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Abstract

Consider a sequence X = (Xn : n ≥ 1) of independent and identically distributed
random variables, and an independent geometrically distributed random variableM with
parameterp. The random variable SM = X1+· · ·+XM is called a geometric sum. In this
paper we obtain asymptotic expansions for the distribution of SM as p ↘ 0. If EX1 > 0,
the asymptotic expansion is developed in powers of p and it provides higher-order
correction terms to Renyi’s theorem, which states that P(pSM > x) ≈ exp(−x/EX1).
Conversely, if EX1 = 0 then the expansion is given in powers of

√
p. We apply the results

to obtain corrected diffusion approximations for the M/G/1 queue. These expansions
follow in a unified way as a consequence of new uniform renewal theory results that are
also developed in this paper.
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1. Introduction

Consider a sequence X = (Xk : k ≥ 1) of independent and identically distributed (i.i.d.)
random variables (RVs), and let M be an independent geometrically distributed RV with mass
function

P(M = k) = p(1 − p)k−1 = pqk−1, k ≥ 1.

Renyi’s theorem for geometric sums of random variables establishes that if 0 < EX1 < ∞ then

P(pSM > x) = exp

( −x
EX1

)
+ o(1) as p ↘ 0, (1)

where SM = X1 + · · · + XM is a geometric sum. One of the main objectives of this paper
is to provide (under regularity conditions to be discussed in Sections 2 and 3) higher-order
correction terms (in powers of p) to approximation (1).

The asymptotic expansions that we will develop are closely related to the so-called ‘corrected
diffusion approximations’ (CDAs). CDAs for random walks were introduced by Siegmund
(1979), who provided a correction for the Brownian approximation to the distribution of the
maximum of a random walk (RW) with small negative drift. In order to see the connection
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Expansions of geometric sums 1071

to CDAs, note that Skorohod’s embedding (see, for instance, Durrett (2005)) shows that if
σ 2 = var(X1) < ∞ then

S�t� = (EX1)t + σB(t)+ o(t1/2) almost surely (a.s.) as t ↗ ∞, (2)

where B(·) is a standard Brownian motion and, if t ≥ 0, �t� denotes the integer part of t .
As a consequence, (1) follows directly from (2) by letting t = M and using the fact that
pM

w−→ Exp(1) as p ↘ 0, where Exp(1) is an exponential RV with unit mean and ‘
w−→’ denotes

weak convergence. Note, in addition, that when EX1 = 0, (2) also implies that

p1/2SM
w−→ σB(Exp(1))

21/2 as p ↘ 0, (3)

where B(Exp(1)) follows the double exponential or Laplace’s distribution (see Kalashnikov
(1997)). Here we also develop higher-order correction terms that complement the weak
convergence result in (3). As we shall see, in the zero mean case, the asymptotic expansion
developed is obtained in powers of p1/2, which may have been expected given the scaling
present in (3).

We obtain our asymptotic expansions (for the case of positive mean and for the case of
zero mean) via a unified approach. In particular, the asymptotic expansions developed here
follow as a consequence of a new uniform renewal theorem that is of independent interest.
This uniform renewal theorem is closely related to previous such results established by, for
example, Siegmund (1979), Borovkov and Foss (2000), and Fuh (2004). A crucial difference
between our uniform renewal theorem and previous results is that we obtain uniformity even
over families of increment distributions in which the increment’s mean can be arbitrarily close
to 0. This feature is required in order to obtain the asymptotic expansions in the zero mean case
corresponding to (3).

As we have discussed, our theory essentially develops CDAs for geometric sums. However,
the theory presented here has the simplifying characteristic that the form of the expansion can
be given in terms of moments of the Xis, whereas the CDA for the maximum of a RW has
coefficients that are traditionally expressed in terms of one-dimensional integrals involving the
increment distribution’s characteristic function (rather than in terms of moments of the ladder
height RV).

The RVSM arises in many applied probability settings, as made clear in the book on geometric
random sums by Kalashnikov (1997). In particular, the maximum of a RW can be represented as
a geometric sum of ladder height RVs. It is well known that the maximum of a RW is of central
importance in queueing theory, where it describes the steady-state waiting-time distribution
for the single-server queue. Tail probabilities for the maximum of a RW also play a key role
in computing infinite horizon ruin probabilities in the insurance setting, as well as boundary
crossing probabilities for certain one-sided sequential statistical tests; see Asmussen (2003),
Asmussen (2001), and Siegmund (1985). Letting p ↘ 0 is natural in the problem settings just
described, as this corresponds to ‘heavy traffic’ in the queueing context and to the ‘low safety
loading’ regime in the insurance environment.

As noted above, the theory developed here establishes an expansion that can be computed
in terms of moments of X1. Hence, in order to apply the results of this paper to the maxima
of a RW, we need to be able to express the moment of the ladder height RVs and p as a power
series in the natural problem parameterization that arises in the RW context. This computation is
straightforward in the setting of the so-called M/G/1 queue, but is in general difficult. Siegmund
(1979) calculated the first three terms in the power series for RWs having exponential moments,
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whereas Chang and Peres (1997) obtained the entire power series for Gaussian increments. In
Blanchet and Glynn (2006) the entire power series was developed for general non-Gaussian
increment distributions having exponential moments and strongly nonlattice distributions.

Another important setting in which geometric random sums arise is in the study of the total
‘reward’ accumulated up to hitting a set in the regenerative Markov process setting (a special
case of which is the time required to hit the set). The asymptotic regime of this paper then
corresponds to the case in which we study the sequence of sets that become progressively
‘rarer’ in this context; the basic exponential limit law, (1), is developed in, for example, Keilson
(1979) and Aldous (1989). So our current theory offers the opportunity to develop additional
correction terms for approximating such distributions. Additional applications of geometric
sums (to program debugging and reliability modeling) are discussed in Kalashnikov (1997).

The main contributions of this paper are as follows.

1. We obtain a uniform version of reminder term estimates in the renewal theorem owing to
Stone (1965) and Carlsson (1983) over a family of distributions having increment means
arbitrarily close to 0 (Theorem 1).

2. When EX1 > 0 is positive and the increments are strongly nonlattice, we develop
asymptotic expansions for the distribution of pSM in powers of p (Theorem 2).

3. When EX1 = 0 (also under a strong nonlattice condition), we provide an asymptotic
expansion for the distribution of the RV p1/2SM in powers of p1/2 (Theorem 6).

4. We generalize Theorem 2 to cover the case in which the distribution of the incrementX1
is itself allowed to depend on p (Theorem 4). The generalization is required in order that
the theory here can be applied to the maxima of a RW. In Blanchet and Glynn (2007) the
authors show how Theorem 4 leads to a CDA for heavy-tailed random walks in which
the number of terms in the asymptotic expansion depends on the number of moments
assumed to be finite, thereby generalizing the CDA of Hogan (1986) (in which the first
two terms of the heavy-tailed expansion were obtained).

5. We develop a CDA for the distribution of the steady-state waiting time for the M/G/1
queue, for both light-tailed and heavy-tailed service-time distributions, generalizing the
results of Asmussen and Binswanger (1997) and Abate et al. (1995).

This paper is organized as follows. In Section 2 we introduce the uniform renewal theorem
that plays a central role in our subsequent analysis. In Section 3 the asymptotic expansions
for P(pSM > x) are derived for the case in which the Xis are nonnegative and possess a
finite moment generating function. In Section 4 we develop the asymptotic expansions for
nonnegative increments under the existence of at least a finite second moment. In Section 5
we consider cases in which the distribution of the Xis also varies with p. Our expansions are
extended to the case of real-valued increments with positive mean in Section 6. In Section 7 we
obtain the expansion for zero-mean increment distributions. In Section 8 we apply our results
to develop CDAs for the M/G/1 queue.

2. A uniform renewal theorem

In this section we develop the necessary renewal theory that will be key to the rest of this
paper. In particular, we will study the renewal function corresponding to a distributionF having
support on the entire real line (i.e. F need not be the distribution of a nonnegative RV). Let τ
be a RV having distribution F . (When we apply the results of this section to geometric random
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sums in later sections, the increment RVX1 will play the role of τ .) For appropriately integrable
g, let EF g(τ) be defined as

EF g(τ) :=
∫ ∞

−∞
g(t)F (dt),

and let us write µF = EF τ . Let us set

UF (t) :=
∞∑
n=0

F ∗n(t),

and define HF
1 (·) and HF

2 (·) as

HF
1 (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ ∞

t

(1 − F(s)) ds, t ≥ 0,

∫ t

−∞
F(s) ds, t < 0,

and

HF
2 (t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−
∫ ∞

t

HF
1 (s) ds, t ≥ 0,

∫ t

−∞
HF

1 (s) ds, t < 0.

A distribution F is said to be strongly nonlattice if there exists ε > 0 such that

inf|λ|>ε |1 − χF (λ)| > 0,

where χF (λ) = EF eiλτ . A family F of distribution functions is said to be uniformly strongly
nonlattice if

inf
F∈F

inf|λ|>ε |1 − χF (λ)| > 0. (4)

The first result of this section is the uniform renewal theorem that will be essential to developing
the asymptotic expansions in this paper.

Theorem 1. Suppose that F is strongly nonlattice with EF τ > 0 for each F ∈ F . Then we
have the following.

(i) If supF∈F EF eη|τ | < ∞ for some η > 0 then we can find positive constants K1 and c
(independent of F ∈ F ) such that

µ2
F

∣∣∣∣UF (t)−
(
t

µF
+ EF τ 2

2µ2
F

)
1[0,∞)(t)

∣∣∣∣ ≤ K1e−ct for t ≥ 0

and

µ2
FUF (t) ≤ K1ect + µFK1 exp(cµF t) for t < 0.
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(ii) Moreover, under the condition supF∈F EF |τ |p < ∞ for p ≥ 3, we obtain

sup
F∈F

µ4
F |UF (t)− ŨF (t)| ≤ o(|t |−�p� log(|t |)) as |t | → ∞,

where ŨF (t) satisfies

ŨF (t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t

µF
+ EF τ 2

2µ2
F

+ HF
2 (t)

µ2
F

+ (HF
1 ∗HF

1 )(t)

µ3
F

, t ≥ 0,

HF
2 (t)

µ2
F

+ (HF
1 ∗HF

1 )(t)

µ3
F

, t < 0.

(5)

The proof of this result is given at the end of this section. Note that part (i) describes an
error term of order µ−2

F whereas part (ii) describes an error term of order µ−4
F . Since part (i)

is a special case of part (ii), this suggests that the error term in part (ii) is not the best possible
result (as a function ofµF ). The proof technique is based on a Fourier analysis argument due to
Carlsson (1983). Our expression for ŨF (·) coincides with the one provided by Carlsson (1983)
and, as we shall see in the proof, our argument requires a normalization of the ŨF s Fourier
transform by the factor µ4

F in order to be amenable to uniform estimates over the family F .
Such uniform estimates are the most important part of our contribution here. Uniform

renewal theorems have been studied previously in the literature. Siegmund (1979) provided
a result similar to part (i). However, Siegmund’s result only covered the case of positive
increments and the underlying family of distributions enjoyed a particular parameterization
through exponential families. The fact that Theorem 1 is developed on the whole line with an
explicit dependence on the mean of the increment distributions underlying the renewal function
(i.e. µF ) will be crucial in our developments, especially for the case in which EX1 = 0. Fuh
(2004) studied uniform Markov renewal theory, which included uniform renewal theory as a
special case, on the whole line under the same assumptions as given in Theorem 1. However,
there is no dependence on the mean of the increment distributions of the renewal function in
his estimates. The information given in Theorem 1, particularly with respect to µF , is key for
our purposes because we are interested in understanding how the distribution of SM changes in
general—even when we have a zero-mean increment distribution. Borovkov and Foss (2000)
also developed a uniform renewal theorem under nonlattice assumptions, like those imposed
here. Again, they considered the case in which the mean of increment distributions was bounded
away from 0 and, therefore, that theory does not directly apply to our current situation.

2.1. Proof of Theorem 1

For F ∈ F , set

VF (x, h, a) = E[UF (x + h− aZ)− UF (x − aZ)],
where Z ∼ N(0, 1). Lemma 1, below, corresponds to Equation (8) of Stone (1965).

Lemma 1. If F is strongly nonlattice and µF = EF (τ) > 0 then

V (x, h, a) = h

2µ
+ h

2π
∫ ∞
−∞ Re[e−ixλ(1 − e−ihλ)e−a2λ2/2/(ihλ(1 − χF (λ)))] dλ

.

Lemma 2, below, is due to Carlsson (1983); see Lemma 1 therein. (See also Theorem 7.3
of Ganelius (1971).)
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Lemma 2. Define Mb to be the class of those nondecreasing functions f : R → [1,∞) that
satisfy f (2x) ≤ bf (x) and f (x) = 1 if x ≤ 1. Let g(·) have Fourier transform given by

ĝ(θ) =
∫ ∞

−∞
e−iθs dg(s).

Suppose that there exist K > 0 and mT ∈ Mb for which the inequality

sup
x≤y≤x+1/T

(g(y)− g(x)) ≤ K

mT (x)

holds for all x ∈ R . If (ĝ(θ) : θ ∈ R) has its support outside (−T , T ) then there exists a
constant C depending only on b (independent of T ) and such that |g(x)| ≤ CK/mT (x).

As we shall see, some of the remainder terms in our estimates satisfy the conditions of
Lemma 2. We shall also need the following uniform variant of the Riemann–Lebesgue lemma.

Lemma 3. Let G = {gα(·) : α ∈ χ} be a family of real-valued functions defined on the compact
interval [0, 1] and indexed by an arbitrary set χ . Assume that the gα(·)s are uniformly bounded
and equicontinuous. Then,

lim
n→∞ sup

α∈�

∫ 1

0
gα(λ)e

iλn dλ = 0.

Proof. Define gα,m(·) as

gα,m(λ) =
m−1∑
k=0

gα

(
k

m

)
1[k/m,(k+1)/m)(λ).

We then have∣∣∣∣sup
α∈�

∫ 1

0
gα(λ)e

iλn dλ

∣∣∣∣ ≤ sup
α∈�

∫ 1

0
|gα(λ)− gα,m(λ)| dλ

+
m−1∑
k=0

sup
α∈�

∣∣∣∣gα,m
(
k

m

)∣∣∣∣
∣∣∣∣
∫ (k+1)/m

k/m

eiλn dλ

∣∣∣∣.
The first integral can be made arbitrarily small in m by virtue of equicontinuity, while the
second integral, owing to uniform boundedness, is of orderO(1/n). This yields the conclusion
of Lemma 3.

Before we provide the proof of Theorem 1, let us briefly comment on some of the methods
behind its technical development. The proof of part (i) is adapted from the work of Stone (1965),
except at the end where we link the behavior of VF (x, h, a) to that of UF (x) as x ↗ ∞.
For this latter part, we use the results of Carlsson (1983). Both Stone (1965) and Carlsson
(1983) relied on the use of Fourier analysis estimates, but Carlsson applied Fourier transforms
to distributions because he worked directly with UF (·) rather than with an expression such
as VF (·) (which involves increments of UF (·) convolved with a smooth kernel). Basically,
analyzing the increments of UF (·) removes the need for dealing with the Fourier transform
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of an indicator function which gives rise to a delta function. Stone (1965) also provided a
way to link the asymptotic behavior of VF (·, h, a) to that of UF (·), but Carlsson’s techniques
are slightly more direct and blend in better with our development in part (ii) of Theorem 1.
Stone’s techniques are convenient in the case of exponential moments because they make it
possible to easily remove the singularities that appear when EF τ is arbitrarily close to 0 (as
will be indicated precisely in the proof below) using Cauchy’s theorem for analytic functions.
Carlsson’s techniques are convenient in part (ii) because his expressions are especially well
suited to a direct Fourier analysis of the terms involved in ŨF . The rate of decay in the error
obtained by approximating UF by ŨF directly is obtained using such Fourier expressions (via
the use of Lemma 2). Carlsson’s expressions are homogeneous inµ−4

F , and the estimates depend
only on the tail decay of F implied by the existence of moments of order p. As a consequence,
our uniform assumptions make Carlsson’s analysis easily adaptable to our current situation.

Proof of Theorem 1. We shall first prove part (i) in several steps.

Step 1: Set υF = EF τ 2. The idea is to first use Lemma 1 to estimate V (x, h, a). More
precisely, we note that

∫ ∞

−∞
e−ixλ(1 − e−ihλ)(ihλ)−1e−a2λ2/2(1 − χF (λ))

−1 dλ

=
∫ ∞

−∞
e−ixλ(1 − e−ihλ)(ihλ)−1e−a2λ2/2

(
−iµFλ+ υFλ

2

2

)−1

dλ (6)

+
∫ ∞

−∞
e−ixλ(1 − e−ihλ)(ihλ)−1e−a2λ2/2

×
(
(1 − χF (λ))

−1 −
(

−iµFλ+ υFλ
2

2

)−1)
dλ. (7)

Observe that the integrand corresponding to (7) is analytic on a strip defined by the imaginary
axis and a line parallel to this axis (both to the right or the left) that can be taken independent of the
choiceF ∈ F (as a consequence of the uniform strongly nonlattice assumption). This is because
we are removing the singularity of 1/(1 − χF (λ)) at 0 by subtracting (−iµFλ + υFλ

2/2)−1.
This step is different from that of Stone (1965) (we have added the term including υF because
we are also interested in the case in which µF can be arbitrarily small). Cauchy’s theorem
allows us to rewrite (7) as

∫ ∞

−∞
e−(c+iλ)x(1 − e−(c+iλ)h)(c + iλ)−1 exp

(
a2(c + iλ)2

2

)

×
(
(1 − χF (c + iλ))−1 −

(
−µF (c + iλ)+ υF (c + iλ)2

2

)−1)
dλ

for some c > 0 sufficiently small (uniformly over the family F ). Note that the previous
expression is of order O(e−cx(1 + |log(a)|)) as x tends to ∞ uniformly for h in bounded sets
and uniformly over the family F . This follows because the integral in the previous display
can be bounded by C0 exp(−cx − a2λ2/2) and the choice of the constant C0 is independent
of F by virtue of the strongly nonlattice assumption (also observe that the strongly nonlattice
assumption also guarantees infF∈F υF > 0). Note that a completely analogous estimate can
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be obtained as x tends to −∞. Conversely, the integral in (6) can be rewritten as∫ ∞

−∞
e−ixλ(1 − e−ihλ)(ihλ)−1e−a2λ2/2

−iµFλ
dλ (8)

+
∫ ∞

−∞
e−ixλ(1 − e−ihλ)(ihλ)−1e−a2λ2/2

×
(

1

−iµFλ+ υFλ2/2
− 1

−iµFλ

)
dλ. (9)

Let us refer to the integrals in (8) and (9) as J1 and J2, respectively. The integral J1 can be
evaluated explicitly (see the expression following Equation (8) of Stone (1965)), yielding the
conclusion that

µFJ1 = ±h
2

+O(e−c|x|) as x −→ ±∞
uniformly over the family F and h, a in bounded sets. For the integral J2, we have

4hµ2
F J2

2πυF
= P

(
x

2a
≤ N(0, 1) ≤ x + h

2a

)

+ P

(
N(0, 1) >

x + 2bF a2

a

)
exp(µF (µF a

2 + x))

− P

(
N(0, 1) >

x + h+ 2bF a2

a

)
exp(µF (µF a

2 + x + h)),

where bF = 2µF/υF . Consequently, µ2
F J2 = O(e−cx) as x → ∞ uniformly over the family

F and for a in bounded intervals, whereas

|µ2
F J2| ≤ µFK1 exp(xµF ) as x → −∞

uniformly for a in bounded sets with K1 independent of F . Consequently,

µ2
FVF (x, h, a) = hµF +O(e−cx(1 + |log(a)|)) as x → ∞,

where the term O(e−cx(1 + |log(a)|)) does not depend on the choice of F or h, and similarly

µ2
FVF (x, h, a) ≤ O(ecx(1 + |log(a)|))+ µFK1 exp(xµF ) as x → −∞.

Step 2: Next we want to use an argument similar to that given by Stone (1965) to estimate
UF (x + 1)− UF (x)− µ−1

F . This follows easily by noting that

µ2
FVF (x, 2, 1) =

∞∑
n=0

µ2
F P(x ≤ Sn + Z ≤ x + 2)

≥
∞∑
n=0

µ2
F P(x ≤ Sn + Z ≤ x + 2; Z ∈ [0, 1])

≥ µ2
F (UF (x + 1)− UF (x))P(Z ∈ (0, 1)).

Consequently, a finite number K > 0 (independent of F ) can be chosen such that

µ2
F (UF (x + h)− UF (x)) ≤ K
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uniformly over |h| ≤ 2. Following Stone (1965), fix δ > 0, and note that if |y| ≤ 2e−δx ,
we have

UF (x + 1 − e−δx− y)− UF (x + e−δx − y) ≤ UF (x + 1)− UF (x)

≤ UF (x + 1 + e−δx − y)− UF (x − e−δx − y).

Now, choose x0 > 0 such that P(|N(0, 1)| ≥ x0) ≤ exp(−δx0) ≤ 1
2 . It follows, as a

consequence of the previous estimates, that, for x ≥ x0,

µ2
FVF

(
x + e−δx, 1 − 2e−δx, e−δx

x

)
− µ2

FKe−δx

≤ µ2
F (UF (x + 1)− UF (x))

≤ µ2
F (1 − e−δx)−1VF

(
x − e−δx, 1 + 2e−δx, e−δx

x

)
.

This implies that there exists c > 0 such that

µ2
F (UF (x + 1)− UF (x)− µ−1

F ) = O(e−cx) (10)

uniformly over F as x tends to ∞, and

µ2
F |UF (x + 1)− UF (x)| = O(ecx)+ µFKexµF (11)

also uniformly over F as x tends to −∞.

Step 3: Finally, we proceed to show that

µ2
F

(
UF (x)−

(
xµ−1

F + υF

2µF

)
1[0,∞)(x)

)
= o(1) (12)

uniformly over F as x tends to ∞. As in Carlsson (1983), define

GF (x) := UF (x)−
(
xµ−1

F + υF

2µF

)
1[0,∞)(x)+ HF

2 (x)

µ2
F

.

Carlsson (1983) evaluated the Fourier transform ĜF of GF ,

ĜF (λ) := (χF (λ)− 1 + iλµF )
2(iλ)−1(iλµF )

−2(1 − χF (λ))
−1;

see the end of Section 3 of Carlsson (1983). Estimate (12) will follow after applying Lemma 2
to a suitable modification of GF (·). In particular, the strategy is to consider GTF (·) and G∗

F (·),
which are defined via

GTF (x) := GF (x)− 1

2π

∫ T

−T
ĜF (λ)e

iλx dλ

:= GF (x)−G∗
F (x).

Note that ĜTF (λ) is 0 for |λ| ≤ T . Conversely, using Chebyshev’s inequality, we can find a
constant K (independent of F ) such that, for x ≥ 1 and T ≥ 1,

sup
x≤y≤x+1/T

µ2
F |HF

2 (x)−HF
2 (y)| ≤ µ2

F (H
F
2 (x)−HF

2 (x + T −1)) ≤ K

T
.
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Also, observe that µ3
FG

∗
F (·) is bounded (for fixed T ) and that

lim
x→0

sup
F

|µ3
FG

∗
F (x)| = 0. (13)

This last step follows by invoking Lemma 3, which can be safely applied by means of the
strongly nonlattice condition, the form of ĜF , and the existence of uniform bounds in moments
of order at least 2. These observations, combined with our previous estimates concerning
UF (x + h)− UF (x), yield

sup
x≤y≤x+1/T

µ2
F (G

T
F (x)−GTF (y)) ≤ K

T

for some positive constantK > 0 (independent of F ). Consequently, Lemma 2, applied toGTF ,
together with (13) yield

lim
x→∞ sup

F

µ2
F |GF (x)| ≤ CK

T

for some constant C independent of T . Since T was arbitrary, we obtain (12). This combined
with (10) and (11) gives part (i).

Part (ii) is similar to the end of part (i) and the proof proceeds by following a similar program
as in Carlsson (1983). Again a key assumption is the uniform strongly nonlattice condition, (4).
The Fourier inversion expressions are provided by Carlsson (1983) for each fixed F . First we
define (R̂(λ) : λ ∈ R) via

R̂F (λ) = µ−4
F

(
χ(−λ)− 1 + iλµF

(iλ)2

)2(
χ(−λ)− 1 + iλµF

iλ

)
.

Then, it follows that the inverse Fourier transform of R̂ is given by

RF (t) = µ−4
F (HF

1 � HF
1 � ḢF

1 )(t),

where ḢF
1 denotes the derivative of HF

1 (the derivative can be interpreted weakly or we can
make sense out of RF (t) using integration by parts by noting that HF

1 � HF
1 is differentiable).

It easily follows that µ4
FRF (t) = o(|t |−�p�) as |t | ↗ ∞ uniformly over the class F assuming

that supF∈F EF |τ |p < ∞. Now, the Fourier transform of F = ŨF − RF (see the definition
in part (ii) of the present theorem) is ̂F (·) given by

µ4
F ̂F (λ) = (χF (−λ)− 1 + iλµF )

4(iλ)−5(1 − χF (−λ)).
The estimates forF again involve applications of Lemma 2 following Proposition 1 of Carlsson
(1983) and the use of Lemma 3 just as in the case of GF in part (i), above.

Condition (4) is crucial in order to guarantee the validity of our uniform renewal results. It
will often be useful and more convenient to verify the following alternative version of (4).

Lemma 4. Suppose that F is a tight family of distribution functions satisfying

inf
F∈F

inf|λ|≥1
|1 − χF (λ)| > 0. (14)

Then, the family F is uniformly strongly nonlattice in the sense that (4) is satisfied.
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Remark 1. Note that if supF∈F EF |τ | < ∞ then the family F is tight. In order to apply
Theorem 1, we must verify the moment assumptions indicated in its parts (i) or (ii). Hence, it
suffices to just verify condition (14) instead of (4).

Proof of Lemma 4. Fix ε > 0, and note that

inf
F∈F

inf|λ|≥ε |1 − χF (λ)| = inf
F∈F

min
(

inf|λ|≥1
|1 − χF (λ)|, inf

ε≤|λ|≤1
|1 − χF (λ)|

)
,

so we just have to show that
γF = inf

ε≤|λ|≤1
|1 − χF (λ)|

satisfies infF∈F γF > 0. Suppose that this is not the case, then there exists a sequence of
distributions (Fn : n ≥ 1) in F and a sequence (λn : n ≥ 1) (with |λn| ∈ [ε, 1]) such that
χFn(λn) → 1 as n → ∞. Since F is tight, there must be a subsequence of distributions
(Fnk : k ≥ 1) such thatFnk

w−→ G (Gmay not necessarily be in F ) and a subsequence (λnk : k ≥
1) such that λnk → λ with |λ| ∈ [ε, 1], and χG(λ) = 1, this implies that G is lattice. On the
other hand, we have

0 < lim
k→∞ |1 − χFnk (λ)| = |1 − χG(λ)|,

which implies that G is nonlattice, yielding a contradiction and proving the result.

3. Nonnegative geometric sums with exponential moments

Our results in this section improve upon Renyi’s approximation, (1), assuming the existence
of exponential moments. Define φ(η) := E exp(ηX1) < ∞ and φ′(η) := dφ(η)/dη.

Theorem 2. Suppose that X1 has a strongly nonlattice distribution and that φ(η) < ∞ for
some η > 0. Then, there exist constants a, κ > 0 such that, for sufficiently small p,∣∣∣∣P(pSM > x)− exp

(
−xθ̃
p

+ r(p)

)∣∣∣∣ ≤ κ exp

(
−ax
p

)
(15)

uniformly in x ≥ 0, where θ̃ is the unique nonnegative solution to E exp(θ̃X1) = q−1 (which
exists if p > 0 is small enough), and

er(p) = p

q2θ̃φ′(θ̃)
:= c(p). (16)

Remark 2. We state our approximation in terms of r(p) because later we shall be interested
in suggesting approximations that are given as asymptotic expansion powers of p. Using
the asymptotic expansions for r(·) instead of c(·) preserves the positivity of our suggested
approximation.

Theorem 2 provides rigorous support for the approximation

P(SM > y) ≈ exp(−yθ̃ + r(p)). (17)

Note that, for a fixed value p, the evaluation of θ̃ and r(p) (or equivalently, c(p)) is a
straightforward numerical task and, thus, (17) can be easily implemented to provide an ac-
curate approximation for the distribution of SM that can be expected to improve upon Renyi’s
approximation.

Once we know that (17) holds uniformly for small values of p, then we can easily provide
(via the implicit function theorem) an expansion for θ̃ in powers of p and, as a consequence,
for r(p). We record these observations in Proposition 1, below.
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Proposition 1. Let θ̃ and r be defined as in Theorem 2. Then θ̃ (p) and r(p) can be expanded
in absolutely convergent power series in p ∈ [0, δ] for some δ > 0.

Proof. The fact that the series converges absolutely just follows by applying the inverse
function theorem (for complex-valued functions) to the analytic extension of φ(·) at 0.

Remark 3. If our interest is to provide accurate approximations for the distribution of SM for
many different small values of p, an asymptotic expansion such as that suggested by Theorem 2
and Proposition 1 for P(SM > ·) will typically provide a more convenient approximation (in
terms of the computational cost) than (17). Let us then provide the elements of the expansion
described in Proposition 1, thereby giving the expansion of P(SM > x/p) in powers of p.
Proposition 1 establishes that

θ̃ (p) =
∞∑
k=1

θ̃ (k)(0)pk

k! and r(p) =
∞∑
k=0

r(k)(0)pk

k! .

For notational convenience, let us write θ̃ (k)(0)/k! = γk and r(k)(0)/k! = ξk . We know that
θ̃ (1)(0) = γ1 = 1/EX1 and r(0) = 0, the rest of the γks and ξks can be easily computed
via the implicit function theorem. For instance, 2 E3X1γ2 = 2 E2X1 − EX2

1, 6 E5X1γ3 =
3 EX2

1 − 6 EX2
1 E2X1 + 6 E4X1 − EX1 EX3

1. Consequently, 2 E2X1ξ1 = 2 E2X1 + EX2
1

and 24 E4X1ξ2 = 12 E4X1 + 12 EX2
1 E2X1 − 9 E2X2

1 + 4 EX3
1 EX1. A similar expansion

for θ̃ (·) has been obtained by Abate et al. (1995) in connection with heavy-traffic asymptotics
for queues. We shall discuss these types of applications in Section 8, below.

For completeness we provide a set of recursive equations to compute the γks.

Proposition 2. For n ≥ 1 and each k ≤ n, the constants (γk : 1 ≤ k ≤ n) can be computed by
solving recursively the following set of equations (note that the kth equation is linear in γk and
it depends only on the γj s for j ≤ k):

k∑
m=1

EXm1
m!

∑
{n1+···+nm=k−m,n1,...,nm≥0}

m∏
j=1

γnj+1 = 1 for 1 ≤ k ≤ n.

Proof. The proof follows directly by applying the implicit function theorem. The details
are omitted.

Theorem 2 therefore provides the means to develop an algorithm, which can be implemented
easily, for computing an asymptotic expansion for the tail probability P(SM > x/p) in powers
of p that gives the desired corrected diffusion approximation in the present geometric sum
setting.

We now discuss the mathematical development of Theorem 2. Let a(t) = P(SM > t), and
note that

a(t) = P(X1 > t)+ q

∫
[0,t)

a(t − s)P(X1 ∈ ds). (18)

If p > 0 is small enough and E exp(ηX1) < ∞ for some η > 0 then the equation

φ(θ̃) = E exp(θ̃X1) = 1

q
(19)
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has a unique solution θ̃ > 0. Therefore, making use of well-known techniques, (18) can be
transformed into the nondefective renewal equation

exp(θ̃ t)a(t) = exp(θ̃ t)P(X1 > t)+
∫

[0,t)
exp(θ̃(t − s))a(t − s)Fθ̃ (ds),

where Fθ̃ (ds) = q exp(θ̃s)P(X1 ∈ ds). Renewal theory then implies that

exp(θ̃ t)a(t) =
∫

[0,t)
exp(θ̃(t − s))P(X1 > t − s)Uθ̃ (ds), (20)

where Uθ̃ (t) = Eθ̃ (N(t) + 1), and under Pθ̃ the Xis are i.i.d. with distribution Fθ̃ . Using the
results of Stone (1965), it is not hard to verify that, for fixed but small p > 0,∣∣∣∣exp(θ̃ t)a(t)− 1

Eθ̃ X1

∫
[0,t)

exp(θ̃s)P(X1 > s) ds

∣∣∣∣ ≤ K(p)e−a(p)t . (21)

Note that Stone’s estimates provide exponential rates of convergence for fixed p > 0, but they
do not say anything about the behavior of K(p) and a(p) in (21) for small values of p. In
contrast, as the proof that follows next indicates, Theorem 1 allows us to set t = x/p and
obtain an exponential rate of convergence, thereby controlling the behavior of K(p) and a(p)
as p ↘ 0.

Proof of Theorem 2. The previous argument leads us to (20). We now verify that the
assumptions in Theorem 1 are satisfied. Let us define gθ̃ (λ) := Eθ̃ exp(iλX1) = q E exp((iλ+
θ̃ )X1). Using the implicit function theorem on (19), it easily follows that θ̃ = p/EX1+O(p2).
As a consequence, the following inequality can be easily derived for all p > 0 sufficiently small
and some M1 ∈ (0,∞),

|gθ̃ (λ)− g(λ)| ≤ M1p.

Hence, we conclude that it is possible to choose δ > 0 sufficiently small so that

inf
p∈[0,δ] inf|λ|≥1

|1 − gθ̃ (λ)| ≥ inf
p∈[0,δ] inf|λ|≥1

|1 − g(λ)| −M1δ > 0,

which verifies condition (14) in Lemma 4. Finally, because θ̃ = O(p), it is possible to choose
p > 0 small enough so that Eθ̃ exp(ηX1) = q Eθ̃ exp((η + θ̃ )X1) < ∞ for some η > 0. We
can now apply Theorem 1 to (20) and obtain∣∣∣∣exp

(
θ̃
x

p

)
a

(
x

p

)
− 1

Eθ̃ X1

∫ ∞

0
exp(θ̃s)P(X1 > s) ds

∣∣∣∣
≤ 1

Eθ̃ X1

∫ ∞

x/p

exp(θ̃s)P(X1 > s) ds (22)

+
∣∣∣∣ 1

Eθ̃ X1

∫
[0,x/p)

exp

(
θ̃

(
x

p
− s

))
P

(
X1 >

x

p
− s

)
V (ds)

∣∣∣∣, (23)

where V (·) is a function that we are introducing here and it corresponds to the left-hand side
of the first equation in part (i) of Theorem 1, therefore |V (t)| = O(e−at) for some a > 0. The
integral in (22) is easily seen to be bounded by Ke−ax/p for some finite constants K, a > 0
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(assuming that p > 0 is sufficiently small). We just need to analyze the integral in (23).
Integration by parts yields∫

[0,x/p)
exp

(
θ̃

(
x

p
− s

))
P

(
X1 >

x

p
− s

)
V (ds)

= V

(
x

p

)
P(X1 > 0)− exp

(
θ̃
x

p

)
P

(
X1 >

x

p

)
V (0) (24)

+ θ̃ exp

(
θ̃
x

p

) ∫
[0,x/p)

V (s) exp(−θ̃ s)P

(
X1 >

x

p
− s

)
ds (25)

+ exp

(
θ̃
x

p

) ∫
[0,x/p)

V (s) exp(−θ̃ s)P

(
X1 >

x

p
− ds

)
. (26)

The absolute value of (24) is also bounded byKe−ax/p for some finite constantsK, a > 0. For
the integral in (25), observe that

θ̃ exp

(
θ̃
x

p

)∣∣∣∣
∫

[0,x/p)
V (s) exp(−θ̃ s)P

(
X1 >

x

p
− s

)
ds

∣∣∣∣
≤ θ̃ exp

(
θ̃
x

p

) ∫
[0,x/2p)

|V (s)| exp(−θ̃ s)P

(
X1 >

x

p
− s

)
ds

+ θ̃ exp

(
θ̃
x

p

) ∫
[x/2p,x/p)

|V (s)| exp(−θ̃ s)P

(
X1 >

x

p
− s

)
ds

≤ θ̃ exp

(
θ̃
x

p

)
P

(
X1 >

x

2p

)
M + θ̃ exp

(
θ̃
x

p

) ∫
[x/2p,∞)

|V (s)| ds.

Since θ̃ = O(p) and X1 has exponential moments, we conclude that the previous expression
is bounded by Ke−ax/p (for appropriate positive constants K and a). The treatment for the
integral in (26) is very similar to that of (25). Thus, we conclude that

E qN(x/p) =
∫ ∞

0 exp(θ̃s)P(X1 > s) ds

Eθ̃ X1
+O(e−ax/p). (27)

In order to recover the required expression for c(p), note that

Eθ̃ X1 = q

∫
[0,∞)

s exp(θ̃s)P(X1 ∈ ds) = qφ′(θ̃).

Conversely, using integration by parts and the definition of θ̃ , we see that

∫ ∞

0
exp(θ̃s)P(X1 > s) ds = φ(θ̃)− 1

θ̃
= p

qθ̃
.

Combining the previous two identities together in (27) yields (15). The analytic properties of
θ̃ follow directly from the implicit function theorem. It is easy to see that r(·) is well defined
at 0 (i.e. that the right-hand side of (16) is strictly positive when p is close to 0). However, it
is almost immediate to verify that c(·) is real analytic at the origin with c(0) = 1. This implies
the real analyticity of r and the conclusion of the theorem.
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4. Nonnegative geometric sums with heavy tails

In this section we also assume that X = (Xn : n ≥ 1) is an i.i.d. sequence of nonnegative
RVs and, in contrast to the previous section, here we relax the exponential moments assumption.
Here we just require that EXα+2

1 < ∞ for some α ≥ 0. If the moment generating function of
the Xis exists, Theorem 2 corrects Renyi’s approximation (1) by providing a full asymptotic
expansion in powers of p with an exponential error term. In other words, Theorem 2 provides
rigorous support for the parametric (in p > 0) approximation

P

(
SM >

x

p

)
≈ exp

(
− x

EX1
+

∞∑
k=1

pk(ξk − γk+1x)

)
,

which is valid up to an error exponentially small as p ↘ 0. It is easy to see that γk and ξk
depend on the first k and (k + 1) order moments of X1, respectively. This suggests that, if
EXα+2

1 < ∞, the approximation

P

(
SM >

x

p

)
≈ exp

(
− x

EX1
+

∑
1≤k≤α+1

pk(ξk − γk+1x)

)
(28)

should be more accurate than (1). Another (perhaps more natural) way of obtaining a formal
expression such as (28) proceeds as follows. First define

φα(θ) = 1 +
∑
k≤α+2

EXkθk

k! .

Then find the smallest positive solution θ̃α to the equation

φα(θ̃α) = 1

q
. (29)

Note that θ̃α exists and is well defined if p > 0 is sufficiently small. Finally, set

cα(p) = p

q2θ̃αφ′
α(θ̃α)

. (30)

Using these elements, (28) is equivalent (up to quantities of order o(pα+1)) to

P

(
SM >

x

p

)
≈ exp

(
−xθ̃α
p

)
cα(p). (31)

Providing rigorous support for approximation (31) in the presence of heavy tails presents an
additional mathematical complication. Note that a crucial ingredient in the proof of Theorem 2
is the existence of a root for (19). This indicates that the strategy followed in the proof of
Theorem 2 is infeasible in the heavy-tailed case. Our idea is then to proceed by removing the
large ‘outlier’. Define the sequence X = (Xk : k ≥ 1) as Xk = Xk 1[0,x/p](Xk) and consider
its associated random walk S = (Sn : n ≥ 0) (i.e. Sn = X1 + · · · + Xn with S0 = 0). We
first argue that this ‘truncation’ has little impact on the distribution of the geometric sum over
spatial scales of order 1/p.
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Lemma 5. The RV SM satisfies

| P(pSM > x)− P(pSM > x)| ≤ 2 P(X1 > x/p)

p
.

Proof. Note that

| P(pSM > x)− P(pSM > x)|

≤ p

∞∑
k=1

qk−1 P

(
Sk >

x

p
; Sk ≤ x

p

)
+ p

∞∑
k=0

qk−1 P

(
Sk >

x

p
; Sk ≤ x

p

)

≤ 2p
∞∑
k=1

qk−1 P

(
max
n≤k Xn >

x

p

)

≤ 2p
∞∑
k=1

kqk−1 P

(
X1 >

x

p

)

= 2 P(X1 > x/p)

p
.

As an immediate corollary, we have the following result.

Corollary 1. Suppose that EXβ1 < ∞ for β ≥ 1, then

| P(pSM > x)− P(pSM > x)| = o

(
pβ−1

xβ

)
.

The strategy to follow in order to provide rigorous support for the validity of (31) is perhaps
clear now. Specifically, taking advantage of the fact that the increments Xk have exponential
moments, we want to deal with SM following the spirit of Section 3 by making use of the
uniform renewal theory. One of the basic steps that is involved in applying the same techniques
used in Section 3 is solving the equation

E exp(θ X) = 1

1 − p
. (32)

It is not hard to see, using the implicit function theorem, that θ ∼ p/EX as p ↘ 0. In fact,
we have the following proposition.

Proposition 3. Suppose that EXα+2
1 < ∞. Then, for A > 0, we have

φα(θ) = E exp(θX)+ o(pα+2)

as p ↘ 0 uniformly for |θ | ≤ pA. Therefore, if θ solves (32),

θ = θα + o(pα+2).

Proof. Suppose that |θ | ≤ pA for some fixed A > 0. Then,

E exp(θX) = E

(
eθX; X ≤ 1

p

)
+ o(pα+2).
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Also, note that ∣∣∣∣E
(

eθX; X ≤ 1

p

)
− 1 −

∑
1≤k≤α+2

EXkθk

k!
∣∣∣∣

≤ o(pα+2)+ AeAp�α+2�+1 E

(
X�α+2�+1; X ≤ 1

p

)
.

Now, we claim that

p�α+2�+1 E

(
X�α+2�+1; X ≤ 1

p

)
= o(pα+2).

In order to see this, we first use integration by parts to obtain

p E

(
X�α+2�+1; X ≤ 1

p

)
=

∫ 1/p

0
ps�α+2�+1 P(X ∈ ds)

= − P

(
X >

x

p

)(
1

p

)�α+2�
x (33)

+ (�α + 2� + 1)
∫ 1

0
P

(
X >

s

p

)(
s

p

)�α+2�
ds. (34)

Expression (33) multiplied by p�α+2� is of order o(pα+2); hence, we just have to show that the
integral in (34) multiplied by p�α+2� is of order o(pα+2). Equivalently, we must verify that

∫ 1

0
P

(
X >

s

p

)(
s

p

)α+2

s�α+2�−(α+2) ds → 0 as p ↘ 0,

which follows easily by dominated convergence since 0 ≤ P(X > t)t�α+2� ≤ c < ∞, and∫ 1

0
s�α+2�−(α+2) ds < ∞.

The rest just follows from the implicit function theorem.

Finally, we provide the precise statement of our rigorous approximation in the context of
heavy-tailed increments. (We say here that a nonnegative random variable X1 is heavy tailed
if, for every η > 0, E exp(ηX1) = ∞.)

Theorem 3. Assume that the distribution of X1 is strongly nonlattice and that EX2+α
1 < ∞

for some α ≥ 0. Then,

P(pSM > x) = exp

(
−xθ̃α
p

)
cα(p)+ o(pα+1) (35)

as p ↘ 0 uniformly over x on compact sets.

The proof of this result will be provided at the end of this section.
As in the case of exponential moments, approximation (35) can be stated in power series

form as we indicate next.
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Corollary 2. In the setting of Theorem 3,

P

(
SM >

x

p

)
= exp

(
− x

EX1
+

∑
1≤k≤α+1

pk(ξk − γk+1x)

)
+ o(pα+1),

where the γks and ξks are defined recursively via Proposition 2.

Proof. Follows from the implicit function theorem applied to (29), and then expanding (30)
in powers of p.

We are now ready to provide the proof of Theorem 3. We do so by analyzing P(pSM > x) just
as we did in Theorem 2. Theorem 1 can also be applied here to obtain a suitable approximation
for P(pSM > x), as our next result shows and this is the strategy that we follow next.

Proof of Theorem 3. To compute P(pSM > x) we ‘truncate’ at level x/p, thereby introduc-
ing the Xks, where Xk = Xk 1[0,x/p](Xk). Then, a(·) = P(pSm > ·), when evaluated at x/p,
satisfies

exp

(
θ
x

p

)
a

(
x

p

)
=

∫
[0,x/p)

exp

(
θ

(
x

p
− s

))
P

(
X1 >

x

p
− s; X1 ≤ x

p

)
Uθ(ds),

where Uθ(s) = ∑∞
n=0 Pθ (Sn ≤ s), Pθ (·) is defined via

Pθ (B) = qn E(exp(θ̄ S̄n); 1(B))

for every B in the sigma-field σ(X1, . . . , Xn), and θ is the solution to the equation

φ(θ) := E exp(θ̄X̄1) = q−1.

Next, we will show that

V (s) := Uθ(s)− s

Eθ X1
− Eθ X

2
1

2 E2
θ
X1

−
∫ ∞
s

∫ ∞
t

Pθ (X1 > u) du dt

E2
θ
X1

, (36)

satisfies |V (s)| = o(s−(α+1)) as s ↗ ∞ uniformly in p > 0 small enough. This follows from
Theorem 1, as we now illustrate. (Note that the term V in (36) includes the last two terms on the
right-hand side of (5).) Observe that gp(λ) := Eθ exp(iλX1) = q E exp((iλ+ θ)X1) satisfies

|gp(λ)− E exp(iλX1)| ≤ |gp(λ)− E exp(iλX1)| + o(pα+2)

≤ p| E exp(iλX1)| + θ EX1 + o(pα+2)

= O(p).

Since X1 is strongly nonlattice, this implies that gp(·) satisfies the uniform strongly nonlattice
condition, (14). Conversely, since θ = O(p), we find that, for all p > 0 small enough,

Eθ X
α+2
1 = q E exp(θ̄X̄1)X

α+2
1 ≤ M EX

α+2
1 < M EXα+2

1 < ∞.
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Theorem 1 now justifies the validity of (36). Furthermore, (36) implies that

a

(
x

p

)
=

∫
[0,x/p)

exp(θ(x/p − s))P(X1 > x/p − s; X1 ≤ x/p)

EθX1
ds (37)

+
∫

[0,x/p)
exp(θ(x/p − s))P(X1 > x/p − s; X1 ≤ x/p)

E2
θ
X1

∫ ∞

s

Pθ (X1 > u) du ds

(38)

+
∫

[0,x/p)
exp

(
θ

(
x

p
− s

))
P

(
X1 >

x

p
− s; X1 ≤ x

p

)
V (ds). (39)

Let us denote by I1, I2, and I3 the expressions in (37), (38), and (39), respectively. We first
show that I3 = o(pα+1). To see this, we use integration by parts, the triangle inequality, and
the fact that θ = O(p) to obtain

|I3| ≤
∣∣∣∣V

(
x

p

)∣∣∣∣ +M1

∣∣∣∣
∫

[0,x/p)
V (s) d exp(−θs)P

(
X1 >

x

p
− s; X1 ≤ x

p

)∣∣∣∣
≤

∣∣∣∣V
(
x

p

)∣∣∣∣ +M1

∣∣∣∣
∫

[0,x/p)
V (s) exp(−θs)P

(
X1 >

x

p
− ds; X1 ≤ x

p

)∣∣∣∣
+M1

∣∣∣∣
∫

[0,x/p)
V (s) exp(−θs)P

(
X1 >

x

p
− s; X1 ≤ x

p

)
ds

∣∣∣∣. (40)

We showed earlier that |V (x/p)| = o(pα+1). Now, observe that∣∣∣∣
∫

[0,x/p)
V (s) exp(−θs)P

(
X1 >

x

p
− ds; X1 ≤ x

p

)∣∣∣∣
≤

∣∣∣∣
∫

[0,x/2p)
V (s) exp(−θs)P

(
X1 >

x

p
− ds; X1 ≤ x

p

)∣∣∣∣
+

∣∣∣∣
∫

[x/2p,x/p)
V (s) exp(−θs)P

(
X1 >

x

p
− ds; X1 ≤ x

p

)∣∣∣∣
≤ K2 P

(
X1 >

x

2p

)
+K1 max

1/2≤u≤1

∣∣∣∣V
(
ux

p

)∣∣∣∣
= o(pα+2)+ o(pα+1)

= o(pα+1) (41)

for some constants K1 and K2. The integral in (40) follows the same lines as (41). For I2,
we have

I2 = 1

E2
θ
X1

∫
[0,x/p)

exp

(
θ

(
x

p
− s

))
P

(
X1 >

x

p
− s

) ∫ ∞

s

Pθ (X1 > u) du ds + o(pα+1).

Note that

1

E2
θ
X1

∫
[0,x/p)

exp

(
θ

(
x

p
− s

))
P

(
X1 >

x

p
− s

) ∫ ∞

s

Pθ (X1 > u) du ds

∼ 1

E2X

∫ x/p

0
P

(
X1 >

x

p
− s

) ∫ x/p

s

P(X1 > u) du ds. (42)
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Let J be the integral in (42). We must show that J = o(pα+1). To see this just note that

J = 1

E2X

∫ x/2p

0
P

(
X1 >

x

p
− s

) ∫ x/p

s

P(X1 > u) du ds

+ 1

E2X

∫ x/p

x/2p
P

(
X1 >

x

p
− s

) ∫ x/p

s

P(X1 > u) du ds

≤ x P(X1 > x/2p)

2p EX
+

∫ x/p

x/2p
P(X1 > u) du

1

EX

≤ x P(X1 > x/2p)

p EX

= o(pα+1),

which yields I2 = o(pα+1). Finally, we analyze I1:

I1 + o(pα+1) = 1

Eθ X1

∫ x/p

0
exp(θu)P(X1 > u) du

= 1

θ Eθ X1

∫ x/p

0
P(X1 ≥ u) d exp(θu)

= o(pα+1)− 1

θ Eθ X1
+ 1

θ Eθ X1

∫ x/p

0
eθu P(X1 ∈ du)

= (1 − E exp(θ̄X̄1))

θ E(exp(θ̄X̄1)X1)
+ o(pα+1).

Lastly, the implicit function theorem yields

p

q2θφ
′
(θ)

= (1 − E exp(θ̄X̄1))

qθ E(exp(θ̄X̄1)X1)
= exp

( ∑
k≤α+1

pkξk

)
+ o(pα+1)

and
θ =

∑
k≤α+2

pkγk + o(pα+2).

5. Geometric sums with increment distribution depending on p

As we indicated before, many settings of interest demand treatment of the case in which the
increment distributions are actually changing with p. This is the case if we wish to develop
CDAs for the time-in-system for the GI/G/1 queue and the probability of ruin for the renewal
risk insurance process. Fortunately, Theorem 1 also provides a means to deal with the typical
situations that arise in practice. To fix ideas, consider a family of probability measures P =
{Pp, p ∈ [0, δ] for some δ > 0}. Suppose that, under each Pp, the random variables (Xk : k ≥
1) form an i.i.d. sequence. Also, assume that the distribution of X1 is uniformly strongly
nonlattice with respect to P (i.e. the characteristic functions gp(λ) = Ep exp(iθX1) satisfy
condition (4)). In addition, suppose that one of the following conditions hold:

(A) for some η > 0, sup0≤p≤δ Ep exp(ηX1) < ∞; or

(B) sup0≤p≤δ Ep X
2+α
1 < ∞ for some α ≥ 0.
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Under this set of assumptions, we have the following analogue to Theorems 2 and 3.

Theorem 4. Assume that the family Pp, p ∈ [0, δ], is uniformly strongly nonlattice (see (4)).
If condition (A) holds then there exist constants K1,K2 > 0 such that, for p > 0 small,∣∣∣∣Pp(pSM > x)− exp

(
−θ

∗x
p

+ rp(p)

)∣∣∣∣ ≤ K1 exp

(
−K2x

p

)
, (43)

where θ∗ = θ∗(p) solves φp(θ∗) := Ep exp(θ∗X1) = 1/q and

exp(rp(p)) = p

q2θ∗φ′
p(θ

∗)
.

Moreover, θ∗(p) = ∑∞
k=1 p

kγk(p) and rp(p) = ∑∞
k=1 p

kξk(p) (where the γk(p)s and ξk(p)s
are defined in terms of the first k and (k + 1) moments of X1 under Pp, respectively, as in
Remark 4). Finally, if condition (B) holds then∣∣∣∣Pp(pSM > x)− exp

(
− x

EpX1
+

∑
1≤k≤α+1

pk(ξk − γk+1x)

)∣∣∣∣ = o(pα+1). (44)

Proof. The proof parallels the arguments given in Theorems 2 and 3 using Theorem 1. The
details are omitted.

Remark 4. Note that the γks and the ξks also depend on p. The previous result yields an
asymptotic expansion, assuming that the problem at hand has enough structure (i.e. when an
asymptotic expansion of the ξks and γks in powers of p can be obtained). The expansion for
the distribution of the all time maximum of a random walk with small negative drift given in
Blanchet and Glynn (2006) provides an example of the applicability of this result.

Remark 5. Just as we pointed out in Theorems 2 and 3, the estimate in (43) applies uniformly
in x, whereas (44) holds as long as x = x(p) stays bounded.

6. Geometric sums with real-valued increments

Some contexts demand looking at increment distributions that can take negative values. We
refer the reader to the book by Kalashnikov (1997) for motivating applications. Our goal in
this section is to show that completely analogous results to those presented in Section 3 can
be obtained even if we relax the assumption of nonnegative increments. The strategy is a
natural extension to that of Section 3. For simplicity, we shall assume that E exp(η|X1|) <
∞. Additional order-correction terms can be obtained, just as in Theorem 3 via a truncation
argument.

First let us consider the case in which EX1 > 0. Note that owing to the memoryless property
of the geometric distribution, we obtain

G(x) := P(SM > x) = p P(X1 > x)+ q P(Z̃ +X1 > x),

where SM
d= Z̃ (where ‘

d=’ denotes equality in distribution) and Z̃ is independent of X1.
Therefore,

G(x) = p P(X1 > x)+ q

∫ ∞

−∞
G(x − s)P(X1 ∈ ds).
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As in Section 3, let θ̃ > 0 be such that E exp(θ̃X1) = 1/q. Then,

exp(θ̃x)G(x) = p

∫ ∞

−∞
P(X1 > x − s) exp(θ̃(x − s))Uθ̃ (ds), (45)

where Uθ̃ (t) = ∑∞
n=0 Pθ̃ (Sn ≤ t), and under Pθ̃ the increments of the random walk S =

(Sn : n ≥ 1), namely the Xis, are i.i.d. with distribution

Pθ̃ (X ∈ ds) = q exp(θ̃s)P(X ∈ ds).

We then obtain the next result, which is the analog of Theorem 2.

Theorem 5. Suppose thatX1 has strongly nonlattice distribution, EX1 > 0, and that φ(η) :=
E eη|X| < ∞ for some η > 0. If x > 0 then there exists a > 0 such that

P(pSM > x) = exp

(
−xθ̃
p

+ r(p)

)
+O

(
exp

(
−ax
p

))
as p → 0,

where
er(p) = p

q2θ̃φ′(θ̃)
:= c(p). (46)

If x < 0 then there exists a > 0 such that

P(pSM ≤ x) = O(eax/p).

Finally,

P(SM ≤ 0) =
∞∑
n=0

pqn−1 P(Sn ≤ 0)

is real analytic in p ∈ [0, δ] for some δ > 0.

Proof. Theorem 1 yields

Uθ̃ (s) = 1[0,∞)(s)

(
s

Eθ̃ X1
+ Eθ̃ X

2
1

E2
θ̃
X1

+ V1(s)

)
+ V2(s) 1(0,∞)(s),

where |V1(s)| 1[0,∞)(s)+|V2(s)| 1(0,∞)(s) = O(e−r|s|) as |s| → ∞ for some r > 0 (uniformly
over p ∈ [0, δ] for some δ > 0). Hence, (45) implies that

exp

(
θ̃
x

p

)
P(pSM > x) = p

∫ ∞

−∞
P

(
X1 >

x

p
− s

)
exp

(
θ̃

(
x

p
− s

))
Uθ̃ (ds)

= p

∫ x/p

−∞
P(X1 > u) exp(θ̃u) du

Eθ̃ X1
(47)

+ p

∫ ∞

0
P

(
X1 >

x

p
− s

)
exp

(
θ̃

(
x

p
− s

))
dV1(s) (48)

+ p

∫ ∞

0
P

(
X1 >

x

p
+ s

)
exp

(
θ̃

(
x

p
+ s

))
V2(−ds). (49)

https://doi.org/10.1239/aap/1198177240 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1198177240


1092 J. BLANCHET AND P. GLYNN

It is not hard to see that integrals (48) and (49) are of orderO(e−rx/p) for some r > 0 uniformly
in p ∈ [0, δ] for some δ > 0. Hence, we obtain

exp

(
θ̃
x

p

)
P(pSM > x) = p

∫ ∞

−∞
P(X1 > u) exp(θ̃u) du

Eθ̃ X1
+O(e−rx/p)

for some r > 0. Conversely, integrating by parts we obtain∫ ∞

−∞
P(X1 > u)θ̃ exp(θ̃u) du =

∫ ∞

−∞
exp(θ̃u)P(X1 ∈ du) = 1

q
.

Therefore,

exp

(
θ̃
x

p

)
P(pSM > x) = p

θ̃q Eθ̃ X1
+O(e−rx/p).

Equation (46) is obtained by noting that Eθ̃ X1 = qφ′(θ̃). The behavior of P(SM ≤ x/p)

for x < 0 can be obtained using a similar analysis to the previous one. The analyticity of
P(SM ≤ 0) follows using Chernoff’s bounds by noting that we can choose ρ ∈ (0, 1) for which

∞∑
n=0

pqn−1 P(Sn ≤ 0) ≤
∞∑
n=0

p(1 + p)n−1 P(Sn ≤ 0)

≤
∞∑
n=0

p(1 + p)n−1ρn

< ∞,

as long asp ∈ [0, δ] for δ > 0 sufficiently small. Hence, the series representation for P(SM ≤ 0)
converges absolutely and uniformly for sufficiently small p. This concludes the proof.

7. Geometric sums with zero-mean increments

The case in which EX1 = 0 introduces qualitative differences. As we discussed in our
introduction, it is not hard to see that p1/2SM

w−→ σ2−1/2T , where T follows the Laplace (or
double exponential) distribution. The scaling of this weak convergence result suggests that the
expansion in this case is given in powers of p1/2. The next theorem considers P(p1/2SM > x)

for x > 0; the case in which x = 0 is investigated separately.

Theorem 6. Suppose thatX1 has a strongly nonlattice distribution, EX1 = 0, and thatφ(η) :=
E eη|X| < ∞ for some η > 0. If x > 0 then there exists a > 0 such that

P(p1/2SM > x) = exp

(
− xθ̃

p1/2 + r(p)

)
+O

(
exp

(
− ax

p1/2

))
as p → 0,

where
er(p) = p

q2θ̃φ′(θ̃)
:= c(p).

Proof. We proceed as in the argument given at the beginning of this section to obtain

exp(θ̃x)P(p1/2SM > x) = p

∫ ∞

−∞
P(X1 > xp−1/2 − s) exp(θ̃(x − s))Uθ̃ (ds), (50)
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where Uθ̃ (t) = ∑∞
n=0 Pθ̃ (Sn ≤ t), and under Pθ̃ the increments of the random walk S =

(Sn : n ≥ 1), namely the Xis, are i.i.d. with distribution

Pθ̃ (X ∈ ds) = q exp(θ̃s)P(X ∈ ds),

again, θ̃ is chosen at the unique nonnegative root of the equation E exp(θ̃X) = q−1. Note that
µθ̃ := Eθ̃ X1 > 0, so the representation given in (50) is valid by virtue of standard renewal
theory. We can proceed just as in the proof of Theorem 5; we just have to be more careful here
because Eθ̃ X1 = O(p1/2). Note that the integral in (50) can be written as

exp

(
θ̃
x

p

)
P(p1/2SM > x)

= p

∫ ∞

−∞
P(X1 > xp−1/2 − s) exp

(
θ̃

(
x

p
− s

))
Uθ̃ (ds)

= p

∫ xp−1/2

−∞
P(X1 > u) exp(θ̃u) du

Eθ̃ X1
(51)

+ p

∫ ∞

0
P(X1 > xp−1/2 − s) exp

(
θ̃

(
x

p
− s

))
dV1(s) (52)

+ p

∫ ∞

0
P(X1 > xp−1/2 + s) exp

(
θ̃

(
x

p
+ s

))
V2(−ds), (53)

where, by virtue of Theorem 1, |V1(s)| = O(e−rs) as s → ∞ for some r > 0 (uniformly over
p ∈ [0, δ] for some δ > 0) and

|V2(s)| ≤ Kµθ̃ exp(−µθ̃ rs) as s → −∞

for K, r > 0 (uniformly over p ∈ [0, δ] for some δ > 0). Let us denote by J1, J2, and J3 the
integrals in (51), (52), and (53), respectively. Note that θ̃ = O(p1/2), which implies that the
treatment of J1 proceeds just as that of (47) in the proof of Theorem 5. Moreover, J2 is also
very similar to (48). The analysis of J3 deserves special attention because the decay rate of
V2(·) degrades as p ↘ 0. Observe, using integration by parts, that, for small enough p,

J3 = p

∫ ∞

0
P(X1 > xp−1/2 + s) exp(θ̃(xp−1/2 + s))V2(−ds)

= −p P(X1 > xp−1/2) exp(θ̃xp−1/2)V2(0) (54)

+ pθ̃

∫ ∞

0
V2(−s) exp(θ̃(xp−1/2 + s))P(X1 > xp−1/2 + s) ds (55)

+ pθ̃

∫ ∞

0
V2(−s) exp(θ̃(xp−1/2 + s))P(X1 ∈ xp−1/2 + ds). (56)

Clearly, (54) and (55) are of orderO(exp(−rxp−1/2)) for some r > 0. Now, observe that (56)
is bounded in absolute value by

pθ̃

∫ ∞

0
µθ̃K exp(−rµθ̃ s)eθ̃ (xp

−1/2+s) P(X1 ∈ xp−1/2 + ds). (57)
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Applying integration by parts to the previous integral allows us to conclude that we can find
constants K1, K2, r1, m > 0 (independent of p) such that (57) is bounded by

K1 exp(−rxp−1/2)+ µθ̃pθ̃
2
∫ ∞

0
P(X1 > xp−1/2 + s)K exp(−rµθ̃ s) exp(θ̃(xp−1/2 + s)) ds

≤ K1 exp(−rxp−1/2)+K2 exp(θ̃xp−1/2)

∫ ∞

0
P(X1 > xp−1/2 + umθ̃−1) exp(−r1u) du

= O(exp(−rxp−1/2)),

where the bound on the second line above was obtained using the change of variables θ̃ s/m = u

and noting that µθ̃/θ̃ → EX2 > 0. We therefore obtain, for some r > 0,

exp

(
θ̃x

p1/2

)
P(SM > x/p1/2) = p

θ̃q Eθ̃ X1
+O

(
exp

( −rx

p1/2

))
.

Which yields, just as in Theorem 5, the existence of a > 0 such that

exp

(
θ̃x

p1/2

)
P(SM > x/p1/2) = p

q2θ̃φ′(θ̃)
+O

(
exp

(−ax

p1/2

))
.

In order to recover the standard weak convergence result for the double exponential RV
discussed before, observe that

θ̃ ∼ p1/221/2

E1/2(X2)
and φ′(θ̃) ∼ (E(X2)2p)1/2.

This implies, in particular, that

P(p1/2SM > x) → exp(−|x|21/2/E1/2(X2))

2
,

which is equivalent to the weak convergence result discussed before. Moreover, it is easy to
see that in this case, θ̃ (p) can be written as an absolutely convergent power series in p1/2 for
p ∈ [0, δ] with δ > 0 small enough. To see this, let us write ψ(θ) = logφ(θ), and note that θ̃
satisfies

ψ(θ̃)1/2 = p1/2
(

1 + p

2
+ p2

3
+ · · ·

)1/2

.

Note thatψ(θ̃)1/2 is a real analytic function on [0, δ] for δ > 0 small enough and differentiable
at 0 from the right with derivative equal to EX2 > 0 which yields (using the inverse function
theorem) the required expansion for θ̃ (p). A system of equations completely analogous to
that of Proposition 2 can be easily obtained here to retrieve the coefficients in the asymptotic
expansion of θ̃ ; the details are omitted. Using an expansion for c(p) in powers of θ̃ yields the
desired asymptotic expansion in powers of p1/2.

While the expansion for P(p1/2SM > x) follows by taking advantage of the uniform renewal
theory developed in Theorem 1, the case P(p1/2SM ≤ 0) demands a completely different
strategy. To make this computation rigorous we require, as an additional technical condition,
the existence of a density for X1. The general strongly nonlattice case should be handled by
smoothing.
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Proposition 4. Suppose that the Xis possess a density and that E exp(θ |X1|) < ∞ for θ ∈
(−ε, ε) with ε > 0. Then,

P(p1/2SM ≤ 0) =
∞∑
n=1

pqn−1 P(p1/2Sn ≤ 0)

admits an asymptotic expansion in powers of p1/2 for p ∈ [0, δ] and some δ > 0.

Proof. Without loss of generality we can assume that EX1 = 1. Note that, by Fourier
inversion, we have (letting φ(iλ) = E exp(iλX1))

∞∑
n=1

pqn−1 P(p1/2Sn ≤ 0) = 1

2π

∫ ∞

−∞
pφ(iλp1/2) dλ

1 − qφ(iλp1/2)
.

Now, observe that

1

2π

∫ ∞

−∞
pφ(iλp1/2) dλ

1 − qφ(iλp1/2)
= 1

2π

∫ ∞

−∞

[
pφ(iλp1/2)

1 − qφ(iλp1/2)
− 1

1 + λ2

]
dλ+ 1

2
.

Also, observe that∫ ∞

−∞

[
pφ(iλp1/2)

1 − qφ(iλp1/2)
− 1

1 + λ2

]
dλ = −

∫ ∞

−∞
1

1 + λ2

[
1 − φ(iλp1/2)

1 − qφ(iλp1/2)

]
dλ

= −
∫ ∞

−∞
p1/2

p + λ2 Re

[
1 − φ(iλ)

1 − qφ(iλ)

]
dλ.

The expansion now follows as in the proof of Proposition 2 of Blanchet and Glynn (2006).

8. An Application to corrected diffusion approximations for the M/G/1 queue

In this section we will apply the results obtained in previous sections to develop CDAs for the
time-in-system in the M/G/1 queueing model under first-in-first-out protocol; see Asmussen
(2003, Chapter VIII). Using results by Siegmund (1979), a first-order CDA for the M/G/1
queue was developed by Asmussen (1984) under exponential moments. In the heavy-tailed
setting (assuming the existence of five moments in the underlying processing time distributions)
Asmussen and Binswanger (1997) adapted the work of Hogan (1986) to provide a first-order
CDA for the time-in-system. We provide here, under weaker hypotheses, additional correction
terms to the papers discussed above.

Recall that in the M/G/1 queue, customers arrive at a single-server queueing system according
to a Poisson process with rate λ. The nth customer requires an amount Vn of service time.
Assume that the sequence V = (Vn : n ≥ 0) is i.i.d. and independent of the arrival process.
Suppose that

EV 4 < ∞ and ρ := λEV < 1.

It is well known (see Asmussen (2003, Chapter VIII)) that if W has the distribution of the
steady-state waiting time in queue (exclusive of service) then

P(W > x) = ρ P(SM > x),
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where SM is a geometric sum corresponding to increments possessing the distribution function

F(x) = 1

EV

∫ x

0
P(V > s) ds

and geometric parameter p = (1 −ρ). We are interested in obtaining an asymptotic expansion
for the distribution of W as ρ ↗ 1. This is the so-called heavy-traffic regime in which the
system is close to 100% utilization (a setting that often arises in applications). Let vj = EV j .
Then a straightforward application of Theorem 3 provides the asymptotic expansion

P((1 − ρ)W > x) = ρ exp(−xγ0 + (γ1x + ξ1)(1 − ρ)+ (γ2x + ξ2)(1 − ρ)2)

+ o((1 − ρ)2),

where

γ0 = 2v1

v2
,

v3
2γ1 = 2v1v

2
2 − 4v2

1v3

3
,

9γ2v
5
2 = 2(8v2

3v
2
1 − 12v3v

2
2v1 + 9v4

2 − 3v4v2v
2
1)v1,

3v2
2ξ1 = 3v2

2 + 2v3v1,

6v4
2ξ2 = −4v2

3v
2
1 + 3v4

2 + 2v4v2v
2
1 + 4v3v

2
2v1.

The γks are also provided in Abate et al. (1995) for the more general GI/G/1 queue. Also, for
the GI/G/1 queue, under a different parameterization of the traffic intensity, Blanchet and Glynn
(2006) provided integral expressions (depending on the whole distribution of the interarrival
and service times) for the ξks. Our new contribution here is the explicit computation of the ξks.
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