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A COVERING PROPERTY OF FINITE GROUPS

RoLF BrRANDL

Finite groups G possessing a proper subgroup U such that for
each element g of G there exists an automorphism of G
mapping g into U are considered. The question of how the
structure of U determines the structure of (G 1is examined.
For example, if (G 1is soluble and U 1is nilpotent then G is

nilpotent.

A well known exercise asks one to prove that for a finite group G
and a proper subgroup U of G, G 1is not the set-theoretical union of
the G-conjugates of U . Replacing the inner automorphisms by the group
of all automorphisms of G one is led to consider groups satisfying the

following condition:

(%) ¢= u *

a€iut(G)
for a suitably chosen proper subgroup U of G . Call G a *-group if
some U exists satisfying (*). If we want to refer to the particular sub-
group U we shall sometimes call the pair (G, U) a *-group if G and
U satisfy (%).

In §1 we shall give some examples and the idea of when induction can
be applied. 1In §2 structure theorems for soluble *_groups are proved.
For example, if U has a Sylow tower (is nilpotent) then G has a Sylow

tower (is nilpotent). Another result yields supersolubility of G if
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|U| is odd and all Sylow subgroups of U are cyclic. The last section is
devoted to the question of whether solubility of U implies solubility of

G . A reduction theorem is proved and some simple groups are discussed.

All groups in this paper are finite. All unexplained notation is

standard (see, for example, [1] or [3]).

1. Introduction
DEFINITION. (a) Let U <G be groups. The pair (G, U) is called

a *-group if and only if U # G and G = U .
a€Aut(G)

(b) The group G is a *-group if there is U = G such that (G, U)

is a “*-group.
EXAMPLES. (a) Let G be an elementary abelian p-group of order at

least p2 . Then (G, U) is a *-group for every nontrivial subgroup U
of G .

(b) The quaternion group of order eight is a *-group.
The induction for #*-groups is described by:

LEMMA 1. Let (G, U) bea *-group and C be a characteristic
subgroup of G . Then

{a) (C,UnC) is a *-group unless C = U ,
(b) (G/c, UC/C) 1is a *-group unless UC = G .

Proof. This follows easily by considering restrictions of auto-

morphisms of G on C or G/C.

DEFINITION. Let (G, U) be a *-group. Call (G, U) reduced if U

does not contain a nontrivial characteristic subgroup of G .
We immediately have:

LEMMA 2. Let (G, U) bea *-group. Let D = n * . Then
a€Aut(G)

(G/D, U/D) is a reduced *-group.

We now give a construction principle for *-groups. We shall need the

following property of relatively free groups in some variety.

LEMMA 3 ([4]). Let G be relatively free in some variety of
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groups. Then G has a generating set such that every mapping of this set
into G can be extended to an endomorphism of G .

From this the following is immediate.
LEMMA 4. Let G be a noncyclic finite p-group, relatively free in
some variety. Then

(a) Aut(G) acts transitively on the bases of G (a base of G
is an ordered tuple of group elements whose images in

G/®(G) form a basis of the vector space G/®(G) ),
(b) every nontrivial characteristic subgroup of G 1is contained
in @(¢) .
COROLLARY. 4Any noncyclic relatively free p-group G 1is a *-group.

Proof. Let « € G\®(G) and define U = {x, ®(G)) . The corollary

follows immediately from Lemmsa 4.

REMARK, The examples just constructed are not reduced unless G is
elementary abelian. However, some computations yield examples of non-

abelian reduced *-groups which are p-groups. We only state the result.

THEOREM 1. Let p be any odd prime. Let G be the relatively free
group in the free generators g1s 9p0 93 in the variety of groups of

exponent p and nilpotency class two. Then

(a) |6| =p°, (G, U) is a reduced *-group where
U =<gl’ [gl’ gz]) 3

(b) if (G, V) is a *-group then there exists W =V such
that (G, W) 18 a *-group and W =U .

Another result we shall only state deals with the nilpotency class of

a *-group. We have:

THEOREM 2. Let (G, U) be a *-group, |U| = pk , where p is a
prime. Then G 1is nilpotent of class at most k . Moreover if the class
of G equals k then every characteristic subgroup of G 1is a member of
the descending central geries of G .

https://doi.org/10.1017/50004972700007085 Published online by Cambridge University Press


https://doi.org/10.1017/S0004972700007085

230 Rol f Brandl

2. Soluble #*-groups

In this section we deal with the influence of the structure of U to
the structure of a soluble *-group (G, U) . We shall apply the following
deep result of Shult.

THEOREM 3 ([5]). Let X be any p-soluble group, p odd, and
suppose that Aut(X) acte transitively on the set of subgroups of order p
of X . Then the Sylow p-subgroups of X are abelian.

COROLLARY. Let (G, U) be a *-group and U be a eyclic p-group,
where p 18 an odd prime. Then G is8 homoecyclic, that i8, G 18

igsomorphic with a direct sum of groups isomorphic with U .

Proof. By Shult's result G is abelian. The conclusion now follows

easily.
We now state and prove our first main result.

THEOREM 4. Let (G, U) be a *-group with G soluble. If U 1is
p-closed then G 18 p-closed.

Proof. Let (G be a counterexample of least possible order. Then by
Lemma 1 (b) either G = UOp(G) or [G/Op(G), UOp(G)/Op(G)) is a *-group.

In the first case G/Op(G) = y/(Un Op(G)) is p-closed, so G is
p-closed. In the second case G/Op(G) is p-closed by minimality of G ,
unless OP(G) =1 . So in our counterexample Op(G) =1.

Let C be a minimal characteristic subgroup of G , so € 1is an
elementary abelian q-group for some prime q # p . Again, by Lemma 1 (b)

either G = UC or (G/C, UC/C) is a *-group. So in both cases G/C is
p-closed. Let P/C := Ql(Z[Op(G/C))) . Hence P 1is characteristic in

G . As Op(P)EOP(G) =1, P is not p-closed. So P %U as U is

p-closed. Hence, by Lemma 1 (a), (P, UnP) is a *-group. If P # G ,
P 1is p-closed by minimality. So P =G . Hence U is p-closed by
assumption and ¢g-closed, so U is abelian. Let H be a complement of (

in G ,.s0 G =CH semidirect.

Now for any ¢ € C there exists 1 # h € H such that [e, K] =1 .
Indeed, let ¢ € C . By assumption there exists o € Aut(G) such that
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& €U . Let y €U be an element of order p . As U 1is abelian,

-1 -1
[ca, y] =1 so [c, ya ] =1 . Let ya =YY, where Yy €C ,

Lp

it
[}

y2 €H . Then 1 [C, ylyz] = [cy y2] [09".1/1 [0, y2] as C 1is

Yo #1 as Yy has order p and € is a g-group.

abelian. But h :
As the orders of C and H are coprime, C is a completely

reducible H-module. Let C = &)C% be a decomposition of ¢ into a

direct sum of irreducible H-modules Ci . Let 1# ei € Ci and

¢ := cl + ... . Then, by our previous remark, there exists 1 # h € H

with [e, hl] =1 . Let HO :={h) «H as H is abelian. So

1L#c € CC(HO) . But the Ci are H-invariant and so 1 # e, € Cci(Ho)

But CC [HO) is an H-invariant subspace of Ci . By irreducibility 4#

0
7

centralises each C; , 5o [HO, €] =1 . This contradicts the faithful
action of H .

COROLLARY. Let (G, U) be a *-group, G being soluble.

(a) If U has a Sylow tower then G has a Sylow tower.

(b) If U 1is nilpotent then G is nilpotent.

Proof. (a) follows from Theorem 4 and Lemma 1 by an easy induction

argument.

(b) A group is nilpotent if and omly if it is p-closed for all

primes p , so (b) is immediate from Theorem k.

Our next main theorem deals with the case when U satisfies the

following conditions:
(z) |ul is odd and all Sylow subgroups of U are cyclic.

For the structure of groups satisfying (Z) see [3]. We shall need the
following properties of (Z)-groups.

PROPOSITION 1. U <s metacyelic, U = Ut} for some t €U .

PROPOSITION 2. U <e supersoluble, in particilar U has a Sylow
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tower and U is p-closed where p <8 the greatest prime divisor of
lu] .

THEOREM 5. rLet (G, U) be a *-group, U eatisfying (Z). Then
(a) G 1is supersoluble,
(b) G is metabelian.

Proof. (a) Let G be a counterexample of least order. As the order
of G is odd, G 1is soluble. So, by Theorem L, G is p-closed for some
prime p dividing the order of (G . As the class of supersoluble groups
is a saturated formation we have ®(G) = 1 by minimality of G , Lemma 1
(b) and a standard property of Frattini subgroups. So, as
@(OP(G)) < &(G) , OP(G) is elementary abelian.

We claim Oq(G) =1 for all primes q # p . Indeed, assume that
Or(G) # 1 for some prime »r . Then by Lemma 1 (b) either
(G/Or(G), UOr(G)/Or(G)) is a *-group or G = UOr(G) . In the first case
G/Or(G) is supersoluble by minimality, in the second case

G/Or(G)

1"

U/(U n OP(G)) is supersoluble by Proposition 2. But if
Oq(G) # 1 for some prime q¢q # P, G could be embedded into

G/Op(G) x G/Oq(G) which is supersoluble by our remarks above. So G
would be supersoluble; a contradiction.

Now by property (*) and the fact that all subgroups of order r of U
are conjugate we see that Aut(G) acts transitively on the subgroups of
order r of G (r being any prime). So G is a T(r)-group in the
sense of [2]. By [2], all nonnormal Sylow subgroups of (G are cycliec. By
the above only the Sylow p-subgroup of ( 1is normal and so all Sylow
subgroups of G/Op(G) are cyclic, so G/OP(G) is a (Z)-group.

Obviously G # op(G) and so Z/Op(G) = (a/op(c))' < G/op(G) .

Moreover, by Proposition 1, there exists t € ¢ with G = Z¢t) ., As 2
is characteristic in G and (G, U) is a *-group, we may assume that
t evU.

Z normalises every one dimensional subspace of Op(G) . Indeed, by
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Lemma 1 (a), 2 is supersoluble. As 1 # Op(G) =< Z , there exists
1#£x € OP(G) with (x) <2 . Let 1 #y € OP(G) . As Aut(G) acts
transitively on the subgroups of order p of G , there exists a € Aut(G)

with (y) = (x)* . As the restriction of & on 2 yields an automorphism

of Z ,weget {yl<iz.
(t) normalises every one dimensional subspace of Op(G) . Indeed, as
Op(G) is elementary abelian, we get |0p(U)| =p . Now t €U and so t

normalises Op(U) . Let 1L#y € Op(G) . By property T(p) we have

¢ a)t ta' a
a € Aut(G) with (y) = op(u)“. So (y) = [op(u) ] = [Op(U) ) . As

-1
G=2Zt) we have t* = 2zt' for some z € Z and some integer n . So

nya
()t = [o (v)?t ] =0 ()% =(y) as Z normalises O_(U) <0 (G) by
p p p p
the above. The conclusion follows.

The last two remarks show that G = Z(¢) normalises every cyclic
subgroup of Op(G) , so G 1is supersoluble contradicting the choice of

G . So (a) is proved.

(b) By (a) we get that G' is nilpotent. By Theorem 3 all Sylow

subgroups of G are abelian, so G' 1is abelian.

3. Nonsoluble *-groups

This chapter is concerned with the question whether for a *-group
(G, U) solubility of U implies solubility of G . We firstly prove a

reduction theorem.

THEOREM 6. Let (G, U) be a *-group, let U be soluble and G be
not soluble. Then there exists a *-group (H, V) where H is simple and
V 1is soluble.

Proof. Let (G, U) %bve as in the assumption of the theorem where G

has least possible order. We show that ( is simple.

G 1is characteristically simple. Otherwise, let ( be any nontrivial

characteristic subgroup of G . Then by Lemma 1, C < U or (C, C nU)
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is a *-group. In the second case C( 1is soluble by minimality. So C is
soluble in all cas2s. Analogously G/C is soluble, so G would be
soluble.

Let G=S8x ... x5 where S 1is nonabelian simple and let e be

the canonical projection onto the <Zth coordinate. By assumption, for any

% €U . Now, by the

well known structure of the automorphism group of characteristically simple

x € S there exists o € Aut(G) such that (x, ..., x)

groups we have (x, ..., z)* = Gr l, ..., ) for suitable o € Aut(S)
This implies that either (S, "i(u)) is a *-group for some index < or
Wi(U) =8 for all © . In the first case we are done; the second case
contradicts the solubility of U .

Theorem 6 suggests the investigation of *-groups (G, U) where G
is simple. Obviously, G and U have the same exponent. By this remark
the simple groups PSL(2, q) , Sz(q) and the Ree groups are ruled out.

Also the Mathieu groups are not *-groups. For example if G = Ml2 then

U must be Mil . However, by inspection of the centralizers of the

elements of order three, one can show that (Mi2’

Also the alternating groups are not *-groups. Here we shall only prove

- *-
Mll) is not a group.

that the alternating group of degree 7n = 5 does not contain a soluble
subgroup U having the same exponent. Let 7 = 2m be even. Then, by
Bertrand's postulate, there are primes p, g with m=p <qg=2m . Let
H bve a {p, q}-Hall subgroup of U . So IHI = pq . By Sylow's Theorem
H 1is cyclic. But the minimal degree of a permutation group containing an
element of order pq is p + q which is strictly greater than =n , a

contradiction. The case for 7n odd is similar.
So we are led to state the following:

CONJECTURE 1. Let (G, U) be a *-group. If U is soluble does it
follow that G is soluble?

The conjecture above would be solved if we could establish

CONJECTURE 2. A nonabelian simple group G does not posses a
soluble subgroup U with exp(U) = exp(G) .
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