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Complex Numbers

1.1 Rational numbers

The idea of a set of numbers is derived in the first instance from the consideration of the
set of positive integral numbers, or positive integers; that is to say, the numbers 1,2,3,4, . . ..
(Strictly speaking, a more appropriate epithet would be, not positive, but signless.) Positive
integers have many properties, which will be found in treatises on the Theory of Integral
Numbers; but at a very early stage in the development of Mathematics it was found that
the operations of Subtraction and Division could only be performed among them subject to
inconvenient restrictions; and consequently, in elementary Arithmetic, classes of numbers
are constructed such that the operations of subtraction and division can always be performed
among them.

To obtain a class of numbers among which the operation of subtraction can be performed
without restraint we construct the class of integers, which consists of the class of positive inte-
gers (in the strict sense) (+1, +2, +3, . . .) and of the class of negative integers (−1,−2,−3, . . .)
and the number 0.

To obtain a class of numbers among which the operations both of subtraction and of
division can be performed freely, with the exception of division by the rational number 0,
we construct the class of rational numbers. Symbols which denote members of this class are
1
2,3,0,−

15
7 . We have thus introduced three classes of numbers, (i) the signless integers, (ii)

the integers, (iii) the rational numbers.
It is not part of the scheme of this work to discuss the construction of the class of integers

or the logical foundations of the theory of rational numbers. Such a discussion, defining a
rational number as an ordered number-pair of integers in a similar manner to that in which a
complex number is defined in §1.3 as an ordered number-pair of real numbers, will be found
in Hobson [315, §1-12].

The extension of the idea of number, which has just been described, was not effected
without some opposition from the more conservative mathematicians. In the latter half of
the eighteenth century, Maseres (1731–1824) and Frend (1757–1841) published works on
Algebra, Trigonometry, etc., in which the use of negative numbers was disallowed, although
Descartes had used them unrestrictedly more than a hundred years before.

A rational number x may be represented to the eye in the followingmanner: If, on a straight
line, we take an origin O and a fixed segment OP1 (P1 being on the right of O), we can
measure from O a length OPx such that the ratio OPx/OP1 is equal to x; the point Px is taken
on the right or left of O according as the number x is positive or negative. We may regard
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4 Complex Numbers

either the point Px or the displacement OPx (which will be written OPx) as representing the
number x.

All the rational numbers can thus be represented by points on the line, but the converse is
not true. For if we measure off on the line a length OQ equal to the diagonal of a square of
which OP1 is one side, it can be proved that Q does not correspond to any rational number.

Points on the line which do not represent rational numbers may be said to represent irra-
tional numbers; thus the pointQ is said to represent the irrational number

√
2 = 1.414213 · · · .

But while such an explanation of the existence of irrational numbers satisfied the mathemati-
cians of the eighteenth century and may still be sufficient for those whose interest lies in the
applications of mathematics rather than in the logical upbuilding of the theory, yet from the
logical standpoint it is improper to introduce geometrical intuitions to supply deficiencies
in arithmetical arguments; and it was shewn by Dedekind [169] in 1858 that the theory of
irrational numbers can be established on a purely arithmetical basis without any appeal to
geometry.

1.2 Dedekind’s theory of irrational numbers
The geometrical property of points on a line which suggested the starting point of the
arithmetical theory of irrationals was that, if all points of a line are separated into two classes
such that every point of the first class is on the right of every point of the second class, there
exists one and only one point at which the line is thus severed. The theory, though elaborated
in 1858, was not published before the appearance of Dedekind’s tract [169]. Other theories
are due to Weierstrass (see [642]) and Cantor [116].

Following up this idea, Dedekind considered rules by which a separation or section of
all rational numbers into two classes can be made. This procedure formed the basis of the
treatment of irrational numbers by the Greek mathematicians in the sixth and fifth centuries
b.c. The advance made by Dedekind consisted in observing that a purely arithmetical theory
could be built up on it.

These classes, which will be called the L-class and the R-class, or the left class and the
right class, being such that they possess the following properties:

(i) At least one member of each class exists.
(ii) Every member of the L-class is less than every member of the R-class.

It is obvious that such a section is made by any rational number x; and x is either the
greatest number of the L-class or the least number of the R-class. But sections can be made
in which no rational number x plays this part. Thus, since there is no rational number1 whose
square is 2, it is easy to see that we may form a section in which the R-class consists of
the positive rational numbers whose squares exceed 2, and the L-class consists of all other
rational numbers.

Then this section is such that theR-class has no leastmember and theL-class has no greatest
member; for, if x be any positive rational fraction, and y = x(x2+6)

3x2+2 , then y − x = 2x(2−x2)

3x2+2 and
y2 − 2 = (x2−2)3

(3x2+2)2 , so x2, y2 and 2 are in order of magnitude; and therefore given any member

1 For if p/q be such a number, this fraction being in its lowest terms, it may be seen that (2q − p)/(p − q) is
another such number, and 0 < p − q < q, so that p/q is not in its lowest terms. The contradiction implies that
such a rational number does not exist.
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1.2 Dedekind’s theory of irrational numbers 5

x of the L-class, we can always find a greater member of the L-class, or given any member
x ′ of the R-class, we can always find a smaller member of the R-class, such numbers being,
for instance, y and y′, where y′ is the same function of x ′ as y of x.

If a section is made in which the R-class has a least member A2, or if the L-class has a
greatest member A1, the section determines a rational-real number; which it is convenient
to denote by the same symbol A2 or A1. This causes no confusion in practice.

If a section is made, such that the R-class has no least member and the L-class has no
greatest member, the section determines an irrational-real number.

Note B. A. W. Russell [567] defines the class of real numbers as actually being the class of
all L-classes; the class of real numbers whose L-classes have a greatest member corresponds
to the class of rational numbers, and though the rational-real number x which corresponds to
a rational number x is conceptually distinct from it, no confusion arises from denoting both
by the same symbol.

If x, y are real numbers (defined by sections) we say that x is greater than y if the L-class
defining x contains at least two members of the R-class defining y. If the classes had only
one member in common, that member might be the greatest member of the L-class of x and
the least member of the R-class of y.

Let α, β, . . . be real numbers and let A1,B1, . . . be any members of the corresponding
L-classes while A2,B2, . . . are any members of the corresponding R-classes. The classes of
which A1, A2, . . . are respectively members will be denoted by the symbols (A1), (A2), . . . .

Then the sum (written α + β) of two real numbers α and β is defined as the real number
(rational or irrational) which is determined by the L-class (A1+B1) and the R-class (A2+B2).

It is, of course, necessary to prove that these classes determine a section of the rational
numbers. It is evident that A1 + B1 < A2 + B2 and that at least one member of each of the
classes (A1 + B1), (A2 + B2) exists. It remains to prove that there is, at most, one rational
number which is greater than every A1 + B1 and less than every A2 + B2; suppose, if possible,
that there are two, x and y, (y > x). Let α1 be a member of (A1) and let α2 be a member of
(A2); and let N be the integer next greater than (α2 − α1)/{

1
2 (y − x)}. Take the last of the

numbers α1 +
m
N
(α2 − α1), (where m = 0,1, . . . ,N), which belongs to (A1) and the first of

them which belongs to (A2); let these two numbers be c1, c2. Then

c2 − c1 =
1
N
(α2 − α1) <

1
2
(y − x).

Choose d1, d2 in a similar manner from the classes defining β; then

c2 + d2 − c1 − d1 < y − x.

But c2 + d2 ≥ y, c1 + d1 ≤ x, and therefore c2 + d2 − c1 − d1 ≥ y − x; we have therefore
arrived at a contradiction by supposing that two rational numbers x, y exist belonging neither
to (A1 + B2) nor to (A2 + B2).

If every rational number belongs either to the class (A1 + B1) or to the class (A2 + B2),

then the classes (A1 + B1), (A2 + B2) define an irrational number. If one rational number x
exists belonging to neither class, then the L-class formed by x and (A1 + B1) and the R-class
(A2 + B2) define the rational number-real x. In either case, the number defined is called the
sum α + β.
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6 Complex Numbers

The difference α− β of two real numbers is defined by the L-class (A1−B2) and the R-class
(A2 − B1).

The product of two positive real numbers α, β is defined by the R-class (A2B2) and the
L-class of all other rational numbers.

The reader will see without difficulty how to define the product of negative real numbers
and the quotient of two real numbers; and further, it may be shewn that real numbers may be
combined in accordance with the associative, distributive and commutative laws.

The aggregate of rational-real and irrational-real numbers is called the aggregate of real
numbers; for brevity, rational-real numbers and irrational-real numbers are called rational
and irrational numbers respectively.

1.3 Complex numbers
We have seen that a real number may be visualised as a displacement along a definite straight
line. If, however, P and Q are any two points in a plane, the displacement PQ needs two
real numbers for its specification; for instance, the differences of the coordinates of P and Q
referred to fixed rectangular axes. If the coordinates of P be (ξ, η) and those of Q(ξ+ x, η+ y),
the displacement PQ may be described by the symbol [x, y]. We are thus led to consider
the association of real numbers in ordered pairs. The order of the two terms distinguishes
the ordered number-pair [x, y] from the ordered number-pair [y, x]. The natural definition of
the sum of two displacements [x, y], [x ′, y′] is the displacement which is the result of the
successive applications of the two displacements; it is therefore convenient to define the sum
of two number-pairs by the equation

[x, y] + [x ′, y′] = [x + x ′, y + y′].

The product of a number-pair and a real number x ′ is then naturally defined by the equation

x ′ × [x, y] = [x ′x, x ′y].

We are at liberty to define the product of two number-pairs in any convenient manner;
but the only definition, which does not give rise to results that are merely trivial, is that
symbolised by the equation

[x, y] × [x ′, y′] = [xx ′ − yy′, xy′ + x ′y].

It is then evident that

[x,0] × [x ′, y′] = [xx ′, xy′] = x × [x ′, y′]

and
[0, y] × [x ′, y′] = [−yy′, x ′y] = y × [−y′, x ′].

The geometrical interpretation of these results is that the effect of multiplying by the
displacement [x,0] is the same as that of multiplying by the real number x; but the effect of
multiplying a displacement by [0, y] is to multiply it by a real number y and turn it through
a right angle.

It is convenient to denote the number-pair [x, y] by the compound symbol x + iy; and a
number-pair is now conveniently called (after Gauss) a complex number; in the fundamental
operations of Arithmetic, the complex number x + i0 may be replaced by the real number x
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1.4 The modulus of a complex number 7

and, defining i to mean [0,1], we have i2 = [0,1] × [0,1] = [−1,0]; and so i2 may be replaced
by −1.

The reader will easily convince himself that the definitions of addition and multiplication
of number-pairs have been so framed that we may perform the ordinary operations of algebra
with complex numbers in exactly the same way as with real numbers, treating the symbol i
as a number and replacing the product ii by −1 wherever it occurs.

Thus he will verify that, if a, b, c are complex numbers, we have

a + b = b + a,

ab = ba,

(a + b) + c = a + (b + c),

(ab)c = a(bc),

a(b + c) = ab + ac,

and if ab is zero, then either a or b is zero.
It is found that algebraical operations, direct or inverse, when applied to complex numbers,

do not suggest numbers of any fresh type; the complex number will therefore for our purposes
be taken as the most general type of number.

The introduction of the complex number has led to many important developments in
mathematics. Functions which, when real variables only are considered, appear as essentially
distinct, are seen to be connected when complex variables are introduced: thus the circular
functions are found to be expressible in terms of exponential functions of a complex argument,
by the equations

cos x =
1
2
(eix + e−ix), sin x =

1
2i
(eix − e−ix).

Again, many of themost important theorems of modern analysis are not true if the numbers
concerned are restricted to be real; thus, the theorem that every algebraic equation of degree n
has n roots is true in general only when regarded as a theorem concerning complex numbers.

Hamilton’s quaternions furnish an example of a still further extension of the idea of
number. A quaternion

w + xi + y j + zk

is formed from four real numbers w, x, y, z, and four number-units 1, i, j, k, in the same way
that the ordinary complex number x + iy might be regarded as being formed from two real
numbers x, y, and two number-units 1, i. Quaternions however do not obey the commutative
law of multiplication.

1.4 The modulus of a complex number
Let x + iy be a complex number, x and y being real numbers. Then the positive square root
of x2 + y2 is called the modulus of (x + iy), and is written

| x + iy |.

Let us consider the complex number which is the sum of two given complex numbers,
x + iy and u + iv. We have

(x + iy) + (u + iv) = (x + u) + i(y + v).
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8 Complex Numbers

The modulus of the sum of the two numbers is therefore

{(x + u)2 + (y + v)2}1/2 = {(x2 + y2) + (u2 + v2) + 2(xu + yv)}1/2.

But

{| x + iy | + | u + iv |}2 = {(x2 + y2)1/2 + (u2 + v2)1/2}2

= (x2 + y2) + (u2 + v2) + 2(x2 + y2)1/2(u2 + v2)1/2

= (x2 + y2) + (u2 + v2) + 2 {(xu + yv)2 + (xv − yu)2}1/2,

and this latter expression is greater than (or at least equal to)

(x2 + y2) + (u2 + v2) + 2(xu + yv).

We have therefore

|x + iy | + |u + iv | ≥ |(x + iy) + (u + iv)|,

i.e. the modulus of the sum of two complex numbers cannot be greater than the sum of their
moduli; and it follows by induction that the modulus of the sum of any number of complex
numbers cannot be greater than the sum of their moduli.

Let us consider next the complex number which is the product of two given complex
numbers, x + iy and u + iv, we have

(x + iy)(u + iv) = (xu − yv) + i(xv + yu),

and so

|(x + iy)(u + iv)| = {(xu − yv)2 + (xv + yu)2}1/2

= {(x2 + y2)(u2 + v2)}1/2

= |x + iy | |u + iv |.

The modulus of the product of two complex numbers (and hence, by induction, of any number
of complex numbers) is therefore equal to the product of their moduli.

1.5 The Argand diagram
We have seen that complex numbers may be represented in a geometrical diagram by taking
rectangular axes Ox,Oy in a plane. Then a point P whose coordinates referred to these
axes are x, y may be regarded as representing the complex number x + iy. In this way, to
every point of the plane there corresponds some one complex number; and, conversely, to
every possible complex number there corresponds one, and only one, point of the plane. The
complex number x + iy may be denoted by a single letter z. It is convenient to call x and y

the real and imaginary parts of z respectively. We frequently write x = Re z, y = Im z. The
point P is then called the representative point of the number z; we shall also speak of the
number z as being the affix of the point P.

If we denote (x2 + y2)1/2 by r and choose θ so that r cos θ = x, r sin θ = y, then r and θ
are clearly the radius vector and vectorial angle of the point P, referred to the origin O and
axis Ox.

The representation of complex numbers thus afforded is often called the Argand diagram.
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It was published by J. R. Argand [33]; it had however previously been used by Gauss [235]
in his Helmstedt dissertation in 1799, who had discovered it in Oct. 1797 [375]; and Caspar
Wessel had discussed it in a memoir presented to the Danish Academy in 1797 and published
by that Society in 1798–9 [664]. The phrase complex number first occurs in [237, p. 102].

By the definition already given, it is evident that r is the modulus of z. The angle θ is
called the argument or phase, of z. We write θ = arg z.

From geometrical considerations, it appears that (although the modulus of a complex
number is unique) the argument is not unique (see the Appendix, §A.521) if θ be a value of
the argument, the other values of the argument of a complex number are comprised in the
expression 2nπ + θ where n is any integer, not zero. The principal value of the argument of
a complex number value of arg z is that which satisfies the inequality −π < arg z ≤ π.

If P1 and P2 are the representative points corresponding to values z1 and z2 respectively
of z, then the point which represents the value z1 + z2 is clearly the terminus of a line drawn
from P1, equal and parallel to that which joins the origin to P2.

To find the point which represents the complex number z1z2, where z1 and z2 are two given
complex numbers, we notice that if

z1 = r1(cos θ1 + i sin θ1),

z2 = r2(cos θ2 + i sin θ2)

then, by multiplication,

z1z2 = r1r2{cos(θ1 + θ2) + i sin(θ1 + θ2)}.

The point which represents the number z1z2 has therefore a radius vector measured by
the product of the radii vectors of P1 and P2 and a vectorial angle equal to the sum of the
vectorial angles of P1 and P2.

1.6 Miscellaneous examples
Example 1.1 Shew that the representative points of the complex numbers 1 + 4i, 2 + 7i,
3 + 10i, are collinear.

Example 1.2 Shew that a parabola can be drawn to pass through the representative points
of the complex numbers

2 + i, 4 + 4i, 6 + 9i, 8 + 16i, 10 + 25i.

Example 1.3 (Math. Trip. 1895). Determine the nth roots of unity by aid of the Argand
diagram; and shew that the number of primitive roots (roots the powers of each of which
give all the roots) is the number of integers (including unity) less than n and prime to it.

Prove that if θ1, θ2, θ3, . . . be the arguments of the primitive roots,
∑

cos pθ = 0 when p is
a positive integer less than

n
abc · · · k

, where a, b, c, . . . , k are the different constituent primes
of n; and that, when

p =
n

abc · · · k
, then

∑
cos pθ =

(−1)µ n
abc · · · k

,

where µ is the number of constituent primes.
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