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A COVERING PROPERTY OF FINITE GROUPS

ROLF BRANDL

Finite groups G possessing a proper subgroup U such that for

each element g of G there exists an automorphism of G

mapping g into U are considered. The question of how the

structure of U determines the structure of G is examined.

For example, if G is soluble and U is nilpotent then G is

nilpotent.

A well known exercise asks one to prove that for a finite group G

and a proper subgroup U of G , G is not the set-theoretical union of

the G-conjugates of U . Replacing the inner automorphisms by the group

of all automorphisms of G one is led to consider groups satisfying the

following condition:

(•) G = U £/"
ct€Aut(G)

for a suitably chosen proper subgroup U of G . Call G a *-group if

some U exists satisfying (*). If we want to refer to the particular sub-

group U we shall sometimes call the pair (G, U) a *-group if G and

U satisfy (•).

In §1 we shall give some examples and the idea of when induction can

be applied. In §2 structure theorems for soluble *-groups are proved.

For example, if U has a Sylow tower (is nilpotent) then G has a Sylow

tower (is nilpotent). Another result yields supersolubility of G if
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228 Rolf Brandl

|y| is odd and all Sylow subgroups of U are cyclic. The last section is

devoted to the question of whether solubility of U implies solubility of

G . A reduction theorem is proved and some simple groups are discussed.

All groups in this paper are finite. All unexplained notation is

standard (see, for example, [/] or [3]).

1. Introduction

DEFINITION, (a) Let U 2 G be groups. The pair (G, V) is called

a "-group if and only if U * G and G = U if" .

a€Aut(G)

(b) The group G is a ''-group if there is i/SC such that (G, U)

is a "-group.

EXAMPLES, (a) Let G be an elementary abelian p-group of order at

o

least p . Then (G, V) is a "-group for every nontrivial subgroup V

of G .

(b) The quaternion group of order eight is a "-group.

The induction for "-groups is described by:

LEMMA 1. Let (.G, U) be a *-group and C be a characteristic

subgroup of G . Then

(a) {C, U n C) is a *-group unless C £ U ,

(b) {G/C, UC/C) is a *-group unless UC = G .

Proof. This follows easily by considering restrictions of auto-

morphisms of G on C or G/C .

DEFINITION. Let (G, U) be a "-group. Call (G, U) reduced if U

does not contain a nontrivial characteristic subgroup of G .

We immediately have:

LEMMA 2. Let (G, U) be a *-group. Let D = fi £/° . Then
ct€Aut(G)

(G/D, U/D) is a reduced *-group.

We now give a construction principle for *-groups. We shall need the

following property of relatively free groups in some variety.

LEMMA 3 ([4]). Let G be relatively free in some variety of
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groups. Then G has a generating set such that every mapping of this set

into G can be extended to an endomorphism of G .

From this the following is immediate.

LEMMA 4. Let G be a noncyalio finite p-group, relatively free in

some variety. Then

(a) Aut(G) acts transitively on the bases of G (a base of G

is an ordered tuple of group elements whose images in

form a basis of the vector space C/$(G) )j

(b) every nontrivial characteristic subgroup of G is contained

in <t>(G) .

COROLLARY. Any noncyclic relatively free p-group G is a *-group.

Proof. Let x € G\9(G) and define U = <x, $(G) > . The corollary

follows immediately from Lemma k.

REMARK. The examples just constructed are not reduced unless G is

elementary abelian. However, some computations yield examples of non-

abelian reduced *-groups which are p-groups. We only state the result.

THEOREM 1. Let p be any odd prime. Let G be the relatively free

group in the free generators g , g2, g^ in the variety of groups of

exponent p and nilpotency class two. Then

(a) \G\ =• p j (G, U) is a reduced *-group where

(b) if (G, V) is a *-group then there exists W 5 V such

that (G, (/) is a *-group and W ̂  U .

Another result we shall only state deals with the nilpotency class of

a *-group. We have:

THEOREM 2. Let (G, V) be a *-group, \u\ = pk , where p is a

prime. Then G is nilpotent of class at most k . Moreover if the class

of G equals k then every characteristic subgroup of G is a member of

the descending central series of G .
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2. Soluble "-groups

In this section we deal with the influence of the structure of U to

the structure of a soluble "-group (G, U) . We shall apply the following

deep result of Shu It.

THEOREM 3 ([5]). Let X be any p-soluble group, p odd, and

suppose that kat(X) acts transitively on the set of subgroups of order p

of X . Then the Sylow p-subgroups of X are abelian.

COROLLARY. Let (G, U) be a ''-group and U be a cyclic p-group,

where p is an odd prime. Then G is homocyclie, that is, G is

isomorphic with a direct sum of groups isomorphia with U .

Proof. By Shu It's result G is abelian. The conclusion now follows

easily.

We now state and prove our first main result.

THEOREM 4. Let (G, U) be a *-group with G soluble. If V is

p-closed then G is p-closed.

Proof. Let G be a counterexample of least possible order. Then by

Lemma 1 (b) either G = U0 (G) or [G/0 (G), UO {G)/0 (G)) is a "-group.
P l P P P '

In the first case G/0 (G) s U/[u n 0 (G)) is p-closed, so G is

p-closed. In the second case G/0 (G) is p-closed by minimality of G ,
unless 0 (G) = 1 . So in our counterexample 0 (G) = 1 .

P P

Let C be a minimal characteristic subgroup of G , so C is an

elementary abelian <7~group for some prime q ? p . Again, by Lemma 1 (b)

either G = UC or (G/C, UC/C) is a "-group. So in both cases G/C is

p-closed. Let P/C := ̂ {z[0 (G/C))) . Hence P is characteristic in

G . As 0 (P) 5 0 (G) = 1 , P is not p-closed. So P $ U as U is

p-closed. Hence, by Lemma 1 (a), (P, U n P) is a "-group. If P ? G ,

P is p-closed by minimality. So P = G . Hence U is p-closed by

assumption and (̂ -closed, so U is abelian. Let H be a complement of C

in G , .so G = CH semidirect.

Now for any c € C there exists 1 # h € H such that [c, h] = 1 .

Indeed, let c € C . By assumption there exists a 6 Aut(G) such that
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a € £/ . Let y € V be an element of order p . As U i s abelian,

[c", y] = 1 so [e, 2/a ] = 1 . Let ya = j / ^ g where ^ € C ,

y2 i H . Then 1 = [e, j / ^ g ] = [a, y^\\c,*y^\ 2 = \c, y^ as C is

abelian. But h := y ? 1 as y has order p and C is a q-group.

As the orders of C and H are coprime, C i s a completely

reducible ff-module. Let C = © C. be a decomposition of C into a

direct sum of irreducible fl-modules C. . Let 1 # e . € C. and

e := c + . . . . Then, by our previous remark, there exists 1 + h € H

with [a, h] = 1 . Let H := <h> <H as 5 i s abelian. So

1 *• a € C,,(flJ . But the C. are tf-invariant and so 1 t a. € Cr [u ) .

But C_ [H) i s an fl-invariant subspace of C. . By i r reducibi l i ty H

central ises each C. , so [fl , c] = 1 . This contradicts the faithful

action of H .

COROLLARY. Let (G, U) be a *-gx>oup, G being soluble.

(a) If U has a Sylow tower then G has a Sylow tower.

(b) If U is nilpotent then G is nilpotent.

Proof, (a) follows from Theorem h and Lemma 1 by an easy induction

argument.

(b) A group is nilpotent i f and only if i t i s p-closed for a l l

primes p , so (b) i s immediate from Theorem k.

Our next main theorem deals with the case when U sa t i s f ies the

following conditions:

(Z) \u\ i s odd and a l l Sylow subgroups of U are cycl ic .

For the structure of groups satisfying (Z) see [3 ] . We shall need the

following properties of (Z)-groups.

PROPOSITION 1. U is metaayclio, U = U'<t> for some t € U .

PROPOSITION 2. U is supersolvble, in particular V has a Sylow
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tower and V is p-closed where p is the greatest prime divisor of

\V\ .

THEOREM 5. Let (G, U) be a *-group, V satisfying (Z). Then

(a) G is supersoluble,

(b) G is metabelian.

Proof, (a) Let G be a counterexample of least order. As the order

of G is odd, G is soluble. So, by Theorem 1*, G is p-closed for some

prime p dividing the order of G . As the class of supersoluble groups

is a saturated formation we have $(G) = 1 by minimality of G , Lemma 1

(b) and a standard property of Frattini subgroups. So, as

$[0 (G)) < $(G) , 0 (G) is elementary abelian.

We claim 0 (G) = 1 for all primes q + p . Indeed, assume that

0 (G) ̂ 1 for some prime r . Then by Lemma 1 (b) either

[G/Op(G), UOr(G)/Or(G)) is a "-group or G = UOr(G) . In the first case

G/0 (G) is supersoluble by minimality, in the second case

G/Or{G) ss U/[U n <?r(G)) is supersoluble by Proposition 2. But if

0 (G) t 1 for some prime q + p , G could be embedded into

G/0 (G) x G/0 (G) which is supersoluble by our remarks above. So G

would-be supersoluble; a contradiction.

Now by property (*) and the fact that all subgroups of order v of U

are conjugate we see that Aut(G) acts transitively on the subgroups of

order r of G (r being any prime). So G is a T(r)-group in the

sense of [2]. By [2], all nonnormal Sylow subgroups of G are cyclic. By

the above only the Sylow p-subgroup of G is normal and so all Sylow

subgroups of G/0 (G) are cyclic, so G/0 (G) is a (Z)-group.

Obviously G * 0' (G) and so Z/0 (G) := [G/0 IG)) ' < G/0 (G) .

Moreover, by Proposition 1, there exists t € G with G = Z( t) . As Z

is characteristic in G and (G, U) is a "-group, we may assume that

t € V .

Z normalises every one dimensional subspace of 0 (G) . Indeed, by
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Lemma 1 (a) , Z is supersoluble. As 1 i- 0 (G) £ Z , there exists

1 t x f 0 (G) with <x> < Z . Let 1 t y € 0 (G) . As Aut(G) acts

transitively on the subgroups of order p of G , there exists a € Aut(G)

with (y) = (x) . As the restriction of a on Z yields an automorphism

of Z , we get < y> ^ Z .

<t> normalises every one dimensional subspace of 0 (G) . Indeed, as

0 (G) is elementary abelian, we get \0 (U)\ = p . Now t € U and so t

normalises 0 (£/) . Let 1 + y € 0 (G) . By property T(p) we have

a € Aut(G) w i t h (y> = 0 (U)a . So < y V = W J U ) a \ = \0 (U)V I . As

G = Z< £ > we have t = zt for some s € Z and some integer n . So

(U)Zt ) =O(U)a = <y> as Z normalises 0p(U) £ 0p(G) by

the above. The conclusion follows.

The last two remarks show that G = Z< t > normalises every cyclic

subgroup of 0 (C) , so G is supersoluble contradicting the choice of

G . So (a) is proved.

CW By (a) we get that G' is nilpotent. By Theorem 3 all Sylow

subgroups of G are abelian, so G' is abelian.

3. Nonsoluble *-groups

This chapter is concerned with the question whether for a *-group

(G, U) solubility of U implies solubility of G . We firstly prove a

reduction theorem.

THEOREM 6. Let {G, U) be a *-group, let V be soluble and G be
not soluble. Then there exists a *-group {H, V) where H is simple and
V is soluble.

Proof. Let {G, U) be as in the assumption of the theorem where G

has least possible order. We show that G is simple.

G is characteristically simple. Otherwise, let C be any nontrivial

characteristic subgroup of G . Then by Lemma 1, C < V or (C, C n U)
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is a *-group. In the second case C is soluble by minimality. So C is

soluble in all casjis. Analogously G/C is soluble, so G would be

soluble.

Let G = S x ... x S where S is nonabelian simple and let IT . be

the canonical projection onto the ith coordinate. By assumption, for any

x € S there exists a € Aut(G) such that (x, ..., x ) a € U . Now, by the

well known structure of the automorphism group of characteristically simple

a ai %.
groups we have (x, ..., x) = (x , ..., x ) for suitable a. € Aut(S) .

This implies that either (5, v.(U)) is a *-group for some index i or

TT.(U) = S for all i . In the first case we are done; the second case

contradicts the solubility of U .

Theorem 6 suggests the investigation of *-groups (G, U) where G

is simple. Obviously, G and U have the same exponent. By this remark

the simple groups PSL(2, q) , Sz(q) and the Ree groups are ruled out.

Also the Mathieu groups are not *-groups. For example if G = M then

U must be M . However, by inspection of the centralizers of the

elements of order three, one can show that l̂ -io' "iJ is no^ a *-group.

Also the alternating groups are not *-groups. Here we shall only prove

that the alternating group of degree n > 5 does not contain a soluble

subgroup U having the same exponent. Let n = 2m be even. Then, by

Bertrand's postulate, there are primes p, q with m < p < q < 2m . Let

H be a {p, q}-Hall subgroup of U . So \H\ = pq . By Sylow's Theorem

H is cyclic. But the minimal degree of a permutation group containing an

element of order pq is p + q which is strictly greater than n , a

contradiction. The case for n odd is similar.

So we are led to state the following:

CONJECTURE 1. Let (G, U) be a "-group. If U is soluble does it

follow that G is soluble?

The conjecture above would be solved if we could establish

CONJECTURE 2. A nonabelian simple group G does not posses a

soluble subgroup U with exp(U) = exp(G) .

https://doi.org/10.1017/S0004972700007085 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007085


A covering property of finite groups 235

References

[I] Daniel Gocenstein, Finite groups (Harper and Row, New York, Evanston,

and London, 1968).

[Z] Wolfgang Hauptmann, "Gruppen mit einer Automorphismengruppe die

transitiv auf den Untergruppen von Primzahlordnung operiert",

Mitt. Math. Sem. dessert 101 (1973).

[3] B. Huppert, Endlidhe Gruppen I (Die Grundlehren der mathematischen

Wissenschaften, 134. Springer-Verlag, Berlin, Heidelberg, New

York, 1967).

[4] Hanna Neumann, Varieties of groups (Ergebnisse der Mathematik und

ihrer Grenzgebiete, 37. Springer-Verlag, Berlin, Heidelberg, New

York, 1967).

[5] Ernest E. Shult, "On finite automorphic algebras", Illinois J. Math.

13 (1969), 625-653.

Mathematisches Institut,

Am Hub I and,

D-8700 Wiirzburg,

Germany.

https://doi.org/10.1017/S0004972700007085 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700007085

