The problem of the in-and-circumscribed polygon for a plane quartic curve

By W. L. Edge, University of Edinburgh.
(Received 17th January, 1935. Read 18th January, 1935.)

1. Consider a plane curve C of order n and class X; it is to be supposed throughout that C has only ordinary Plücker singularities, i.e. nodes, cusps, inflections and bitangents. Through any point P_{1} of C there pass, apart from the tangent at P_{1} itself, $X-2$ lines which touch C; let T_{12} be the point of contact of any one of these tangents and P_{2} any one of the $n-3$ further intersections of $P_{1} T_{12}$ with C. Through P_{2} there pass, apart from the tangent at P_{2} itself and the line $P_{2} P_{1}, X-3$ lines which touch C; let T_{23} be the point of contact of any one of these with C and P_{3} any one of its $n-3$ further intersections with C. Proceeding in this way we obtain points $P_{4}, P_{5}, \ldots, P_{m+1}$, each line $P_{i-1} P_{i}$ being a tangent of C. If we can so arrange matters that P_{m+1} coincides with P_{1} we obtain a polygon of m sides whose vertices all lie on C and whose sides all touch C, each of the m points of contact being, it must be understood, distinct from the vertices; this polygon is both inscribed and circumscribed to C, and is called an in-and-circumscribed m-gon of C. The number of in-and-circumscribed triangles of a plane curve was found by Cayley. ${ }^{1}$

The determination of the number of in-and-circumscribed m-gons of a curve is one of those problems which, as soon as they have been propounded, seem immediately to suggest that a solution will be forthcoming by application of the theory of correspondence. In fact, given a point P_{1} of C there are $X-2$ tangents $P_{1} T_{12}$ each of which meets C in $n-3$ further points-corresponding to P_{1} there are $(X-2)(n-3)$ positions of P_{2}. Similarly, to each position of P_{2} there correspond $(X-3)(n-3)$ positions of P_{3}, so that to any position of P_{1} on C there correspond $(X-2)(X-3)(n-3)^{2}$ positions of P_{3}. Proceeding in this manner we find that to any position of P_{1} there correspond $(X-2)(X-3)^{m-1}(n-3)^{m}$ positions of P_{m+1}. We will

[^0]denote the correspondence between the points P_{1} and P_{m+1} by S_{m}; it is clearly a symmetrical correspondence, and if γ_{m} is its valency and p the genus of C the number of united points of S_{m} is ${ }^{1}$
$$
2(X-2)(X-3)^{m-1}(n-3)^{m}+2 p \gamma_{m}
$$

These united points include all the vertices of all the in-andcircumscribed m-gons of C; indeed they include each vertex twice over. For if $A_{1} A_{2} \ldots A_{m}$ is any in-and-circumscribed m-gon we may take P_{1} at any vertex and proceed round the polygon in either direction; if P_{1} is, for example, at A_{1} we may take P_{2} to be either of the two vertices A_{2}, A_{m} which are contiguous to A_{1}, and in either case we obtain a position of P_{m+1} at A_{1}. Thus, if N_{m} is the number of in-and-circumscribed m-gons of C we have the relation

$$
2 m N_{m}=2(X-2)(X-3)^{m-1}(n-3)^{m}+2 p \gamma_{m}-H_{m}
$$

where H_{m} is the number of points of C which are united points of S_{m} without being vertices of in-and-circumscribed m-gons, each of these points being included according to its proper degree of multiplicity. We say, following Cayley, that the problem has H_{m} heterotypic solutions. This much is easy; the whole difficulty, and it is not an inconsiderable one, lies in calculating H_{m}. In order to calculate H_{m} we have first to discover all those points of C which are united points of S_{m} without being vertices of in-and-circumscribed m-gons; secondly we have to decide how often each of these points is to be included in the number H_{m}.
2. Cayley solved the problem in the case when $m=3$ not by means of correspondence theory but by means of his functional method; he gave indications of the solution by correspondence theory but he was unable satisfactorily to account for the heterotypic solutions, and this matter remained unsettled until it was cleared up later by Zeuthen. ${ }^{2}$ We shall consider in this present paper the case when C is a curve of the fourth order; this simplifies the problem somewhat, for although heterotypic solutions can be numerous enough for a quartic curve they are by no means so numerous as for curves of higher orders.

[^1]${ }^{2}$ Lehrbuch der abzählenden Methoden der Geometrie (Leipzig, 1914), 249-253.

The problem of the in-and-circumscribed polygon for a plane quartic without multiple points has been solved recently ${ }^{1}$; in this present paper the problem is solved for any plane quartic with only ordinary singularities. The number N_{m} of in-and-circumscribed m-gons is calculated for values of m up to 10 ; the detailed work of calculating the number of heterotypic solutions becomes tedious for the larger values of m, but the aim has been to work out the problem to such a stage that the calculation of N_{m} for larger values of m offers no further theoretical difficulty. The work proceeds step by step; the value of N_{3} being known already we first calculate N_{4}, then N_{5} and so on. The results are tabulated at the end of the paper. The curve being a quartic we have $n=4$ and $2 p=X-6+\kappa$, where κ is the number of cusps; hence the equation for N_{m} is

$$
2 m N_{m}=2(X-2)(X-3)^{m-1}+(X-6+\kappa) \gamma_{m}-H_{m} .
$$

By considering the relations connecting the successive correspondences S_{m} we find, as in C.P.§2l, that the valency γ_{m} satisfies the difference equation

$$
\gamma_{m}+(X-6) \gamma_{m-1}+(X-3) \gamma_{m-2}=0
$$

Since (cf. C.P.§5) $\gamma_{1}=X-6$ and $\gamma_{2}=-\left(X^{2}-13 X+38\right)$, the values of $\gamma_{3}, \gamma_{4}, \ldots$, can be calculated seriatim from this difference equation; the fact that $\gamma_{1}=X-6$ causes every γ_{m} to have $X-6$ as a factor when m is odd.
3. Before proceeding further one or two remarks must be made concerning the number of times a point of C^{4} must be included in H_{m} when this point is a united point of S_{m} and is not a vertex of an in-and-circumscribed m-gon. Let P_{0} be such a point of C^{4}; then of those points which correspond to P_{0} in S_{m} a certain number, ν say, coincide with P_{0}. If then P_{1} is taken to be a point of C^{4} near to P_{0} there are ν points $P_{m+1}^{(1)}, P_{m+1}^{(2)}, \ldots, P_{m+1}^{(\nu)}$ which correspond to P_{1} in S_{m} and which are also near P_{0}. Suppose now that the coordinates of the points of C^{4} in the neighbourhood of P_{0} are expressed in terms of a parameter, the point P_{0} itself being given by the zero value of the parameter. The parameter of P_{1} will then be an infinitesimal. Taking this parameter of P_{1} as the principal infinitesimal the ν parameters of the points $P_{m+1}^{(1)}, P_{m+1}^{(2)}, \ldots, P_{m+1}^{(\nu)}$ will be infinitesimals of certain

[^2]orders; in all the cases with which we shall be concerned these ν parameters will be infinitesimals of the same order, say of order a. Then the point P_{0} makes a contribution av to the number H_{m}. This rule is due to Zeuthen. ${ }^{1}$ When $a=1$ the number of times that P_{0} is to be reckoned as a contribution to H_{m} is equal to the number of points that correspond to P_{0} in S_{m} and at the same time coincide with P_{0}; this often happens, but care should always be taken to see that Zeuthen's rule is properly applied. We will, however, in order to shorten the work, not allude to Zeuthen's rule in those cases when $a=1$.

In-and-circumscribed quadrilaterals.

4. The valency of the correspondence S_{4} on the quartic curve C^{4} is found, by use of the difference equation, to be

$$
\gamma_{4}=-\left\{X^{4}-27 X^{3}+261 X^{2}-1073 X+1590\right\}
$$

hence the total number of united points of the correspondence S_{4} is

$$
\begin{array}{r}
2(X-2)(X-3)^{3}-(X-6+\kappa)\left(X^{4}-27 X^{3}+261 X^{2}-1073 X+1590\right) \\
=-X^{5}+35 X^{4}-44 \tilde{5} X^{3}+2729 X^{2}-8190 X+9648 \\
-\kappa\left(X^{4}-27 X^{3}+261 X^{2}-1073 X+1590\right)
\end{array}
$$

We have now to account for the heterotypic solutions.
Let us first consider those heterotypic solutions which are associated with the nodes of C^{4}. From each node there are $X-4$ tangents to the curve; let the points of contact of those from a particular node D be $d^{(1)}, d^{(2)}, \ldots, d^{(X-4)}$. Suppose P_{1} is at D; then any one of the $X-4$ tangents from D, say $D d^{(1)}$, gives a position of P_{2} on the other branch of the curve at D. To obtain P_{3} we may take any one of the $X-4$ tangents from D other than $D d^{(1)}$; each of these $X-5$ tangents gives a position of P_{3} coinciding with P_{1}. Then we have a choice of $X-5$ tangents each of which gives a position of P_{4} on the other branch of the curve at D, while a final choice of $X-5$ tangents gives P_{5} coinciding with P_{1}. Thus of the $(X-2)(X-3)^{3}$ points which correspond to P_{1} in the correspondence $S_{4},(X-4)(X-5)^{3}$ coincide with P_{1}. This is true if P_{1} is on either branch of the curve at D, so that there arise in this way $2 \delta(X-4)(X-5)^{3}$ heterotypic solutions associated with the nodes of $C^{ \pm}$, where δ is the number of nodes.

[^3]Now the tangents to C^{4} at a node have each one further intersection with the curve; let the two tangents of the node D meet C^{4} again in d_{1} and d_{2} respectively. Then d_{1} and d_{2} are also united points of S_{4}. For suppose P_{1} is at d_{1}. One of the $X-2$ tangents from d_{1} to the curve is $d_{1} D$; the remaining intersection of this tangent with C^{4} is at D, on the branch which it does not touch; taking this intersection as P_{2} there are $X-4$ tangents from it to C^{4} each giving a position of P_{3} on the other branch at D; from P_{3} there is then a choice of $X-5$ tangents each of which gives a position of P_{4} coinciding with P_{2}. From P_{4} we can then return to P_{1} along the tangent $D d_{1}$, thus giving a position of P_{5} coinciding with P_{1}. It is important to notice that, of the $X-2$ tangents from P_{4} to the curve, two coincide with the tangent to that branch at the node on which P_{4} does not lie. Thus, when P_{1} is at $d_{1}, 2(X-4)(X-5)$ of its corresponding points in S_{4} coincide with it. In this way there arise $4 \delta(X-4)(X-5)$ heterotypic solutions. But, further, each of the tangents, other than $d_{1} D$, from d_{1} to C^{4} meets C^{4} in a point which is also a united point of S_{4}. For let d_{11} be an intersection of C^{4} with a tangent $d_{1} d_{11}$, other than $d_{1} D$, from d_{1}. Then if P_{1} is at d_{11} we may take P_{2} at d_{1}, P_{3} at D on that branch of the curve which $d_{1} D$ does not touch, P_{4} again at d_{1} and P_{5} at d_{11}. We are justified in saying that P_{4} may be at d_{1} because, in order to pass from P_{3} to P_{4} we must choose one of the $X-2$ tangents, other than $P_{3} P_{2}$, from P_{3}; this condition is not violated here, although $P_{3} P_{2}$ and $P_{3} P_{4}$ are the same tangent, because in this case P_{3} is at a node and, as has already been remarked, two of the $X-2$ tangents from P_{3} coincide with $P_{3} d_{1}$. Since there are two points d_{1}, d_{2} associated with each node D, and since there are, apart from the tangent at the node, $X-3$ tangents of C^{4} passing through each of them, the number of heterotypic solutions arising in this way is $2 \delta(X-3)$. The total number of heterotypic solutions associated with the nodes of C^{4} is therefore

$$
2 \delta(X-4)(X-5)^{3}+4 \delta(X-4)(X-5)+2 \delta(X-3)
$$

Suppose now that I is a point of inflection of C^{4}; the tangent at I has one remaining intersection j with C^{4}, and there are $X-3$ other tangents from I to the curve. Let P_{1} be the remaining intersection of one of these $X-3$ tangents with C^{4}; then we may take P_{2} at I and P_{3} at j. Since, I being an inflection, two of the $X-2$ tangents from j to C^{4} coincide with $j I$, we may take P_{4} to be at I, and then P_{5} at P_{1}, which is therefore a united point of S_{4}. Hence we have,
associated with the inflections of $C^{4},(X-3)$ l heterotypic solutions, 1 being the number of inflections of C^{4}.
5. It remains now to consider those heterotypic solutions associated with the cusps of C^{4}; here it is a little more difficult to arrive at the result because the application of Zeuthen's rule has to be considered. Let K be a cusp of C^{4}; there are $X-3$ tangents, other than the cuspidal tangent, of C^{4} which pass through K. Suppose P_{1} is at K; then any one of these $X-3$ tangents has its remaining intersection P_{2} also at K; there are then $X-4$ tangents which may be used for passing from P_{2} to P_{3}, P_{3} being also at K; we have then a choice of $X-4$ tangents for $P_{3} P_{4}$ and of $X-4$ tangents for $P_{4} P_{5}$, both P_{4} and P_{5} being at K. Hence K is a united point of S_{4}, and the number of corresponding points which coincide with it is $(X-3)(X-4)^{3}$. To find how many times K is to be counted among the heterotypic solutions we apply Zeuthen's rule: if P_{1} is taken near K we also have a position of P_{5} near K; when the points near K on the curve are expressed in terms of a parameter in such a way that the value of the parameter at the cusp itself is zero the parameters of P_{1} and P_{5} will both be infinitesimal. If the parameter of P_{1} is taken as the principal infinitesimal the difference between the parameters of P_{1} and P_{5} will be an infinitesimal of a certain order a and, in order to find how many times K must be reckoned among the heterotypic solutions, it is necessary to take the product of a and the number of points which correspond to K in the correspondence S_{4} and coincide with it.

In order to calculate α it will be sufficient to take a particular quartic curve; let us therefore, as on a previous occasion, ${ }^{1}$ take the curve for which

$$
x: y: 1=a m^{2} \lambda^{3}: a^{2} m \lambda^{2}\left(\lambda^{2}+1\right): m^{2} \lambda^{2}+a^{2}\left(\lambda^{2}+1\right)^{2}
$$

Referred to ordinary rectangular Cartesian coordinates this is a bicircular quartic with a cusp at the origin, the parameter of the cusp being $\lambda=0$. If then we take P_{1} to have the parameter $\lambda=\mu$ we find a point P_{5} whose parameter is $\lambda=\mu-8 \mu^{2}$ as far as the second order of μ; the difference between the parameters of P_{1} and P_{5} is thus $8 \mu^{2}$, and is an infinitesimal of the second order. Hence $a=2$. Wherefore the number of times that K is to be counted among the heterotypic solutions is $2(X-3)(X-4)^{3}$.

[^4]The tangent at the cusp K meets C^{4} in one further point, say t, and t occurs among the united points of S_{4}. Indeed if P_{1} is at t the tangent $t K$ has its fourth intersection with C^{4} at K, and so P_{2} is at K. Any one of the $X-3$ tangents from K then gives P_{3} also at K, while any one of the remaining $X-4$ tangents from K gives P_{4} at K; we may then take the tangent $P_{4} P_{5}$ to be $K t$, giving a position of P_{j} at t. It appears then that when P_{1} is at t there are $(X-3)(X-4)$ of its corresponding points in S_{4} also at t. Further it is found that, when the application of Zeuthen's rule is considered, we have to multiply this number by 2 in order to obtain the number of times which t must be reckoned among the united points of S_{4}. The total number of heterotypic solutions associated with the cusps of C^{4} is therefore

$$
2 \kappa(X-3)(X-4)^{3}+2 \kappa(X-3)(X-4)
$$

The total number of heterotypic solutions of the problem is therefore

$$
\begin{aligned}
H_{4}= & 2 \delta(X-4)(X-5)^{3}+4 \delta(X-4)(X-5)+2 \delta(X-3) \\
& +\iota(X-3)+2 \kappa(X-3)(X-4)^{3}+2 \kappa(X-3)(X-4) .
\end{aligned}
$$

We can now substitute for δ and ι in this expression for H_{4} from Plücker's equations, which give

$$
2 \delta=12-X-3 \kappa, \quad \iota=3 X-12+\kappa
$$

We then find, after some reduction,

$$
\begin{aligned}
H_{4}=-X^{5}+31 & X^{4}-365 X^{3}+2089 X^{2}-5862 X+6480 \\
& +\kappa\left(-X^{4}+27 X^{3}-241 X^{2}+897 X-1206\right)
\end{aligned}
$$

When this is subtracted from the number, already found, of united points of S_{4} we obtain
$8 N_{4}=4 X^{4}-80 X^{3}+640 X^{2}-2328 X+3168-\kappa\left(20 X^{2}-176 X+384\right)$ or
$2 N_{4}=(X-4)\left\{X^{3}-16 X^{2}+96 X-198-\kappa(5 X-24)\right\}$.
It is simpler, especially for higher values of m, to work with $y=X-4$ instead of with X, and this we shall do. In terms of y we have

$$
2 N_{4}=y\left\{y^{3}-4 y^{2}+16 y-6-\kappa(5 y-4)\right\}
$$

and

$$
\gamma_{4}=-\left(y^{4}-11 y^{2}+33 y^{2}-25 y+2\right)
$$

In-and-circumscribed pentagons.

6. The valency of S_{5} is

$$
\gamma_{5}=(y-2)\left(y^{4}-12 y^{3}+38 y^{2}-20 y+1\right)
$$

hence the total number of united points of S_{5} is

$$
\begin{aligned}
2(X-2) & (X-3)^{4}+(X-6+\kappa) \gamma_{5} \\
& =2(y+2)(y+1)^{4}+(y-2+\kappa) \gamma_{5} \\
& =y^{6}-14 y^{5}+102 y^{4}-192 y^{3}+265 y^{2}-66 y+8+\kappa \gamma_{5}
\end{aligned}
$$

We must now enumerate those united points of S_{5} which are not vertices of in-and-circumscribed pentagons.

Consider first heterotypic solutions associated with the bitangents of C^{4}. Through a point of contact of a bitangent there pass $X-3$ tangents of C^{4}, other than the bitangent itself; let h_{1} be the remaining intersection of any one of these $X-3$ tangents with C^{4}. Then through h_{1} there pass $X-3$ further tangents of C^{4}; let h_{2} be the remaining intersection of any one of these tangents with C^{4}. It is easily seen that h_{2} is a united point of S_{5}; for let P_{1} be at h_{2}. Then we obtain a position of P_{2} at h_{1} and a position of P_{3} at the point of contact of the bitangent. We can then choose the bitangent itself as the tangent $P_{3} P_{4}$, so that P_{4} coincides with P_{3} : we can then take P_{5} at h_{1} and P_{6} at h_{2}. Thus we have P_{6} coinciding with P_{1}. Since each bitangent gives rise to $2(X-3)$ points h_{1} and each point h_{1} to ($X-3$) points h_{2} we obtain $2 \tau(X-3)^{2}$ heterotypic solutions associated with the bitangents of C^{4}, τ being the number of bitangents.

Consider now heterotypic solutions associated with the cusps of C^{4}. If K is a cusp of C^{4} we see, arguing as in the case of the correspondence S_{4}, that $(X-3)(X-4)^{4}$ of those points which correspond to K in S_{5} coincide with K. In this case however the application of Zeuthen's rule does not lead to the introduction of any further numerical factor; for if P_{1} is a point near K any point P_{6} which corresponds to P_{1} in the correspondence S_{5}, and which is also near K, is on the opposite side of K to P_{1}; thus the difference of the two infinitesimal parameters which give the two points P_{1} and P_{6} must be an infinitesimal of the same order as the parameter of P_{1}. We see also that t, the intersection of C^{4} with its tangent at K, is a united point of S_{5}, and that $(X-3)(X-4)^{2}$ of its corresponding points coincide with it; here again it is not necessary to multiply this by any numerical factor. Further: if any one of the $X-3$ tangents, other than $t K$, from t to C^{4} meets C^{4} again in a point t_{1}, t_{1} is also a
united point of S_{5} and coincides with $X-3$ of its corresponding points; in this way we have $(X-3)^{2}$ heterotypic solutions associated with each cusp. The aggregate of the heterotypic solutions associated with the cusps of C^{4} is therefore

$$
\kappa\left\{(X-3)(X-4)^{4}+(X-3)(X-4)^{2}+(X-3)^{2}\right\} .
$$

The total number of heterotypic solutions now obtained is

$$
\begin{aligned}
& 2 \tau(X-3)^{2}+\kappa\left\{(X-3)(X-4)^{4}+(X-3)(X-4)^{2}+(X-3)^{2}\right\} \\
& =2 \tau(y+1)^{2}+\kappa\left\{y^{4}(y+1)+y^{2}(y+1)+(y+1)^{2}\right\}
\end{aligned}
$$

These are in fact all the heterotypic solutions associated with the singularities of C^{4}. If we now, using Plücker's equations, substitute

$$
2 \tau=X^{2}-10 X+32-3 \kappa=y^{2}-2 y+8-3 \kappa
$$

and subtract this total number of heterotypic solutions from the number of united points of S_{5}, the result is

$$
y^{6}-14 y^{5}+101 y^{4}-192 y^{3}+260 y^{2}-80 y+\kappa\left(-15 y^{4}+61 y^{3}-95 y^{2}+45 y\right)
$$

7. We have not yet however arrived at the formula giving ten times the number of in-and-circumscribed pentagons, for there are now heterotypic solutions other than those associated with the singularities of C^{4}. For suppose efg is any in-and-circumscribed triangle of C^{4}; through any one of its vertices, say through e, there pass, apart from the two sides of the triangle which meet in that vertex, $X-4$ tangents of C^{4}; if v_{1} is the remaining intersection of any one of these tangents with C^{4} then v_{1} occurs twice among the united points of S_{5} (cf. C. P., p. 170). Thus we have, associated with each of the N_{3} triangles efg, $6 y$ heterotypic solutions. Hence the number which we have just obtained by subtracting the number of heterotypic solutions associated with the singularities of C^{4} from the number of united points of S_{5} is equal to $10 N_{5}+6 y N_{3}$. We know that

$$
6 N_{3}=y\left\{y^{3}-9 y^{2}+38 y-24-3 \kappa(3 y-5)\right\}
$$

hence we obtain

$$
10 N_{5}=y\left\{y^{5}-15 y^{4}+110 y^{3}-230 y^{2}+284 y-80-5 \kappa\left(3 y^{3}-14 y^{2}+22 y-9\right)\right\}
$$

The number of in-and-circumscribed pentagons of any given plane quartic is obtained at once from this formula by substituting the appropriate values for y and κ; the results are given in the table at the end of the paper.

In-and-circumscribed hexagons.

8. We pass now to the consideration of the correspondence S_{6} and its united points. It is found that

$$
-\gamma_{6}=y^{6}-17 y^{5}+100 y^{4}-242 y^{3}+225 y^{2}-61 y+2,
$$

and that the total number of united points of S_{6} is

$$
-y^{7}+21 y^{6}-120 y^{5}+482 y^{4}-649 y^{3}+561 y^{2}-102 y+8+\kappa \gamma_{6}
$$

Let us now enquire as to the nature of the heterotypic solutions that are associated with the singularities of C^{4}.

We commence by finding the heterotypic solutions that are associated with the nodes of C^{4}. Suppose, exactly as in the case of the correspondence S_{4}, that D is a node of C^{4}; let, again, d_{1} be the intersection of C^{4} with either of its two tangents at D and d_{11} the remaining intersection of C^{4} with any of its tangents from d_{1} other than $d_{1} D$. We must now introduce also the point d_{111}, this being the remaining intersection of C^{4} with any of its tangents other than $d_{11} d_{1}$ from any of the points d_{11}. Associated with each node D of C^{4} there are two points $d_{1}, 2(X-3)$ points d_{11} and $2(X-3)^{2}$ points d_{111}. All these points are united points of S_{6}. A discussion similar to that above concerning the correspondence S_{4} explains that each branch of the node at D is to be counted $(X-4)(X-5)^{5}$ times among the united points of S_{6}, each point d_{1} is to be counted $2(X-4)(X-5)^{3}$ times, each point $d_{11} 2(X-4)(X-5)$ times and each point d_{111} once. Hence the total number of heterotypic solutions associated with the nodes of C^{4} is

$$
\begin{gathered}
2 \delta\left\{(X-4)(X-5)^{5}+2(X-4)(X-5)^{3}+2(X-4)(X-5)(X-3)+(X-3)^{2}\right\} \\
=2 \delta\left\{y(y-1)^{5}+2 y(y-1)^{3}+2 y\left(y^{2}-1\right)+(y+1)^{2}\right\} .
\end{gathered}
$$

Next there are heterotypic solutions associated with the inflections of C^{4}. Let I be an inflection, p_{1} the remaining intersection of C^{4} with any one of the $X-3$ tangents (other than the inflectional tangent itself) from I to the curve; through each point p_{1} there pass $X-3$ other tangents of C^{4}, apart from $p_{1} I$; let p_{11} be the remaining intersection of C^{4} with any one of those tangents. There are $(X-3)^{2}$ points p_{11} associated with each inflection I of C^{4}, and each of them is a united point of S_{6}; if we take a position of P_{1} at p_{11} we can take $P_{2}, P_{3}, P_{4}, P_{5} ; P_{6}, P_{7}$ respectively to be at $p_{1}, I, j, I, p_{1}, p_{11}$, where j is, as before, the remaining intersection of C^{4} with its inflectional tangent at I. Hence we have, when P_{1} is at p_{11}, a
position of P_{7} coinciding with it; wherefore p_{11} is a united point of S_{6}. Hence we have, associated with the inflections of C^{4}, a number of beterotypic solutions equal to $(X-3)^{2} \iota$ or $(y+1)^{2} \iota$.

Lastly, in order to obtain the total number of heterotypic solutions associated with the singularities of C^{4}, we must consider those associated with the cusps. As in the discussion of the heterotypic solutions belonging to S_{4}, let K be a cusp of C^{4} and t the intersection of C^{4} with its cuspidal tangent at K. We have now also to introduce the points t_{1}, where t_{1} is the remaining intersection of C^{4} with any one of its $X-3$ tangents, other than $t K$, which pass through t. Arguing as we did for the correspondence S_{4} we find that K, t, t_{1} are all united points of S_{6}; of those points which correspond to K in the correspondence S_{6} there are $(X-3)(X-4)^{5}$ which coincide with K; of those which correspond to t there are ($X-3$) $(X-4)^{3}$ which coincide with t and of those which correspond to t_{1} there are $(X-3)(X-4)$ which coincide with t_{1}. Moreover, in order to find how many solutions these points contribute to the number H_{6} we must in each case multiply by 2 as we see on appealing to Zeuthen's rule. Hence, as there are $X-3$ points t_{1} associated with K, the number of heterotypic solutions associated with the cusps of C^{4} is
$2 \kappa(X-3)(X-4)\left\{(X-4)^{4}+(X-4)^{2}+X-3\right\}=2 \kappa y(y+1)\left(y^{4}+y^{2}+y+1\right)$.
9. We have now obtained the total number of heterotypic solutions associated with the singularities of C^{4}; it is

$$
\begin{aligned}
2 \delta\left\{y(y-1)^{5}\right. & \left.+2 y(y-1)^{3}+2 y\left(y^{2}-1\right)+(y+1)^{2}\right\} \\
& +\iota(y+1)^{2}+2 \kappa y(y+1)\left(y^{4}+y^{2}+y+1\right)
\end{aligned}
$$

Since Plücker's equations give

$$
2 \delta=8-y-3 \kappa, \quad \iota=3 y+\kappa
$$

this total number of heterotypic solutions is

$$
\begin{aligned}
-y^{7}+13 y^{6} & -52 y^{5}+110 y^{4}-121 y^{3}+105 y^{2}-22 y+8 \\
& -\kappa\left(y^{6}-17 y^{5}+34 y^{4}-46 y^{3}+31 y^{2}-13 y+2\right)
\end{aligned}
$$

When this number is subtracted from the total number of united points of S_{6} the result is
$8 y^{6}-68 y^{5}+372 y^{4}-528 y^{3}+456 y^{2}-80 y-\kappa\left(66 y^{4}-196 y^{3}+194 y^{2}-48 y\right)$.
Any further united points of S_{6} which are not vertices of in-andcircumscribed hexagons are associated with in-and-circumscribed
polygons with a lesser number of sides. In the first place a vertex of an in-and-circumscribed triangle counts twice among the united points of S_{6}; if efg is an in-and-circumscribed triangle and we take P_{1} to be at e then we have two positions of P_{7} also at e; we can take the sequence of points $P_{1}, P_{2}, P_{3}, P_{4}, P_{5}, P_{6}, P_{7}$ to be either e, f, g, e, f, g, e or e, g, f, e, g, f, e. Again: through each vertex of an in-andcircumscribed quadrilateral there pass $X-4$ tangents of C^{4} apart from the two sides of the quadrilateral which meet in that vertex; if u_{1} is the remaining intersection of C^{4} with any such tangent then u_{1} occurs twice among the united points of S_{0} (cf. C. P., p. 170). Thus the number just obtained by subtracting the heterotypic solutions associated with the singularities of C^{4} from the total number of united points of S_{6} is equal to $12 N_{6}+6 N_{3}+8 y N_{4}$. Since
and

$$
6 N_{3}=y\left\{y^{3}-9 y^{2}+38 y-24-3 \kappa(3 y-5)\right\}
$$

we obtain finally

$$
12 N_{6}=y\left\{8 y^{5}-72 y^{4}+387 y^{3}-583 y^{2}+442 y-56-\kappa\left(66 y^{3}-216 y^{2}+201 y-33\right)\right\} .
$$

In-and-circumscrioed heptagons.
10. For the correspondence S_{7} it is found that

$$
\gamma_{7}=(y-2)\left(y^{6}-18 y^{5}+111 y^{4}-268 y^{3}+207 y^{2}-42 y+1\right)
$$

while the total number of united points is
$y^{8}-20 y^{7}+203 y^{6}-730 y^{5}+1823 y^{4}-1832 y^{3}+1069 y^{2}-146 y+8+\kappa \gamma_{7}$.
As in the case of the correspondence S_{5} there are heterotypic solutions associated with bitangents and heterotypic solutions associated with cusps. Through each of the points h_{2} introduced in considering the correspondence S_{5} there pass, apart from the tangent $h_{2} h_{1}, X-3$ further tangents of C^{4}; if h_{3} is the remaining intersection of any one of these tangents with C^{4} then it is easily seen that h_{3} is a united point of S_{7}. We thus obtain $2 \tau(X-3)^{3}$ heterotypic solutions associated with the bitangents of C^{4}.

If K is a cusp of C^{4}, t the remaining intersection of C^{4} with its cuspidal tangent at K, t_{1} the remaining intersection of C^{4} with any one of the $X-3$ tangents other than $t K$ which pass through t, t_{11} the remaining intersection of C^{4} with any one of the $X-3$ tangents other than $t_{1} t$ which pass through t_{1}, then the points K, t, t_{1}, t_{11} are united points of S_{7}. Of those points which correspond to K in
S_{7} there are $(X-3)(X-4)^{6}$ which coincide with K; of the points which correspond to $t,(X-3)(X-4)^{4}$ coincide with t; of the points which correspond to $t_{1},(X-3)(X-4)^{2}$ coincide with t_{1} and of the points which correspond to $t_{11}, X-3$ coincide with t_{11}. Since there are $X-3$ points t_{1} and $(X-3)^{2}$ points t_{11} associated with each cusp of C^{4} the number of heterotypic solutions associated with the cusps of C^{4} is
$\kappa\left\{(X-3)(X-4)^{6}+(X-3)(X-4)^{4}+(X-3)^{2}(X-4)^{2}+(X-3)^{3}\right\}$.
The total number of heterotypic solutions associated with the singularities of C^{4} is therefore

$$
2 \tau(y+1)^{3}+\kappa\left\{y^{6}(y+1)+y^{4}(y+1)+y^{2}(y+1)^{2}+(y+1)^{3}\right\}
$$

which, since $2 \tau=y^{2}-2 y+8-3 \kappa$, is equal to

$$
y^{5}+y^{4}+5 y^{3}+19 y^{2}+22 y+8+\kappa\left(y^{7}+y^{6}+y^{5}+2 y^{4}-5 y^{2}-6 y-2\right) .
$$

When this is subtracted from the total number of united points of S_{7} the result is

$$
\begin{array}{r}
y^{8}-20 y^{7}+203 y^{6}-731 y^{5}+1822 y^{4}-1837 y^{3}+1050 y^{2}-168 y \\
-\kappa\left(21 y^{6}-146 y^{5}+492 y^{4}-743 y^{3}+451 y^{2}-91 y\right) .
\end{array}
$$

This result includes, as well as the vertices of the in-and-circumscribed heptagons all counted twice, certain heterotypic solutions associated with in-and-circumscribed polygons with a lesser number of sides. In view of the discussions which have already taken place it will be sufficient merely to state that the value of this last expression is $14 N_{7}+10 y N_{5}+6 y(y+1) N_{3}$. On substituting their known values for $10 N_{5}$ and $6 N_{3}$ we find after calculation that

$$
\begin{array}{r}
14 N_{7}=y\left\{y^{7}-21 y^{6}+217 y^{5}-833 y^{4}+2023 y^{3}-2135 y^{2}+1154 y-168\right. \\
\left.-7 \kappa\left(3 y^{5}-23 y^{4}+79 y^{3}-121 y^{2}+73 y-13\right)\right\},
\end{array}
$$

and the different values of N_{7} can now be tabulated forthwith.

In-and-circumscribed polygons for which $m>7$.

11. Whatever the length of the calculations required to evaluate the number N_{m} of in-and-circumscribed m-gons of C^{4}, the general lines on which the work proceeds should now be clear enough. There are two types of heterotypic solutions occurring in the number H_{m} which is to be subtracted from the total number of united points of the correspondence S_{m}; heterotypic solutions of one type are associated
with the singularities of C while heterotypic solutions of the other type are associated with in-and-circumscribed polygons of a lesser number of sides. The nature of the heterotypic solutions that are associated with the singularities of C^{4} depends on the parity of m. If m is odd there is a set of heterotypic solutions associated with the bitangents and a chain of heterotypic solutions associated with the cusps; if $m=2 p+1$ it is found that the number of heterotypic solutions that arise in this way is

$$
\begin{aligned}
& 2 \tau(X-3)^{p}+\kappa(X-3)\left\{(X-4)^{2 p}+\sum_{\nu=0}^{p-1}(X-3)^{\nu}(X-4)^{2 p-2 \nu-2}\right\} \\
& \quad=\left(y^{2}-2 y+8-3 \kappa\right)(y+1)^{p}+\kappa(y+1)\left\{y^{2 p}+\sum_{\nu=0}^{p-1}(y+1)^{\nu} y^{2 p-2 \nu-2}\right\}
\end{aligned}
$$

If however m is even, there is a set of heterotypic solutions associated with the inflections, a chain of heterotypic solutions associated with the nodes and also a chain of heterotypic solutions associated with the cusps; if $m=2 p$ the total number of these solutions is found to be

$$
\begin{gathered}
\iota(X-3)^{p-1}+2 \delta\left\{(X-4)(X-5)^{2 p-1}+(X-3)^{p-1}+2(X-4) \sum_{\nu=0}^{p-2}(X-3)^{\nu}(X-5)^{2 p-2 \nu-3}\right\} \\
\quad+2 \kappa(X-3)(X-4)\left\{(X-4)^{2 p-2}+\sum_{\nu=0}^{p-2}(X-3)^{\nu}(X-4)^{2 p-2 \nu-4}\right\}
\end{gathered}
$$

the factor 2 in front of κ being demanded by the rule of Zeuthen. This expression may be written

$$
\begin{aligned}
(3 y+\kappa)(y+1)^{p-1}+ & (8-y-3 \kappa)\left\{y(y-1)^{2 p-1}+(y+1)^{p-1}+2 y \sum_{\nu=0}^{p-2}(y+1)^{\nu}(y-1)^{2 p-2 \nu-3}\right\} \\
& +2 \kappa y(y+1)\left\{y^{2 p-2}+\sum_{\nu=0}^{p-2}(y+1)^{\nu} y^{2 p-2 \nu-4}\right\}
\end{aligned}
$$

It is not so easy to enumerate precisely those heterotypic solutions which are associated with in-and-circumscribed polygons whose sides are less than m in number, as these solutions depend on the divisors of the numbers $m, m-2, m-4, \ldots$ But when the number of heterotypic solutions associated with the singularities of C^{4} is subtracted from the total number of united points of S_{m} the result is the sum of a certain number of terms. Among this sum is always included the expression

$$
2 m N_{m}+2 y \Sigma(m-2 r)(y+1)^{r-1} N_{m-2 r}
$$

the summation being with respect to r from 1 to the integral part of $\frac{1}{2}(m-3)$. Also if μ is any divisor of m greater than or equal to 3
there occurs a term $2 \mu N_{\mu}$ in addition to those just enumerated; if $\mu(\geqq 3)$ is any divisor of $m-2$ there occurs a term $2 \mu y N_{\mu}$; if $\mu(\geqq 3)$ is any divisor of $m-4$ there occurs a term $2 \mu y(y+1) N_{\mu}$; if $\mu(\geqq 3)$ is any divisor of $m-6$ there occurs a term $2 \mu y(y+1)^{2} N_{\mu}$; and so on. This process accounts for all the terms of the sum.
12. Without going into the details of the arithmetical calculations we now give the salient points in the calculation of the numbers of in-and-circumscribed polygons of eight and nine sides.

The correspondence S_{8} has valency γ_{8} where
$-\gamma_{8}=y^{8}-23 y^{7}+203 y^{6}-867 y^{5}+1865 y^{4}-1925 y^{3}+833 y^{2}-113 y+2$, while the total number of its united points is

$$
\begin{aligned}
-y^{9}+27 y^{8}-231 y^{7}+1343 y^{6}-3445 y^{5} & +5865 y^{4}-450 \mathrm{I} y^{3} \\
& +1877 y^{2}-198 y+8+\kappa \gamma_{8}
\end{aligned}
$$

The number of heterotypic solutions associated with the singularities of C^{4} is

$$
\begin{array}{r}
-y^{9}+15 y^{8}-79 y^{7}+227 y^{6}-397 y^{5}+465 y^{4}-317 y^{3}+189 y^{2}-30 y+8 \\
-\kappa\left(y^{8}-23 y^{7}+67 y^{6}-133 y^{5}+153 y^{4}-123 y^{3}+57 y^{2}-17 y+2\right)
\end{array}
$$

and when this number is subtracted from the total number of united points of S_{8} we obtain the equation

$$
\begin{aligned}
& 16 N_{8}+12 y N_{6}+8 y(y+1) N_{4}+8 N_{4}+6 y N_{3} \\
& =12 y^{8}-152 y^{7}+1116 y^{6}-3048 y^{5}+5400 y^{4}-4184 y^{3}+1688 y^{2}-168 y \\
& \quad-\kappa\left(136 y^{6}-734 y^{5}+1712 y^{4}-1802 y^{3}+776 y^{2}-96 y\right)
\end{aligned}
$$

The values of N_{3}, N_{4} and N_{6} have already been obtained, so that this equation gives the value of N_{8}. Notice, to shorten the actual calculations somewhat, that the value of $12 N_{6}+6 N_{3}+8 y N_{4}$ is given explicitly in §9. The final result is

$$
\begin{array}{r}
4 N_{8}=y\left\{3 y^{7}-40 y^{6}+296 y^{5}-856 y^{4}+1485 y^{3}-1172 y^{2}+432 y-36\right. \\
\left.-\kappa\left(34 y^{5}-200 y^{4}+477 y^{3}-504 y^{2}+205 y-20\right)\right\} .
\end{array}
$$

The valency of S_{9} is
$\gamma_{9}=(y-2)\left(y^{8}-24 y^{7}+220 y^{6}-960 y^{5}+2022 y^{4}-1864 y^{3}+668 y^{2}-72 y+1\right)$, and the total number of its united points is

$$
\begin{aligned}
& y^{10}-26 y^{9}+340 y^{8}-1848 y^{7}+6966 y^{6}-13428 y^{5}+16604 y^{4}-9920 y^{3} \\
&+3089 y^{2}-258 y+8+\kappa \gamma_{0}
\end{aligned}
$$

The number of heterotypic solutions associated with the singularities of C^{4} is

$$
\begin{aligned}
& y^{6}+2 y^{5}+6 y^{4}+24 y^{3}+41 y^{2}+30 y+8 \\
& \quad+\kappa\left(y^{9}+y^{8}+y^{7}+2 y^{6}+3 y^{5}+2 y^{4}-5 y^{3}-11 y^{2}-8 y-2\right)
\end{aligned}
$$

so that we obtain the equation

$$
\begin{aligned}
& 18 N_{9}+14 y N_{7}+10 y(y+1) N_{5}+6 y(y+1)^{2} N_{3}+6 N_{3} \\
& =y^{10}-26 y^{9}+340 y^{8}-1848 y^{7}+6956 y^{6}-13430 y^{5}+16598 y^{4}-9944 y^{3}+3048 y^{2}-288 y \\
& \quad-\kappa\left(27 y^{8}-267 y^{7}+1402 y^{6}-3939 y^{5}+5910 y^{4}-4401 y^{3}+1397 y^{2}-153 y\right) .
\end{aligned}
$$

This gives finally

$$
\begin{aligned}
18 N_{9}= & y\left\{y^{9}-27 y^{8}+360 y^{7}-2052 y^{6}+7710 y^{5}-15354 y^{4}+18635 y^{3}-11283 y^{2}\right. \\
& \left.+3282 y-264-3 \kappa(y-1)\left(9 y^{6}-87 y^{5}+429 y^{4}-1053 y^{3}+1185 y^{2}-4.67 y+46\right)\right\} .
\end{aligned}
$$

13. The work may be continued to any length. For the number of in-and-circumscribed decagons we obtain the equation

$$
\begin{gathered}
20 N_{10}+16 y N_{8}+12 y(y+1) N_{6}+8 y(y+1)^{2} N_{4}+10 N_{5}+8 y N_{4}+6 y(y+1) N_{3} \\
=16 y^{10}-268 y^{9}+2508 y^{8}-10396 y^{7}+28708 y^{6}-43456 y^{5} \\
+40992 y^{4}-19392 y^{3}+4528 y^{2}-288 y-\kappa\left(230 y^{8}-1824 y^{7}\right. \\
\left.\quad+6926 y^{6}-14222 y^{5}+15822 y^{4}-8850 y^{3}+2150 y^{2}-160 y\right)
\end{gathered}
$$

which gives

$$
\begin{aligned}
& 20 N_{10}=y\left\{16 y^{9}-280 y^{8}+2660 y^{7}-11520 y^{6}+31823 y^{5}-49217 y^{4}+45610 y^{3}-21370 y^{2}\right. \\
& \left.\quad+4516 y-208-5 \kappa\left(46 y^{7}-392 y^{6}+1532 y^{5}-3200 y^{4}+3561 y^{3}-1954 y^{2}+440 y-23\right)\right\}
\end{aligned}
$$

Table of numerical results.

14. In conclusion we give a table of the numbers of in-andcircumscribed m-gons of plane quartics, for $3 \leqq m \leqq 10$. The values of N_{3} are of course already known, as are also those of N_{m}, for all the values of m tabulated, in the case when the curve has no multiple points, i.e. in the case $y=8$.

There are two types of plane quartic curves which do not appear in the table. The tricuspidal quartic, for which $y=-1$ and $\kappa=3$, does not appear since, being only of class 3, it cannot have any in-and-circumscribed polygons. Nor does the quartic with two cusps and one node, for which $y=0$ and $\kappa=2$, appear, since the value of N_{m} for this curve is always zero. The problem however for a plane quartic with two cusps and one node is poristic; there may be special
curves, with two cusps and one node, having an infinite number of in-and-circumscribed polygons. Indeed such curves have been obtained by Roberts and Hilton ${ }^{1}$; Hilton's method of obtaining them is particularly simple, the problem being reduced by him to that of polygons circumscribed to one conic and inscribed in another. It is not possible, however, to obtain a plane quartic with a node and two cusps that has an infinity of in-and-circumscribed triangles.
${ }^{1}$ Roberts : Proc. London Math. Soc., 23 (1892), 202.
Hilton : Plane Algebraic Curves (Oxford, 1920), 287.

$y=$ $X-4$	κ	N_{3}	N_{4}	N_{5}	N_{6}	N_{7}	N_{8}	N_{9}	N_{10}
8	0	288	1512	12096	87696	685152	5375160	43059744	348636960
6	0	96	486	3264	17048	117792	670518	4486496	27264912
5	1	30	195	1230	5055	34710	160680	1010740	5072403
4	0	32	116	640	2304	11168	47260	216736	964384
3	1	12	33	192	544	2148	7350	28116	98586
2	0	8	18	48	116	312	810	2184	5880
2	2	6	6	42	105	294	732	2128	5727
1	1	2	3	6	9	18	30	56	99

[^0]: ${ }^{1}$ Phil. Trans. Roy. Soc , 161 (1871), 369-412; or Papers, 8, 212-257.

[^1]: 1 This is the well-known Cayley-Brill correspondence theorem, the result being first stated by Cayley and afterwards proved by Brill. For a proof see Zeuthen's textbook, referred to below, pp. 205-210.

[^2]: ${ }^{1}$ Edge: "Cayley's problem of the in-and circumscribed triangle"; Proc. London Math. Soc. (2), 36 (1933), 142-171. This paper will be referred to as C. P.

[^3]: ${ }^{1}$ Loc. cit., p. 186. See also Enriques: Teoria geometrica delle equazioni, Vol. 1 (Bologna 1929), 160. The statement of this rule in C. P. (pp. 151-152) is not as accurate as it might have been; it is not the lengths of infinitesimal arcs that must be considered, but intinitesimal differences of parameters.

[^4]: ${ }^{1}$ C. P., p. 160.

