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Abstract The continuity of Hausdorff dimension of closed invariant subsets K of
a C2-expanding mapping g of the circle is investigated If g\K satisfies the
specification property then the equilibrium states of Holder continuous functions
are studied It is proved that if / is a piecewise monotone continuous mapping of
a compact interval and (/> a continuous function with P(f, </>)>sup (</>), then the
pressure P(f, </>) is attained on one-dimensional 'Smale's horseshoes', and some
results of Misiurewicz and Szlenk [M-Sz] are extended to the case of pressure

1 The main aim of this paper is to extend the results of [U] refenng to the continuity
of Hausdorff dimension and topological entropy to the case of an arbitrary C2-
expanding mapping g and wider classes of closed invariant subsets In order to do
this, one needs to deal with pressure instead of entropy Approximating continuous
functions by piecewise constant functions we are able to develop the methods from
[M-Sz] to the case of pressure Consequently it permits us to find wide classes of
closed invariant subsets of g, the Hausdorff dimension function restncted to which
is continuous In particular, as a corollary we obtain the existence of closed invariant
subsets of Hausdorff dimension t for every 0 s / < 1

In § 3 we deal with the family {^(e)}E e [ 0 ] ] defined in [U] We distinguish the
set of parameters of Hausdorff dimension 1 for which the mappings g\K{e) satisfy
the specification property which enables us to make use of the results from [P-U-Z]
to study the equilibrium states of Holder continuous functions The author would
like to thank M Misiurewicz and F Przytycki for inspiration and helpful discussions
around the subject of this paper

Now we want to introduce the basic notation and definitions used The circle S1

is always assumed to have length 1 If x, y e S1, x # y, then [x, y) c S1 denotes the
open arc anticlockwise oriented from x to y and is called the open interval from x
to y The symbols [x, y] and [x, y) are understood in a similar way X is always
assumed to be a closed subset of either the circle or a compact interval of the real
line We will call a subset a of X an interval mod (X) iff a is the intersection of X
and an interval A mapping / X -» X has by definition the Darboux property on
Y<= X iff/| Y maps intervals mod (X) onto intervals mod (X) If X is a closed
subset of a compact interval of the real line then the monotonicity of f\ Y is
understood in the standard way If X is a closed subset of the circle then f\ Y is
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628 M Urbariski

said to be monotone iffdiam(Y), diam(/(Y))<5 and if Y'=> Y, Y"=>f(Y) are
intervals of the circle with diam(Y')> diam(Y")<i then f\ Y is monotone with
respect to the orders on Y' and Y" Observe that this definition does not depend
on the choice of Y' and Y" This follows because of our restriction of diameters,
and in fact in this paper we will need monotonicity only on sets of arbitrarily small
diameters

Definition 1 / X -» X is called a mapping ofMmurewicz-Szlenk iff X can be covered
by a finite number of intervals mod (X) on which / is continuous monotone and
satisfies the Darboux property

If moreover 4> X •* U is piecewise constant 1 e X can be expressed as a union of
a finite number of intervals mod (X) on which <f> is constant, then let si denote a
partition into intervals on which / is continuous, monotone, has the Darboux
property and <f> is constant We will call it an admissible partition for / and 4>

Write si = {au ,ak} and define the function i X-»{1, ,k} by i(x)=j if
x € f l j e ^ a n d s X-»2 + = {l, , fc}°° by s(x) = i(x)i(f(x))

Now it is easy to see that the set J.f = cl(s(X))^1+ is o--(the shift mapping)-
mvanant and cr° s = s °f Let us observe that since <j> is constant on each element
of si, one can define the function <j> 2y-»R putting 4>{{ij}JL\) = <p(ah)

<p depends only on the first coordinate, so we will sometimes simply write <£(y)
or </>(a,) _/ = 1, , k, and is continuous

Definition 2 P(f <p) = supM<=M/ (/iM(/) + j 4> dfi) where Mf is the set of all
/-invariant, ergodic probability measures on X

P(f <f>, si) is defined as the usual pressure P(cr, 4>) (see for instance [M])

As an immediate consequence of this definition and the variational principle for
pressure [M] we get

(1) P(f,<f>,si) \
(2) P(f, <p, si)

LEMMA 1 Let Mf, M* denote the subsets of measures with positive entropy of Mf

and Mo- respectively Then the mapping Mf B/AI-^S^/U) IS a bijection between M~f
and M+

a and s establishes a metric isomorphism between (X,f /J.) and (Z,, a, s!(.(/x))

Proof We will follow F Hofbauer [H,], [H2] Let fieMf, x,yeX and suppose
that s(x) = s(y) = x le fk(x) and fk(y) are in the same a, for every /c>0 If z is
in the interval with endpoints x and y, it follows that/k(z) is in the interval with
endpoints fk(x) and fk{y) So s(z) = x This means that s~l(x) is a subinterval of
X Let

H = {xe1f s~l(x) is a non-one point interval}

As there can be only countably many disjoint subintervals of X with positive
length, H is at most countable Since s^/x) is ergodic, if H were of positive
measure we would find a periodic point weH, say ak(w) = w, such that
st{fi)({w, ,ak-\w)}) = l But then fi({s-\w), ,s-\ak~l(w))}) = l and
for every 0 < j < / c — l,/fc s~\aJ(w))^ s~\o-J(w)) is monotone So /iM(/'c) = 0
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and consequently /iM(/) = 0 - the contrary Hence /JL(S~\H)) = 0 and s is injective
modulo a set of measure 0 Thus s {X,f, (j.)-> (1f, a, s^/i)) is an isomorphism and

Now, let veM* Hofbauer [H2] proved that the set S/\s(X) is countable So
v(s(X)\H) = 1 and hence s%\ v) is well defined Now sif(s'£(v))=v a°d the lemma
is proved

LEMMA 2 //" P(/ , </>) > sup ($) f/ie/i for any admissible partition si, P(f, 4>, si) =

P(f, <t>)
Proof Lemma 1 implies that supMeM; (fcM(cr) + J <j>dn)< P(f <f>) If fi, e ^
then

f - f
• I q> d/j. = I

<sup (^) = sup

Therefore (2) implies that P(f <j>, sd)< P(f <f>) On the other hand the inequality
P(f, <t>)>sup(<t>) shows that

sup ( M / ) + | <f>

Hence, using lemma 1 and (2),

P(f,4>)= sup lh^f)+\ 4>d

By the vanational principle for pressure and definition 2 we get immediately

LEMMA 3 If f X -» X is a continuous mapping of Misiurewicz-Szlenk and <j> X-+R
a continuous function such that P(f, $ ) > s u p (<f>) then for a piecewise constant function
$ sufficiently near to </> in the supremum metric, P(f <j>) > sup (0)

Remark 1 Observe that because of uniform continuity, every continuous function
on X admits an approximation by piecewise constant functions

Now we will give some sufficient conditions for a piecewise constant function </>
to attain the pressure on 'Smales horseshoes' Our considerations here are a
modification of considerations of Misiurewicz and Szlenk from [M-Sz]

Again le t / X ->• X be a mapping of Misiurewicz-Szlenk and <j> X -» R a piecewise
constant function Let si denote an admissible partition For a family SB c sin, we
write Sn(S8) for the number

If (p = 0 this is simply Card (38)
Following [M-Sz] we define

E = \aesi hmsup - log ln(s4"\a) \ = P(f 4>, si)

By the definition of pressure this family is non-empty Exactly as lemma 6 from
[M-Sz] we obtain the following

( 1 ) h m s u p - l o g I . n { E " \ a ) = P ( f <{>, M) f o r e v e r y a e E
n-x n
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Now for any a, be E we set

LEMMA 4 If P{f <j>, .stf)>log 3 + sup (<f>), then there exists an aoe E such that
hmsup^oo \/n log y(a0, a0, n) = P(f <j>, si)

Proof Let us fix a set a e £ and a real number u such that log 3 + sup (<A)< w<
P(f <j>, si) In view of (1) it is easy to see (see also [M-Sz]) that for every number
p there exists an integer n > p such that

(2) i l o g I n ( £ n | a ) > M a n d S n + 1 ( £ " + 1 | a ) > 3 e s u p ( * ) S n ( £ ' " | a )

Fix a set eeE"\a The set f"(e) is an interval mod (X) and therefore if it has
non-empty intersections with r elements of E, then it contains at least r - 2 of them
But r = Ca rd (£ n + 1 | e ) Thus Card ({be E f"(e) 3 ft})>Card ( £ n + 1 | e ) - 2 Hence
changing the order of summation we obtain

I y(a,b,n)= I Card ({be E f(e) 3 b}) es^e)

b<=E eeEn\a

> I (Card(£"+1|e)-2)es»(*Ue)

ee En | a

= I Card(£n+1|a)eS"t*)(<' )-2Sn(£n|a)
esE"\a

> y y e -
eeE"\a c e E " + 1 | e

= e- s u p ( * ) 2 n + 1 (£
By (2) we get

l imsup- logl X f(«, b, n) I > M
n^oo n \bEfi /

Since u is an arbitrary number less than P(f <f>, si) we obtain

hmsup - log ( I y(a, b, n)) > P(f d>, si)
n^-ao n \beE I

Now in exactly the same way as in [M-Sz] we find an aoe E such that

hmsup - log (y(a0, a0, «)) > P(f, <f>, si)
The converse inequality immediately follows from our definition of pressure

THEOREM 0 Letf X^XbeamappingofMisiurewicz~Szlenk,4> X -> U a piecewise
constant function such that P(f </>) > sup (</>), si an admissible partition Then there
exist

(I) an interval mod (X), / ,
(n) A sequence {fcn}"=1 of positive integers,
(m) A sequence {Dn}^=1 of partitions of J by intervals mod (X) which belong to

sik" such that

and fk-(d) => J for any d e Dn
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Proof If we take r > log 3/ (P(f <£)- sup (</>)) then

P ( / r , Sr(tf>)) = r P ( / <£) > log 3 + r sup (<t>) > log 3 + sup (Sr(</>))

and because of lemma 2 we can apply lemma 4 to the mapping fr, function Sr(4>)
and partition str So we get an interval mod (X), a0, and a sequence {mn}^l of
integers such that

hm — log y{a0, a0, mn) = P(f\ Sr(d>), Mr)) = P(fr, Sr(<f>) = rP(f, <f>)
n-*oo mn

where the second equality is again due to lemma 2 And now it is sufficient to set
J = a0, kn = rmn and Dn the partition by those elements d of E "!•" | a0 for which
frm"(d)=>a0

Remark 2 Observe that the assumption P(f </>)>sup ($) is valid if for instance
htop(f)> sup (</>)- inf(0)

2 Now we are able to prove several facts about continuity of Hausdorff dimension
considered as a function of compact invariant subsets of expanding mappings of
the circle

Throughout the whole of this section g 51 -» S1 will be a C2-expanding mapping
of the circle I e for some positive integer n, |(g")' |> 1, or equivalently there exists
a Riemannian metric, say p, in which already \g'\ > 1 Throughout the whole of this
paper we will work only with this metric assuming that the length of the whole
circle in it is also equal to 1 Let X be the class of all compact invariant subsets of
g equipped with the Hausdorff metric pH We have the following

L E M M A 5 If 4> S ' -»R is continuous then the function P(g\( )4>\( )) 3K^U is upper

semi-continuous

Proof Let 3if 3 Fn -» F and let \xn be an equilibrium state for g | Fn and <j> \ Fn I e

i <f>d/jLn

and n any weak accumulation point of /*„ treated as measures on S\ say fi =
limbec fj.nk Observe that since Fn -* F, fJ-(F) = 1 and fi is an invariant measure for
g| F Since g S1 -> S1 is expansive, the function v^>hv(g) is upper semi-continuous
and therefore

J Fn 1 JS
hm
k-nx,

\
F

This completes the proof because /x is an arbitrary accumulation point

We remark that we used compactness of the space %

COROLLARY 1 The functions 3K B Fi->hlop{g | F), HD (F) are upper semi-continuous

Proof The upper semi-continuity of topological entropy follows immediately from
lemma 5 if we set <j> = 0 To prove it for Hausdorff dimension let 3if 3 Fn -» F and
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let tn denote the unique non-negative number such that P(g\Fn, -tfi") = 0, where
<K=log(|g'||Fn) tn turns out to be also HD(FJ (see [U.th 3], cf also [McC-M],
[B3]) Let 5 = hmsupn^co tn and e>0 There exists a subsequence of integers {nk}^=l,
limbec (nk) = oo such that for every k, tnk > s - e and hence P(g\ Fnk, -(s- e)<f>"k)>
0 So, in view of lemma 5

0<hmsup P(g\Fn, (-(s - e)4>un) =s P(g| F, -(s - e)4> " \ F)

Since e > 0 can be taken arbitrarily small, this implies that P{g\F,-s<f>"\F)>0
which means that s < HD (F)

THEOREM 1 If FeX then the following conditions are equivalent
(a) HD(F)=0,
(b) htop(g\F) = 0,
(c) the function HD 3V->R is continuous at F,
(d) the function htop X->U is continuous at F

Proof In view of theorem 4 from [U] there exists a measure /i such that HD (F) =
h^(g | F)/Xp. where xM denotes the Lyapunov exponent of /a. Therefore htop(g \ F) = 0
also implies that HD(F) = 0 If HD(F) = 0 then let m be an ergodic measure
with maximal entropy for g\F Hence 0 = HD (m) = hj\m = hlop{g\F)/xm and
consequently htop(g\F) = 0 So (a)O(b)

The implications (a)=»(c) and (b)=>(d) are immediate consequences of corollary
1 To prove the implications (c)=>(a) and (d)=>(b) it is enough to show that F is
the limit of a sequence of finite sets from J{ To do this fix e > 0 and choose points
*i> X2, , *k from F making an e/2-net in F I e for every x e F there exists 1 <y < k
such that p(x, x})<e/2 Now, by a version of the well-known Anosov's closing
lemma (see for example [B,]) we can find S > 0 so that the following holds if x e S1

and p(g"(x),x)<8, then there is an x'eS1 with g"{x') = x' and p(g'(x), g'(x'))<

e/2 for all 0 < I < M Since S1 is compact, for every l<y<fc there exist positive
integers m}<nJ such that p{gm'{xJ), g">(xJ))< 8 So there is an xjeS1 with
g"J-

m
J(x;) = x\ and p(g'(x;), g'(gmj(^))) < e/2 for all fce [0, «, - m,] Now let ^ =

g;mj(xj) where the branch g~m> is taken so that gZm'(gm>(xJ)) = xJ So the set
{g'(yj)}isjsk,o^isnj is finite g-invanant and, since g increases p-distances, its Haus-
dorff distance to F is less than e

As a consequence of this theorem, its proof, corollary 1 and a theorem of Baire we
get the following

COROLLARY 2 The space of zero-dimensional closed g-invanant subsets of g is dense
and of type Gs in 3V

In view of theorem 1 to obtain some results about continuity of HausdorfT dimension
which would involve subsets of positive dimension we have to restrict to smaller
classes than ffl And indeed, it is possible to find natural wide subclasses of X
(containing for example, for every number 0 s ( < l closed invariant subsets of
Hausdorff dimension t (see corollary 4)) the Hausdorff dimension function restricted
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to which is already continuous To do this, again let Fe3C Then S\F =
{J"k=i (xk,yk) where {{xk, y^}^!, (n(F) is an integer or oo) is a family of open
pairwise disjoint intervals, in fact connected components of Sl\F We will call the
family

r(F) = {(xk,yk) Fng((xk,yk))*0}

generating for the set F Let us observe that S\F = [JT=o Uaer(F) g ' ( a ) or in other
words F is the set of those points whose forward trajectory omits all the intervals
from T(F) We define

XJ={FE3V T ( F ) IS finite}

and for N > 1

The classes {^n}^=i are increasing and they are just those classes which were
announced above (cf th 3)

PROPOSITION 1 If Fe3Vf then g | F is a mapping of Misiurewicz-Szlenk

Proof It is clear that g S1 ^ S1 and consequently also g | F has a finite partition by
intervals of monotonicity So we only need to find a finite partition by intervals
mod (F) with the Darboux property We claim that the partition of S\\^JaEr(F) a
by connected components restricted to F has the required property Indeed, since
T{F) IS finite, this partition consists of a finite number of closed intervals mod (F),
and let c be an arbitrary subinterval of a connected component of S'XUaerfF) a If
yeFr^g(c) then let xec denote a point such that g(x) = y So x ? I J a E T ( F ) a
and g(x) = ygUr=oUaeT(F) g~'(a), which means that xeF and consequently
g(Fnc) = Fng(c) is an interval mod (F)

THEOREM 2 Let m > 1 be a« arbitrary integer, F e %m, <f> S1->U a continuous function
such that P(g\F,(j>\F)>sup{<f>) Then the function P(g\ , 4>\ ) %m-*M is con-
tinuous at F

Proof (cf also [M-Sz, th 5]) In view of lemma 5 it is sufficient to prove the lower
semi-continuity of this function at F Take any 0< e •& (P(g\ F, <f>\F) — sup (4>)) and
approximate </> by a piecewise constant function 0 such that ||</> — <A|| s e/4 and
lemma 3 holds So, due to this lemma we can apply theorem 0 to the mapping g\F
and the function <$> | F Hence for n large enough we have

(1) - ^ l o g ^ ( D J > P ( g | F , < £ | F ) - ( e / 4 ) > P ( g | F , 0 | F ) - ( e / 2 )

Now, let Dn c Dn be an arbitrary subpartition such that Card (Dn\Dn)< 5mkn We
have

— \ogZkn(Dn)-— \oglkn(Dn) = — log-
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But

s5mkn exp ( kn( sup (<£)+^J J

and by (1) for n large enough

Hence

= 5mfcnexp(—fcn)-»O when n tends to oo
\ 4 /

Thus for n large enough

(2) 1 l Z ^ D J <e/4

Now let 5 > 0 be small enough so that for every ze S1 every 0 < y < fcn - 1 , g;(B(z, 5))
intersects at most two elements of the partition Dn, and consider a subset Ge3Vm

such that pH(F, G)<8 So the partition

eDn afl U U g'(fi(x, 5)ufi()-, 8)) = 0]
(X,V)ET(G) J = 0 J

consists of at least (Card (Dn)-4mkn) elements
Since for every a, D'n, g

k"(a)=>/=>Ub£D; b and gk"\a is monotone(') we can
slightly decrease the elements of D'n (perhaps after subtracting two end elements)
to be compact and for every element c of the new partition Dn obtained the formula
gk"(c) =>UdeDn ^

 stlU holds So Dn consists of at least

(Card(D n ) -4mfc n -2)>Card(D n ) -5m/c n

elements and consequently satisfies formula (2)
Now the set X = C\%o (gk")"(Ub^Dn b) is compact gk"-invariant, Dn\X is an

open partition and for any d e Dn \ X, gk*(d) = X Hence it is easy to check that

(3) P(gk»\X,Skn(d>))^P{gk"\X,SK(<t>),Dn\X)

Now we check that X c G Obviously X c F and let z e X n (Sl\G) It means that
there exists an integer fc>0 such that gk(z)e (x, y)e T(G) But then gk(z)e F and
pH(G, F)<8 imply that gk{z)eB{x, 5 ) u B(y, 8), and if 0< r < kn-l is the unique
number such that kn\k+r, then gk+r(z) e X Hence gk+r(z) eae £>„ for some aeDn

and g'c + r(z)£gr(B(x, 5 ) u B ( j , 5)), which gives ar>gr(B(x, 5 )u B(^, 8))*0- a
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contradiction Therefore by (3)

-^ «^ r Ir ^-*. *•* r . I ^~* \ \

P(g\G, <t>\G) = - P(gk»\G, Skn(4>\G))^T P(gk»\X,

and further by (2) and (1)

P(g\G,<t>\G)>P(g\F,4>\F)-~~=P(g\F,<t>\F)-e

This completes the proof of the theorem

As an immediate consequence of this theorem and theorem 1 we obtain the
following

COROLLARY 3 For every m > 1 the function htop ^fm-»R is continuous

We can also prove the following

THEOREM 3 Ifg Sl -» S1 is a C2 -expanding mapping then for every m > 1 the function
HD 3Tm -»IR is continuous

Proof Let 9£m3 F = h m , , ^ Fn, Fn e 3Vm, n = 1, 2, By theorem 1 we can assume
that s = H D ( F ) > 0 and let 0 < « < s < l be an arbitrary real number So
P(g\F, —t(j) " ) > 0 > s u p ( — t<fiu) where 4>"(z) = log|g(z)| and using theorem 2 we get

hm P(g\Fn,-t<f>u\Fn) = P(g\F,-t<l>u\F)>0
n-»oo

Hence for n large enough, P(g\Fn, — t(f>u\Fn)>0, and since the function r*-*
P(s\Fn,-r<f>") is decreasing, r < H D ( F n ) Consequently hminf^co HD (Fn)>s =
HD (F) This and corollary 1 complete the proof of the theorem

The following simple example shows that this theorem and corollary 3 are no
longer true if htop and HD are treated as functions from 3Cf Indeed, since periodic
points of an expanding g are dense in S1 we can find a sequence {Fn}^=1 of sets
consisting of a finite number of penodic orbits such that hmn^oo Fn - S1 Obviously
Fn are closed, invariant, HD ( F J = hlop(g\Fn) = 0, and since the sets S\Fn have
only finitely many connected components, they belong to "Xf

Now let us study some other properties of closed invariant subsets of g First we
shall give an effective criterion for two arbitrary sets in jfcf to be close in the sense
of the Hausdorff metric pH It will be expressed in terms of their generating families
and the standard Riemannian metnc on the circle

Let F,Ge3Kf and B(F, G) denote the set of all bijections from T(F) to T(G)
The K-distance between F and G is defined as

A(F,G) = inf I \(j(A)-A) jeB{F,G)\ ifB(F,G)*0
l

and we put A(F, G) = oo if B(F, G) = 0 A denotes here Lebesgue measure (induced
by standard Riemannian metric) and — symmetric subtraction
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LEMMA 6 There is a constant L which depends only on g, such that pn(F, G ) s
LA(F, G)

Proof Sn .e the metric p and consequently the corresponding Ap-distance is Lipschitz
equivalent to the standard one, it is sufficient to prove the lemma using Ap- distance
instead of A Letye B(F, G) be chosen so that AP(F, G) = XAeT(F) hP(j(A)- A) and
let xe G We want to find a point ye F whose distance from x does not exceed
2AP(F, G) Let n (x )>0 be the smallest integer such that gn{x)(B(x, 2Ap(F, G)))n
(LJAeT(F,A)^0, say Aong"^(B(x,2Ap(F,G)))*0 Since \p(A0\j(A0))<
Ap(F,G),g"M(x)ej(A0)?ind

gnix)(B(x, 2AP(F, G))) 3 B(g"M(x), 2AP(F, G)))

this implies that at least one endpoint of Ao, say a, belongs to g"ix)(B(x, 2AP(F, G)))
Since aeF, it is sufficient to take as y a point from B(x, 2AP(F, G))ng~n{x\a)
We proceed analogously if we start with a point in F So pH(F, G) <2AP(F, G) and
the lemma is proved

Now we want to investigate sets made up in a way similar to that from [U] That
is, let (au b,), , (tfjc, bk) be a family of open disjoint intervals of the circle and

K((a,,b,)ll) = n fl (S'\g-"((a,,b,)))
1 = 1 n=0

be the set of those points whose forward trajectory avoids the intervals
(au bt), , (ak, bk) We are interested in what can happen if the endpoints of the
intervals change continuously The first remark is that the corresponding invariant
sets do not have to vary continuously Indeed, let us consider, as in [U] the sets
K((0, a)) where 0 is a fixed point of g If we take a so that a e K((0, a)) and for
some n > 1, g"(a) = 0, then it is easy to see that a is an isolated point of K(0, a))
and so, for any e > 0 , K((0, a + e)) does not intersect a fixed neighbourhood of a
However the following theorem is true

THEOREM 4 If the endpoints of the intervals (a,, bj). , i^k, bk) change continuously
then the topological entropy and Hausdorff dimension of corresponding invariant subsets
also change continuously

Proof For i = 1, , k, let a,(e), b,(e), a,(e), b,(e) be defined as in figure 1

FIGURE 1
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To prove our theorem it is sufficient to show that

hm HD (K((a,(e), b,(e))t,)) = HD
f N, 0

= hm
e N 0

The limits exist because the sequences are monotone The first equality can be
proved in the same way as proposition 1 from [U], so we will concentrate on the
second one In order to prove it we only need to find a sequence of compact invariant
subsets which do not intersect some thickness of all generating intervals of
K((a,, b,)*=i) and whose Hausdorff dimension tends to HD (K{{a,, b,)f=,)) To do
this we return to the proofs of theorems 2 and 3 Let us treat the set X constructed
in the proof of theorem 2 as a function of e -X(e) It follows from the construction
that the set X(E) = UI'-T1 g'(X(e)) is compact, g-invanant and does not intersect
the S(e)-thickness of the intervals from T(K((a,, b,)f=1)) (we have replaced the set
F from the proof of theorem 2 by K((a,, b,)^,) Now proceeding as in the proof
of theorem 3 we get that hme ^ 0 HD (X(e)) = HD (K((a,, b,)^,) The case of
topological entropy is analogous and simpler

COROLLARY 4 For every O s s < l there exists a compact g-invanant subset of S1

whose Hausdorff dimension is equal to e

Proof The function ei-»HD (K((0, e))), where 0 is a fixed point of g is, by
theorem 4, continuous Besides, HD (K{0, 0)) = HD (S1) = 1 and HD (K((0,1))) =
HD({0}) = 0

We want to finish this section with the following two simple propositions

PROPOSITION 2 For every FeX the set U.=oU«i,i>>eT(F> g~'({<*, b}) is dense in F

PROPOSITION 3 For every uncountable F e Xf there is a unique set Fo homeomorphic
to the Cantor set such that T(F0) S T(F) and F\F0 is at most countable

To prove the last proposition use the Cantor-Bendixon theorem (see [K])

3 In this section we shall deal with the family K((0, e)) (abbreviated to K(e)),
where 0 is a fixed point of an orientation preserving C2-expanding mapping of the
circle, g This family was the main object of interest in [U] Now using the methods
developed in [P-U-Z] we want to give a more detailed description of equilibrium
states of Holder continuous functions Let C(g) denote the set of those points at
which the function E>->K.(e) is not locally constant It follows from [U] that we
get the same set if we take into account the function e^hlop(g\K(e)), and C{g) =
{e g"(e)>e for every n>0} Throughout this section we will only consider the
points e e C(g) (observe that for every 0< e < 1 there is an e < e'e C(g) such that
K(e') = K(e)

PROPOSITION 4 The set of all periodic points is dense in K(e) iff 0g{g"(e) n>0}
or e=0

Proof If gm(e) = 0 for certain m > 1 and e^O then e is isolated in K(e) and is not
periodic And if O0{g"(e) «>0} then using symbolic representation 4> ££-»
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Sl(q = deg(g)) of g, constructed in [U], we easily see that for every sequence
{xn}™=l in 4>~l(K(e)) and every w > l there exists M so large that the periodic
point (Xi, , xm(q-1)M)°° belongs to <t>~\K(e)) The case of e = 0 IS obvious

LetSP(g) = {e

PROPOSITION 5 O ^ e e S P ( g ) iff g\K(e) satisfies the specification property (the
references to the specification property are, for instance, [D-G-S], [B2])

Proof We use the symbolic representation again e e S P ( g ) means that <f>~l(e)
consists of one sequence and the length of all blocks of the symbols q - 1 is bounded
by a natural number, say k Let us now take 8>0 and let 1(8) be chosen so that
p(x,y)<8 if x,y€~L^ and x,=y, for i = l, , 1(8)

For any k>2, any k points z(1), , zik)e (j)~\K(e)), any integers 0<a!<b,<
a2< b2< <ak<bk with a, -b,_!>/(5) + fc+1 for 2< i< k and any integer p>
l(8) + k+l + bk-ai we will find a periodic point ze ^"'(.K^e)) with period p, such
that

p(o-n(z), o-"(z(l))) s 5 for a, < n < ft,, 1 < i < fc

Let us first construct a point Z E 0 ' ' ( K ( « ) ) in the following way

( q-l, l < n < a ,

tf = (^- '(z1 0)), , a, + 1 < n s b, + 1(8), 1 < , < k

and

2 = 1̂ Za,-l(Za, ^o.+p)"

ze <j>~i(K(e)), ap(a"l(z)) = crai(z) and we only need to find a periodic point z of
period p such that aa'(z) = o-a'(z) So, as z we can take the point o-mp~a'(o-"'(z))
where mp — ax a 0 Since every factor of a system with the specification property
also has the specification property, one part of the proposition is proved

Now let e £ SP (g) So, we can find an increasing sequence {/cn}^=1 and e e 4>~\e)
such that eK+l = q-\ for i = 0 , ,M Let 5 = \/(2q) (hence p(x,>-)s 5=>Xi = y,),
z(1> = e, a , = 0 , 6, = fcn-l, z( 2 )eo-"2(e) If z is taken to satisfy the specification
condition, then z, = e, for i = 1, , kn But since ze $~X(K(E)), this implies that
z, = q -1 for kn < i < A:n + n On the other hand 5 > p(o-"2z, <ra'zi2)) = p(cra-z, e) Thus
2a2+i = (o'a2z)i = ex<q-1 Since a 2 >b i = / c n - l , it gives that a2^kn + n and
consequently a2 ~ ^i — n +1 This completes the proof of the proposition

Applying symbolic representation we also obtain the following

PROPOSITION 6 The sets SP(g) and C(g) \SP(g) are dense in C(g)

Proof The density of C(g ) \SP(g ) is obvious The density of SP(g) follows from
the fact that the set C( g ) n Per (g), where Per(g) is the set of all periodic points
of g S1 -» S\ is already dense in C( g)

COROLLARY5 If P(e,n) = Card ({xeK(e) g"(x) = x}), then for every e e C(g)

hm-log P(e,n) = htop(g\K(e))
^1
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Proof As g\K(e) is expansive the inequality htop(g\K(e))si
hmsupn^oo 1/n log P(e, n) follows In order to prove the converse inequality let us
consider two cases First, assume that there exists a decreasing sequence {e,}JLi of
points from SP (g) tending to e By the specification property, for all ij},j = 1,2, ,
our formula holds Besides, for all j > 1

hm — log P(EJ, n) < liminf — log P(e, n)
n-*3o n n-»oo ft

Hence by theorem 4,

hmmf-P(e,n)>hmhtop(g\K(eJ)) = htop(g\K(e))

Otherwise, because of density of SP (g) in C(g), e is right-hand isolated in C(g)
Since C(g) is closed, there is e< eeC(g) which is the nearest point to e Since e
is left-hand isolated, it satisfies the first case Since {/itop(g|^(S))}s6C(g) =

[0,log (degg)] and the function 8^htop(g\K{8)) is monotone, htop(g\K(e)) =
htop(g\K(e)) It implies that

liminf-log P(e, »)> hm -log P(e, n) = htop(g\K(e)) = hlop(g\K(t))

The corollary is proved

LEMMA 7 If 8,eeC(g) and htop(g\K(e))* htop(g\K(8)) then HD(K(S))#
HD(K{E))

Proof We can assume 8 < e In view of proposition 6 and the last argument of the
previous proof, one can find aeSP(g) such that 5 < a < e and K(a)£ K(e) If
HD(K(S)) = HD(*:(e)) then HD (K(a)) = HD (K(e)) = c By the Bowen-
Manning formula (see [U,th 3], cf also [B3], [McC-M]), P(g\K(a),
-clog(|g'| \K(a))) = 0 Since g\K(a) satisfies the specification property and log \g'
is a Holder continuous function, there exists exactly one equilibrium state /J. of
-c log (|g'| K(a)) (see [B2]) But, in view of corollary 2 from [U] there is a g\K(e)-
mvanant measure v such that c = HD (K(e)) = ft^/J log (|g'| | K(e)) dp Thus
hv + \-c log (|g'\ \K(E)) dv = Q and since v is also g|X(a)-invanant, it is also an
equilibrium state of the function -clog(|g' | \K{a)) with respect to the mapping
g\K(a) So v = fi and consequently n(K{a)\K(e)) = 1-1=0, which contradicts
to the fact that the equilibrium state of any Holder continuity function with respect
to the mapping which satisfies the specification property, is positive on non-empty
open sets (see [B2]) Thus HD (K(8)) # HD (K(s))

Due to the comments in the beginning of this section, this lemma immediately
implies

COROLLARY 6 C(g) coincides with the set of those points at which the function
ei-»HD (K(e)) is not locally constant The sets of those points at which the functions
ei->HD(K(e)) and e^htop(g\K(e)) are not locally right-hand constant, coincide
too Call them (following [U]) C+( g)
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Now we want to generalize theorem 2 from [U] which refers to the local Hausdorff
dimension of C( g) But we also want to include similar results about the sets SP (g)
and C(g)\SP(g) So we need the following slight generalization of definition 2
from [U]

Definition 3 Let (X, d) be a metric space and Ac X The local Hausdorff dimension
of A at a p o i n t x e X i s d e f i n e d t o b e h m r ^ 0 H D ( A n B ( x , r)) a n d d e n o t e d b y
HD (A, x)

THEOREM 5 For every eeC(g), HD (SP (g), e) = HD (C(g)\SP (g), e) =

Proof We improve on the idea of the proof of theorem 2 from [U] Since for every
eeC(g), C{g)nB(e, r)cK(e-r), Theorem 4 implies that

(1) HD (SP(g), e), HD (C(g)\SP(g), e)< HD (C(g), 6 )<HD
Let us now define K(e) = lX=i K((l-(l/n),e) By theorem 4

(2) HD(K(s)) = HD(K(e))
Consider e e C+(g) which is not periodic For every r > 0 we have

U K(e)n g"n([e, e + r))

Since f£C+(g), (2) implies the existence of m>0 such that HD(K(e)n
g ~ m ( [ e , e +/•))) = H D ( £ ( e ) ) Since gm(K(e) ng~m{[e, e +r)))c K(e)n[e, e + r),

one obtains
(3) H D ( X ( e ) n [ e , e + r)) = HD (X(e)) f o r r > 0

Denote by n ( r ) > l the minimal number, not less than 1, such that (e-r,e)n
gn<r)((e - r, e]) ̂  0 Observe that due to the choice of e, there exists 5 > 0 such that
for i = l, , n ( r ) - l

(4) ( l - 5 , e ) n g ' ( ( e - r , e ] ) = 0
Observe also that the set (e - r, e] n g "tr)(g) consists of one point, say e. Since e
is not periodic, e<g" ( r ) ( e ) and consequently e - r < e ! < e Therefore applying (4)

Since g'nr\[el,e)ng-'"r)(K(e)) = gMr\[El,e))nK(s)^[B,g^\s))nk(e), (5)
and (3) imply that HD (SP (g) n B(e, r)) > HD (K(e)) = HD{K(e)) Hence if r ^ 0
one gets

(6 )HD(SP(g) , e )>HD(X( £ ) )
So, for the set of e's considered, the theorem is proved for SP(g) and C(g) But
by lemma 4(n), (in) from [U], this set is dense in C(g) This completes the proof
for the sets SP(g) and C(g)

Now let K0(e) <= K{e) be the set of those points whose forward trajectory under
g has 0 as an accumulation point The proof for SP(g) shows that to prove our
theorem for C(g)\SP(g) we only need to find a dense subset of C(g)\Per(g)
such that for every e from it, HD (K0(E)) = HD (K(e)) We claim that as this subset
one can take SP(g)\Per(g) Indeed, the formula HD (SP(g), e) = HD (K{e))
shows that if we subtract from SP(g) any countable set, it still will be dense in
C(g) Let eeSP(g) \Per (g) In view of corollary 2 from [U] there is a g\K(e)-
mvanant probability measure fj. on K(e) such that HD (K[e)) = HD (fj.) - the
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Hausdorff dimension of the measure /i From the proof of lemma 7 we see that
such a measure is unique and positive on non-empty open sets of K(e) Since for
every 5 > 0 , K(e)\K((\ — 8, e)) is a non-empty open set such that

(g\K{e))-\K(e)\K((l-8,e)))<=K(E)\K((l-8,e)),

we conclude that n{K(e)\K((l - 8, <?))) = 1 Hence

( l /n ) ,e ) ) ) | =1
/

and thus HD (K 0 (e) )>HD (/J.) = HD (K(e)) This completes the proof of the
theorem

Since HD (K(0)) = 1, this theorem immediately implies the following

COROLLARY 7 HD (SP (g)) = HD (C( g)\SP (g)) = HD (C(g)) = 1

Now we pass to the main theorem of this section If h [0, oo) -»[0, oo) is an increasing
function such that /i(0) = 0, then we will use Hh to denote the Hausdorff measure
corresponding to the function h We will prove the following

THEOREM 6 Let </> S1 -»IR be a Holder continuous function and e e SP (g) be taken
so that the function

4>\K{e) + HD{K(e))log{\g'\\K(e)) K(e)^U

is not homological to a constant If fi^, denotes the equilibrium state of <f>,

(f,c(t) = r " 0 ' ^ ' exp (cVlog (1/0 log log log (1/0) force (0,oo),
then fi^ is singular with respect to H6 for c<V2cr2(i/()/jlog \g'\ d\x^ and absolutely
continuous for c> V2cr2(i/')/Jlog |g'| dfi^, Here f = ^ + H D ( ^ ) log \g'\ and o-2(ij/)
denotes the middle asymptotic variance of ip with respect to the probability measure /x^,
i e

) 0 (see [B,])

/
Proo/ For x e K ( e ) , 5 > 0 and an integer n > 0 , let

Bn(x,5) = {zeA:(£) | g I ( z ) - g 1 ( ^ ) | s 5 for i = 0,1, , n - l }
It follows from [P-U-Z] that to prove the theorem, it is sufficient to check the
following three conditions

(a) The bounded distortion theorem For every 6 > 0 small enough there exists a
constant C > 0 such that for every n > 0 and every xe K(e)

sup{|(g")'(z)| zeBn(x,8)}/mf{\(gnY(z)\ z e Bn(x, 8)}< Cs

(b) For every 5 > 0 small enough there exists a constant Bs > 0 such that for every
n > 0 and every X E K ( E )

Bs
] exp ( - P ( g | K(e), (</» | K(e)))n + V </» ° (g| X(e))'(x))

i=0
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(c) The iterated logarithm law For /i^-ae x e K(e)

hmsup _ —
Vn log log n

The bounded distortion theorem is a well-known fact for every C2- expanding
mapping of the circle Condition (b) follows from the specification property (see
[B2], [D-G-S], [K-S-S]) Since the symbolic representation of g\K(e) is just (see
[U]) the system (X, a) from § 4 of [H-K], the iterated logarithm law follows from
this paper, where even the almost sure invariance principle is proved

What is the situation when the function </> + HD (K{e)) log (\g'\\K(e)) is homo-
logical to a constant7 Then /x^ = /U-HD (*<*» iog (|g| |K(E» and this measure is equivalent
to the Hausdorff measure H,HD<K<.)> on K(e) (see [B3], [P-U-Z])

In general it is not too easy to check whether a given function is homological to
a constant But in our special case we can make a simple observation in this direction
Namely, since the fact that 4> + UD(K(e))log{\g'\\K(e)) is homological to a
constant means that there is a Holder continuous function u K (e) -> R and a constant
c such that </> + HD (K(e)) log (|g'| \K(e)) -c = u°(g \K(e)) - u, and for every S > e
we have K(S) c K(e), it is obvious that <f> + HD (K(S)) log (\g'\) is also homological
to a constant
4 In this section we give some other applications of results proved in §§ 1,2 Let
us start with DE-perturbations The following definition corresponds to definition
3 from [U]

Definition 4 We say that a C2-mapping g S'-^S1 is a DE-perturbation obtained
from an orientation preserving C2-expanding mapping g S1-> S} if the following
conditions are satisfied

(a) there exist real numbers 0</3 , , /3 2 <l such that g(/3,) = /3i, g(l -/}2) =
1-02, g'|[0i, 1 - 0 2 ] > 1 and for every x e (1 - j82, 0.) l i m . . . g"(x) = 0,

(b) there exist real numbers yt>/3l and y2>/32 such that glCyi, 1 — T2] =

It is clear that all the facts proved in [U] for one-sided DE-perturbations have
corresponding versions for (two-sided) DE-perturbations Using theorem 4 we want
to give a stronger version of proposition 3 from [U]

THEOREM 7 If gn-> g in the C°-topology such that y["\ y ^ ' ^ O then
limbec (HD (O(gn))) = 1, where il(gn) denotes the set of all non-wandering points

ofgn

Proof Since fl(gB) = K((l - y2, y,)), HD (O(gn)) 2 HD (K(\ - y2, y,)) and by
theorem 4,

1 > hmsup HD (n(gB)) >hminf HD (n(gn)) > HD ((0,0)) = 1

Since ilo(g) = d(g)\{0} is a mixing repeller of g, the following theorem, related to
theorem 6, follows from [P-U-Z]
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THEOREM 8 Let </> S'-»R be a Holder continuous function such that <f>\Cl,0(g) +
HD (O0(g)) log (|g'| |flo(g)) is not homologwal to a constant Then \L$ IS singular with
respect to H<t>c for c<V2cr2(i/>)/Jlog \g'\ dfi^ and absolutely continuous for c>
/ log \g'\ d^ Here «A = <£ + HD (/^) log \g'\

If $ + HD (O0(g)) log (|g'||fio(g)) is homological to a constant then look at the
comment after theorem 6

Theorems 7 and 8 are obviously also true in the case of one-sided DE-perturba-
tions

THEOREM 9 Let 4> I -> R be a continuous function defined on a closed interval I If
g I -> I is a continuous mapping of Misiurewicz-Szlenk and P(g, 0) > sup (</>), then
the pressure function P( , <j>) C°(I,I)-*U is lower semi-continuous at g C°(I, I)
denotes here the space of all continuous mappings of I into itself with the C°-topology

This theorem generalizes a result of Misiurewicz and Szlenk and its proof is a
simpler version of the proof of theorem 2 There is an easy example (see figure 2)
which shows that the assumption P(g, 4>)> sup (<p) cannot be omitted Indeed, let
S([0,5])<=[<U],g(£)=ig(l) = l and for every xe[\, 1) l im_c og"(x) =\, as in
figure 2 If we take 4> I^U so that <£|[0,V| = 0 and <t>(\)> htov,(g\[0,\]) then
P(g,<£) = 0 ( l ) , but for every / / - » / for which / | [ 0 , i ] = g|[0,£] and for
x s [ i 1] l m w / " ( x ) = i P(g, </>) = htop(g| [Oj])

l -

FIGURE 2

Theorem 9 has the following corollary

COROLLARY 8 If C°(I, U+) denotes the set of all positive continuous functions with
topology of uniform convergence and s'{g, 4>) is the special flow defined by a continuous
mapping of Misiurewicz-Szlenk g I -> I and positive continuous function <f>, then the
function C°(I, / ) x C°(I, R+) 3{f 4>)^>hxov{s'{f </>)) is lower semi-continuous at
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Proof A theorem of Abramov [A] states that

where /I is the s'-invanant measure induced by a g-invanant measure /x Hence

c=f/itOp(*'(g,4>))= sup hfi(s
1) = sup

and further

0 = sup (h^(g)-c\<l>dfj,)/\<t>dij.= sup [K(g)-c \ <t>dp) = P(g, -c<t>)
MeM(g) \ J / / J pcMljl \ J /

i e /itOp(.s'(g, </>)) is the unique solution of the equation P(g, -tcp) = 0 This permits
us to make use of theorem 9 and proceed as in the proof of theorem 3

We want to finish this section with a remark which refers to the family K((s, t))
for an expanding mapping g of degree 2 Namely, if we pass to the unit interval as
was done in [U], we will get the family of mappings which are topologically
conjugate to those which arise as the Poincare maps of Lorenz attractors (see [W]
for example)

This paper was written whilst the author was visiting SFB 170 'Geometne und
Analysis' in Gottingen, W Germany
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