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Abstract The continuity of Hausdorff dimension of closed invariant subsets K of
a C’-expanding mapping g of the circle 1s nvestigated If g|K satisfies the
spectfication property then the equilibrium states of Holder continuous functions
are studied It 1s proved that if f 1s a precewise monotone continucus mapping of
a compact interval and ¢ a continuous function with P(f, ¢)>sup (¢), then the
pressure P(f, ¢) 1s attained on one-dimensional ‘Smale’s horseshoes’, and some
results of Misiurewicz and Szlenk [M-Sz] are extended to the case of pressure

1 The main aim of this paper 1s to extend the results of [U] refering to the continuity
of Hausdorff dimension and topological entropy to the case of an arbitrary C?-
expanding mapping g and wider classes of closed invariant subsets In order to do
this, one needs to deal with pressure instead of entropy Approximating continuous
functions by piecewise constant functions we are able to develop the methods from
[M-Sz] to the case of pressure Consequently 1t permits us to find wide classes of
closed 1nvariant subsets of g, the Hausdorff dimension function restricted to which
1s continuous In particular, as a corollary we obtain the existence of closed invariant
subsets of Hausdorff dimension ¢ for every 0=t=<1

In § 3 we deal with the family {K(&)}.c0,y defined in [U] We distinguish the
set of parameters of Hausdorff dimension 1 for which the mappings g| K () satisfy
the specification property which enables us to make use of the results from [P-U-Z]
to study the equilibrium states of Holder continuous functions The author would
like to thank M Misiurewicz and F Przytyck: for inspiration and helpful discussions
around the subject of this paper

Now we want to introduce the basic notation and definitions used The circle S
1s always assumed to have length 1 If x, ye ', x# y, then (x, y) < S’ denotes the
open arc anticlockwise oriented from x to y and 1s called the open interval from x
to y The symbols [x, y] and [x, y) are understood 1n a similar way X 1s always
assumed to be a closed subset of either the circle or a compact nterval of the real
line We will call a subset a of X an interval mod (X) 1iff a 1s the intersection of X
and an interval A mapping f X - X has by definition the Darboux property on
Y < X ff f]Y maps ntervals mod (X) onto intervals mod (X) If X 1s a closed
subset of a compact interval of the real hine then the monotonicity of f|Y 1s
understood 1n the standard way If X 1s a closed subset of the circle then f]Y 1s
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said to be monotone iff diam (Y), diam (f(Y))<} and if Y2 Y, Y'=£(Y) are
intervals of the circle with diam (Y”’), diam (Y”) <3 then f| Y 1s monotone with
respect to the orders on Y’ and Y” Observe that this definition does not depend
on the choice of Y’ and Y” This follows because of our restriction of diameters,
and 1n fact in this paper we will need monotonicity only on sets of arbitranly small
diameters

Defintion1 f X - X 1s called a mapping of Misiurewicz-Szlenk 1ff X canbe covered
by a finite number of intervals mod (X) on which f 1s continuous monotone and
satisfies the Darboux property

If moreover ¢ X =R 1s piecewise constant 1e¢ X can be expressed as a union of
a finite number of 1ntervals mod (X) on which ¢ 1s constant, then let & denote a
partition 1nto intervals on which f 1s continuous, monotone, has the Darboux
property and ¢ 1s constant We will call it an adrussible partition for f and ¢

Wrnte & ={a,, ,a,} and define the function 1 X>{1, ,k} by 1«(x)=jf
xeagqedands X->32,={1, ,k}* by s(x)=1(x)i(f(x))

Now 1t 1s easy to see that the set Z,=cl (s(X))=Z, 1s o-(the shift mapping)-
mmvarniant and oo s=sof Let us observe that since ¢ 1s constant on each element
of o, one can define the function q§ 2~ R putting ('ﬁ.({l]}ﬁl) =d¢(a,)

¢; depends only on the first coordinate, so we will sometimes simply write d;(])
or ¢(a) yj=1, ,k, and 1s continuous

def
Defimtion 2 P(f, ) = sup,cm, (h“(f)+j ¢ du) where M; 1s the set of all
Jf-invanant, ergodic probability measures on X
P(f, ¢, &) 1s defined as the usual pressure P(o, ¢) (see for instance [M])

As an immediate consequence of this defimition and the variational principle for
pressure [M] we get

(1) P(f, ¢, ) =imsup,. 1/n10g (Lo~ exp (d(a)+  +¢(f"'(a)))

(2) P(f, &, ) =sup.cm, (h,+] b du)

LEMMA 1 Let M], M7 denote the subsets of measures with positive entropy of M;
and M, respectively Then the mapping M7 5 u—> s, () 15 a byection between M}
and M, and s establishes a metric isomorphism between (X, f, u) and (2, 0, s, (1))

Proof We will follow F Hofbauer [H,], [H,] Let ue M;, x, y€ X and suppose
that s(x)=s(y)=%1e f“(x) and f*(y) are 1n the same a, for every k=0 If z 1s
1n the interval with endpoints x and y, 1t follows that f*(z) 1s in the interval with
endpoints f*(x) and f*(y) So s(z)=% This means that s '(X) 1s a subinterval of
X Let

H={xeX, s '(%) 1s a non-one point interval}

As there can be only countably many disjoint subintervals of X with positive
length, H 1s at most countable Since s,(u) ts ergodic, if H were of positive
measure we would find a periodic point we H, say o*(w)=w, such that
se(w){w, "' w))=1 But then u({s™'(w), ,s (" '(w)}H=1 and
for every 0<j=<k—1,f* s7'(a’(w))~> s '(a’(w)) 1s monotone So h,(f*)=0
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and consequently h,(f)=0 - the contrary Hence u(s™'(H))=0 and s 1s injective
modulo a set of measure 0 Thus s (X, f, n)~> (2, 0, 54(¢)) 1s an 1somorphism and
by, u(a)>0

Now, let ve M; Hofbauer [H,] proved that the set Z,\s(X) 1s countable So
v(s(X)\H) =1 and hence s, '(v) 1s well defined Now s,(s;'(¥)) = v and the lemma
1s proved

LEMMA 2 If P(f, ¢)>sup (&) then for any adnussible partiion o, P{f, ¢, A)=
P(f, ¢)

Proof Lemma 1 implies that sup,.a (h, (a)+] qup)s P(f,¢) If pe M,\M
then

hu<a>+j é dp =J é du =<sup (¢) =sup (¢) < P(f, ¢)

Therefore (2) implies that P(f, ¢, &)=< P(f, ) On the other hand the inequality
P(f, ¢)>sup (¢) shows that
sup (hu(fHJ d>dﬂ) <P(f, $)
peMA\MY

Hence, using lemma 1 and (2),

P(f,¢)= sup (h“(f)+J’ d>du> =P(0, $) = P(f, ¢, )

we MAMY
By the varniational principle for pressure and definition 2 we get immediately

LemMA 3 Iff X - X 1s a continuous mapping of Misiurewicz-Szlenk and ¢ X - R
a continuous function such that P(f, ¢} > sup (¢ ) then for a precewise constant function
& sufficiently near to ¢ in the supremum metric, P(f, ¢)> sup ()

Remark 1 Observe that because of umiform continuity, every continuous function
on X admits an approximation by piecewise constant functions

Now we will give some sufficient conditions for a piecewise constant function ¢
to attain the pressure on ‘Smales horseshoes’ Our considerations here are a
modification of considerations of Misiurewicz and Szlenk from [M-Sz]

Againlet f X - X be a mapping of Misiurewicz-Szlenk and ¢ X - R a piecewise
constant function Let of denote an admissible partition For a family B < «", we
write X ,(%) for the number

bZ@ exp(¢(b)+ o f(b)+ +of"' (b))

If ¢ =0 this 1s simply Card (%)
Following [M-Sz] we define

1
E= {ae oA l1msup;log Zn(ﬁ"la)} =P(f, ¢, )

n—>cc

By the definition of pressure this family 1s non-empty Exactly as lemma 6 from
[M-Sz] we obtain the following

1
(1) 11msup;log 2. (E"|la)=P(f, ¢, ) foreveryacE

n—-x
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Now for any a, be E we set
¥(a,b,n)=%,({ec E"|a f"(e)>b})

LEMMA 4 If P(f, &, A)>1og3+sup(¢), then there exists an ag€ E such that
limsup,.. 1/n log ¥(ae, ag, n) = P(f, ¢, A)

Proof Let us fix a set a€ E and a real number u such that log3+sup (¢)<u<
P(f, &, ) In view of (1) 1t 1s easy to see (see also [M-Sz]) that for every number
p there exists an integer n = p such that

1
2) ;10g S.(E"la)>uand 2, ,(E""|a)=3 e 3 (E"|a)

Fix a set ec E"|a The set f"(e) 1s an 1nterval mod (X) and therefore if 1t has
non-empty intersections with r elements of E, then 1t contains at least r —2 of them
But r=Card (E""'|e) Thus Card ({be E f"(e)>b})=Card (E""'|e)—2 Hence
changing the order of summation we obtain

Y y(a,byn)= Y Card({beE f"(e)>b}) e

beE ecE"ja
= Y (Card(E""'|e)—2)e5®®
ecE"|a
= T Card(E""'|a) ™' *"” 25 (E"|a)
ecE"ja
= z e_suP(‘b) esn(d’)(e)*“b(f"(d)_zz (En|a)

n+l|

ecE"|a ceE e

=e P 3 (E"'a)-23,(E"|a)=3,(E"|a)
By (2) we get
1 .
11msup;10g< Y ¥(a,b, n)) =u

n->oo beE

Since u 1s an arbitrary number less than P(f, ¢, &/) we obtain

hmsup%log (bZE ¥(a, b, n)) =P(f, ¢, o)

n—-o

Now 1n exactly the same way as in [M-Sz] we find an aq€ E such that

1 ~
llmsup ; log ('Y(ao, aOs n)) = P(f; d), ‘94)

n->oo

The converse inequality immediately follows from our definition of pressure

THEOREM 0 Let f X - X be a mapping of Misiurewicz-Szlenk, ¢ X - R a piecewise

constant function such that P(f, ¢)>sup (@), 4 an adnussible partition Then there
exist

(1) an mterval mod (X), J,

(n) A sequence {k,} -, of positive integers,

() A sequence {D,},_, of partitions of J by wntervals mod (X) which belong to
5 such that

im — log £, (D,) = P(f, 6)

n—>o0 fn

and f*+(d)> J for any d € D,
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Proof If we take r>1log3/(P(f, #)—sup (¢)) then

P(f', 5(¢))=rP(f, ¢)>log3+rsup (¢)>log 3+sup (S,(4))

and because of lemma 2 we can apply lemma 4 to the mapping f”', function S,(¢)
and partition «f” So we get an interval mod (X), a,, and a sequence {m,};-, of
integers such that

i —— log ¥(ao, a0, m,) = P(f", S,(¢), &7)) = P(f", S,(¢) = rP(f, ¢)

n-oco My
where the second equality 1s again due to lemma 2 And now it 1s sufficient to set
J=a,, k,=rm, and D, the partition by those elements d of E}"," a, for which
f(d)> ao
Remark 2 Observe that the assumption P(f, ¢)>sup (¢) 1s valid 1f for instance
hiop(f) > sup (¢) —1nf (¢)

2 Now we are able to prove several facts about continuity of Hausdorff dimension
considered as a function of compact invanant subsets of expanding mappings of
the circle

Throughout the whole of this section g S' - S' will be a C*-expanding mapping
of the circle 1e for some positive integer n, [(g")'|> 1, or equivalently there exists
a Riemannian metric, say p, in which already |g'| > 1 Throughout the whole of this
paper we will work only with this metric assuming that the length of the whole
circle 1n 1t 15 also equal to 1 Let J be the class of all compact invariant subsets of
g equipped with the Hausdorff metric p; We have the following

LEMMA S If ¢ S'-R 1s continuous then the function P(g|( )¢ |( )) H >R is upper
semi-continuous

Proof Let ¥ > F,~ F and let u, be an equilibrium state for g| F, and ¢|F, 1¢
P(g|F,, ¢|Fn)=hun+J ¢du,
F,
and u any weak accumulation point of u, treated as measures on S', say u =
limy . s, Observe that since F,—> F, u{F)=1 and u 1s an invariant measure for

g|F Since g S'— S'1s expansive, the function v~ h,( g) 1s upper semi-continuous
and therefore

ll(lm P(g,, ¢|F,) = ,1(1m (h(,u,,J-%—I d>d,unk) Sh“(g)+Jsl b du

F,,k
=hu(glF)+JF bdu=P(g|F, ¢|F)
This completes the proof because w 1s an arbitrary accumulation point
We remark that we used compactness of the space ¥

CoroLLARY 1 The functions # > F— h,(g| F), HD (F) are upper semi-continuous

Proof The upper semi-continuity of topological entropy follows immediately from
lemma 5 1f we set ¢ =0 To prove it for Hausdorff dimension let ¥ 3 F, > F and
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let ¢, denote the unique non-negative number such that P(g|F,, —t¢,) =0, where
on=log(|g'|| F,) t.turns out to be also HD (F,) {see [U, th 3], cf also [McC-M],
[B,]) Let s =hmsup,.« f, and £ >0 There exists a subsequence of integers {n, }5-,,
him, ,  (ny) = o such that for every k, t,, =s—¢ and hence P(g|F,,, —(s—¢&)¢, )=
0 So, 1n view of lemma 5
0<hmsup P(g|F,, (-(s—&)¢.) = P(g|F, ~(s— )¢ "“| F)

Since £ >0 can be taken arbitrarily small, this implies that P(g|F, —s¢“|F)=0
which means that s<HD (F)

THEOREM 1 If Fe X then the following conditions are equivalent
(a) HD (F) =0,
(6) huoplg| F)=0,
(c) the function HD # —R 1s continuous at F,
(d) the function h,, ¥ - R 1s continuous at F

Proof In view of theorem 4 from [U] there exists a measure u such that HD (F) =
h,(g| F)/ x,. where x, denotes the Lyapunov exponent of u Therefore h,,,(g| F) =0
also mmplies that HD (F)=0 If HD (F)=0 then let m be an ergodic measure
with maximal entropy for g|F Hence 0=HD (m)=h,/xmn = hip(g|F)/x» and
consequently h,,,(g| F)=0 So (a)&(b)

The implications (a}=>(c) and (b)=>(d) are immediate consequences of corollary
1 To prove the implications (c)=>(a) and (d)=(b) 1t 1s enough to show that F 1s
the limit of a sequence of finite sets from & To do this fix £ >0 and choose points
X1, X3, , X from F making an e/2-netin F1e forevery xe F thereexists 1 sj5<k
such that p(x, x,) <e/2 Now, by a version of the well-known Anosov’s closing
lemma (see for example [B,]) we can find 8 > 0 so that the following holds 1f x& S'
and p(g"(x), x) <8, then there 1s an x'e S' with g"(x’) =x" and p(g'(x), g'(x")) <
e/2 for all 0=:1=n Since S' 1s compact, for every 1< =<k there exist positive
integers m, <n, such that p(g™(x), g"(x,))<8 So there 1s an xj€ S' with
g" "(x;)=x; and p(g'(x)), g'(g™(x,))) <e/2 for all ke[0,n,—m,] Now let y,=
g.,™(x;) where the branch g,™ 1s taken so that g,™(g™(x,))=x, So the set
{8'(¥)h=;=ko=1=n, 1s finite g-invanant and, since g increases p-distances, its Haus-
dorft distance to F 1s less than ¢

As a consequence of this theorem, 1ts proof, corollary 1 and a theorem of Baire we
get the following

CoroLLARY 2 The space of zero-dimensional closed g-invariant subsets of g 1s dense
and of type G5 in X

In view of theorem 1 to obtain some results about continuity of Hausdorff dimension
which would 1nvolve subsets of positive dimension we have to restrict to smaller
classes than # And indeed, 1t 1s possible to find natural wide subclasses of *
(containing for example, for every number 0=<t¢=<1 closed invariant subsets of
Hausdorff dimension ¢ (see corollary 4)) the Hausdorff dimension function restricted
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to which 1s already continuous To do this, again let Fe¥% Then S'\F=
r (X, yi) where {(x, )} (n(F) 1s an integer or ©©) 1s a family of open
pairwise disjoint intervals, 1n fact connected components of S'\F We will call the

famuly

T(F) ={(xx, ) F 0 g((xx, 1)) # O}

generating for the set F Let us observe that S'\ F =|J2¢Usc~r g '(a) or 1n other
words F 1s the set of those points whose forward trajectory omits all the intervals
from 7(F) We define

H,={FedX 7(F) s fimte}
and for n=1
K, ={FeX 1(F)=<n}

The classes {%,},-, are increasing and they are just those classes which were
announced above (cf th 3)

PROPOSITION 1 If F € ¥, then g| F 1s a mapping of Misiurewicz-Szlenk

Proof Tt 1s clear that g S'—> S' and consequently also g| F has a finite partition by
intervals of monotonicity So we only need to find a fimite partition by intervals
mod (F) with the Darboux property We claim that the partition of S'\U,c.(r) a
by connected components restricted to F has the required property Indeed, since
7(F) 1s finite, this partition consists of a fimite number of closed intervals mod (F),
and let ¢ be an arbitrary subinterval of a connected component of S‘\U,,E,( nalf
ye Fng(c) then let xec denote a point such that g(x)=y So x&Usenr a
and g(x)=ye\UZoUaerr g '(a), which means that xe F and consequently
g(Fnc)=Fng(c) s an interval mod (F)

THEOREM 2 Let m =1 be an arbitrary integer, F€ ¥,,, & S'- R a continuous function
such that P(g|F, ¢|F)>sup (¢) Then the function P(g| ,¢| ) X,,>R s con-
nnuous at F

Proof (cf also [M-Sz, th 5]) In view of lemma 5 1t 1s sufficient to prove the lower
semi-continuity of this function at F Take any 0< e < (P(g|F, ¢|F)—sup (¢)) and
approximate ¢ by a piecewise constant function ¢ such that |¢ —¢] <e/4 and
lemma 3 holds So, due to this lemma we can apply theorem O to the mapping g| F
and the function ¢|F Hence for n large enough we have

(1) <108 5,,(D,)= P(g| F, &| F)~(¢/4) = P(g| F, 6| F) = (e/2)

Now, let D,c D, be an arbitrary subpartition such that Card (D,,\D~,.) =5mk, We

have
1 <1 1, 3.(D)-3,(D\D,)
—logZ2, (D,)——logX, (D,)=—1 2 =
kn og k,,( ) kn og k,,( ) kn og zk,,(Dn)
—il (l_zkn(Dn\ﬁn)>
Tk OB 3. (Dy)
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But
an(D,,\D~,,) < 5mk, e*» P ()

= 5mk, exp (k,,(sup (¢)+§))

=< 5mk, exp (k,(P(g|F, ¢|F) —3¢))

and by (1) for n large enough
3, (D,)zexp (k,.<P(g|F, ¢|F)—§))

Hence

2 (Da\Dy) _ e .
o =Sk oo (k. Plsl £ ol P)—ie~P(sl 0171 +5) ) )

= Smk, exp (— k,,) -0 when n tends to o

o

Thus for n large enough

@) -—1ogzk (By) - llogzkw) <e/4

Now let 8 > 0 be small enough so that forevery ze S’ every0=<;=<k, -1, g’(B(z, 8))
intersects at most two elements of the partition D,, and consider a subset Ge %,
such that py(F, G) <8 So the partmon

D! {aeD a() U Ug(B(x&)uB(y,6)) @}

(x,v)er(G) j=0

consists of at least (Card (D,) —4mk,) elements

Since for every a, D}, g""(a)DJDUbeD;b and g ) we can
slightly decrease the elements of D) (perhaps after subtracting two end elements)
to be compact and for every element ¢ of the new partition D, obtained the formula
g5 (¢) > Uden, d still holds So D, consists of at least

(Card (D,)) —4mk, —2) = Card (D,) —5mk,

elements and consequently satisfies formula (2)
Now the set X =120 (g")'(Upep, b) 1s compact g*-nvariant, D,| X 1s an
open partition and for any d € D, | X, g*"(d) = X Hence 1t 1s easy to check that

(3) P(g" (#))=P(g"|X, Sy (¢), Da| X)
>1084c 5, x xp (S, (¢ — (e/4)(d)) =log 2 (D,) — (e/4)k,

Now we check that X < G Obviously X < F and let z€ X n(S'\G) It means that
there exists an integer k =0 such that g*(z) € (x, y) € 7(G) But then g“(z) e F and
pu(G, F) < & imply that g“(z) € B(x, 8) U B(y, 8), and if 0= r=k, —1 1s the umque
number such that k, | k+r, then g**"(z) e X Hence g**"(z) e a€ D, for some ac D,
and g*""(z)e g"(B(x, 8) U B(y, 8)), which gives ang’(B(x,8)UB(y,8))# D -a
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contradiction Therefore by (3)

X, S, (6] X))

1 1
P(g| G, ¢|G)=k— P(g*|G, Skn(¢|G))27(— P(g*

1 €
=~ log (£, (D)~

n

and further by (2) and (1)
£ €& €&
P(glG,¢|G)2P(3[F,¢|F)—Z—Z—5=P(8|F,¢|F)—€

This completes the proof of the theorem

As an immediate consequence of this theorem and theorem 1 we obtain the
following

CoROLLARY 3 For every m=1 the function h,,, ¥, - R is continuous
We can also prove the following

Tueorem 3 Ifg S'- S'isa C*-expanding mapping then for every m =1 the function
HD %, - R is continuous

Proof Let ¥,,5F=hm,_. F,, F,eX,,,n=1,2, By theorem 1 we can assume

that s=HD (F)>0 and let 0=t<s=<1 be an arbitrary real number So

P(g|F,—t¢")=0>sup (—t¢p ") where ¢ “(z) =log] g(z)| and using theorem 2 we get
hm P(g|F,,—t¢"|F,)=P(g|F,—t¢"|F)>0

n->oo

Hence for n large enough, P(g|F,, —t¢“|F,)>0, and since the function rw>
P(g|F,, —r¢") 1s decreasing, t=HD (F,) Consequently liminf,., HD (F,)=s=
HD (F) This and corollary 1 complete the proof of the theorem

The following simple example shows that this theorem and corollary 3 are no
longer true 1If h,,, and HD are treated as functions from %, Indeed, since periodic
points of an expanding g are dense in S' we can find a sequence {F,};-, of sets
consisting of a finite number of periodic orbits such that lim, . F, =S' Obviously
F, are closed, invanant, HD (F,) = h,(g| F,) =0, and since the sets S\ F, have
only fimtely many connected components, they belong to ¥,

Now let us study some other properties of closed invanant subsets of g First we
shall give an effective criterion for two arbitrary sets 1n X, to be close in the sense
of the Hausdorff metric p, It will be expressed 1n terms of their generating families
and the standard Riemannian metric on the circle

Let F, Ge %; and B(F, G) denote the set of all byections from 7(F) to 7(G)
The A-distance between F and G 1s defined as

A(F,G)=mf{ y A(](A)—A)]EB(F,G)} if B(F, G)# &

Aer(F)

and we put A(F, G)=o001f B(F, G)=(J A denotes here Lebesgue measure (induced
by standard Riemannian metric) and —symmetric subtraction
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LEMMA 6 There 1s a constant L which depends only on g, such that py(F, G)<
LA(F, G)
Proof Su -e the metric p and consequently the corresponding A ,-distance 1s Lipschitz
equivalent to the standard one, 1t 1s sufficient to prove the lemma using A ,-distance
instead of A Let je B(F, G) be chosen so that A ,(F, G) =} ac.(r) A,(J(A)— A) and
let xe G We want to find a point y€ F whose distance from x does not exceed
2A,(F, G) Let n(x)=0 be the smallest integer such that g"¥'(B(x, 2A,(F, G)))n
(Uaenr) A)#D, say Aon g" ¥ (B(x, 2A,(F, G)))#Q Since A, (A\J(Ap)) =
A(F, G), g"(x)#J(A,) and

g"V(B(x,2A,(F, G))) > B(g"V(x),2A,(F, G)))
this implies that at least one endpoint of A, say a, belongs to g" ™ ( B(x, 2A,(F, G)))
Since ac F, 1t 1s sufficient to take as y a pomt from B(x,2A,(F, G))ng ""(a)
We proceed analogously 1f we start with a point in F So py(F, G)<2A,(F, G) and
the lemma 1s proved

Now we want to investigate sets made up in a way similar to that from [U] That
1s, let (a,, by), ,(ay, b,) be a family of open disjoint intervals of the circle and

k x
K((au bl):‘=1) = m m (Sl\g_"((an bl)))

=1 n=0

be the set of those points whose forward trajectory avoids the intervals
(a, b)), ,(ax, by) We are interested in what can happen if the endpoints of the
intervals change continuously The first remark 1s that the corresponding 1invaniant
sets do not have to vary continuously Indeed, let us consider, as in [U] the sets
K((0, a)) where 0 1s a fixed point of g If we take a so that ae€ K((0, a)) and for
some n=1, g"(a)=0, then 1t 1s easy to see that a 1s an 1solated point of K(0, a))
and so, for any £ >0, K((0, a+¢)) does not intersect a fixed neighbourhood of a
However the following theorem 1s true

THEOREM 4 If the endponts of the intervals (a,, by), , (ay, b.) change continuously
then the topological entropy and Hausdorff dimension of corresponding invarnant subsets
also change continuously

Proof Fori=1, ,k,leta,e),b(c),ae), b(e)be defined as in figure 1

FIGURE 1
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To prove our theorem 1t 1s sufficient to show that
llm HD (K((ax(s)’ bl(e))le)) = HD (K(a,, bl):CZI))

‘ = hm HD (K((@(¢), b,(£))*,))

eNO

The limits exist because the sequences are monotone The first equality can be
proved in the same way as proposition 1 from [U], so we will concentrate on the
second one In order to prove it we only need to find a sequence of compact invariant
subsets which do not intersect some thickness of all generating intervals of
K((a,, b)) and whose Hausdorff dimension tends to HD (K ((a,, b,)*_,)) To do
this we return to the proofs of theorems 2 and 3 Let us treat the set X constructed
1n the proof of theorem 2 as a function of e — X (&) It follows from the construction
that the set X (¢) = %71 g'(X(e)) 1s compact, g-invanant and does not intersect
the 8(g)-thickness of the intervals from 7(K((a,, b,)*_,)) (we have replaced the set
F from the proof of theorem 2 by K((a,, b,)*_,) Now proceeding as in the proof
of theorem 3 we get that llme\oHD(ff(s))=HD(K((a,,b,)f;]) The case of
topological entropy 1s analogous and simpler

COROLLARY 4 For every 0=¢ =1 there exists a compact g-invariant subset of S’
whose Hausdorff dimension 1s equal to ¢

Proof The function e—HD (K((0, ¢))), where 0 1s a fixed point of g 1s, by
theorem 4, continuous Besides, HD (K (0, 0))=HD (§')=1 and HD (K((0,1))) =
HD ({0})=0

We want to finish this section with the following two simple propositions
PROPOSITION 2 For every Fe ¥ the set | ,-o\ U aprc~r) & '({a, b}) 1s dense in F

ProPoOSITION 3 For every uncountable F € ¥, there 1s a umique set F, homeomorphic
to the Cantor set such that 7(Fy) < 7(F) and F\F, is at most countable

To prove the last proposition use the Cantor-Bendixon theorem (see [K])

3 In this section we shall deal with the family K((0, €)) (abbreviated to K(¢)),
where 0 1s a fixed point of an orientation preserving C>-expanding mapping of the
circle, g This family was the main object of interest in [U] Now using the methods
developed 1in [P-U-Z] we want to give a more detailed description of equilibrium
states of Holder continuous functions Let C(g) denote the set of those points at
which the function e— K(€) 1s not locally constant It follows from [U] that we
get the same set 1f we take into account the function € —> h,,,(g| K(¢)), and C(g) =
{e¢ g"(e)=¢ for every n=0} Throughout this section we will only consider the
points £ € C(g) (observe that for every 0=< g =1 there 1s an £ < ¢'€ C(g) such that
K{(e')=K(¢)

ProrosITION 4 The set of all periodic points 1s dense in K(¢) tff 02 {g"(¢) n=0}
ore=0

Proof If g™ (e) =0 for certain m=1 and ¢ # 0 then ¢ 1s 1solated 1n K{(¢) and 1s not
periodic And 1f 0¢{g"(e) n=0} then using symbolic representation ¢ =, -
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S'(g=deg(g)) of g, constructed in [U], we easily see that for every sequence
{x.}°_, 1m ¢ '(K(g)) and every m=1 there exists M so large that the periodic
pomnt (x;, ,X.(g—1)*)” belongs to ¢ '(K(g)) The case of £ =0 1s obvious

Let SP(g)={ecC(g) O0gcl({g"(e) n=0})}

ProrosITION 5 0# ecSP(g) iff g| K(e) sauisfies the specification property (the
references to the specification property are, for instance, [D-G-S], [B,])

Proof We use the symbolic representation again €€ SP(g) means that ¢ '(g)
consists of one sequence and the length of all blocks of the symbols g — 1 1s bounded
by a natural number, say k Let us now take 6 >0 and let /(§) be chosen so that
p(x,y)<81f x,yeX,;and x,=y, fori1=1, ,I(§)

For any k=2, any k ponts z', | z® ¢ ¢ '(K(¢)), any integers 0<a,<b, <
a,=b,< <apsb, with a,—b,_,=1(8)+ k+1 for 2=1=k and any integer p=
1(8)+ k+1+b,—a, we will find a periodic point z€ ¢ (K (e)) with period p, such
that

p(o™(z), " ()< 8 fora,<=n=<b, 1=1=<k
Let us first construct a point Ze ¢ '(K(¢)) 1n the following way
q - 1’ 1 =n= al
Z,=8z0=(a""(z"),, a+l=n=<b+I(8),1=1=<k

g-1, b+Il8)+tli=sn=a.,,1=1=k(a, S—fal+p)
and
5=51 Eal—l(fal £a|+p)cc

7e ¢ (K(e)), oP(a®(Z)) = o™(Z) and we only need to find a periodic point z of
period p such that o®(z)=0%(Z) So, as z we can take the point o™ % (g%(z))
where mp—a,=0 Since every factor of a system with the specification property
also has the specification property, one part of the proposition 1s proved

Now let e 2 SP (g) So, we can find an increasing sequence {k,}_, and £ ¢ ()
such that & ,,=q—1for1=0, ,n Let §=1/(2q) (hence p(x,y)=86=x,=1y,),
zV=¢ a,=0, by=k,—1, 2P0 (&) If z 1s taken to satisfy the specification
condition, then z,=¢, for i=1, , k, But since ze ¢ '(K(g)), this imples that
z,=q—1for k,<1=<k,+n On the other hand 8 > p(c*z, 0%z?) = p(0®z, §) Thus
Zo =(0%2),=€,<qg—1 Since a,>b,=k,—1, 1t gives that a,=k,+n and
consequently a,—b;=n+1 This completes the proof of the proposition

Applying symbolic representation we also obtain the following

ProPOSITION 6 The sets SP(g) and C(g)\SP (g) are dense in C(g)

Proof The density of C(g)\SP(g) is obvious The density of SP (g) follows from
the fact that the set C(g)n Per(g), where Per (g) 1s the set of all pertodic points
of g §'>S' 1s already dense 1n C(g)

CorOLLARY 5 If P(g, n)=Card ({x< K(g) g"(x)=x}), then for every e € C(g)

lim = log P(e, n) = hop( g K(£))

noco N
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Proof As g|K(e) 1s expansive the 1nequality h,,(g|K(e))=
limsup, ., 1/nlog P(e, n) follows In order to prove the converse inequality let us
consider two cases First, assume that there exists a decreasing sequence {¢,};2, of
points from SP ( g) tending to £ By the specification property, forall §,7=1,2,
our formula holds Besides, for all j=1

1 1
Iim —log P(¢g, n) =< llmmf; log P(e, n)

n-x n n—>oo

Hence by theorem 4,

l1m1nf% P(e,n)=lm h,,,(g| K(¢)) = hop(g] K(¢))

n—o >

Otherwise, because of density of SP(g) in C(g), e 1s nght-hand 1solated 1n C(g)
Since C(g) 1s closed, there 1s e < &€ C(g) which is the nearest point to € Since £
1s left-hand 1solated, 1t satisfies the first case Since {h,,(g|K(8)}sece=
[0, log (deg g)] and the function &+ h,,,(g|K(8)) 1s monotone, h,(g|K(&))=
hop(g| K(e)) It implies that

1 1
liminf—log P(e, n) = lim —’;log P(&,n)=h(g|K(2))=h,(g| K(¢))
n

n-oo n->00

The corollary 1s proved

LemMmA 7 If 8,ee€ C(g) and h,(g|K(g))# hp(g|K(8)) then HD (K(8))#
HD (K(¢))

Proof We can assume 8 <& In view of proposition 6 and the last argument of the
previous proof, one can find ae SP(g) such that §<a<e and K(a)2 K(g) If
HD (K(6))=HD (K(¢)) then HD(K(a))=HD(K(e))=c By the Bowen-
Manning formula (see [U,th 3], cf also [B;], [McC-M]), P(g|K(a),
—clog(|g| |[K(a))) =0 Since g| K(a) satisfies the specification property and log | g'|
1s a Holder continuous function, there exists exactly one equilibrium state p of
—clog (|g'| K(a)) (see [B,]) But,n view of corollary 2 from [U] there 1s a g| K (&)-
invanant measure v such that ¢=HD (K(e))=h,/[log(|g'||K(g))dv Thus
h,+f—clog(|g'||K(e)) dv=0 and since v 1s also g|K(a)-invanant, 1t 1s also an
equibibrium state of the function ~clog (|g’| | K (a)) with respect to the mapping
glK(a) So v=pu and consequently u(K(a)\K(g))=1-1=0, which contradicts
to the fact that the equilibrium state of any Holder continuity function with respect
to the mapping which satisfies the specification property, 1s positive on non-empty
open sets (see [B,]) Thus HD (K(8))# HD (K(¢))

Due to the comments 1n the beginning of this section, this lemma immediately
imphes

CoROLLARY 6 C{(g) comncides with the set of those points at which the function
e—HD (K (¢)) s not locally constant The sets of those points at which the functions
e—>HD (K(¢)) and e— h,,(g| K()) are not locally nght-hand constant, coincide
too Call them (following [U}) C,(g)
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Now we want to generalize theorem 2 from [ U] which refers to the local Hausdorft
dimension of C(g) But we also want to include similar results about the sets SP (g)
and C(g)\SP(g) So we need the following slight generalization of definition 2
from [U]

Defimition 3 Let (X, d) be a metric space and A< X The local Hausdorff dimension
of A at a point xe X 1s defined to be hm,., HD (A~ B(x, r)) and denoted by
HD (A, x)

THEOREM 5 For every e£€C(g), HD(SP(g),e)=HD(C(g)\SP(g),¢)=
HD (C(g), e) =HD (K(¢))
Proof We improve on the 1dea of the proof of theorem 2 from [U] Since for every
e€C(g), C(g)n Ble, r)< K(e—r), Theorem 4 implies that

(1) HD (SP (g), £), HD (C(g)\SP(g), £) =HD (C(g), £) <HD (K(¢))
Let us now define K(e)={J5-; K((1-(1/n), £¢) By theorem 4

(2) HD (K (})=HD (K(¢))
Consider ¢ € C,(g) which 1s not periodic For every r> 0 we have

K(e)=K(e+r)u CJ K(e)ng (e, e+r))
n=0

Since g€ C,(g), (2) implies the existence of m=0 such that HD (IZ(s) A
g "([e,e+r)))=HD (K(¢)) Since g"(K(e)ng ™([e,e+r)))c K(e)n[e, e+r),
one obtains

(3) HD (K(e)n[e, £+r)) =HD (K(¢)) forr>0
Denote by n(r)=1 the mimimal number, not less than 1, such that (e—r, )N
g""((e —r, e]) # Observe that due to the choice of ¢, there exists & >0 such that
fori=1, ,n(r)—-1

(4)(1-8,e)ng'(e—re]})=0
Observe also that the set (e —r, e]n g """'(¢) consists of one point, say £, Since ¢
1s not periodic, € <g""(e) and consequently £ —r < e, <& Therefore applying (4)

(5) [e1, £) g ""(K(£))=SP(g)n B(e, r)
Since g""([ey, e)ng " "(K(e))=g""([ey, £)) n K(e) = [e,8""(e)) n K(e), (5)
and (3) imply that HD (SP (g) n B(e, r)) = HD (K (¢)) = HD (K(¢)) Henceif r-0
one gets

(6) HD (SP(g), e)=HD (K(¢))
So, for the set of &’s considered, the theorem 1s proved for SP(g) and C(g) But
by lemma 4(11), (1) from [U], this set 1s dense in C(g) This completes the proof
for the sets SP(g) and C(g)

Now let Ky(g) < K(€) be the set of those points whose forward trajectory under
g has 0 as an accumulation point The proof for SP(g) shows that to prove our
theorem for C(g)\SP(g) we only need to find a dense subset of C(g)\Per(g)
such that for every ¢ from 1it, HD (K (e)) = HD (K (¢)) We claim that as this subset
one can take SP(g)\Per(g) Indeed, the formula HD (SP(g), ¢)=HD (K (¢))
shows that if we subtract from SP(g) any countable set, 1t still will be dense 1n
C(g) Let ecSP(g)\Per(g) In view of corollary 2 from [U] there 1s a g| K(¢)-
invariant probability measure u on K(e) such that HD (K (g))=HD (u) - the
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Hausdorff dimension of the measure u From the proof of lemma 7 we see that
such a measure 1s unique and positive on non-empty open sets of K(e) Since for
every 6>0, K(¢)\K((1—-8, £)) 1s a non-empty open set such that

(gl K(£))(K(e\K((1-8,¢)))= K(es\K((1-38, ¢)),
we conclude that u(K(e)\K((1-8, ¢)))=1 Hence

w(Kole)) = u(m (K(e\NK((1-(1/n), e)>>) -1

and thus HD (Ky(g))=HD (x«)=HD (K (g)) This completes the proof of the
theorem

Since HD (K (0)) =1, this theorem immediately implies the following
CoroLLArRY 7 HD (SP(g))=HD (C(g)\SP(g))=HD (C(g))=1

Now we pass to the main theorem of this section If h [0, c©) > [0, c0) 15 an increasing
function such that h(0) =0, then we will use H, to denote the Hausdorff measure
corresponding to the function h We will prove the following

THEOREM 6 Let ¢ S'->R be a Holder continuous function and € € SP (g) be taken
5o that the function
¢|K(e)+HD (K(e)) log (|g]|K(e)) K(e)->R
1s not homological to a constant If u, denotes the equilibrium state of ¢,
@ (1) =1"P ") exp (cvlog (1/t) logloglog (1/1))  force (0, ),
then w, 1s singular with respect to H, for ch/202((//)/Ilog |g’| du, and absolutely
continuous for ¢ >20>(y)/flog|g/| du, Here ¢y =¢+HD (u,)loglg'| and a*(¢)

denotes the middle asymptotic variance of i with respect to the probability measure .,
e

az(dl)=llml<Var%<§ l/1°(g|K(e)))>¢0 (see [B,])

Proof For xe K(¢), >0 and an integer n=0, let
B,(x,8)={ze K(e) |g'(z)—g'(x)|=8 for1=0,1, ,n—1}

It follows from [P-U-Z] that to prove the theorem, 1t 1s sufficient to check the
following three conditions

(a) The bounded distortion theorem For every 8 >0 small enough there exists a
constant C >0 such that for every n =0 and every xe€ K(¢)

sup {|(g")(2)| z€ B,(x, 8)}/nf{{(g")(2)] ze B,(x,8)}=C;

(b) For every 8 > 0 small enough there exists a constant B; > 0 such that for every
n=0 and every x€ K(¢)

B! exp (~Plg| K(e), (| K(e))n+ T ¢ (g K())'(x)

= ua(B,(x, )= By exp (~Plg| K (), (6| K(e)In+ L b2 (8] K(e))'(x))
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(¢) The iterated logarithm law For p,-ae xe K(g)
Lilo¥e(g|K(e)'—n J ¢ dp,
vnloglogn

The bounded distortion theorem 1s a well-known fact for every C’-expanding
mapping of the circle Condition (b) follows from the specification property (see
[B,], [D-G-S], [K-S-S]) Since the symbolic representation of g| K(¢e) 1s just (see
[U]) the system (X, o) from § 4 of [H-K], the iterated logarithm law follows from
this paper, where even the almost sure invariance principle 1s proved

What 1s the situation when the function ¢ + HD (K (¢)) log (|g'|| K (¢)) 1s homo-
logical to a constant? Then g, = p_pp (k(e)) 108 (181 | K (e) A0 this measure 1s equivalent
to the Hausdorff measure H#o«en on K(¢) (see [B;], [P-U-Z])

In general 1t 1s not too easy to check whether a given function 1s homological to
a constant Butin our special case we can make a simple observation in this direction
Namely, since the fact that ¢ +HD (K(£))log(|g'||K(g)) 1s homological to a
constant means that there 1s a Holder continuous function ¥ K(¢)-> R and a constant
csuchthat ¢ + HD (K (&) log (|g'||K(g)) —c=u-(g|K(e))—u,and forevery6=¢
we have K (8) < K(¢),1t1s obvious that ¢ + HD (K (8)) log (|g’]) 1s also homological
to a constant

=v20%(y)

limsup

4 1In this section we give some other applications of results proved 1n §§ 1,2 Let
us start with DE-perturbations The following definition corresponds to definition
3 from [U]

Definition 4 We say that a C*-mapping § S'—> S' 1s a DE-perturbation obtained
from an orientation preserving C’-expanding mapping g S'- S’ if the following
conditions are satisfied

(a) there exist real numbers 0<fB,, B,<1 such that g(B8,)=8,8(1-8,)=
1—-8,, &'|[B1,1—B2]1>1 and for every x€ (1 - 8,, B1) lim, ., £"(x) =0,

(b) there exist real numbers y,> B, and v,> B, such that g|[vy,,1—y,]=
gllyi, 1- 2]

It 1s clear that all the facts proved in [U] for one-sided DE-perturbations have

corresponding versions for (two-sided) DE-perturbations Using theorem 4 we want
to give a stronger version of proposition 3 from [U]

TueoremM 7 If §,»g n the Ctopology such that v,y >0 then
him, . (HD (Q(g,))) =1, where Q(g,) denotes the set of all non-wandering points

of &n
Proof Since Q(g,)> K((1-1y2, 7)), HD(Q(g.))=HD(K(1-7v,, 7)) and by
theorem 4,

1=limsup HD (Q(g,)) = liminf HD (Q(g,))=HD ((0,0)) =1

Since Qy(g) =Q(g)\{0} 1s a mixing repeller of g, the following theorem, related to
theorem 6, follows from [P-U-Z]
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THEOREM 8 Let ¢ S'->R be a Holder continuous function such that ¢{Qq(g)+
HD (Q0(£)) log (12']1€2(g)) is not homological to a constant Then p, 1s singular with
respect to Hes, for c=<N20*()/flog|g'| du, and absolutely continuous for c¢>
x/20’2(d/)/jlog g'|duy, Here ¢y =¢+HD (u,)log|g|

If ¢ +HD (6(g)) log (|€'1Q06(g)) 1s homological to a constant then look at the
comment after theorem 6

Theorems 7 and 8 are obviously also true 1n the case of one-sided DE-perturba-
tions

THEOREM 9 Let ¢ I->R be a continuous function defined on a closed interval I If
g I-Iis a continuous mapping of Misiurewicz-Szlenk and P(g, ¢)>sup (¢), then
the pressure function P( ,¢) C°(I, I)>R s lower semi-continuous at g C°(I, )
denotes here the space of all continuous mappings of I into itself with the C°-topology

This theorem generalizes a result of Misturewicz and Szlenk and its proof is a
simpler version of the proof of theorem 2 There 1s an easy example (see figure 2)
which shows that the assumption P(g, ¢)>sup (@) cannot be omitted Indeed, let
g([0,7)=[0,3),g(3) =3,8(1)=1 and for every xe[31)lim,.»g"(x)=3, as mn
figure 2 If we take ¢ I—>R so that ¢[[0,2]=0 and &(1)> h,,(g|[0,3]) then
P(g, &)= (1), but for every f I-1I for which f][0,3]=g|[0,3] and for

x€ (3 1 lim, o f"(x) =2, P(g &)= hp(g|[0,3])

rof— —
—

FIGURE 2

Theorem 9 has the following corollary

CoroLLARY 8 If C°(I,R.) denotes the set of all positive continuous functions with
topology of uniform convergence and s'(g, ¢) is the special flow defined by a continuous
mapping of Miswurewicz-Szlenk g I - I and positive continuous function ¢, then the
function C°(I, ) x CY(L,R,)>(f ¢)— hop(s'(f, &) 1s lower semi-continuous at
(g, )
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Proof A theorem of Abramov [A] states that

ha(s') = hu(g)/J ¢ du,

where i 1s the s'-invanant measure induced by a g-invaniant measure u Hence

and further
0= sup
preMig)

¢ Ehyp(s'(g, ¢))= sup hz(s')= sup

(h#(g)/J’ anu)
reM(g) neMig)

(h#(g)—cJ’ d)@)/J‘ b du = sup )(hn(g)—cj d>du> = P(g, —cd)

1€ hy,(s'(g, ¢)) 1s the umque solution of the equation P(g, —t¢)=0 This permits
us to make use of theorem 9 and proceed as in the proof of theorem 3

We want to finish this section with a remark which refers to the family K((s, 1))
for an expanding mapping g of degree 2 Namely, if we pass to the unit interval as
was done 1n [U], we will get the family of mappings which are topologically
conjugate to those which arise as the Poincaré maps of Lorenz attractors (see [W]
for example)

This paper was written whilst the author was visiting SFB 170 ‘Geometrie und
Analysis’ 1n Gottingen, W Germany
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