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Deformable microchannels emulate a key characteristic of soft biological systems and
flexible engineering devices: the flow-induced deformation of the conduit due to slow
viscous flow within. Elucidating the two-way coupling between oscillatory flow and
deformation of a three-dimensional (3-D) rectangular channel is crucial for designing lab-
on-a-chip and organ-on-a-chip microsystems and eventually understanding flow—structure
instabilities that can enhance mixing and transport. To this end, we determine the axial
variations of the primary flow, pressure and deformation for Newtonian fluids in the
canonical geometry of a slender (long) and shallow (wide) 3-D rectangular channel with
a deformable top wall under the assumption of weak compliance and without restriction
on the oscillation frequency (i.e. on the Womersley number). Unlike rigid conduits, the
pressure distribution is not linear with the axial coordinate. To validate this prediction, we
design a polydimethylsiloxane-based experimental platform with a speaker-based flow-
generation apparatus and a pressure acquisition system with multiple ports along the axial
length of the channel. The experimental measurements show good agreement with the
predicted pressure profiles across a wide range of the key dimensionless quantities: the
Womersley number, the compliance number and the elastoviscous number. Finally, we
explore how the nonlinear flow—deformation coupling leads to self-induced streaming
(rectification of the oscillatory flow). Following Zhang and Rallabandi (J. Fluid Mech.,
vol. 996, 2024, p. A16), we develop a theory for the cycle-averaged pressure based on the
primary problem’s solution, and we validate the predictions for the axial distribution of
the streaming pressure against the experimental measurements.

" These authors contributed equally.

© The Author(s), 2025. Published by Cambridge University Press. This is an Open Access article,

distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike licence
(https://creativecommons.org/licenses/by-nc-sa/4.0/), which permits non-commercial re-use, distribution,

and reproduction in any medium, provided the same Creative Commons licence is used to distribute the

re-used or adapted article and the original article is properly cited. The written permission of Cambridge

University Press must be obtained prior to any commercial use. 1022 A38-1

Check for
updates


https://orcid.org/0009-0001-8533-3343
https://orcid.org/0000-0001-6962-8400
https://orcid.org/0000-0002-4891-9214
https://orcid.org/0000-0001-8531-0531
mailto:christov@purdue.edu
mailto:jiefeng@illinois.edu
https://creativecommons.org/licenses/by-nc-sa/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jfm.2025.10771&domain=pdf
https://doi.org/10.1017/jfm.2025.10771

https://doi.org/10.1017/jfm.2025.10771 Published online by Cambridge University Press

A. Huang, S.D. Pande, J. Feng and I.C. Christov

Key words: microfluidics, lubrication theory, flow-vessel interactions

1. Introduction

Fluid—structure interactions (FSIs) between oscillatory internal viscous fluid flows and
their deformable confining boundaries are ubiquitous across natural and engineered
systems and across scientific disciplines. For example, such FSIs arise in biomedical
problems involving blood circulation (Pedley 1980; Fung 1997) in the cardiovascular
system (van de Vosse & Stergiopulos 2011; Menon, Hu & Marsden 2024), specifically the
large arteries (Ku 1997; Grotberg & Jensen 2004; Cani¢ et al. 2005), as well as flows in
the vocal cords (Heil & Hazel 2011), lungs (Grotberg 1994; Grotberg & Jensen 2004; Heil
& Hazel 2011), brain (Bork et al. 2023; Gan et al. 2023), retina (Stewart & Foss 2019) and
synovial joints (Dowson & Jin 1986; Parthasarathy, Bhosale & Gazzola 2022). Harnessing
these FSIs has proven critical for the design and construction of microfluidic devices
(Leslie et al. 2009; Mosadegh et al. 2010; Xia et al. 2021; Battat, Weitz & Whitesides
2022; Biviano et al. 2022; Mudugamuwa et al. 2024), which has enabled emerging
technologies such as organs-on-chips (Bhatia & Ingber 2014; Lind et al. 2017; Dalsbecker,
Beck Adiels & Goksor 2022; Leung et al. 2022), flexible and wearable electronics (Jeong,
Bychkov & Searson 2018; Kwon et al. 2023) and soft robotics (Elbaz & Gat 2014; Matia,
Elimelech & Gat 2017; Gamus et al. 2018; Matia et al. 2023; Xu et al. 2023). The
deformation of compliant conduits by oscillatory flows also arises in elastohydrodynamic
lubrication (Karan, Chakraborty & Chakraborty 2021; Rallabandi 2024) and at scales
relevant to geophysical problems (Kurzeja et al. 2016; Rodriguez de Castro et al. 2023).
While oscillatory (and/or pulsatile) viscous flows (Zamir 2000) in elastic tubes is a time-
honoured subject, dating back to Womersley’s work in the 1950s (Womersley 1955a,b),
the two-way-coupled interplay between the pressure gradient driving the flow and the
deformation of the compliant wall has, surprisingly, not been fully explored, as a series
of recent works highlighted (Pande, Wang & Christov 2023; Zhang & Rallabandi 2024;
Krul & Bagchi 2025).

The initial impetus for understanding the fluid mechanics of oscillatory flow was that
‘the central problem in haemodynamics flow ... [was not] satisfactorily resolved for
arterial flow” (McDonald 1955). This ‘central problem’, initially defined by Burton (1952)
as ‘the relation of pressure to flow’, has been a cornerstone in studies focusing on the flow
rate—pressure drop (¢—Ap) relationship of oscillatory internal flows, starting with the
fundamental study by Womersley (1955b). However, despite significant progress, much of
the literature has focused on the case of one-way coupling between flow and deformation,
namely how the flow and structure behave if the pressure gradient is considered known
a priori, as assumed by Womersley (19554,1957). Furthermore, prior experimental
investigations of such internal periodic flows in compliant conduits generally focused
on biomedical applications. For example, Pielhop et al. (2012, 2015) and Dérner et al.
(2021) used ‘time-resolved particle-image velocimetry combined with a wall detection
algorithm and non-invasive pressure measurements’ to study the biofluid mechanics of
large elastic polydimethylsiloxane (PDMS) vessels under moderate- to high-Reynolds-
number conditions, including for a non-Newtonian blood-analogue fluid. However, these
studies lacked theoretical support to rationalise their observations. Most recently, Krul &
Bagchi (2025) performed detailed simulations of the two-way-coupled FSI between an
oscillatory flow and a thin viscoelastic shell, with the analysis and interpretation guided
by Womersley’s classical theory.
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Returning to the microfluidic context, the resistance of channels of various cross-
sectional shapes is well understood (Bruus 2008). Recently, significant progress has been
made in developing the g—Ap relationship for two-way-coupled steady flows through
deformable conduits at low Reynolds number (Christov 2022), while the same is not
true for similar oscillatory flows. As Dincau, Dressaire & Sauret (2020) note, ‘pulsatile
microfluidics is still in its infancy’, especially when it comes to wall compliance. In
the context of low-Reynolds-number flows, Anand & Christov (2020) and Pande et al.
(2023) revisited the problem of two-way-coupled FSI between oscillatory flows and elastic
channels and tubes, showing (through asymptotic analysis, modelling and direct numerical
simulations) the existence of a secondary (streaming) flow resulting from the nonlinear
coupling between pressure and deformation at low Reynolds number. This streaming
effect represents a type of self-induced peristaltic pumping mechanism, which is a topic
extensively studied in biomechanics (see e.g. Takagi & Balmforth 2011; Amselem, Clanet
& Benzaquen 2023, and references therein). The opposite problem of an external flow
driven by oscillations of an elastic body, termed soft streaming, was considered by
Bhosale, Parthasarathy & Gazzola (2022) and Cui, Bhosale & Gazzola (2024). Lambert
(1958) and Ling & Atabek (1972) argued that, for flows in arteries, both the advective
nonlinearity of the Navier—Stokes equations and the geometric and material nonlinearity
of the elastic wall should be taken into account. Ling & Atabek (1972) provided limited
comparisons between experimental measurements of velocity, flow rate and shear stress
and simulations via a reduced-order model as support. Indeed, the complete theory by
Zhang & Rallabandi (2024) of the elastoinertial rectification mechanism, underlying the
streaming flow observed by Pande er al. (2023), shows that advective inertia is inextricably
coupled to pressure and deformation in these flows, but using linear elastic theories (e.g.
thin-shell theory in Zhang & Rallabandi (2024)) suffices in the context of microfluidic
flows. However, the non-zero cycle-averaged pressure (due to the nonlinear coupling
between flow inertia and wall deformation) has not been systematically measured in an
experiment.

The desire to fill this knowledge gap in the field of nonlinear microfluidics (Xia et al.
2021; Battat et al. 2022) motivates the present combined theoretical-experimental study.
Specifically, we develop a microfluidic experimental platform consisting of a test section
with a compliant wall and multiple pressure ports. To drive the flow, we develop a
custom pressure-generation system capable of delivering a wide range of frequencies and
amplitudes with precise control. This experimental platform enables us to characterise
the spatiotemporal pressure distribution due to the oscillatory flow of Newtonian fluids in
three-dimensional (3-D) deformable microchannels, including measuring the weak cycle-
averaged (streaming) pressure. To guide and rationalise the experiments, we extend the
axisymmetric theory of Zhang & Rallabandi (2024) to 3-D slender and shallow deformable
channels, which are commonly encountered in experimental microfluidic systems (Gervais
et al. 2006; Cheung, Toda-Peters & Shen 2012; Ozsun, Yakhot & Ekinci 2013; Mehboudi
& Yeom 2019; Paludan er al. 2024).

The rest of this paper is organised as follows. In § 2, we introduce the problem, governing
equations, scales and dimensionless numbers and apply the lubrication approximation.
In §3, we describe the experimental set-up for the oscillatory flow generation and
methodology for pressure measurement. In § 4, we perform a perturbation expansion for
weak compliance to obtain the primary flow, pressure and wall displacement profiles for
a Newtonian fluid in such a slender and shallow deformable 3-D channel, as well as the
streaming pressure distribution along the channel. We cross-validate our results through
quantitative comparisons between experimental pressure measurements and theoretical
predictions in § 5. Conclusions and perspectives for future work are summarised in § 6.
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Figure 1. Schematic of the 3-D deformable shallow and slender rectangular microchannel geometry of
initial (undeformed) height g, axial length £ and transverse width w, such that £ > w > hgy. The top wall
(darker colour) is an elastic plate structure of thickness b that can deform from y=hg to y =h(x, z, 1),
where h(x, z,t) —ho =uy(x, z, t) is the vertical displacement of the fluid—solid interface. The top wall is
clamped (no displacement) along the planes x = +w/2 (and 0 < z < ¢), while taking the outlet pressure as
gauge, p|,=¢ =0, ensures no deformation along the plane z = ¢ (and —w/2 < x < +w/2). An oscillatory inlet
pressure, p|.—o = pin(t) of amplitude pg and angular frequency w, drives the flow.

2. Oscillatory flow in a slender and shallow 3-D deformable channel

Consider the oscillatory flow of a Newtonian fluid with constant density ps and constant
dynamic viscosity w ¢ through a 3-D rectangular channel of initial height &, transverse
width w and axial length ¢, shown schematically in figure 1, as commonly encountered
in experimental microfluidic systems. The flow is driven by inlet pressure oscillations
of magnitude po and angular frequency w. The velocity field is v = (v, vy, v;) and the
pressure field is p. The bottom (y = 0) and side (x = £w/2) walls are rigid, but the top
wall can deform. The deformable top wall is made from a linearly elastic material with
Young’s modulus E and Poisson’s ratio vg. The displacement field of the top wall is given
by u = (uy, uy, uz).

2.1. Governing equations of the oscillatory flow

In this context, Martinez-Calvo et al. (2020) analysed the inertialess startup flow, following
on from the steady problem solved by Christov et al. (2018), introducing scalings that
balance all velocity components in the conservation of mass equation. Ramos-Arzola &
Bautista (2021) also used these scalings for a non-Newtonian version of the problem. Here,
unlike these prior works, we adopt the scaling of the 3-D problem introduced by Boyko &
Christov (2023), which leads to a leading-order problem that can be spanwise-averaged.
Although both approaches are valid within the assumed order of approximation for a
shallow and wide channel, only the latter approach allows us to make analytical progress
in the oscillatory flow problem. Specifically, we scale both cross-sectional velocities, v,

and vy, so that they are smaller than the axial one, v,, by a factor of € & ho/l, where € < 1
for a slender channel.
With all this in mind, we introduce the dimensionless variables for the problem:

t
x=2, vy=2, z=2 1= w=2 p=2,
w ho V4 w1 €V, €V,
v u u u h
Vy ==, p=L Ux=—, Uy=—> Uz=—, H=—. 2.1
Ve Po Uc Ue Ue ho

Here, pp and w are the amplitude and angular frequency, respectively, of the inlet
pressure oscillations driving the flow. The scales v. and u. for the axial velocity and
wall displacement, respectively, are determined below. In terms of the dimensionless
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variables from (2.1), the governing partial differential equations (PDEs) of leading-
order-in-€ unsteady flow in a 3-D channel (i.e. a slender channel under the lubrication
approximation for which € < 1 (Leal 2007)) are

V. A% A%
5 OVX vy, 9%z

—0, 22
ox Ty Tz (2.24)
0=_2P (2.2b)

X’ '

3P

0=—8—Y, (226‘)

v, B AV, AV, AV, P ,3°Vy  3%Vy

O[aTJr ( XaX+YaY+ZaZ>] Tz T ax T

(2.2d)

where we have chosen the axial velocity scale as v, = h(z) po/ (L y) to balance viscous
and pressure forces in (2.2d). In scaling the problem this way, several key dimensionless
numbers emerge:

h
s &0 (2.3q)
w’
Wo? def hO [(uy/p f) transverse momentum diffusion time scale (2.3b)
w™! oscillation time scale ’ '
g def Uc top wall displacement scale (2.3¢)
s , 3c
ho initial channel height
def Uc /(€ve) elastoviscous time scale (2.3d)

w~-!  oscillation time scale

Here, § is the channel’s cross-sectional (inverse) aspect ratio (6 < 1 for wide channels);
B is the compliance number (Christov et al. 2018), where wall displacement scale u,. is
introduced below upon specifying the elasticity model; Wo is the Womersley number
(Womersley 1955a); and y is the elastoviscous number (Elbaz & Gat 2014; Zhang &
Rallabandi 2024), where the elastoviscous time scale emerges from comparing the vertical
displacement scale u. (set by elasticity) with the vertical velocity scale ev, (set by the
balance of viscous and pressure forces). For a stiff top channel wall (weakly compliant
channel), we would expect 8 < 1. On the other hand, we do not impose any restrictions
on y or Wo a priori. Although it may be tempting to rewrite 8/y in (2.2d) as a Reynolds
number (Pande et al. 2023), it will become clear below why that is not a good idea (Zhang
& Rallabandi 2024).
Now, assuming a wide (shallow) channel, § < 1, so that we can neglect all terms at O ()
and higher in (2.2), we have
aVy . aVz

— 4+ £, (2.4a)
Yy = 9z

P
0=——, (2.4b)

X
0 aP (2.4¢)
= ac

vV vV E1% aP 32V

Wo? [B_TZ +§ (Vy e VZ—Z>:| =7t aya (2.4d)

As usual, from (2.4b,c), we immediately conclude that P = P(Z, T) only.
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The flow obeys no-slip and no-penetration conditions along the bottom wall of the
channel:

Vzly=0=0, Vyly=0=0. (2.5a,b)

Along the deformable (thus, moving) top wall, y = h(x, z, t), a kinematic condition, v =
Du/Dt, applies. In dimensionless component form, the kinematic condition is

oUx u.. 9Ux u.. 00Uy
\% = —+ —Vyx——+ —Vy——+0 , 2.6
xly=r (y oT " w Xax The Yoy T )YZH (2.6a)
Uy  uc Uy u._  doUy
\% = — 4+ —Vy— Vy—+0 , 2.6b
Yly=H <J/ aT + X35 o Yoy + ) . (2.6b)
Vzly=n = O(e), (2.6¢)

having used the third condition to simplify the first two. Further simplification can only be
obtained upon specifying the governing equations of the wall deformation (in § 2.2). Since
we restrict ourselves to pressure-driven flows (as described in more detail in § 3), the inlet
and outlet pressures are known:

Plz—o= Pin(T), Plz=1=0. (2.7a,b)

2.2. Governing equations of the top wall deformation

Assuming a thin structure, we employ plate theory. The central tenet of plate theory is that
the structure is thin and thus the vertical displacement u,, (in the thin direction) does not
vary with y (Reddy 2007). Thus, the bottom surface of the top wall (i.e. the fluid—solid
interface) is located at hg + u, upon deformation of the wall (see figure 1).

Anand, Muchandimath & Christov (2020) provide a full derivation and discussion of
the equations of motion of slender and shallow thick plates obeying the theory due to
Reissner (1945) and Mindlin (1951), which governs the flexural deformation of isotropic,
elastic plates deduced from the 3-D equations of elasticity when the plate’s thickness is
non-trivial — a so-called first-order shear deformation theory (Reddy 2007; Challamel &
Elishakoff 2019). Here, we summarise the key details. The in-plane plane displacements
are given by u, = ug(x, 7) + yox(x, z) and u, = u(z)(x, 2) + yo;(x, z), where ¢, and ¢,
are rotations of the normal vector to the plate’s midsurface about the x and z axes,
respectively, and y is measured from the midsurface, i.e. y =y — ho — b/2. The PDEs
for ug (x, z) and u(z)(x, z) decouple from those for ¢y (x, z), ¢, (x, z) and uy(x, z). In the
absence of external in-plane loads, these PDEs are homogeneous. Thus, from the clamped
boundary conditions (BCs) (as in figure 1), it follows that ug = u(z) = 0. Consequently, the
plate problem reduces to determining the vertical displacement, u, and the rotations of
the normal, ¢, and ¢,. A balancing argument shows that the appropriate scales for ¢, and
¢, are u./w and u. /£, respectively.

For a slender and shallow plate, neglecting terms of O(§) and O(¢), @z drops out of
the governing plate equations, which now feature only Uy and @x (Anand et al. 2020).
Our starting point is these equations, at the leading order in § and €, namely

Uy 1 Poy

(Y~ T TX L pzo T, 2.8

372 ~ 720 ax2 TP& D) (2.84)
Uy T 3%y

0= _Z , 2.8b

Xt 39X 760 9x2 (2.85)
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where 7 & 10(b/w)?/(1 — vy) is a dimensionless parameter quantifying the shallowness
of the plate. Having balanced transverse bending with the pressure load from the flow
in (2.8a), u. = w* py/(720D}), where D, = Eb3 /[12(1 — v2)] is the flexural rigidity of a
plate in pure bending (Reddy 2007), E is Young’s modulus and vy is Poisson’s ratio. The
factor of 1/720 included in u, might not be obvious now; it is included to eliminate all
numerical prefactors in (4.6) below.

Similar to Martinez-Calvo et al. (2020), we have retained the displacement’s inertia
in (2.8a), but neglected rotary inertia in (2.8b) as is standard in the literature (see e.g.
Zienkiewicz, Taylor & Zhu (2013), Chap. 13). The inertia of the plate is thus quantified by
the solid’s Strouhal number:

gy def psbuc/po _ (solid’s time scale for response to loading)?
s —

= , 2.9
w2 (oscillation time scale)? 29)

where py is the density of the elastic wall material.

Generalising the steady results of Shidhore & Christov (2018), (2.8) describe transverse
bending of the wall, i.e. the deformation in any (X, Y) plane for fixed Z, subject to
the normal load imposed by the hydrodynamic pressure P(Z, T'). The axial tension and
bending are neglected as they scale with € << 1 (Anand et al. 2020). The corresponding
clamped BCs supplementing (2.8) are

Uylx=+12=0, ®Px|x=+1/2=0. (2.10a,b)

Observe that if we let 7 — 0 (i.e. b/w — 0), then @x =—0Uy /90X from (2.8b),
and substituting this relation into (2.8a) and (2.10b) reduces these to the corresponding
equation of Kirchhoff-Love (thin-plate) theory (see e.g. Howell, Kozyreff & Ockendon
2009).

Finally, based on this discussion, we have deduced that Uy = O(8) and Uz = O(e).
Thus, the in-plane displacements are negligible compared with the vertical (out-of-plane)
displacement Uy at leading order, which significantly simplifies the kinematic condition
(2.6).

2.3. Coupling flow to deformation

Since the in-plane displacements Ux and Uz are negligible, the dimensionless kinematic
condition (2.6) reduces to three independent BCs. The X and Z components, (2.6a)
and (2.6¢), are essentially no-slip BCs: Vx|y—g = Vz|y—g = 0. While the Y component
(2.6D) dictates that the fluid’s vertical velocity matches that of the wall:
y oH
Vyly=n = BT (2.11)
where H (X, Z) =1+ BUy (X, Z) is the dimensionless height of the fluid channel. We
recognise that y /B can also be interpreted as a fluidic Strouhal number (Ramachandra
Rao 1983; Ward & Whittaker 2019; Inamdar, Wang & Christov 2020; Pande et al. 2023).
Equation (2.11) is key to the two-way coupling of the flow and deformation.
Next, we seek to manipulate the kinematic condition (2.11) into one involving the flow
rate. To this end, we define the flow rate Q by integrating over the cross-sectional area in

an (X, Y) plane:
+1/2 pH
(0] :/ / VzdYdX. (2.12)
-172 Jo
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Dimensionless number Notation/expression Assumption Typical value/range
Channel’s slenderness e =ho/l Negligible 0.008
Channel’s shallowness §=ho/w Negligible 0.08
Womersley Wo =ho\/prw/ms None 0.5-3.2
Elastoviscous y =w'ur0/(720Dyh3)  None 0.15—15
Compliance B= w4p0/(720D;,h0) Small 0.01-0.2
Solid’s inertial Strouhal Sty = psbw*®?/(720D,)  Negligible 1.7x107°—1.4 x 1073
Plate’s shallowness T = 10(b/w)*/(1 — vy) Small 0.03—0.138

Table 1. Key dimensionless numbers of the 3-D elastoinertial rectification problem, based on the characteristic
displacement scale u. for a plate and a characteristic axial velocity scale v, under lubrication theory. Typical
values/ranges are based on the experimental set-up (§ 3). Negligible numbers are taken as zero in the analysis
(i.e. the theory is ‘at leading order’ in these parameters), while small quantities are taken into account;
perturbatively in the case of 8.

Then, a lengthy but straightforward calculation using the Leibniz rule to swap the order of
Y integration and Z differentiation shows that the kinematic BC (2.11) can be combined
with (2.12) to re-express the conservation of mass (2.4a) as the continuity equation:

3Q y 9 /+1/2
— 4+ —— 1 Uy(X,Z,T)|dX =0. 2.13
57 + ot |1 [14 BUY( )] (2.13)

2.4. Summary of the governing equations and dimensionless numbers

In summary, (2.4d), (2.8) and (2.13) are the governing equations of the oscillatory flow in
a 3-D shallow and slender channel with a plate-like deformable top wall in pure bending.

The key dimensionless groups of the problem are summarised in table 1. The
experimental system, discussed next in § 3, was designed to achieve an oscillatory flow
with Wo, y = O(1) in the weakly compliant regime f small (but not negligible) in a
slender € < 1 and shallow § <« 1 channel, which are the key approximations made in the
theoretical analysis. These considerations lead to the parameter values/ranges given in
table 1. Additionally, we learn from table 1 that the channels constructed have negligible
wall inertia, Sty < 1, allowing us to consider the plate deformation as quasi-static.

3. Experimental set-up
3.1. Oscillatory flow generation and shaping

Our experimental set-up is shown in figure 2. Previous experimental investigations
of oscillatory flow generation in microchannels (Pielhop, Klaas & Schroder 2015;
Raj et al. 2019; Vishwanathan & Juarez 2020; Dorner et al. 2021; Levenstein et al.
2022; Vishwanathan & Juarez 2022, 2023) involved synchronising mechanical vibrations
directly to the fluid itself in a microfluidic channel. Notably, the way that Vishwanathan &
Juarez (2020, 2022, 2023) achieved this is by attaching an inlet tube to the diaphragm of
a speaker, such that the fluid within the channel was driven by the oscillations initiated
from the inlet tube, ultimately creating an oscillatory flow. Inspired by this approach,
we customised our oscillatory flow generation module as follows. We utilised a function
generator (GH-CJDS66, Koolertron) connected with a speaker (DR-US200275, Drok) to
ensure a robust signal input. We further introduced a PDMS (Sylgard 184, Dow Corning)
liquid chamber positioned towards the speaker, with its membrane linked to the speaker
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Figure 2. Experimental system with oscillatory flow in a 3-D deformable rectangular microchannel. (a) Set-up
schematic. The entire interior space of the system is completely filled with the fluid prior to the experiments.
To initiate the flow, an analogue sinusoidal signal generated by the function generator is transmitted into the
speaker, enabling its diaphragm to vibrate. The deformable membrane of the liquid chamber (linked to the
speaker diaphragm via a rigid, 3-D-printed connector shown in dark blue) transmits these vibrations, causing
the oscillation of the fluid within both the chamber and the following channel. (b) Microchannel configuration.
The channel features five pressure ports connecting to the data acquisition system (pressure transducer and PC).
The five ports (each of width w),) are evenly spaced with an axis-to-axis interval £, in the flow direction. The
microchannel section between the first port and the outlet is covered with a deformable PDMS film of length ¢
at the top, and the section of the channel ahead of the first port is covered by a rigid glass slide, with its front
edge precisely aligned to the centre of the first port.

diaphragm via a rigid, 3-D-printed connector to facilitate efficient mechanical vibration
transmission. The chamber was first fabricated using 3-D-printed moulding techniques,
and the membrane (with thickness of the order of 0.5 mm) sealing the liquid chamber was
then bonded by inverting the chamber onto a liquid layer of PDMS mixture, which was
subsequently cured at 90 °C for one hour to ensure solidification and secure adhesion. All
PDMS components were fabricated with a 10:1 (w/w) ratio of silicone elastomer base to
curing agent.

In each experiment, this chamber was filled with the working fluid to generate sufficient
pressure amplitude. Once the analogue sinusoidal signal from the function generator
was transmitted into the speaker, which enabled its diaphragm to vibrate, the connected
deformable membrane of the chamber thereby vibrated, causing the fluid oscillations
inside the chamber and transmitting them to the microchannel. Before each experiment,
we carefully eliminated any entrapment of air within the entire interior space, such as air
pockets in all pressure ports and tubing, which is found to be important for obtaining
reliable pressure amplitudes by the pressure transducer. In addition, the microchannel
outlet was submerged in a liquid reservoir filled with the working fluid slightly above the
level of the microchannel to maintain a constant hydrostatic pressure at the outlet, which
is approximately atmospheric pressure given the small height.

3.2. Fabrication of the microchannels with deformable top walls

To fabricate the rectangular microchannel with deformable top walls, we follow the same
procedure as Chun et al. (2024), where a 3-D-printing technique (Mars Resin 3D Printer,
ELEGOO, USA) was employed to manufacture the reverse mould with the designated
channel dimensions as listed in table 2. A mixing ratio of 10:1 (w/w) between the silicone
elastomer base and the curing agent was used to prepare the PDMS elastomer. The
PDMS mixture was subsequently poured into the 3-D-printed mould and degassed under
vacuum for 1 h to fully remove entrapped air bubbles. The mixture was then cured in
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Microchannel

ho (mm) w (mm) £ (mm) £, (mm) wp (mm)
0.50 +0.005 5.0£0.05 60.0+0.25 12.0£0.05 1.4+£0.05
Deformable top walls
b (mm) E (MPa) vy ps (kgm™?)
0.43 +0.01 1.024+0.05 0.47+£0.1 1070 £+ 10

0.20 £ 0.005 1.21 £0.02

Table 2. Dimensions of the microchannel and elastic properties of the deformable walls.

an oven at 90 °C for 24 h. Upon curing, the PDMS block as the channel substrate was
carefully detached from the mould, followed by the fluid inlet and pressure measurement
ports being precisely punctured by a 2 mm disposable biopsy punch. To probe the time-
varying pressure distribution along the flow direction, the five ports (spaced £, apart; see
figure 2b) were designed to connect to a pressure transducer for pressure measurements
along the channel. All ports (with width w, at the branching point where they intersect
with the main channel) were located to the side of the channel (figure 2b) for convenient
experimental operation. The lateral cross-sectional view of the entire port is shown in the
inset of figure 2(b). Additionally, a smooth geometric transition following an elliptic arc
was employed at the microchannel inlet to minimise any secondary flows created at sharp
corners.

Two thin PDMS films were used as the deformable top walls. One PDMS film with
a thickness of 0.43 4 0.01 mm was fabricated in the laboratory following the procedure
of Chun et al. (2024). The other PDMS film (GASKET-UT-200PK) with a thickness of
0.2 £0.005 mm was purchased from SIMPore Inc., USA. The films and microchannel
substrate were treated with a 4.5 MHz hand-held corona treater (BD-20AC, Electro-
Technic Products, USA) for 30 s, and then we brought the film and the channel substrate
together into conformal contact for bonding. We note that this bonding approach for
oscillatory flows was proven to be robust, as confirmed by the reproducibility of our
experiments. We further attached a rigid glass slide on top of the thin PDMS film, other
than the section between the first port and the outlet, to confine the deformability solely
to this section. We confirmed all dimensions of the channel and the thin PDMS film
by microscope visualisation (table 2). We also measured the Young’s modulus E and
Poisson’s ratio vy of the thin PDMS film using dynamic mechanical analysis (Q800 DMA,
TA instruments, USA) at a room temperature of 20 °C. For the PDMS films that we
fabricated in the laboratory, the measurements of the Young’s moduli were performed
after 24 h to ensure the material properties of the PDMS films were fully stabilised. The
density p; from the datasheet is reported.

To validate our experimental system for oscillatory flows, we also fabricated a rigid
microchannel, which is the counterpart of the deformable microchannels with the same
dimensions and configuration, except that the top wall was replaced by a large PDMS
block. Using the same fabrication procedures as for the channel substrate, the PDMS block
was fabricated to be as thick as the channel substrate (thickness ~ 1 cm), ensuring that
its rigidity prevents any deformation under the typical imposed hydrodynamic pressure
(amplitude = 0.1 kPa) used for the experiments with the thin-film top walls. Subsequently,
the large PDMS block was attached to its dedicated channel substrate by undergoing the
same surface treatment as for the thin-film top walls described above.
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Fluid oy (kgm™3) ¢ (mPas)
Deionised water 1000 £ 1 14+0.05
50 wt% glycerine solution 1m15+£1.1 6+£03

Table 3. Physical properties of the working fluids.

3.3. Working fluids and pressure measurements

Two different viscous Newtonian fluids, deionised water and an aqueous solution of
50 wt% glycerine, were used to tune the Womersley number Wo and the elastoviscous
number y. The working fluids’ densities and viscosities are reported in table 3, which
were measured right before each experiment. The viscosity of the working fluids was
quantified by flow sweep tests performed using a stress-controlled rheometer (DHR-3,
TA Instruments, USA).

For the pressure measurement, the gauge pressure at each pressure port was recorded
by a pressure transducer (PX409-10WGUSBH, OMEGA, USA) wired to the PC with
control software (Digital Transducer Application, OMEGA, USA), using a sampling rate
of 1000 Hz for all cases, which is much larger than the frequency of the pressure signal in
our experiments (typically set between 1 and 16 Hz). Prior to each experiment, the pressure
transducer was calibrated using a column of water. Then, the entire interior space of the
system, including the tubing connected to the pressure transducer, was completely filled
with the working fluid. Thereafter, the top opening of the PDMS chamber (used to fill
it with fluid) was kept closed, and the channel outlet was completely submerged under
the free surface of the fluid in the reservoir. The five pressure ports were also blocked by
the tubing connected to the pressure transducer and four plugs to maintain a hermetically
sealed liquid environment.

We measured the pressure distribution of both the primary flow (derived in § 4.1) and
the secondary streaming flow (derived in § 4.2). For the primary flow, we synchronised
the pressure’s time variation in each port with one pressure transducer as follows. At the
onset of each experiment, the function generator was configured to produce a sinusoidal
waveform with a predetermined frequency and voltage. As the speaker diaphragm
continuously oscillated under the excitation of the function generator, pressure variations
over time were recorded. For a given pressure input, characterised by an amplitude and
frequency, we first recorded data at the first port, p;(t) = p(z1, t), as shown in figure 2(b)
(hereafter referred to as ‘port 1°) for a sufficiently long duration. Next, to synchronise the
pi(t) data of port i (where i =2, 3, 4 or 5) onto the time axis of port 1’s data under the
same pressure input, we implemented a staged recording method for port i. First, we began
the data collection on port 1. Second, we transferred the pressure sampling tube from port
1 to port i. Third, we continued data collection at port i before concluding the session. This
entire process was completed within the total duration of port 1’s data acquisition in the
first session. To align the pressure datasets, we applied a temporal adjustment by shifting
the whole p;(¢) curve of the second session along the time axis until its initial time slot
measuring port 1 precisely overlapped with port 1’s reference data from the first session,
eliminating any phase discrepancy. This approach ensured that the data recorded for each
port were accurately synchronised with the time axis established by port 1’s dataset. The
same procedure was systematically repeated for all pressure measurement ports, ultimately
yielding a fully synchronised pressure dataset across all five ports for a given pressure
1nput.
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On the other hand, to measure the weak streaming pressure in the secondary flow for
each pressure port, we first obtained a baseline pressure value with no flow (the speaker
off), then recorded the pressure signal with the flow (the speaker on). The difference
between the cycle-averaged value of the pressure signal with the flow and the baseline
pressure reflects the streaming effect therein. We used these pressure differences to
further calculate the cycle-averaged streaming pressure, which, in this case, was the sole
measurement in which we are ultimately interested, meaning the synchronisation between
ports was not critical.

4. Theory of elastoinertial rectification in a 3-D deformable channel

The oscillatory flow has a time-harmonic (zero-mean) component called the primary
flow. Nonlinearity, due to two-way coupling between the flow and deformation as well
as flow inertia, induces a secondary flow. This secondary flow can have a non-zero mean
component, which is often referred to as a streaming flow. Classically, streaming is studied
in the context of viscous flows in which weak advective inertia provides the nonlinearity.
The latter example is referred to as acoustic streaming (Riley 1998, 2001; Sadhal 2012).
Either way, if a zero-mean forcing produces a non-zero net cycle-averaged flow, we say
that the oscillatory flow experiences rectification.

For internal flows in conduits, a non-zero mean flow can be produced by a slowly
varying conduit cross-section (e.g. the radius in a tube) or by curvature (twists and
turns) of the conduit in the flow direction (Pedley 1980). Streaming flows can also be
generated by peristalsis (small-amplitude waves propagated along the conduit wall), with
applications to microelectromechanical systems (Selverov & Stone 2001) and biofluid
mechanics (Romano et al. 2020; Trevino et al. 2025). In the present context of an internal
flow in a deformable channel, the streaming flow arises from the combination of geometric
(flow-induced elastic deformation) and inertial nonlinearities.

To decouple the primary and secondary flows, we follow Zhang & Rallabandi (2024)
and expand all variables in a perturbation series in 8 < 1,

{Vy, Vz, Q, PY=1{Vy0, Vz.0, Qo, Po} + B {Vv1,Vz1, Q1, P} +0(BH, (41

primary flow secondary flow

without restricting y or Wo. Below, we construct the primary flow solution explicitly
(§4.1), while for the secondary flow, we only evaluate the cycle-averaged (i.e. streaming
or rectified) component (§ 4.2).

4.1. Primary flow: O(1) solution

Substituting the expansion (4.1) into the momentum equations (2.4b) and (2.4¢), we find
that the primary pressure Py does not vary with X or Y. Then, at O (1), the Z-momentum
equation (2.4d) and the no-slip BCs from (2.5a) and (2.6¢) become

WVzo  dPy  9*Vzo

Wo? =— 3
aT dz Y 4.2)

Vz.oly=0=Vz0ly=1=0.

We expect the primary flow to be harmonic; thus, we introduce phasors: Vz,o(Y, Z, T) =
Re[Vz.0.4(Y, Z)e'lland Py(Z, T) = Re[Po,a(Z)elT]. Substituting the phasors into (4.2),
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the solution for the axial velocity phasor’s amplitude is easily found (see e.g. Pande et al.
2023) to be

Vyou(¥. Z)= L cos (i¥2(1 — 2Y)Wo/2) (dPo,a) “3)
20T T e cos (i*/2Wo/2) dz ) .

Now, the flow rate phasor’s amplitude is evaluated by substituting (4.3) into (2.12) to yield

12 ol dP
Qo = / / V204 dYdX = f(Wo) (— 0)
0

—1/2 dz @.4)
F(Woy et L [1 1 (i3/2Wa/2)} |
iwo? 32Wo/2 '

Next, we determine the top wall displacement. Having verified that St; < 1, we neglect
the wall’s inertia. Then, the solution of (2.8) subject to the BCs (2.10) (see e.g. Shidhore
& Christov 2018) is

(o) [(Lox2) e Z
Uy(X,Z,T)_3O<4 X>[<4 X)—|—5:|P(Z,T). 4.5)

Substituting (4.5) into (2.13), performing the X integration and then substituting the
perturbation expansions for Q and P in terms of phasors, the continuity equation becomes

dQO,a
dz
Finally, substituting the flow rate—pressure gradient relation (4.4) into the continuity
equation (4.6), and taking into account the pressure BCs (2.7), we arrive at a boundary-
value problem (BVP) for the primary pressure amplitude:

d?pPy .,
= =i (14+9)vPy,(2),
de 1( + )V O,a( ) (47)

PO,a(O):L PO,a(l):O.

+0+.9) ]/iP()va(Z)z(). 4.6)

f(Wo)

Here, according to the experimental system’s set-up, we have taken P;,(T) = Re[e'”] 4+
O(B), having imposed the amplitude of the pressure oscillations as the characteristic
pressure scale via (2.1). We have left open the possibility of O(B8) corrections to the
oscillatory pressure BC, which may arise from how the oscillatory flow was generated
in the experiments. We return to this issue in § 4.2.

The solution to the BVP (4.7) is easily found to be

_sinh (k(1 — Z)) B dgef [i(1+T)y
PO,a(Z) = T, K —K(WO, Y, y) = f(To)’ (48(1,b)

which has the same form as the corresponding solution in an axisymmetric deformable
tube (Ramachandra Rao 1983; Dragon & Grotberg 1991; Zhang & Rallabandi 2024). This
solution is illustrated in figure 3. We observe that « / /(1 + .7)y is solely a function of Wo
with asymptotics of ~ @(2 + iW02/10) as Wo — 0 and ~ «ﬂ(l + \/iWo) as Wo — o0.
The large-Wo asymptotics show a much faster (~ Wo) growth for the 3-D rectangular
channel compared with the 3-D axisymmetric tube (~+/Wo) in Zhang & Rallabandi
(2024).
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Figure 3. (a) Dependence of the reduced complex ‘wavenumber’ k//(1 +.7)y = /i/f(Wo) on Wo and its
asymptotic behaviours (dashed curves labelled with arrows). (b) Shape of the primary pressure amplitude’s
axial distribution, Re[ Py ,(Z)] from (4.8a), for Wo =1 (solid) and Wo =3 (dashed) and across a range of y
values.

Observe that as the elastoviscous adjustment of the wall becomes instantaneous
compared with the oscillation time scale (y — 0), i.e. the channel is effectively rigid,
then «k — O and Py ,(Z) — 1 — Z from (4.8), as expected.

4.2. Secondary flow: O(B) solution
To define the secondary (streaming) flow problem, we must determine the axial velocity
at the deformable wall in terms of known quantities. Following Boyko, Stone & Christov
(2022), we proceed by domain perturbation (Lebovitz 1982; Leal 2007). To this end, recall
that H=1+BUy =1+ BUyo+ 0(B?%), and expand the axial velocity at the wall in a
Taylor series:

aVz.o0

Ty +BVzily=1 + O(B?). (4.9)

Vzly=1 =Vzoly=1 + BUy,0

Y=1
Enforcing the no-slip BC Vz|y—gy = 0 due to (2.6¢), (4.9) requires that

0Vz.0
Y

(4.10a,b)

Vzoly=1=0, Vzily=1=— Uyp .
y=1

Observe that the flow-induced deformation of the channel leads to an effective slip velocity
Vz.1ly=11n (4.10b) along the original location of the wall (Anand & Christov 2020; Zhang
& Rallabandi 2024).

Since we are interested only in the streaming (or rectified) flow component, we now

apply the cycle-averaging operator ( - ) & (1/2m) fozn( -)dT to (2.4d) and (2.13) at O(B)
to obtain

Wo? aVzo aVzo d(Py) 82(‘/21)
v 0y o\ _ _ A7 411
< ro—y tVzo—7 17 572 (4.11a)
3
o _ 4 (4.11b)
3z

Observe that the left-hand side of (4.11a) is independent of X, and so is (P;) (due to the
cycle-averaged (2.4b) at O(B)). Thus, we can X-average the O(B) problem’s governing
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equation (4.11):

Wo? [ 9Vzo 0Vzo\ AP | 9*(Vza)
RAGSEN S V4 d V = — 7 4.12
< Ty TY2057 az aY?2 (4.122)
0
(01) —0. (4.12b)
0Z
def +1/2 r2mn . .
where (- ) = (1/2m) ffl 12 Jo (+)dTdX denotes the simultaneous 7 and X averaging.

The T averages involving O(1) phasors A = Re[A,e'T] and B = Re[B,e!!] are calculated
by the standard rule (AB) = (1/2)Re[A}B,] = (1/2)Re[A,B;], where a star superscript
denotes complex conjugate.

Four conditions are required to simultaneously and uniquely determine {Vz 1)), {Q1))
and (Pp) from (4.12). The suitable BCs now correspond to no slip at ¥ = 0 (from averaging
(2.5a)) and effective slip at Y = 1 (from averaging (4.10b)):

>> . (4.13a,b)
y=1

Vz.o
oY
The conditions in the experiment are such that the membrane in the liquid-filled chamber
used for oscillatory flow generation (recall figure 2) does not allow any net flow through
the system. Then, according to (4.12b), { Q1)) = const., and this constant must be zero
throughout. The outlet is open to the gauge pressure per (2.7). Thus, the remaining BCs
are

(VzMy=0=0, (Vzadly=1=— << Uy,o

(QiMz=0=0, (P1)lz=1=0. (4.14a,b)
Using (4.5), the slip velocity becomes
-

vV +1/2 V.
<< Uy,g—22 >> = / Uyodx 22
y=1 —172 Y
(4.15)

aY
It is convenient to now rewrite {(Vz 1)) in a way to eliminate the pressure gradient on the
right-hand side of (4.12a) and simultaneously satisfy the slip BC (4.13b). Specifically, let

aVz.o
oY

>=<(1+§)P0

Y=1

1.d(Pr)
2 dz

aVz.o
YA -Y)-Y(1+.9) <P0 57

(V1) (Y, Z) = >+6€&mzy
=l (4.16)

Then, substituting (4.16) into (4.12a), we obtain a new BVP for ((/V;T)), subject to
homogeneous BCs:

Wo? IV IV 92(Vy 1)
Wo~ Ve o Z’0+Vz,o zo\ _ { 22,1)),
y aY VA aY 4.17)

—_~

(Vzly=0=(Vz1)y=1=0.

An analytical solution appears unlikely since the left-hand side of the ordinary differential
equation in (4.17) is a complicated, complex-valued function of ¥ and Z, but some useful
approximations are discussed in Appendix A. Instead, we solve the linear two-point BVP
(4.17) numerically using Matlab’s bvp4c subroutine, which implements a finite-difference
solver with residual-based error control (Kierzenka & Shampine 2001), with absolute and
relative tolerance of 1079,
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Finally, from (4.12b), (4.14a) and (4.16), we conclude that

! 1 d(Py)
(1) /0 (Vz.1) 54z +29(2) (4.18)
where, for convenience, we have let
1 V. o
QDY _—(1+9)( Py 2L +/ (Vziydy . (4.19)
from effective slip from advective inertia

Equation (4.18) is a first-order differential equation for the streaming pressure ( P;) subject
to the outlet BC (4.14b), which is easily solved to obtain

1
(PI)(Z)=—12 / Q(Z)dZ. (4.20)
Z

In the experiment, the membrane in the liquid-filled chamber used for oscillatory flow
generation imposes a weak, O (), non-zero mean pressure at the inlet, which is consistent
with (4.20). To plot (P;)(Z), we evaluate Q(Z) from (4.19) wherein the integral over Y is
computed numerically using the trapezoidal rule via Matlab’s trapz with AY =0.0101

—_—~—

from the numerical solution for {Vz 1)) of BVP (4.17). Then, the indefinite integral in
(4.20) is evaluated numerically using Matlab’s cumtrapz using AZ = 0.0204.

5. Comparison between experiment and theory

To make the comparison between the experimental measurements (§ 3) and the primary
and streaming pressure distributions predicted by the theory (§ 4), we first post-processed
the experimental data. To isolate the primary pressure oscillations and set the gauge
pressure to zero, the mean of the signal was removed. Then, we fitted the oscillatory
pressure experimental data from the inlet pressure sensor 1 to a sinusoidal waveform of
the form pi(¢) = po OS2 firue(t — tisnift)), Where po is the amplitude of the pressure
signal we seek to determine, fi,. is the ‘true’ frequency of the signal (slightly shifted
from the input waveform frequency f due to imperfections in the system) and fz; is a
phase introduced by the fact that the experimental data capture does not have to start right
at a peak or trough of the sinusoidal signal. To find pg, we applied Matlab’s findpeaks
subroutine to the zero-mean signal, and the values it returned were averaged to obtain
po- Then, fi. and tg; were found using findfit. After po and fy,. were successfully
identified for a given experiment, the key dimensionless numbers (table 1) were calculated
and used to evaluate the theoretical predictions.

5.1. Validation in a rigid channel

To validate the experimental system, we first assessed its performance using a rigid channel
(y =0) with deionised water as the working fluid. This validation is accomplished by
comparing the experimental pressure data for the rigid channel with the y — 0 limit of the
theory, which gives P(Z, T) =Re[(1 — Z Ye'T] from (4.8). We considered three validation
cases with different input frequencies (corresponding to Wo =2.5, 3.32 and 3.96). The
case of Wo = 2.5 is shown as an example in figure 4. We observe good agreement between
the theory and experiments for the axial distribution of P and its variation over time in
figure 4(b). The same holds for the other two validation experiments (not shown).

Note that the experimental pressure data time series (figure 4a) does not show any
phase difference between the pressure signals at the different axial positions, which
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Figure 4. Pressure distribution and evolution in a rigid channel (y = 0) with Wo = 2.5. (a) Experimental time
series of the evolution of the pressure over time at the different axial positions of the ports (recall figure 2b).
(b) Comparison between the evolution of the dimensionless axial pressure distribution from the experiments
(symbols) and the rigid-channel theory (solid lines) over half a cycle.

is to be contrasted with the results for the deformable channel below (§5.2). The
signals’ amplitudes exhibit a trend of linear attenuation with z, characterised by a
constant multiplicative relationship between the values at different z. Correspondingly,
in figure 4(b), these observations are reflected in the linear variation of P with Z at every
T over half an oscillation cycle.

5.2. Comparison of primary pressure oscillations in deformable channels

Next, we turn to the experiments in the deformable channels, based on a 50 wt%
glycerine solution as the working fluid. In this subsection, we discuss the primary
(purely oscillatory) pressure (§4.1) in the compliant channel. In figure 5, we show the
experimentally measured pressure evolution at each of the different pressure ports for four
pairs of values of the Womersley and compliance numbers — a low value Wo = 0.537 (slow
flow oscillation) and a high value Wo = 2.15 (fast flow oscillation), as well as two different
orders of magnitude of 8, namely ~ 10~2 and ~ 10~ ". To change the compliance number
B, the thickness of the deformable top wall was varied in the experiments (recall table 2).
In figure 5, the mean pressure has been subtracted to set the outlet pressure as the gauge
and to make the signal purely oscillatory.

Comparing the pressure time series in figure 5 (e.g. figure 5b) with time series in the
rigid channel in figure 4(a), we observe a distinct phase difference developing between
the time series collected at different z (i.e. at different pressure ports). Furthermore, the
decrease in the signals’ amplitudes is not proportional in the deformable channel, unlike
in the rigid channel. These differences are expected to arise from the nonlinear two-way
coupling of the flow and deformation (increasing f).

To clearly demonstrate the nonlinear coupling, in figure 6, we compare the
dimensionless primary pressure distribution Py(Z, T) = Re[PO’a(Z)e‘T] from (4.8)
predicted by the theory with the experimental data. We neither construct P;(Z, T'), which
is not straightforward (Zhang & Rallabandi 2024), nor neglect its O (8) contribution, as we
have ensured a one-to-one comparison of primary theoretical and experimental pressures
by removing the mean of the experimental time series. Notably, unlike the steady (Christov
et al. 2018) and startup (Martinez-Calvo et al. 2020) problems, the key dimensionless
groups influencing the pressure distribution in the deformable channel are the Womersley
number Wo and the elastoviscous number y, not the compliance number 5.
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Figure 5. Experimental measurements of the evolution of the pressure over time at different axial positions
(pressure port locations) for the deformable channel for smaller and larger compliance numbers (left-hand
column versus right-hand column) and smaller and larger Womersley numbers (top row versus bottom row).
Specifically, (@) Wo = 0.537 (y = 0.109), (b) Wo = 0.537 (y = 0.913), (c) Wo =2.15 (y = 1.745) and (d) Wo =
2.15 (y = 14.6).

The results in figure 6 show a good agreement between the theory of the primary
pressure oscillations Pg(Z, T') and the experimental measurements over a wide range of
Wo and y. We observe that the agreement between theory and experiment is better for
0.1 <y <1 than for y > 1. This deviation can be attributed to the fact that for larger
values of y > 1, the combined effect of compliance and oscillations is strong, and the
time it takes the top wall to adjust to the flow oscillations becomes much longer than the
oscillation time scale, localising the majority of the pressure variation near the channel’s
inlet. This rapid, localised variation is more challenging to capture using equally spaced
pressure ports in the experiments. Nevertheless, the overall agreement between theory and
experiment on the trend of Py(Z, T') and how it changes with Wo and y is good, thus not
only validating the predicted nonlinear pressure distribution (4.8) but also providing the
first experimental demonstration of the strong coupling between flow oscillations and wall
deformations, even in weakly compliant channels (8 < 1).

5.3. Comparison of streaming pressure profiles in deformable channels

Next, we turn to the elastoinertial rectification phenomenon, namely the theoretical
prediction that (P)/B = (P1) # 0 due to the nonlinear coupling of the flow’s inertia with
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Figure 6. Comparison of the dimensionless axial pressure distribution in a deformable channel between
experiment (symbols) and theory (solid curves), i.e. Po(Z, T) =Re[Pyq (Z)eiT] based on (4.8), with (a)
Wo = 0.537 (8 =0.0208), (b) Wo =0.537 (B =0.164), (c) Wo=1.42 (8 =0.02), (d) Wo=1.42 (B =0.125),
(e) Wo=2.15 (8 =0.0167) and (f) Wo = 2.15 (8 = 0.104). The evolution of the pressure distribution is shown
over a full cycle (thus T = 2m overlaps T = 0).

the wall deformation (§ 4.2). All data shown in this section are based on deionised water
as the working fluid. To this end, in figure 7, we compare the streaming pressure (P;)(Z)
calculated numerically from (4.20) (as described above) with the corresponding quantity
extracted from the experiments.
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Figure 7. (a) Comparison of streaming pressure (cycle-averaged pressure) distribution, (P)/8 = (P1), between
the experimental data (symbols), the theoretical prediction based on numerically evaluating (4.20) (solid
curves) and the closed-form approximation (A7) (dashed curves, overlapping the solid curves) in a deformable
channel with 2 0.17 and y =0.15 (Wo =1.25), y = 0.6 (Wo =2.5) and y = 1.048 (Wo = 3.13) achieved by
changing the input frequency in the same channel. (b) Ad hoc modification of the theory by multiplying the
effective slip term in (4.19) by 0.4 to demonstrate the sensitivity of the streaming pressure to the effective slip
contribution.

This comparison is more challenging than the previous one in § 5.2 because we are
now dealing with small quantities that are O(f). Consequently, the error bars on the
experimental data in figure 7 are much larger as the pressure values being measured
push the experimental system to its sensitivity limit. Nevertheless, in figure 7(a), we see a
reasonable agreement between experiment and theory regarding the trend of the streaming
pressure distribution along the channel. Interestingly, (Pp) is less sensitive to y under
the present flow conditions, and both the theory curves and experimental data cluster
together.

The largest disagreement is at Z = 0, at the first pressure port, which may be expected
as this is the location in the experimental system that is least likely to satisfy all the
assumptions of the theory. Specifically, as shown in figure 2, there is a rigid section
attached to the inlet of the deformable channel in the experiments, which constrains the
displacement along the inlet plane. However, this possibility is not accounted for in the
theory — the leading-order equation (2.8) for the displacement does not allow for BCs
to be imposed in Z and thus cannot capture this localised clamping at the inlet, which
previous work showed is confined to a ‘boundary layer’ of thickness O(/w/¢£) (Wang
& Christov 2021). While the inlet conditions on the displacement have no discernible
effect on Py(Z), as demonstrated in § 5.2 by the excellent agreement between theory and
experiments at Z = 0, these conditions may affect the weaker effects being investigated at
0(p).

To test the hypothesis that the inlet conditions may affect the agreement there, we turn
to (4.19) and (4.20), from which we observe that the streaming pressure is generated by
a competition between effective wall slip (at the location of the undeformed wall) and
advective inertia. Specifically, the effective slip is a direct function of the displacement,
per (4.15). Therefore, we expect this O () quantity to be possibly strongly affected by the
inlet restrictions in the experiments. Specifically, if the displacement in the experiments
near the inlet is constrained, or otherwise reduced, then this term might be overestimated
by the theory. To test this hypothesis, we check the sensitivity of the (P;)(Z) profile to the
magnitude of the effective slip term. We find that even approximately halving this term
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can account for much of the disagreement between theory and experiment, especially as
Z — 0, as shown by the ad hoc modification in figure 7(b).

Though the ad hoc modification improves the agreement to quite an extent for the lowest
frequency (lowest Wo and y values), it still exhibits disagreement for the larger frequencies
(larger Wo and y values). In fact, fully suppressing the effective slip term brings the
streaming pressures at the higher frequency even closer to the experimental data points.
To further investigate the frequency-dependent nature of this agreement/disagreement,
we would need to better assess how well our theory models the effective slip term in
(4.19). The present theory evaluates this term using the result that Uy, o< Py, per (4.15),
and the shear dVz (/0Y based on (4.3). We would need a more advanced experimental
set-up, which measures the velocity field and the deformation independently, to evaluate
the accuracy of each of these results. Alternatively, measuring just the slip velocity at
Y =1 experimentally, say using particle image velocimetry, and comparing it with (4.105)
could be another independent check. These directions will be pursued in forthcoming
investigations.

Despite the limitations and challenges of these measurements, the experimental data
appear to capture the key effects of Wo and y on the streaming pressure profile,
including the non-monotonic behaviour with respect to y (in particular for Z > 0.5),
though admittedly, the error bars on the experimental measurements for different y
overlap.

6. Conclusion

We presented a systematic, combined theoretical and experimental investigation of
two-way coupling between oscillatory internal viscous flows and deformable confining
boundaries. Specifically, we provided a theory (and solutions) for the pressure distribution
due to oscillatory flow in a 3-D channel with a deformable top wall, its relation to the flow
rate in terms of complex-valued functions, as well as the shape of the deformation of the
compliant wall, taking into account its thickness. Consistent with microfluidics-oriented
applications, we assumed the channels were shallow and slender, which allowed the use
of the lubrication approximation. However, as convective inertia cannot be eliminated
from the axial momentum equation, we also assumed a small compliance number to
make progress on the nonlinearly coupled problem, unlike steady (Christov et al. 2018)
and startup (Martinez-Calvo et al. 2020) flow-induced deformation problems previously
analysed. However, we did not make assumptions on the two key dimensionless groups
involving the oscillation frequency, the Womersley number and the elastoviscous number,
the latter being the key controlling parameter of this type of ‘viscous—elastic’ structure
interaction problem (Elbaz & Gat 2014). To validate the theory, we designed a PDMS-
based microfluidic experimental platform capable of measuring the pressure distribution
in these flows.

Our key findings are that the primary (periodic) pressure distribution from the theory
shows strong agreement with the experimental measurements. Furthermore, we were
able to measure (albeit with higher uncertainty) the weak, secondary (cycle-averaged,
streaming) pressure distribution predicted by the theory. The resulting comparison shows
agreement in the trends and thus provides the first experimental demonstration of
elastoinertial rectification due to oscillatory flow in 3-D deformable channels, which is a
subtle effect not previously measured in experiments. Our theoretical-experimental results
demonstrate that, as Zhang & Rallabandi (2024) recently clarified, geometric nonlinearity
due to the deformation of the channel and inertial nonlinearity due to the advective inertia
of the fluid, are inextricably coupled in determining the pressure characteristics of these
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flows. Our work thus advances the fundamental understanding of soft hydraulics involving
oscillatory flows. Notably, there are no fitting parameters in the theory; each property
of the fluid, the deformable wall and the geometry was experimentally characterised.
Consequently, the theory of elastoinertial rectification in 3-D deformable channels is ready
for use in applications.

In the future, it would be worth pursuing the experimental measurement of the phasing
between the flow rate and the primary pressure (gradient), recently explored in tubes
through simulations by Krul & Bagchi (2025), as well as the direct measurement of the
elastic wall’s deformation profile. Although our experiments showed negligible effect
of the deformable wall’s inertia, solving for the displacement profile for finite Stg in
(2.8) would be relevant for applications to soft robotics (Gamus et al. 2018). In addition,
many relevant working fluids for applications, such as polymer solutions, colloidal
suspensions and biological fluids, show non-Newtonian rheology (Chhabra & Richardson
2008; Roselli & Diller 2011), which will introduce another set of nonlinear couplings
beyond those already understood in steady flow (Christov 2022; Boyko & Christov 2023;
Chun et al. 2024), between the fluid rheology (e.g. viscoelastic stresses or changes of
the apparent viscosity due to shear-thinning), flow oscillations and wall deformation.
Further investigation of oscillatory flows of complex fluid in deformable channels,
especially viscoelastic ones (Asghari et al. 2020), will be relevant to microfluidic-oriented
applications (Dincau et al. 2020; Mudugamuwa et al. 2024). Another avenue of future
work could be to revisit the possibility of flow rectification due to oscillatory flow in
deformable poroelastic media (Fiori, Pramanik & MacMinn 2023).
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Appendix A. Closed-form approximations for the streaming quantities, and limits

In § 4, we solved the linear BVP (4.17) numerically since the left-hand side of the ordinary
differential equation is an unwieldy expression involving complex-valued quantities.
Zhang & Rallabandi (2024) used an approximation procedure, similar to the one used
to derive reduced models of cardiovascular flows (see e.g. van de Vosse & Stergiopulos
2011), that leads to closed-form, albeit ad hoc (unless Wo <« 1), expressions. The
procedure consists of replacing the Womersley profile (4.3) with a Poiseuille profile
with the same centreline velocity. In the present context, the approximation takes the
form

dPy 4
Vz.0.aY, Z)=40(Wo)Y(1-Y) | — — |,

dz
(AD)
det 1 1
o(Wo)= — |1l - ———|.
iWo? { cos (i3/2W0/2):|
Substituting (A1) into (2.4a), we find the approximate vertical velocity component:
Nl ’ 2

Vy,0a(Y, Z) = 0(Wo) | 2Y~ — 5 k(Wo, y, )" Py,a(Z), (A2)
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having used (4.7) to replace d? Po.g /dZ2 by K2P()7a. Using (A1) and (A2), and carefully
tracking the conjugation in evaluating the time averages of phasors, we find an approximate
solution of the BVP (4.17):

Wo? 1 ,dPy,
V Y,Z)~ ——Re | |o|"——
(Vz )Y, Z2) ,aRe [I I 1z
Note that the approximate velocity profile (A1)-(A2) is used only for evaluating the
advective terms to obtain the closed-form solution (A3). The slip velocity (4.15) can be
calculated without approximation by using (4.3) in (4.15), to find

2
(Kz)*nga] E(4Y6 —12Y° +15Y* = 7Y). (A3)

aVzo 1 il/2 3 dPy.,
Py—= = —Re | P}, — tan (i*?Wo/2) [ ——=2 ) |. A4
< 0 E)Y Y=1> 2 e{ O,a WO an (1 0/ ) dZ ( )
Now, substituting (A3) and (A4) into (4.19), we obtain
dP,
QZ)~—(1+ T)Re [q(Wo)%P&a] , (AS)

where

def

1/2 3W2 o (W )
q(Wo) = — [;% tan (i3/2W0/2)—|— o |o(Wo)|

70 f(Wo)*

13, (A6)

8 1680 16800

3 G5it 12)il/2

70 140
Recall that v(Wo) is defined in (A1) and f(Wo) is defined (4.4). Notice that £ depends on
y only through Py ,. Within g, the first term in the parentheses arises from effective slip
at the original location of the deformable wall (no approximation), while the second term
is the contribution of advective inertia (approximated based on (A1)—(A2)).

Based on (AS), we compute f Zl Q(Z) dZ and (4.20) becomes
(P)(2)~—12(1+T)

Wo* + O(WOG), Wo — 0,

Wo™! + 0 (Wo™?), Wo — 0.

2[ sinh « |2 Relx] -t Imix]

) _ 112 _
XRe{q(WO) K |:s1nh (1 — Z)Re[k]) _sin®((1 Z)Im[/c]):|}'

(A7)

The comparisons in figure 7(a) show that this ad hoc approximation is actually extremely
accurate across a range of y and Wo values.

In the ‘quasi-rigid limit’ (Zhang & Rallabandi 2024), y — 0, a simpler expression can
be obtained since «, Re[«], Im[«] ~ /¥ — 0, namely

(P1)(Z) ~ =6 (1 4+ .7) Re[q(Wo)](1 — Z)?, y — 0. (A8)
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