreover, AutN(E) =
N/CN(E) is isomorphic to a subgroup of Aat(E) which contains Inn(£) (and
hence is non-soluble).

PROOF. That G = E^N F is well known (cf. [11]). For the sake of simplicity,
we assume that G = E^, NF, where F is the canonical complement of the base
group E * = M of G.

Put H = NE^G and H = H/C, where C = CN(E). We shall adopt the
usual bar convention with respect to subgroups of H. Now note that E is
minimal normal in H, for otherwise we could find a proper subgroup D^NF > F
of G (1 # D < E, N < NH(D)). The same argument establishes the maximality
of N in H: simply observe that X = N(E n X) and N < NH(E n X) whenever
N < X < H. Hence H is a primitive group (N being a core-free maximal
subgroup) with non-abelian simple minimal normal subgroup E. By [1, 6.3], the
maximality of N in H excludes the case that E is the unique minimal normal
subgroup of H. Therefore, in view of CN(E) = coreH(N), the result follows from
[3, 1.1].

Combining 3.12 with 3.11 and the fact that b(S^) c &>n, we get

3.13. EXAMPLE. . F = S?, the saturated formation of all finite soluble groups,
satisfies conditions (i)-(iii) of 3.11.

4. Formation projectors and subnormal subgroups

In this last section we shall deal with the question of the extent to which the
property of formation projectors discussed in 1.3 generalises to subnormal
subgroups.

4.1. PROPOSITION. If F n (S, T) = (F n S,FDT) whenever G^S, f €
and S, T<4G, then &= S^(p) for anyp

PROOF. Assume the result is false. Then there exist p
&\&(p). Put H = G*ip\ Choose a non-abelian simple group E with p\\E\.
The regular wreath product X = E^G e ^ n can be written as a split extension
X= GE*, where G < X, and where E* = Ex x • • • xEn, the base group, with
Et = E simple, is minimal normal in X. Clearly, E* contains a (/-invariant
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subdirect subgroup £* = £(1) X • • • XE(m) such that E(j) = E (j=l,...,m
= \G/H\) and GE* = E^G/H G (to within isomorphism), where ^G/H denotes
the wreath product with respect to the permutation representation of G on the
cosets of H in G. Taking P(i) e Sylp(E(i)) with G-invariant P(l) X • • • XP(m),
we find that

FO = G(P(1)X ••• XP(m))eR0{*pr(p)\J*}Q*.

Now choose an ^maximal subgroup F > Fo of X. Since E* = S(X) is minimal
normal in X, we have F e Proj^-(Z), whence the hypothesis about J5" yields that

F= GE* DF= G(E* D F) = G[(F r\ Ex) X • • • x(Fn £„)].

The latter group is obviously isomorphic to some D^G (the regular wreath
product), where D < E. From G(P(1) X • • • XP(w)) = Fo < F it is now easily
inferred that D must contain a Sylow />-subgroup <3 of E. In particular, />
divides the order of £>*, the base group of D^G = F, and from this it is readily
deduced that G = F/(F n E*) = (D^G)/D* &&(p), which contradicts our
choice of G.

We have not been able to answer the following

QUESTION. Which saturated formations & (with &(p) = & for any p <
do actually enjoy the property that (F n S,T) = (F n S,Fn T) whenever G
S, F e ProjJ)r(G), and S, J<<G?
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