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Abstract

We find a basis for the universal punctured even distribution and then a basis for the cyclotomic units
over function fields.

2000 Mathematics subject classification: primary 11R58, 11R60.

0. Introduction

In the classical case, the structure of the group of cyclotomic units can be obtained
from the universal punctured even distribution [6]. Gold and Kim [2] have found
an explicit basis (a minimal set of generators) of the universal punctured even dis-
tribution and then, by eliminating some generators of it, a basis of the group of
cyclotomic units. They used this basis to show that £/n

G = Um for all m\n where
G = Gal(Q(£n)/Q(£m)), and Un (respectively Um) is the group of cyclotomic units in
Q(&) (respectively (*(?„)).

Galovich and Rosen introduced the cyclotomic units in the cyclotomic function
fields [3, 4] and the distribution theory over function fields [5]. Bae described the
group structure of universal even (odd) punctured distribution [1]. In this paper, we
find a basis of the universal even punctured distribution in function field and from this
basis find a basis of the group of cyclotomic units in the cyclotomic function fields,
following the ideas of Gold and Kim [2].

Throughout this paper we fix the following notation. Since the case q = 2 is not
so interesting, we assume that q > 2.
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[2] Bases for cyclotomic units 57

Notation

F, = the finite field with q elements,

RT(M) = (1/M)RT/RT, for a monic polynomial M of RT,

XM = a primitive M-th root of the Carlitz module p,

XA
M = pA{kM),

<t>(M) = the Euler totient function,

7r(M) = the number of monic irreducible divisors of M,

kM = k(kM) = the M-th cyclotomic function field over k,

OM — the integral closure of RT in kM,

EM = the group of units of OM.

1. Preliminaries

Let VM be the subgroup of k^ generated by

(1) {kA
M : A € RT/MRT, A £ 0 modM}UF, x ,

and UM = EM n Vw what is called the group of cyclotomic units of Jfĉ . It is well
known [4] that UM is of finite index in EM, in particular, they have the same rank
Q>(M)/(q — 1) — 1. There are relations among the elements of VM

(2) X.CM = ckM,

(3) ^

where c e F * and /? runs over all the polynomials whose degrees are less than deg(N).
We begin by finding a basis of the universal punctured even distribution (A^)+ , which
is an abelian group with generators

and relations

(4)
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58 S. Bae and H. Jung [3]

Define

<p • (K)+ — • vM/f*

by <p(g(A/M)) = k^ mod F*. From the relations (2)-(4) and (5), we can easily see
that <p is a well-defined homomorphism.

In [1], Bae showed that

Therefore, we have the following theorem.

THEOREM 1.1. There is a split exact sequence

0 —• (l/(q - l))2"'~r —• (A°w)+ - A lfc/F,* - > 0,

where (p is defined as above and r = n(M).

2. Basis of (A^)+

Let M be a monic polynomial and Q\l Qe
2
2 ••• Qe; be its factorization, with Qt

monic irreducible. Let

5 = [A € RT • deg/4 < deg M, A is relatively prime to M],

and define three subsets 5,, S, and 5* of 5 for each i as follows:

Si = {AeS:A = l mod M/Q]1},

Si = ( A 6 j , : A s a mod Qe-, for some a € F9
X},

S* = [A € 5, : A s a monic polynomial of degree < deg <2? mod G?}-

For two elements A and B in 5,, we write AB to denote the element of S< which is
congruent to AB mod M. We also write A"1 to denote an element B of 5, such that
AB == 1 mod M. Then every element of S can be uniquely expressed as a product
of Ai , . . . , Ar, where A, e S,. Let a be a generator of F£. We choose A, € 5, such
that a = At mod Gf-

LEMMA 2.1. Suppose that (B,M) = 1.

for some C.
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PROOF. The same procedure as in the classical case [2] gives the result. •

Let

1M = {(Ai, • • • , Ar) : A,- € S( for i < r - 1, and Ar € S*}

and

I'M ={(AU ... , Ar) e IM satisfying one of the following conditions:

• Ar € S; \ {1} and A, € S, \ {1} for i < r - 1;
• when r - I is odd, Ar = • • • = A,+1 = 1, A, € (S, \ {1}) \ S;*

and A, e S , \ { l } f o r i < / - l ;
• when r — / i s even, Ar = • • • = At+l = 1, A; e S* \ {1}

and A, G S, \ {1}, for / < / - 1;
• A r = ••• = A i = 1 . }

Here S* = {A € S, : A = A(B mod M for some fi e S,*}.

REMARK. The difference in the definition of l'M from that in [2] arises from the fact
that there are (q - 1) roots of unity. In fact, if q = 3, then (S, \ {1}) \ S* is 5,* \ {1}.

LEMMA 2.2. The cardinality \I'M\ of the set I'M is as follows:

(i) Ifr is even, \I'M\ = \/(q - 1) Uli^Q?) - D + (? - 2)/(9 - 1).

(ii) Ifr is odd, \I'M\ = \/{q - 1) n;.i(*(e?') - 1) + 1/(9 " D-
/n either case, we have £ D |/^| — <t>(M)/(q — 1) + 2r~" — 1, where D runs overall
monk divisors ofM such that (D, M/D) = 1 and D ^ l .

PROOF. We prove the case that r is even. The case where r is odd is very similar
and we leave it to the reader. Suppose that r is even and let Xt = QiQ?) — 1 for
1 < i < r. From the definition of I'M, we have

( f f )( f f )
1=1 ^ " ' 1=1

By expanding above one, we get (i). Note that there are Q distinct D's such that
n(D) = I for 1 < / < r and that
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The results in (i), (ii) and elementary calculation show that

q-\^" °
Let TM be the subgroup of (A^) generated by

and let

where D runs over all monic divisors of M such that (D, M/D) = 1, D ^ 1, M, and
7D is defined similarly to TM.

THEOREM 2.3.

(A^)+ = TM x 7 ; =

where D runs over all monic divisors of M such that (D, M/D) = 1 and

REMARK. AS we have shown in Lemma 2.2, J2D\I'D\ = <&(M)/(q -
which is the minimum number of generators of (A^)+. Theorem 2.3 provides a basis
(minimal set of generators) of (A^)+.

PROOF OF THEOREM 2.3. We use induction on r. The case r — 1 is trivial. Assume
the theorem holds for M with n(M) < r — 1. We prove g(At • • • Ar/M) 6 TM x TM

for (A,, . . . , Ar) e IM\I'M case by case.
(i) If A, 6 (S, \{l}) \S,*forr- /odd, or A, e 5,* \ {1} for r - I even, then

PROOF. When none of A\s is 1, ( A 1 ; . . . , A,) e I'M, then g(A{ • • • A,/M) e TM.
Suppose exactly one of A, is 1, say A, = 1. Then by the relation (6) in Lemma 2.1,

5
---A,\

Since g(A{ • • • A,^iBA,+i • • • At/M) e TM for all B ^ 1 by the previous case,
g(Ai • • • A,_,1A,+1 • • • Ai/M) € TM x T'M. Now proceed exactly the same way as
in the classical case (case (i) or (ii) of the proof of [2, Theorem 1]).
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(ii) If A, i {1, A,) for r - I odd, or A, £ 5, for r - I even, then

PROOF. When / = r, it suffices to show that for A* e S*, A*

But by case (i), we have

M ) = * { M
When / = r — 1, by the definition of /^, it suffices to show that for A*_, € £*_,,

By the relation (6) in Lemma 2.1, we have

Note that

= *M I \ M

because A'lJ £ 1, Ar_, for f ^ 1 and g(AxA~x • • • A;_,/A/) z TM x TM for t = 1.
All terms except g(Ax • • • A*_lAr_x/M) are contained in TM x T'M, by case (i) and the
previous note, so g(Ax • • • A^_,i4r_I/M) is contained in TM x TM.

Now we assume that the assertion is true for / + 1, / + 2 , . . . , r and we prove the
case r — / is odd. The case r — / is even is very similar and we leave it to the reader.
It is enough to show that for A* e 5* and A* ^ 1

(7)
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By the relation (6) in Lemma 2.1, we have

^ , . . . A ; A , A ? + 1 \

\ M ) \hS\—^~I+^S[ JT-^f+^ty M

g
4;+,eS,'+1 or,+i = l

Note that the last two sums are contained in TM x TM by case (i) and the inductive
hypothesis. Hence (7) is equivalent to

«/+! = ' \ /

Apply the relation (6) in Lemma 2.1 again, we have

(A'"T'A'::) +°tj(A'"'A'T:;AlS)
/ A A* A Aa'+I A *(

.,. ...
* A A"1*' A * A"1*2 \A A*

The last two sums are contained in TM x TM by case (i) and the inductive hypothesis
and

/ A i • • • A*AiA^(A"^2 \ T v T .8 y ^ J eTuxTM

for all a/+2 # 1 by the inductive hypothesis (note that r — (I + 2) is odd). Hence

is equivalent to
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Repeating the above procedure, we see that (7) is equivalent to

We claim that, for 1 < a, < q - 2,

(9, , ^.-AlitiZin
T

if a, ^ 1 for some t = I + I,... , r — 2, r.

PROOF OF CLAIM. When ar ^ 1, the left hand side of (9) is equal to

8 M

which is contained in TM x T'M, because A\_"' ^ 1, Ar_t. Now we suppose that the
assertion is true for r + 2 , . . . , r — 2, r and we show that for a, ^ 1,

( A A • A A&t+l A A&t A A A A \
Aj • • • A,AjAl+l • • • A,.iA, A,+ i • • • Ar_2AT_xAT \ ,— \ <= 1M xTM

which is equal to

' A"1 A*Ac"+'~l 4 o r ' - 2 " 1 4 a '~ 1 \
8

M

By case (i), the inductive hypothesis of proof of case (ii) and the inductive hypothesis
of the claim (using relation (6) in Lemma 2.1 repeatedly), (10) is equivalent to

( ID

Note that (11) is equal to

Repeating this procedure, we see that (10) is equivalent to

8 ( ' ' ' " 'M' '"' ) € TM x TM,

which is true because A~)Z"' # 1, A,^ (note that r — t is even and t > /). This proves
our claim.
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Now we return to the proof of case (ii). By (9), (8) is equivalent to

(A1---AlA,Al+1---Ar-1Ar\ _ _,8 { jj j e TM x TM.

But this term is equal to g(AtA~l • • • A*/M) which is contained in TM x Tu.

REMARK. The claim in the proof of (ii) is true under the inductive hypothesis of (ii).
However, we have proven (ii) anyway, the claim is true in more general setting, that is,

8 [ M j € T

if r — I is odd and 1 < a, < q — 2, a, ^ 1 for some t and

* { M ) € TM X r-
if r — / is even and 1 < a, < q — 2, a, ^ 1 for some t.

To prove the remaining cases, we need the following lemma.

LEMMA 2.4. The following two statements are equivalent:

(i) g(Ax • ••Al-X(A,Ad/M) €TMx TM;
(ii) g{{A,A\x) • • • {A,^Aj\)At/M) eTMx TM.

PROOF. We prove this lemma for the case r—/odd. By the relation (6) in Lemma 2.1,

(A1-A,A,B\
M

Since g(Ax • • • A,A,B/M) e T'M for all B £ S,+i, by case (ii), we have

8 ( M ' ) + E 8 ( — y ' '+l ) e TM
 x T'M-

Hence

(12) g { ^ ^ J eTM*TM

is equivalent to

M
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We note that r — (I + 1) is even and use the relation (6) in Lemma 2.1 again, then
we see that

is equivalent to

Therefore, (12) is equivalent to

Repeating the above procedure, we can see that

g

is equivalent to

By the remark above,

(Al...AlAlA°:i---Ar_lA"/\ ,

for all (a/+i,... , ar) ^ ( 1 , . . . , 1). Hence (13) is equivalent to

M

But g(Ar • -AiAiAi+i • • • Ar_lAr/M) = g(AlAl '• • -Ai/M), so we get the result. D

We return to the proof of Theorem 2.3.
(iii) If (At,... , Ar_i) £ S, x • • • x Sr_i, then

PROOF. It suffices to show that

(A • • • A*A''A'M • • -A1"'8( '-if1
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for any / with A* ^ 1. By Lemma 2.4, it is equivalent to

? • • • A*,\

j e 7 x 7M j
where t — £ [ " / tt. But it is true by case (i).

PROOF. By Lemma 2.4, it suffices to show that

If q = 3, then g(AJM) + g(\/M) e TM x TM, by (ii) and Lemma 2.4. Since
g(l/M) € TM x T'M, g(A{/M) € TM x 7^. Now assume that ^ > 3. If r is even,
then r — 1 is odd. In this case

But g(A«/M) e TM x Tu for a = 2 , . . . , q - 1 by (ii), g(l/M) £ TM x TM, so
g(Ai/M) € 7M x 7^. If r is odd, then r - 1 is even. By Lemma 2.4, giA^/M) €
TM x T'M is equivalent to g(A°+2A\/M) & TM x T'M which is true by (ii), since r-2
is odd. •

3. Basis of U,M

Let M = Q'12? • • • QV be as before. To find a basis of UM we eliminate certain
generators of Tu. To be precise, let

„ \I'M — {(1, • • • . 1)} if r is odd;
M I I'u if r is even.

[gCA/Af) if M is composite;

if Af = Qe.

Let fM be the group generated by the elements g(Ai • • • Ar/M) with (Ai , . . . , Ar) e
I'M and f̂ , = Y\D ^b- where D runs over all monic divisors of M such that
(D, M/D) = 1, Z> ?t l, M and 7"D is defined similarly to fM. Then we have

(A^) + = GlxG2x G3,
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where

G2 = group generated by {g(l/Q'') : 1 < i < r),
G3 = group generated by [g{\/Q^ • • • Q'£) : I > 3, odd }.

LEMMA 3.1.

D H

where D runs over all monk divisor ofM such that (D, M/D) = 1 and D jt 1.

PROOF. We only prove the case that r is even. Since the case r is odd is very
similar, we leave it to the reader. When r is even, we have

4I- E (,:,
l / l V

/odd

and 5Zi<j<r-i ( r,) is 2r"'. Hence the result follows. •
/ odd V r ~ "

LEMMA 3.2. (q - 1) g(l/M) e Gu ifM is a composite.

PROOF. If r is even there is nothing to prove. So we assume r is odd. Let

and for each l,l<l<r, let

l
A*A;

Then by Lemma 2.1, we have Rt + Ri+l € f'M for each / = 0 , 1 , . . . , r — 1 and so
Ro + Rr = (Ro + RY) - ( / ? , + R2) + ••• + (Rr-i + Rr) e fM. If {A\ A * ) *
( 1 , . . . , D ,

and if (AJ,... , A*) 5̂  ( 1 , . . . , 1) or at ^ a, for some 1 ^ j ,

(A1A? • • • A*rA°'\8{ M JeKxT,,.
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Thus RQ + Rr € f'M implies

8 77

But g(Aa
x • • • A°/M) = g(l/M), so the result follows. •

LEMMA 3.3. The given generators of G\ x G2 are linearly independent over I.

PROOF. Almost the same proof as in [2] gives the result. •

LEMMA 3.4. Letr>3 odd. Then there exist a unique R € (A°,)+ such that R^O,
(q — l)R = 0 and R is of the form

with/(A/M) el.

PROOF. Uniqueness is immediate by Lemma 3.3. We prove existence by induction
on r. Suppose that r = 3. In this case Tor ((A^)+) ~ l/(q - 1), so there is R £ 0
such that (q - l)R = 0. Since (A^)+ = Gt x G2 x G3, we may write

Since (q - \)g(\/M) 6 Gu we may assume 0 < m < q - 2. But if m = 0, then
(q - l)R = 0 implies that / (A/M) = / (1 /Q?) = 0 by the linear independence
(Lemma 3.3), which force R = 0. Hence we have 1 < m < q - 2. Now apply the
map <pto R, then

Since the first two terms of the right side are units, / (1/ Q'1) = 0 and so we have

with I < m < q — 2.
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For any two nonzero distinct elements Ru R2 e Tor ((A^)+), we write

*«*(£)• E /•(£>(*)
x ' g(A/M)eG, V / \ /

with 1 < m, < q — 2 as above, then we have mx ^ m2. Otherwise,

0 - ( , -

which implies that /?i = R2-
Since we have g — 2 nonzero torsion elements in (A°M)+, we can choose nonzero

R € Tor((A^)+) of the desired form. Then we omit the rest of the induction step
because it is exactly the same as in the classical case [2]. •

THEOREM 3.5. UM - <p{Gx) x F^, where <p : (A^) + - • VM/$* is defined as in
Section 1.

REMARK. We have shown ]TD |/p| = <t>(M)/(q - 1) - 1 in Lemma 3.1. Hence
Theorem 3.5 provides a basis of UM.

COROLLARY 3.6. Suppose that M and N are monic with (M, N) = 1. Then

where G = Gal(k(AMN)/k(AM)) and UfiN is the subgroup of UMN fixed under the
action of G.

Now we show that U°M = UM, where G = Gal(k(AQM)/k(AM)). When Q\M,
Corollary 3.6 proves it. So we assume that Q\M and let M = Q\' • • • Qe; Q° be
the usual factorization of M with e > 0. Let 5* = 5*+, as in Section2 letting
M = e,' • • • <2''GC+I, Qr+\ = G. and AT* = {A € 5* : A = 1 mod (2s). Choose
T* c 5* so that

5* = (J A • K*.

For each monic divisor D of M such that (£>, M/D) = 1, (D, 0 = 1, say D =
n L i Cl,", we define 7£ as the group generated by the elements g(Ait • • • AhA/DQe+i)
with A,, € 5,, \ {l}()t = 1, . . . , t), A 6 5* \ T* and 7^ = [ ID TD'- T h e n t2' Lenima5]
can be translated as follows:
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LEMMA 3.7. For any A 6 T,

BeK.

Using Lemma 3.7 we can prove the following theorem.

THEOREM3.8. UQM =<p(fM x f ; x f;j) x F*.

PROOF. The proof consists of verifying the following three cases:

(i) g{AhAh • ••AiiA/(DQ<+i)) € fDQ. x 7 ^ x 7 ^ if A € 5* \ r .

(ii) g(A,,Ah • ••AiiA/(DQ<+1)) 6 TD0, x TDV x tDV if A €T*,Ajt 1.

(iii) |G4,,A,2 •••AJ{DQe+l)) e fDV x f^ x TDV.

We will omit the proofs because they are very similar to those of [2, Theorem 3] as
we did in the proof of Theorem 2.3. •

COROLLARY 3.9. Let Q\M. Then U%M = UM, where G = Ga\(k(AQM)/k(AM)).

COROLLARY 3.10. Let M and N be monic polynomials such that M\N. Then the
natural map EM/ UM —»• EN/ UN is an injection.
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