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ABSTRACT. In "closed" magnetic structures (i.e., coronal loops) the random shuffling of 
magnetic footpoints in the photosphere causes twisting and braiding of field lines in the 
corona. If the motions are sufficiently slow, the coronal field evolves through a sequence of 
force-free equilibrium states. Numerical simulations are presented for a simplified model in 
which the overall curvature of the coronal loop is neglected. It is shown that magnetic fine 
structures develop on spatial scales significantly smaller than those of the imposed "photos-
pheric" velocity field. 

1. Introduction 

It has been suggested that coronal loops are heated by dissipation of field-aligned electric 
currents (e.g., Gold 1964; Parker 1972; Tucker 1973; Rosner et al. 1978). These currents 
arise as a result of footpoint motions driven by subsurface convective flows. Since the mag-
netic field is nearly "frozen" into the plasma, the random walk of the footpoints across the 
solar surface causes twisting and braiding of field lines in the corona. If the footpoint motions 
are slow compared to the Alfven time LNA and the plasma pressure is negligible compared to 
the magnetic pressure, then the force balance requires that the Lorentz force nearly vanishes, 
jxB = 0; hence, electric currents associated with such twisted fields flow nearly parallel or 
anti-parallel to the magnetic field lines. 

In this paper I present results from a numerical model in which the overall curvature of 
the coronal loop is neglected: the initial field is assumed to be uniform, extending between 
two parallel plates which represent the solar photosphere at the two "ends" of the loop. The 
field is assumed to evolve according to ideal MHD. The formation of current sheets in this 
model was discussed by Parker (1972, 1983, 1986a,b) and van Ballegooijen (1985, 1986, 
1988a). The latter showed that spatially continuous flows at the boundary plates produce spa-
tially continuous force-free fields inside the volume. Numerical results were presented earlier 
by van Ballegooijen (1988b). 

2. Numerical Method and Results 

A Cartesian reference frame (x,y,z) is adopted, with the boundary plates located at z = 0 and 
z = L. The initial field (time t = 0) is given by B(^,y ,z,0) = B0t For simplicity I assume 
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that the field lines are fixed at z = 0, and that the velocity at z = L consists of a series of 
sinusoidal flow patterns with "wavelength" X<t:L. Specifically, the velocity vn(x,y,L) for 
times t in the range ( / i - l ) At < t < nAt (with n = 1, 2, ...) is given by: 

v n o , =A sin(ta+(|> r t), for n odd, 

for n even, 

( la ) 

\ n j = A sin(fcy +<|>n), v n > = 0, for n even, ( lb ) 

where A is the velocity amplitude, k (= 2TCM,) is the wavenumber, and the tyn are arbitrary 
phase angles (v 2 = 0). The magnetic field is described in terms of the paths of the field lines, 
x = X(x0,y0,z,t) and y = Y(x&y&z,r), where x0 and y 0 arc the initial coordinates of a field 
line at time t = 0. Then the magnetic field is: 

B(x0,y0,z,t) = — 
9x ar j 
dz ' dz ' 

(2) 

where / (x 0 , yo» z »0 i s tiie Jacobian of the transformation (x0fy0) -> (X,Y). The functions X 
and Y satisfy the following boundary conditions: 

X(x0,y0,0,t) = jc 0, rfroO'o.O.O = y 0 , (3a) 

X(x0,y0,L , 0 = X / 0 / , (x 0 ,yo»0, Y(x0,y0JL ,r) = r t o p (x 0 ,y 0 »O, (3b) 

where and y / o p are the positions of the footpoints at z = L, as determined from equations 
( la) and ( lb) . In the limit X <t: L the magnetic free energy AW of the system is given by 

B 2 LX\ 

AW = 
dX 

dz 

dY 

dz 
+ ( / - D 2 dx0dy0dz. (4) 

By minimizing AW subject to the constraints (3a,b), a force-free magnetic field is obtained 
(Sakurai 1979). I introduce a Lagrangian grid tied to the field lines. Let Xijk and Y^ denote 
the values of X(x0,y0,z) and ^(^o» v o» z ) a t a gtid point. Replacing the partial derivatives in 
equation (4) by their finite-difference analogs and the integrations by sums, the magnetic 
energy AW may be written as a function of the variables X^ and Yiik at all interior grid 
points. I determine the minimum of this function using the conjugate-gradient method (Press 
et al. 1986). This is a general-purpose method for finding the minimum of a function of a 
large number of variables. 

Computations were made for nine sets of randomly chosen phase angles. A velocity 
amplitude AkAt = 1 was assumed. Calculations for time steps n < 4 were made with a grid 
of 64x64x8 points (including the points on the boundaries), while calculations for n = 5 were 
made with a grid of 128x128x11 points. For n > 5 not all nine cases could be adequately 
resolved, even with the larger grid. Plots of the projections of field lines onto a plane z = con-
stant show that the field lines are more or less straight lines connecting the footpoints. This 
indicates a tendency of the field lines to be as short as possible. Contour plots of the electric 
current density at z = 0 were also produced. As time progresses, the electric currents become 
stronger and elongated regions with high current density develop ("current sheets"). Examples 
of such plots are given by van Ballegooijen (1988b) and by Mikic et al. (1989). Figure 1 
shows contour plots of the average power spectrum of the current density. This clearly shows 
the progression of power towards higher wavenumbers, indicative of the development of 
small-scale structure in the electric-current distribution. 
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Figure 1. Contour plots of the spatial power spectrum of current-density fluctuations as meas-
ured at z = 0, for different times n. The average over nine realizations of random phase 
angles is shown. Neighboring contours are spaced by a factor 2 in power. 

The fact that field lines do not deviate strongly from straight lines suggests the following 
linear approximation: 

X(x0,y0,z,t) = XQ+[Xtop(x0,yQ,t)-xQ]zlL, (5a) 

Y(x0iy0,z,t) = yo+[Ytop{xQ,yQ,t)-yQ]zlL. (5b) 

Although this does not generally represent a physically possible magnetic field (/ may be 
negative), it does provide a lower bound on the magnetic free energy of the force-free field. 
Also, it provides the correct solution in the limit of small displacements, i.e., when \Xtop -x0\ 
and \Ytop -y0\ are small compared to X (see Zweibel and Li 1987). Inserting (5a,b) into the 
first two terms of equation (4), and neglecting the third term, I obtain the following expression 
for the lower bound: 

„ 2 M 

||j [Xtop (*o .y o.O -*ol2+ [Ytop (*oO> o.O - y o]: >dx0dy0. (6) 
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I find that with AkAt = 1 the actual energy AW does not exceed AW^ by more than about 
15%. Also, the distributions of electric current at z = 0 derived from expressions (5a,b) are 
very similar to the computed, force-free distributions. Thus, we have not yet reached the 
regime where the field lines are strongly braided. Apparently, strong braiding implies the 
existence of even smaller spatial scales that cannot yet be resolved. 

3. Conclusion 

The simulations show that random motions of footpoints can produce fine structures in the 
electric-current distribution on scales significantly smaller than X, the scale of the imposed 
velocity field. However, the field lines are still relatively simple; they can be crudely approxi-
mated as straight lines. The numerical resolution is not large enough to simulate strongly 
braided magnetic fields, with circuitous paths of the field lines. Further improvements in 
numerical methods are required. 
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DISCUSSION 

MONTGOMERY: Do you have a velocity field away from the end plate? If so, how is it 
advanced in z and t? Physically, one would think that forcing the velocity field to have a 
definite temporal behaviour at the end plate would launch Alfven waves, and that is where 
much of the energy might go. 

VAN BALLEGOOIJEN: Yes, there is a velocity field away from the end plates, but it is 
not explicitly considered in the code. The force-free problem is treated as a boundary-value 
problem; the advance in t of (x,y) positions is done only at the boundary plates. If the 
transverse velocity is small compared to the Alfven speed and the velocity varies on a 
timescale (At) long compared to L / V A , significant Alfven waves are probably not launched; 
the field evolves quasi-statically. 

MOGILEVSKU: What is the energy density of the force-free magnetic fields? 

VAN BALLEGOOIJEN: The magnetic free energy is at most a few percent of the 
potential-field energy; it scales with (A/L) 2 . 

DRYER: (i) In order to achieve the large amount of braiding, do you think it may be 
necessary to go to an initial-boundary value problem with the presence of pressure, velocity 
field, etc.? 
(ii) Would you comment on the conclusion of Klimchuk and Sturrock (ApJ., Oct 1989) 
that loss-of-equilibria, quasi-static, force-free calculations have no physical basis unless the 
plasma pressure and gravity are included? 

VAN BALLEGOOIJEN: (i) Gas pressure is not essential, but it might be numerically 
advantageous to use an initial-value approach as Mikic et al. have done, 
(ii) Loss-of-equilibrium may occur in force-free fields if 3D effects are taken into account. 
They may occur in the context of the Parker problem, but I have not found any evidence for 
non-equilibrium in my calculation, perhaps because the free energy is much smaller than the 
potential-field energy. 

PRIEST: (i) What does t = 5 in your nondimensionalisation mean. How many time 
steps would you need to produce braiding? 
(ii) Is it a problem of numerical stability or computer storage which stops you going 
beyond t = 5? 
(iii) How do your results differ from those of Mikic? 
(iv) How long would it take for the current densities to build up to values where magnetic 
dissipation is important? 

VAN BALLEGOOIJEN: (i) Each velocity pattern persists for a time At; "t = 5" refers to 
the magnetic field at time t = 5At. Braiding probably requires several tens of At 
(ii) Numerical errors develop for t = 6At for some sets of phase angles. I would not call it 
a problem of "numerical stability" because the energy-minimization scheme always finds a 
lowest energy state. 
(iii) The results are nearly identical to those of Mikic et al. when I use the same phase 
angles. However, they did not do the averaging over different sets of phase angles. 
(iv) Several tens of At. 
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HOLLWEG: A key issue in the field-stressing models is how much energy flux you can in 
fact launch into the corona. For realistic numbers, do you have a feel yet for how much 
flux you can launch into a loop? I still have the impression that one has to stretch the 
numbers to get the required energy fluxes. 

VAN BALLEGOODEN: Earlier analytical estimates (Van Ballegooijen 1986) suggested a 
heating rate per unit volume e ~ 0 . 2 B 2 D / L 2 , where D is the "diffusion constant" of 
photospheric motions. Taking D ~ 400 k m 2 s _ 1 (De Vore et al 1985), the heating rate is a 
factor 40 too small, but there are many uncertainties in these estimates, and so we should 
not rule out DC currents as a mechanism for coronal heating. 

DA VILA: In your present numerical calculation are you near the statistical steady state 
where the energy input at the boundary is balanced by current dissipation within the interior 
of the model? 

VAN BALLEGOOIJEN: No, on the contrary, these calculations show only the initial 
development of the cascade. Magnetic diffusion (which is neglected here) becomes 
important only much later, when very thin current layers have developed. 

KUDPERS: The coronal field is anchored in discrete subphotospheric elements. I would 
expect the velocity field not to vary much over an individual magnetic element Therefore, 
are your calculations applicable primarily to the boundaries between individual flux tubes 
rooted in separate magnetic elements? 

VAN BALLEGOOIJEN: The sinusoidal velocity patterns used in these calculations are 
indeed not very realistic and do not take into account the flux-tube nature of die photospheric 
field. Indeed, if there are discrete flux tubes, magnetic discontinuities develop at the 
interfaces between these flux tubes in the corona. Hence, current sheets probably develop 
even more rapidly than suggested here. 

NARAIN: How do you differ from Parker? What is your estimate for heating solar 
corona? 

VAN BALLEGOOIJEN: Parker proposes that, in ideal MHD, current sheets form 
"spontaneously" (i.e., sheet thickness vanishes at finite time), whereas I propose that 
current sheets develop "gradually" (sheet thickness decreases exponentially with time). I 
agree, however, with Parker that current dissipation is a promising mechanism for coronal 
heating. 
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