Y.-M. J. Chen, Y. Kitaoka and J. Yu Nagoya Math. J. Vol. 158 (2000), 167–184

DISTRIBUTION OF UNITS OF REAL QUADRATIC NUMBER FIELDS

YEN-MEI J. CHEN, YOSHIYUKI KITAOKA AND JING YU¹

Dedicated to the seventieth birthday of Professor Tomio Kubota

Abstract. Let k be a real quadratic field and \mathfrak{o}_k , E the ring of integers and the group of units in k. Denoting by $E(\mathfrak{p})$ the subgroup represented by E of $(\mathfrak{o}_k/\mathfrak{p})^{\times}$ for a prime ideal \mathfrak{p} , we show that prime ideals \mathfrak{p} for which the order of $E(\mathfrak{p})$ is theoretically maximal have a positive density under the Generalized Riemann Hypothesis.

\S **1.** Statement of the result

Let k be a real quadratic number field with discriminant D_0 and fundamental unit ϵ (> 1), and let \mathfrak{o}_k and E be the ring of integers in k and the set of units in k, respectively. For a prime ideal \mathfrak{p} of k we denote by $E(\mathfrak{p})$ the subgroup of the unit group $(\mathfrak{o}_k/\mathfrak{p})^{\times}$ of the residue class group modulo \mathfrak{p} consisting of classes represented by elements of E and set $I_p := [(\mathfrak{o}_k/\mathfrak{p})^{\times} : E(\mathfrak{p})]$, where p is the rational prime lying below \mathfrak{p} . It is obvious that I_p is independent of the choice of prime ideals lying above p. Set

$$\ell_p := \begin{cases} 1, & \text{if } p \text{ is decomposable or ramified in } k, \\ p-1, & \text{if } p \text{ remains prime in } k \text{ and } N_{k/\mathbf{Q}}(\epsilon) = 1, \\ (p-1)/2, & \text{if } p \text{ remains prime in } k \text{ and } N_{k/\mathbf{Q}}(\epsilon) = -1, \end{cases}$$

where $N_{k/\mathbf{Q}}$ stands for the norm from k to the rational number field \mathbf{Q} . In [IK] we have shown that ℓ_p divides I_p and we observed that in each case the set of prime numbers satisfying $I_p = \ell_p$ has a natural density. K. Masima found that the values in tables there, are connected with the Artin constant $A := \prod_p \left(1 - \frac{1}{p(p-1)}\right) = 0.3739558\cdots$ and showed in [M] that the set of decomposable prime numbers satisfying $I_p = \ell_p$ has a density under the

Received October 7, 1999.

¹⁹⁹¹ Mathematics Subject Classification: 11R45

¹Research partially supported by National Science Council, Rep. of China.

Generalized Riemann Hypothesis (GRH) following [H]. In this paper, we treat the case where prime numbers remain prime in k following [H], [M]. However, instead of counting prime ideals which are completely decomposable, we use the Chebotarev Density Theorem by [LO], [S] under the GRH. Our main result is the following.

THEOREM. Let $\mathbb{P}(x)$ be the set of odd prime numbers $p \leq x$ which remain prime in k and let N(x) be the subset of $p \in \mathbb{P}(x)$ satisfying $I_p = \ell_p$. Then we have

$$\sharp N(x) = c_0 \operatorname{Li}(x) + O(x \log \log x / (\log x)^2)$$

for a positive constant c_0 under the GRH.

Here fields where the GRH is involved are $k(\zeta_{2n}, \sqrt[t]{\epsilon})$ for square-free natural numbers n and t = n or 2n, where ζ_m stands for a primitive m-th root of unity. The function $\operatorname{Li}(x)$ stands for $\int_2^x dt/\log t$ as usual.

\S **2.** Algebraic preparation

Throughout this paper, we keep the notation in Section 1. The main results in this section are Theorems 1 and 2.

LEMMA 1. Let n be a square-free integer (≥ 1) and suppose that $k \not\subset \mathbf{Q}(\zeta_{2n})$ and suppose $\sqrt[2n]{\epsilon} \in \mathbf{R}$. Set

$$K := \begin{cases} k(\zeta_{2n}, \sqrt[2n]{\epsilon}), & \text{if } N_{k/\mathbf{Q}}(\epsilon) = 1, \\ k(\zeta_{2n}, \sqrt[n]{\epsilon}), & \text{if } N_{k/\mathbf{Q}}(\epsilon) = -1, \end{cases}$$

and let $N := [K : k(\zeta_{2n})]$ be the extension degree of fields. Then we have

$$\begin{split} N &= [K:\mathbf{Q}]/2\varphi(2n) \\ &= \begin{cases} n, & \text{either if } N_{k/\mathbf{Q}}(\epsilon) = 1 \text{ and } \sqrt{\epsilon} \in k(\zeta_{2n}), \\ & \text{or if } N_{k/\mathbf{Q}}(\epsilon) = -1 \text{ and } 2 \nmid n, \\ 2n, & \text{if } N_{k/\mathbf{Q}}(\epsilon) = 1 \text{ and } \sqrt{\epsilon} \notin k(\zeta_{2n}), \end{cases} \end{split}$$

where $\varphi(m)$ is the Euler function.

Proof. Let us recall that

for an integer m, and an element a in a field F $(ch(F) \neq 2)$ which is not contained in F^p for every prime divisor p of m, a polynomial $x^m - a$ is irreducible either if $4 \nmid m$, or if $4 \mid m$ and $-4a \notin F^4$.

Let q be an odd prime or 4 and suppose q|2n. We show $\sqrt[q]{\epsilon} \notin k(\zeta_{2n})$ first. Suppose $\sqrt[q]{\epsilon} \in k(\zeta_{2n})$; then $\mathbf{Q}(\sqrt[q]{\epsilon}) = \mathbf{Q}((\sqrt[2n]{\epsilon})^{2n/q}) \subset \mathbf{R}$ is a subfield of an abelian field $k(\zeta_{2n})$. Hence any conjugate element of $\sqrt[q]{\epsilon}$ should be real. This is a contradiction. Hence $\sqrt[q]{\epsilon}$ is not in $k(\zeta_{2n})$.

Let us show that $x^{2n} - \epsilon$ is irreducible over $k(\zeta_{2n})$ if $\sqrt{\epsilon} \notin k(\zeta_{2n})$. We have only to consider the case of 2|n. Suppose that 2|n, $\sqrt[4]{-4\epsilon} \in k(\zeta_{2n})$ and $\sqrt{\epsilon} \notin k(\zeta_{2n})$; then $\sqrt{-4\epsilon} \in k(\zeta_{2n})$ and $\sqrt{-1}\sqrt{\epsilon} \in k(\zeta_{2n})$ hold. This contradicts that $\sqrt{\epsilon} \notin k(\zeta_{2n})$ since $\sqrt{-1} \in k(\zeta_{2n})$ holds by 2|n. Thus the above criterion yields that a polynomial $x^{2n} - \epsilon$ is irreducible over $k(\zeta_{2n})$ if $\sqrt{\epsilon} \notin k(\zeta_{2n})$. Then we have $N = [k(\zeta_{2n}, \sqrt[2n]{\epsilon}) : k(\zeta_{2n})] = 2n$. If, next $\sqrt{\epsilon} \in k(\zeta_{2n})$, then a polynomial $x^n - \sqrt{\epsilon}$ is irreducible over $k(\zeta_{2n})$ and then we have $N = [k(\zeta_{2n}, (\sqrt{\epsilon})^{1/n}) : k(\zeta_{2n})] = n$. Similarly, $x^n - \epsilon$ is irreducible over $k(\zeta_{2n})$ if $N_{k/\mathbf{Q}}(\epsilon) = -1$ and $2 \nmid n$.

Remark. In Lemma 1, a rational prime p is unramified in K if $p \nmid 2nD_0$.

PROPOSITION 1. Let n, K, N be those in Lemma 1. Let $\eta \in \text{Gal}(k(\zeta_{2n})/\mathbf{Q})$ be an automorphism such that $\eta(\zeta_{2n}) = \zeta_{2n}^{-1}$ and η induces the non-trivial automorphism of $\text{Gal}(k/\mathbf{Q})$.

(I) The case of $N_{k/\mathbf{Q}}(\epsilon) = 1$. There exists an automorphism ρ of order 2 in $\operatorname{Gal}(K/\mathbf{Q})$ such that $\rho = \eta$ on $k(\zeta_{2n})$ if and only if (i) N = 2n, (ii) N = nis odd, or (iii) N = n is even and $\eta(\sqrt{\epsilon})\sqrt{\epsilon} = 1$. When ρ exists, it is in the center of $\operatorname{Gal}(K/\mathbf{Q})$ and satisfies $\rho(\sqrt[2n]{\epsilon}) = \pm \sqrt[2n]{\epsilon}^{-1}$ and both signs \pm are possible if and only if N is even.

(II) The case of $N_{k/\mathbf{Q}}(\epsilon) = -1$. If *n* is odd, then there exists a unique automorphism ρ of order 2 in $\operatorname{Gal}(K/\mathbf{Q})$ such that $\rho = \eta$ on $k(\zeta_{2n})$. It is in the center of $\operatorname{Gal}(K/\mathbf{Q})$ and $\rho(\sqrt[n]{\epsilon}) = -\sqrt[n]{\epsilon}^{-1}$. If *n* is even, then there is no such automorphism.

Proof. Set t = 2n or n according to $N_{k/\mathbf{Q}}(\epsilon) = 1$ or -1, respectively. If $\rho \in \operatorname{Gal}(K/\mathbf{Q})$ is an extension of η and $\rho^2 = \operatorname{id.}$, then setting $\rho(\sqrt[t]{\epsilon}) = \delta\sqrt[t]{\epsilon}^{-1}$ for some $\delta \in K$, we have $\delta^{2n} = 1$ and hence δ is a 2*n*-th root of unity and hence $\rho(\delta) = \eta(\delta) = \delta^{-1}$ and $\sqrt[t]{\epsilon} = \rho^2(\sqrt[t]{\epsilon}) = \rho(\delta\sqrt[t]{\epsilon}^{-1}) = \delta^{-1}(\delta\sqrt[t]{\epsilon}^{-1})^{-1} = \delta^{-2}\sqrt[t]{\epsilon}$. Thus we have $\delta = \pm 1$.

Proof of the case (I).

Suppose $N_{k/\mathbf{Q}}(\epsilon) = 1$. Assume that either N = 2n, or N = n is odd, first. We define $\xi_n = \pm 1$ by

$$\xi_n := \begin{cases} 1, & \text{if } N = 2n, \\ \eta(\sqrt{\epsilon})\sqrt{\epsilon}, & \text{if } N = n, \end{cases}$$

where if N = n, $\sqrt{\epsilon} \in k(\zeta_{2n})$ holds by virtue of Lemma 1, and η can act on $\sqrt{\epsilon}$.

Let $\eta' \in \operatorname{Gal}(K/\mathbf{Q})$ be an extension of $\eta \in \operatorname{Gal}(k(\zeta_{2n})/\mathbf{Q})$; then we have

$$(\eta'(\sqrt[2n]{\epsilon})\sqrt[2n]{\epsilon}\xi_n)^N = \eta(\epsilon)\epsilon = 1$$

and hence $\eta'(\sqrt[2n]{\epsilon}) = \zeta_N^r \xi_n \sqrt[2n]{\epsilon}^{-1}$ for some integer r and a primitive N-th root ζ_N of unity. Since $K = k(\zeta_{2n})(\sqrt[2n]{\epsilon})$ and $N = [K : k(\zeta_{2n})]$, there exists an automorphism $\alpha \in \text{Gal}(K/k(\zeta_{2n}))$ such that $\alpha(\sqrt[2n]{\epsilon}) = \zeta_N^r \sqrt[2n]{\epsilon}$. Thus an automorphism $\rho := \alpha \eta'$ is an extension of η and satisfies $\rho(\sqrt[2n]{\epsilon}) = \xi_n \sqrt[2n]{\epsilon}^{-1}$ and the order of ρ is equal to 2.

Secondly, we consider the case where N = n is even. By Lemma 1, we have $\sqrt{\epsilon} \in k(\zeta_{2n})$. Take any extension η' in $\operatorname{Gal}(K/\mathbf{Q})$ of η . Since $(\eta'(\sqrt[2n]{\epsilon})\sqrt[2n]{\epsilon})^{2n} = \eta(\epsilon)\epsilon = 1$, we have $\eta'((\sqrt{\epsilon})^{1/n}) = \zeta_{2n}^t(\sqrt{\epsilon})^{-1/n}$ for some integer t, and

$$\eta(\sqrt{\epsilon}) = \zeta_{2n}^{tn} \sqrt{\epsilon}^{-1}.$$

If, hence $\eta(\sqrt{\epsilon})\sqrt{\epsilon} = 1$, then t is even and since $[K : k(\zeta_{2n})] = n$ and $\sqrt{\epsilon} \in k(\zeta_{2n})$, we can take $\alpha \in \operatorname{Gal}(K/k(\zeta_{2n}))$ so that $\alpha(\sqrt[2n]{\epsilon}) = \zeta_{2n}^t \sqrt[2n]{\epsilon}$, and therefore $\rho := \alpha \eta'$ is what we want. If $\eta(\sqrt{\epsilon})\sqrt{\epsilon} = -1$, then t is odd and the order of η' is not equal 2, since $\eta'^2(\sqrt[2n]{\epsilon}) = \zeta_n^{-t}\sqrt[2n]{\epsilon} \neq \sqrt[2n]{\epsilon}$. Thus we have completed the proof of the first assertion. Next, we show that if $\rho_{\pm} \in \operatorname{Gal}(K/\mathbf{Q})$ is an extension of η such that $\rho_{\pm}(\sqrt[2n]{\epsilon}) = \pm \sqrt[2n]{\epsilon}^{-1}$, then ρ_{\pm} is in the center of $\operatorname{Gal}(K/\mathbf{Q})$. Take an element $u \in \operatorname{Gal}(K/\mathbf{Q})$; then $u(\sqrt[2n]{\epsilon}) = \zeta_{2n}^{-r}\sqrt[2n]{\epsilon}$ or $\zeta_{2n}^{-r}\sqrt[2n]{\epsilon}^{-1}$ for some integer r. If $u(\sqrt[2n]{\epsilon}) = \zeta_{2n}^{-r}\sqrt[2n]{\epsilon}$, then $\rho_{\pm}u(\sqrt[2n]{\epsilon}) = \pm \zeta_{2n}^{-r}\sqrt[2n]{\epsilon}^{-1}$ and $u\rho_{\pm}(\sqrt[2n]{\epsilon}) = u(\pm \sqrt[2n]{\epsilon}^{-1}) = \pm \zeta_{2n}^{-r}\sqrt[2n]{\epsilon}^{-1}$ and hence $\rho_{\pm}u = u\rho_{\pm}$. The case of $u(\sqrt[2n]{\epsilon}) = \zeta_{2n}^{r}\sqrt[2n]{\epsilon}^{-1}$ is similar and then ρ_{\pm} is in the center of $\operatorname{Gal}(K/\mathbf{Q})$. Lastly, suppose that N is even; then there is an automorphism $\kappa \in \operatorname{Gal}(K/k(\zeta_{2n}))$ such that $\kappa(\sqrt[2n]{\epsilon}) = -\sqrt[2n]{\epsilon}^{-1}$ and hence both signs \pm are possible. Conversely, if there exist automorphisms $\rho_{\pm} \in \operatorname{Gal}(K/\mathbf{Q})$ such that $\rho_{\pm} = \eta$ on $k(\zeta_{2n})$ and $\rho_{\pm}(\sqrt[2n]{\epsilon}) = \pm \sqrt[2n]{\epsilon}^{-1}$, then $\rho_{-\rho_{+}}$ is the identity on $k(\zeta_{2n})$ and $\rho_{-\rho_{+}}(\sqrt[2n]{\epsilon}) = -\sqrt[2n]{\epsilon}$ and hence the order of $\rho_{-\rho_{+}} \in \operatorname{Gal}(K/k(\zeta_{2n}))$ is two and it yields that $N = [K : k(\zeta_{2n})]$ is even. Thus we have completed the proof of the case (I).

Proof of the case (II).

Suppose $N_{k/\mathbf{Q}}(\epsilon) = -1$. First we consider the case where *n* is odd; Since $\eta(\epsilon) = -\epsilon^{-1}$, taking an extension $\eta' \in \operatorname{Gal}(K/\mathbf{Q})$ of $\eta \in \operatorname{Gal}(k(\zeta_{2n})/\mathbf{Q})$, we have $\eta'(\sqrt[n]{\epsilon}) = -\zeta_n^r \sqrt[n]{\epsilon}^{-1}$ for some integer *r*. There exists an automorphism $\alpha \in \operatorname{Gal}(K/k(\zeta_{2n}))$ such that $\alpha(\sqrt[n]{\epsilon}) = \zeta_n^r \sqrt[n]{\epsilon}$ since $[K : k(\zeta_{2n})] = n$ is odd.

We have only to set $\rho := \alpha \eta'$. ρ is in the center of $\operatorname{Gal}(K/\mathbf{Q})$ as above. If there are two automorphisms ρ_{\pm} of order 2 such that ρ_{\pm} is η on $k(\zeta_{2n})$, then $\rho_{\pm}(\sqrt[n]{\epsilon}) = \pm \sqrt[n]{\epsilon}$ should hold as at the beginning of the proof. As in the proof of the case (I), it implies the extension degree $[K : k(\zeta_{2n})] = n$ is even, which is a contradiction. Lastly suppose that n is even and there is an automorphism ρ of order 2 in $\operatorname{Gal}(K/\mathbf{Q})$ such that $\rho = \eta$ on $k(\zeta_{2n})$; then $\rho(\epsilon) = -\epsilon^{-1}$ implies $\rho(\sqrt[n]{\epsilon}) = \zeta_{2n}^{r} \sqrt[n]{\epsilon}^{-1}$ for an odd integer r. Then $\sqrt[n]{\epsilon} = \rho^2(\sqrt[n]{\epsilon}) = \zeta_{2n}^{-r}(\zeta_{2n}^{r} \sqrt[n]{\epsilon}^{-1})^{-1} = \zeta_{2n}^{-2r} \sqrt[n]{\epsilon}$ implies $\zeta_n^r = \zeta_{2n}^{2r} = 1$, which is a contradiction, since 2|n and $2 \notin r$. This completes the proof of the proposition.

LEMMA 2. Suppose $N_{k/\mathbf{Q}}(\epsilon) = 1$ and let p be an odd prime which remains in k. Then for a square-free natural number n, $n(p-1)|I_p$ holds if and only if $p+1 \equiv 0 \mod 2n$ and each prime ideal of $k(\zeta_{2n})$ lying above pis completely decomposable at $K = k(\zeta_{2n})(\sqrt[2n]{\epsilon})$.

Proof. First note that p-1 divides I_p as in the introduction. Let us show the "only if" part. Suppose that $n(p-1)|I_p$ and set $t = I_p/n(p-1)$ $(\in \mathbb{Z})$. Since $p^2 - 1 = \sharp(\mathfrak{o}/(p))^{\times} = I_p \cdot \sharp E((p))$, we have $(p+1)/n = (p^2-1)/n(p-1) = I_p \cdot \sharp E((p))/n(p-1) = t \sharp E((p)) \equiv 0 \mod 2$ since $\sharp E((p)) \equiv 0 \mod 2$ by $\pm 1 \in E((p))$. Hence we have $p+1 \equiv 0 \mod 2n$. Next we show the following

CLAIM. The relative degree of p at $k(\zeta_{2n})/\mathbf{Q}$ is 2.

Let \mathfrak{p} be a prime ideal of $k(\zeta_{2n})$ lying above p. In the local field $k(\zeta_{2n})_{\mathfrak{p}}$, the closure of k is an unramified extension of \mathbf{Q}_p of degree 2 and $p \equiv -1 \mod 2n$ implies the closure of $\mathbf{Q}(\zeta_{2n})$ has the same property, and the uniqueness of the unramified extension of degree 2 over \mathbf{Q}_p implies that $k(\zeta_{2n})_{\mathfrak{p}}$ is the unramified extension of degree 2 over \mathbf{Q}_p . This completes the proof of the claim.

Let $\alpha \in \mathfrak{o}_k$ be a generator of $(\mathfrak{o}_k/(p))^{\times}$ and r the order of ϵ in $(\mathfrak{o}_k/(p))^{\times}$, and define an integer u with (u, r) = 1 by $\epsilon \equiv \alpha^{u(p^2-1)/r} \mod (p)$. Since $p^2-1 = I_p \cdot \sharp E((p)) \equiv 0 \mod n(p-1) \cdot r \equiv 0 \mod 2nr$, we have $p^2-1 = 2nrw$ for some integer w. Then $\epsilon \equiv (\alpha^{uw})^{2n} \mod (p)$ implies that the equation $x^{2n} = \epsilon$ has a solution in the local field $k_{(p)}$ by successive approximation by Newton. Let \mathfrak{p} be a prime ideal of $k(\zeta_{2n})$ lying above p; then $k(\zeta_{2n})_{\mathfrak{p}} \cong k_{(p)}$ follows from the Claim and hence the equation $x^{2n} = \epsilon$ has a solution in $k(\zeta_{2n})_{\mathfrak{p}}$, hence \mathfrak{p} is completely decomposable in $k(\zeta_{2n}, \sqrt[2n]{\epsilon})$. Next let us show the "if" part. Let $\mathfrak{P}, \mathfrak{p} (= \mathfrak{P} \cap k(\zeta_{2n}))$ be prime ideals of $k(\zeta_{2n}, \sqrt[2n]{\epsilon}), k(\zeta_{2n})$ lying above p, respectively. By the assumption, the relative degree of $\mathfrak{P}/\mathfrak{p}$ is one. Hence the equation $x^{2n} - \epsilon = 0$ is soluble in the local field $k(\zeta_{2n})_{\mathfrak{p}}$. Since $p+1 \equiv 0 \mod 2n$, p is unramified in $\mathbf{Q}(\zeta_{2n})$ and the closure of $\mathbf{Q}(\zeta_{2n})$ in $k(\zeta_{2n})_{\mathfrak{p}}$ is \mathbf{Q}_p or its unramified quadratic extension. Thus $k(\zeta_{2n})_{\mathfrak{p}}$ is the unramified quadratic extension of \mathbf{Q}_p and hence $x^{2n} = \epsilon$ is soluble in $k_{(p)} \cong k(\zeta_{2n})_{\mathfrak{p}}$. Hence there exist a primitive root $\alpha \in \mathfrak{o}_k$ and an integer $u \in \mathbf{Z}$ such that

$$(\alpha^u)^{2n} \equiv \epsilon \bmod (p).$$

(i) The case where $E((p)) = \langle \pm 1, \epsilon \mod (p) \rangle$ but $E((p)) \neq \langle \epsilon \mod (p) \rangle$.

We note that the assumption yields $\epsilon^t \not\equiv -1 \mod (p)$ for any integer t. Let r be the order of $\epsilon \mod (p)$ in $(\mathfrak{o}_k/(p))^{\times}$. If r is even, $(\epsilon^{r/2})^2 \equiv 1 \mod (p)$ and hence $\epsilon^{r/2} \equiv \pm 1 \mod (p)$. Since r is the order of $\epsilon \mod (p)$, we have $\epsilon^{r/2} \equiv -1 \mod (p)$. It contradicts the assumption. Hence r is odd and $\sharp E((p)) = 2r$ implies $p^2 - 1 = I_p \cdot 2r$. Now we have $1 \equiv \epsilon^r \equiv (\alpha^u)^{2nr} \mod (p)$ and then we have $2nru \equiv 0 \mod p^2 - 1$ and $2ntu \not\equiv 0 \mod p^2 - 1$ for any proper divisor t of r, since r is the order of $\langle \epsilon \mod (p) \rangle$. Set $2nru = w(p^2 - 1)$ for an integer w. Then we have

$$(r, w) = 1$$
 and $ru = w(p-1)\frac{p+1}{2n}$.

Let us show (r, p - 1) = 1. If a prime number q divides (r, p - 1), then q is odd, since r is odd. On the other hand, $\mathbf{Z} \ni I_p/(p-1) = (p+1)/2r$ and q|r imply q|(p+1). Therefore q divides $p \pm 1$ and hence q = 2, which is the contradiction and hence (r, p-1) = 1. Thus r divides (p+1)/2n and hence $I_p/n(p-1) = 2rI_p/2rn(p-1) = (p^2-1)/2rn(p-1) = (p+1)/2rn \in \mathbf{Z}$ which yields that n(p-1) divides I_p .

(ii) The case where $E((p)) = \langle \epsilon \mod (p) \rangle$.

Since $1 \not\equiv -1 \mod (p)$, the order r of $\epsilon \mod (p)$ in $(\mathfrak{o}_k/(p))^{\times}$ is even. As in the case (i), we have $2nur \equiv 0 \mod p^2 - 1$ and for any proper divisor t, we have $2nut \not\equiv 0 \mod p^2 - 1$. Set $2nur = w(p^2 - 1)$ ($w \in \mathbb{Z}$); then (r, w) = 1follows and if a prime number q divides (r, p - 1), then q|r and

$$\frac{p+1}{r} = \frac{I_p}{p-1} \in \mathbf{Z}$$

imply q|(p+1) and hence q = 2. Set $r = 2^t \cdot r'$ (r' : odd); then we have shown (r', p-1) = 1 and $2^t r' u = w(p-1)\frac{p+1}{2n}$ implies

$$r' \big| \frac{p+1}{2n}$$

by (r, w) = 1 and (r', p - 1) = 1. Let us show nr|(p + 1). If n is odd, then $(p + 1)/r \in \mathbb{Z}$ implies $2^t|(p + 1)$ and hence $(p + 1)/2nr' \in \mathbb{Z}$ implies $r = 2^t r'|\frac{p+1}{n}$. If n is even, then $p + 1 \equiv 0 \mod 2n \equiv 0 \mod 4$, and hence (p-1)/2 is odd. Since $2^t r'u = w\frac{p-1}{2}\frac{p+1}{n}$ and $(r, w\frac{p-1}{2}) = 1$, we have $r|\frac{p+1}{n}$. Thus we have $I_p = (p^2 - 1)/r = \frac{p+1}{nr} \cdot (p-1)n \equiv 0 \mod (p-1)n$ and hence we have completed the proof.

THEOREM 1. Suppose that $N_{k/\mathbf{Q}}(\epsilon) = 1$ and p is an odd prime number which remains prime in k. Let n be a square-free integer (≥ 1) . Then $n(p-1)|I_p$ holds if and only if $k \not\subset \mathbf{Q}(\zeta_{2n})$ and for a prime ideal \mathfrak{P} of $K = k(\zeta_{2n}, \sqrt[2n]{\epsilon})$ lying above p, the Frobenius automorphism $\rho_0 = \left(\frac{K/\mathbf{Q}}{\mathfrak{P}}\right)$ is equal to an automorphism ρ given in Proposition 1.

Proof. Suppose $n(p-1)|I_p$; then $p+1 \equiv 0 \mod 2n$ follows from Lemma 2 and hence ρ_0 is the complex conjugation on $\mathbf{Q}(\zeta_{2n})$ and then ρ_0 fixes each element in k if $k \subset \mathbf{Q}(\zeta_{2n})$. On the other hand, p remains prime in k by the assumption and hence ρ_0 is a non-trivial automorphism of k, which is a contradiction. Thus we have $k \not\subset \mathbf{Q}(\zeta_{2n})$. By Lemma 2, the relative degree of \mathfrak{P} is two and so $\rho_0^2 = \mathrm{id.}$ and hence we have $\rho_0 = \rho$ given in Proposition 1.

Conversely suppose that $k \not\subset \mathbf{Q}(\zeta_{2n})$ and ρ_0 is an automorphism of order 2 and it is equal to η in Proposition 1 on $k(\zeta_{2n})$. Then ρ_0 is the complex conjugation on $\mathbf{Q}(\zeta_{2n})$ and then $p+1 \equiv 0 \mod 2n$. Since the order of ρ_0 is two, we have $[K_{\mathfrak{P}} : \mathbf{Q}_p] = 2$ and $[k_{(p)} : \mathbf{Q}_p] = 2$, which yields that the relative degree of \mathfrak{P} at K/k and hence at $K/k(\zeta_{2n})$ is one. Now Lemma 2 implies $n(p-1)|I_p$.

LEMMA 3. Suppose $N_{k/\mathbf{Q}}(\epsilon) = -1$ and let p be an odd prime which remains prime in k. Then for a square-free natural number n, $n\frac{p-1}{2}|I_p$ holds if and only if $p + 1 \equiv 0 \mod 2n$ and each prime ideal of $k(\zeta_{2n})$ lying above p is completely decomposable at $K = k(\zeta_{2n})(\sqrt[n]{\epsilon})$.

Proof. We note that $\frac{p-1}{2}|I_p$ as in the introduction ([IK]). Set r := #E((p)). We claim $r \equiv 0 \mod 4$. Because of $\epsilon^{p+1} \equiv -1 \mod (p)$ ([IK]),

E((p)) is generated by $\epsilon \mod (p)$. $\pm 1 \in E((p))$ implies $r \equiv 0 \mod 2$. Suppose that r = 2t for some odd integer t; then we have $\epsilon^{(p+1)t} \equiv -1 \mod (p)$ and on the other hand $(p+1)t \equiv 0 \mod 2t$ implies $\epsilon^{(p+1)t} \equiv 1 \mod (p)$, which is a contradiction. Therefore $r \equiv 0 \mod 4$ and note $p^2 - 1 = I_p \cdot r$.

First suppose $n\frac{p-1}{2}|I_p$ and set $I_p = n\frac{p-1}{2} \cdot t$ for an integer t. Then we have $(p+1)/n = (p^2-1)/n(p-1) = I_p r/n(p-1) = tr/2 \in 2\mathbb{Z}$ and then

 $p+1 \equiv 0 \mod 2n$.

Since the order of ϵ in $(\mathfrak{o}_k/(p))^{\times}$ is r, we can take a generator $\alpha \in \mathfrak{o}_k$ of $(\mathfrak{o}_k/(p))^{\times}$ so that $\epsilon \equiv \alpha^{u(p^2-1)/r} \mod (p)$ for an integer u with (u,r) = 1. Then we have $\epsilon \equiv (\alpha^{u(p^2-1)/nr})^n \mod (p)$, where $(p^2-1)/nr = I_p/n$ is an integer. Hence $x^n \equiv \epsilon \mod (p)$ is soluble in \mathfrak{o}_k and $x^n = \epsilon$ has a solution in the local field $k_{(p)}$. Let \mathfrak{P} be a prime ideal of $K = k(\zeta_{2n}, \sqrt[n]{\epsilon})$ lying above p and set $\mathfrak{p} = \mathfrak{P} \cap k(\zeta_{2n})$; then $p+1 \equiv 0 \mod 2n$ implies that the closure of $\mathbf{Q}(\zeta_{2n})$ in $k(\zeta_{2n})_{\mathfrak{p}} = k_{(p)}$. Hence the solubility of the equation $x^n = \epsilon$ in $k_{(p)} = k(\zeta_{2n})_{\mathfrak{p}}$ yields that \mathfrak{p} is completely decomposable at $K/k(\zeta_{2n})$.

Conversely, we suppose $p + 1 \equiv 0 \mod 2n$ and each prime ideal of $k(\zeta_{2n})$ lying above p is completely decomposable at K. Let \mathfrak{P} be a prime ideal of K lying above p, and set $\mathfrak{p} = \mathfrak{P} \cap k(\zeta_{2n})$. Since $p \equiv -1 \mod 2n$, the closure of $\mathbf{Q}(\zeta_{2n})$ in $K_{\mathfrak{P}}$ is an unramified extension of degree 2 over \mathbf{Q}_p and so is the closure of k. Hence by the assumption, $K_{\mathfrak{P}} = k(\zeta_{2n})_{\mathfrak{p}}$ holds where $\mathfrak{p} = \mathfrak{P} \cap k(\zeta_{2n})$, and the equation $x^n = \epsilon$ is completely soluble over $k(\zeta_{2n})_{\mathfrak{p}} = k_{(p)}$. Take a generator $\alpha \in \mathfrak{o}_k$ of $(\mathfrak{o}_k/(p))^{\times}$ and an integer u such that $(\alpha^u)^n \equiv \epsilon \mod (p)$. $1 \equiv \epsilon^r \equiv \alpha^{run} \mod (p)$ implies $run \equiv 0 \mod p^2 - 1$ and for any proper divisor t of r, $tun \not\equiv 0 \mod p^2 - 1$ holds. If a prime number q divides (r, p - 1), then $\frac{2(p+1)}{r} = \frac{I_p}{(p-1)/2} \in \mathbf{Z}$ implies q|2(p+1) by q|r and hence q = 2 because of q|(p-1). Set $r = 2^t \cdot r'$ $(r' : \mathrm{odd})$; then we have shown (r', p-1) = 1 and then $ru = 2^t \cdot r'u = w(p-1)\frac{p+1}{nr'}$ and (r, w) = 1 = (r', p-1) imply (r', w(p-1)) = 1 and $2^t u = w(p-1)\frac{p+1}{nr'}$ and

nr'|(p+1).

To show $n\frac{p-1}{2}|I_p$, i.e., $\frac{I_p}{n(p-1)/2} = \frac{2(p+1)}{nr} \in \mathbf{Z}$, we have only to show $\operatorname{ord}_2 \frac{2(p+1)}{nr} \geq 0$, where $a := \operatorname{ord}_2(b)$ is defined by $2^a || b$. At the begining of the proof, we showed 4|r and then $t \geq 2$. (r, w) = 1 implies that w is odd.

If n is odd, then $\frac{2(p+1)}{r} = \frac{I_p}{(p-1)/2} \in \mathbb{Z}$ yields $\operatorname{ord}_2 \frac{2(p+1)}{nr} = \operatorname{ord}_2 \frac{2(p+1)}{r} \ge 0$. If n is even, then $p+1 \equiv 0 \mod 4$ implies $0 \le \operatorname{ord}_2 u = \operatorname{ord}_2 \frac{w(p^2-1)}{nr} = \operatorname{ord}_2 \frac{p+1}{nr} + \operatorname{ord}_2(p-1) = \operatorname{ord}_2 \frac{p+1}{nr} + 1 = \operatorname{ord}_2 \frac{2(p+1)}{nr}$. Thus we have shown $\operatorname{ord}_2 \frac{2(p+1)}{nr} \ge 0$ and then $\frac{I_p}{n(p-1)/2} = \frac{2(p+1)}{nr}$ is an integer and hence we have completed the proof of Lemma 3.

THEOREM 2. Suppose that $N_{k/\mathbf{Q}}(\epsilon) = -1$ and p is an odd prime number which remains prime in k. Let n be a square-free natural number. Then $n\frac{p-1}{2}|I_p$ holds if and only if $k \notin \mathbf{Q}(\zeta_{2n})$, n is odd and for each prime ideal \mathfrak{P} of $K = k(\zeta_{2n}, \sqrt[n]{\epsilon})$ lying above p, the Frobenius automorphism $\rho_0 = \left(\frac{K/\mathbf{Q}}{\mathfrak{P}}\right)$ is equal to ρ given in Proposition 1.

Proof. Suppose $n\frac{p-1}{2}|I_p$; then by Lemma 3, ρ_0 induces the complex conjugation on $\mathbf{Q}(\zeta_{2n})$ and the order of ρ_0 is two, since $K_{\mathfrak{P}}$ is a quadratic unramified extension of \mathbf{Q}_p . If $k \subset \mathbf{Q}(\zeta_{2n})$, then ρ_0 induces the trivial automorphism on k, which is a contradiction. Hence $k \not\subset \mathbf{Q}(\zeta_{2n})$ holds and then Proposition 1 implies that n is odd and the uniqueness implies $\rho_0 = \rho$.

Now let us show the converse. Since $\rho_0 = \rho$ and ρ induces the complex conjugation on $\mathbf{Q}(\zeta_{2n})$, $p+1 \equiv 0 \mod 2n$ holds. Since the order of $\rho_0 = 2$, and the closure of k in $K_{\mathfrak{P}}$ is a quadratic unramified extension of \mathbf{Q}_p , the relative degree of \mathfrak{P} at K/k and hence $K/k(\zeta_{2n})$ is one and then Lemma 3 implies $n\frac{p-1}{2}|I_p$.

$\S 3.$ Analytic part of the proof of the theorem

Hereafter q denotes a prime number and p denotes an odd prime number which remains prime in the real quadratic field k. We set $\tilde{\ell}_p := I_p/\ell_p$, which is an integer ([IK]). As in the Section 1, we denote by $\mathbb{P}(x)$ the set of odd prime numbers $p \leq x$ which remains prime in k. Set for $x \geq 3$,

$$\begin{split} N(x) &:= \sharp \{ p \in \mathbb{P}(x) \mid \tilde{\ell}_p = 1 \}, \\ N(x, \eta) &:= \sharp \{ p \in \mathbb{P}(x) \mid q \nmid \tilde{\ell}_p \text{ for } \forall q \leq \eta \}, \\ M(x, \eta_1, \eta_2) &:= \sharp \{ p \in \mathbb{P}(x) \mid q \mid \tilde{\ell}_p \text{ for } \eta_1 < \exists q \leq \eta_2 \}, \\ P(x, n) &:= \sharp \{ p \in \mathbb{P}(x) \mid n \mid \tilde{\ell}_p \}, \\ \xi_1 &:= 6^{-1} \log x, \ \xi_2 &:= \sqrt{x} (\log x)^{-2}, \ \xi_3 &:= \sqrt{x} \log x. \end{split}$$

Then it is easy to see $N(x,\xi_1) - M(x,\xi_1,\xi_2) - M(x,\xi_2,\xi_3) - M(x,\xi_3,x-1) \le N(x) = N(x,x-1) \le N(x,\xi_1).$

Lemma 1. $M(x, \xi_2, \xi_3) = O((x \log(\log x))/(\log x)^2).$

Proof. Since $\tilde{\ell}_p = I_p/\ell_p$ divides $2I_p/(p-1)$ and I_p divides $p^2 - 1$, $\tilde{\ell}_p$ divides 2(p+1). For a prime number q with $\xi_2 < q \leq \xi_3$, $q|\tilde{\ell}_p$ implies q|2(p+1) and then $p \equiv -1 \mod q$. Thus we have

$$M(x,\xi_2,\xi_3) \le \sum_{\xi_2 < q \le \xi_3} \sharp\{p \in \mathbb{P}(x) \mid p \equiv -1 \mod q\}$$
$$= O((x \log(\log x))/(\log x)^2),$$

as is shown in [H].

LEMMA 2. $M(x, \xi_3, x - 1) = O(x(\log x)^{-2}).$

Proof. For a prime number $p \in \mathbb{P}(x)$, suppose that a prime number q with $\xi_3 < q \leq x - 1$ satisfies $q | \tilde{\ell}_p$. Set

$$\delta = \begin{cases} 1, & \text{if } N_{k/\mathbf{Q}}(\epsilon) = 1, \\ 2, & \text{if } N_{k/\mathbf{Q}}(\epsilon) = -1. \end{cases}$$

Then $\delta \ell_p = p - 1$ and $\frac{2(p+1)}{q \ddagger E((p))} = \frac{2(p+1)I_p}{q \ddagger E((p))I_p} = \frac{2(p+1)\ell_p \tilde{\ell}_p}{q(p^2-1)} = \frac{2\tilde{\ell}_p}{\delta q}$ is an integer. Hence $\sharp E((p))$ divides 2(p+1)/q, where we note that 2(p+1)/q is an even integer. Thus $\epsilon^{2(p+1)/q} \equiv 1 \mod (p)$ holds and then $N_{k/\mathbf{Q}}(\epsilon^{2(p+1)/q} - 1) \equiv 0 \mod p^2$. Here $2(p+1)/q < 2(x+1)/\sqrt{x}\log x \ll \sqrt{x}/\log x$. Thus p^2 divides $\prod_{m \ll \sqrt{x}/\log x, m:\text{even}} N_{k/\mathbf{Q}}(\epsilon^m - 1)$. Denote by ϵ_1 the conjugate of ϵ ; then $|\epsilon_1| < 1$ and for an even integer m, we have $|N_{k/\mathbf{Q}}(\epsilon^m - 1)| = |\epsilon^m - 1||\epsilon_1^m - 1| < \epsilon^m - 1 < \epsilon^m$, and then we have

$$2^{2M(x,\xi_3,x-1)} \le \prod_p p^2 \le \prod_{m \ll \sqrt{x}/\log x} \epsilon^m,$$

where p runs over the set which defines $M(x,\xi_3,x-1)$. Therefore we have $M(x,\xi_3,x-1) \ll \sum_{m < \sqrt{x}/\log x} m \ll x/(\log x)^2$.

LEMMA 3. $M(x, \xi_1, \xi_2) \leq \sum_{\xi_1 < q \leq \xi_2} P(x, q).$

Proof. It is obvious.

LEMMA 4. Set $Q(\xi_1) := \prod_{q \leq \xi_1} q$; then we have $N(x,\xi_1) = \sum_{n \mid Q(\xi_1)} \mu(n) P(x,n)$, where $\mu(n)$ is the Möbius function.

176

Proof. $N(x,\xi_1)$ is equal to

$$\sharp \{ p \in \mathbb{P}(x) \mid (Q(\xi_1), \,\tilde{\ell}_p) = 1 \} = \sum_{p \in \mathbb{P}(x)} \sum_{n \mid (Q(\xi_1), \tilde{\ell}_p)} \mu(n)$$
$$= \sum_{n \mid Q(\xi_1)} \mu(n) \sum_{p \in \mathbb{P}(x), \, n \mid \tilde{\ell}_p} 1 = \sum_{n \mid Q(\xi_1)} \mu(n) P(x, n).$$

Thus we have

$$N(x) = \sum_{n|Q(\xi_1)} \mu(n) P(x, n) + O\left(\sum_{\xi_1 < q \le \xi_2} P(x, q)\right) + O(x \log(\log x) / (\log x)^2).$$

Now let n be a square-free natural number, and set

$$K_n := \begin{cases} k(\zeta_{2n}, \sqrt[2n]{\epsilon}), & \text{if } N_{k/\mathbf{Q}}(\epsilon) = 1, \\ k(\zeta_{2n}, \sqrt[n]{\epsilon}), & \text{if } N_{k/\mathbf{Q}}(\epsilon) = -1. \end{cases}$$

Then from Lemma 1 in the Section 2 follows that under the condition $k \not\subset \mathbf{Q}(\zeta_{2n})$

$$[K_n: \mathbf{Q}] = \begin{cases} 4n\varphi(2n), & \text{if } N_{k/\mathbf{Q}}(\epsilon) = 1 \text{ and } \sqrt{\epsilon} \notin k(\zeta_{2n}), \\ 2n\varphi(2n), & \text{if } N_{k/\mathbf{Q}}(\epsilon) = 1 \text{ and } \sqrt{\epsilon} \in k(\zeta_{2n}), \\ 2n\varphi(n), & \text{if } N_{k/\mathbf{Q}}(\epsilon) = -1 \text{ and } 2 \nmid n. \end{cases}$$

Let C be a union of conjugacy classes consisting of automorphisms ρ in $\operatorname{Gal}(K_n/\mathbf{Q})$ in Proposition 1 of the Section 2; then we have under the condition $k \notin \mathbf{Q}(\zeta_{2n})$

$$\sharp(C) = \begin{cases} 2, & \text{if } N_{k/\mathbf{Q}}(\epsilon) = 1, \text{ and} \\ & \text{either } 2|n, \sqrt{\epsilon} \in k(\zeta_{2n}) \text{ and } \eta(\sqrt{\epsilon})\sqrt{\epsilon} = 1, \text{ or } \sqrt{\epsilon} \notin k(\zeta_{2n}), \\ 1, & \text{either if } N_{k/\mathbf{Q}}(\epsilon) = 1, 2 \nmid n, \text{ and } \sqrt{\epsilon} \in k(\zeta_{2n}), \\ & \text{ or if } N_{k/\mathbf{Q}}(\epsilon) = -1 \text{ and } 2 \nmid n, \\ 0, & \text{ otherwise,} \end{cases} \end{cases}$$

where η is an automorphism such that it is the complex conjugation on $\mathbf{Q}(\zeta_{2n})$ and is the non-trivial automorphism on k, and note that the equality $[K_n : k(\zeta_{2n})] = n$ implies $\sqrt{\epsilon} \in k(\zeta_{2n})$ by Lemma 1 in the Section 2 when $N_{k/\mathbf{Q}}(\epsilon) = 1$. Moreover Theorems 1 and 2 imply that

$$P(x,n) = \begin{cases} \sharp \left\{ p \in \mathbb{P}(x) \mid k \not\subset \mathbf{Q}(\zeta_{2n}), \left(\frac{K_n/\mathbf{Q}}{\mathfrak{P}}\right) \in C \right\}, & \text{if } N_{k/\mathbf{Q}}(\epsilon) = 1, \\ \sharp \left\{ p \in \mathbb{P}(x) \mid k \not\subset \mathbf{Q}(\zeta_{2n}), n : \text{odd}, \left(\frac{K_n/\mathbf{Q}}{\mathfrak{P}}\right) \in C \right\}, \\ & \text{if } N_{k/\mathbf{Q}}(\epsilon) = -1, \end{cases}$$

where \mathfrak{P} is any prime ideal of K_n lying above a prime ideal p. We apply the Chebotarev density theorem under the GRH ([LO], Théorème 4 in [S]):

CHEBOTAREV DENSITY THEOREM. Suppose that the GRH holds for K_n . Let C be the union of conjugacy classes of $\operatorname{Gal}(K_n/\mathbf{Q})$ defined above. Denote by $\pi_C(x, K_n)$ the number of unramified prime number p such that $\left(\frac{K_n/\mathbf{Q}}{\mathfrak{P}}\right) \in C$ and $p \leq x$, where \mathfrak{P} is a prime ideal of K_n lying above p. Then we have

$$\left|\pi_C(x,K_n) - \frac{\sharp(C)}{[K_n:\mathbf{Q}]}\operatorname{Li}(x)\right| < c\left(\frac{\sharp(C)}{[K_n:\mathbf{Q}]}\sqrt{x}\log(dK_nx^{[K_n:\mathbf{Q}]})\right)$$

where c is an absolute constant and dK_n stands for the absolute discriminant of K_n .

Hereafter we apply this theorem assuming the GRH. Now set $d(n) := \sharp(C)[K_n : \mathbf{Q}]^{-1}$; then we have

$$d(n) = \begin{cases} (2n\varphi(n))^{-1}, & \text{if } N_{k/\mathbf{Q}}(\epsilon) = -1, n \text{ is odd and } k \not\subset \mathbf{Q}(\zeta_n), \\ (n\varphi(2n))^{-1}, & \text{if } N_{k/\mathbf{Q}}(\epsilon) = 1, n \text{ is even}, \sqrt{\epsilon} \in k(\zeta_{2n}), \\ \eta(\sqrt{\epsilon})\sqrt{\epsilon} = 1 \text{ and } k \not\subset \mathbf{Q}(\zeta_{2n}), \\ (2n\varphi(n))^{-1}, & \text{if } N_{k/\mathbf{Q}}(\epsilon) = 1, n \text{ is odd}, \sqrt{\epsilon} \in k(\zeta_{2n}) \text{ and} \\ k \not\subset \mathbf{Q}(\zeta_{2n}), \\ (2n\varphi(2n))^{-1}, & \text{if } N_{k/\mathbf{Q}}(\epsilon) = 1, \sqrt{\epsilon} \notin k(\zeta_{2n}) \text{ and } k \not\subset \mathbf{Q}(\zeta_{2n}), \\ 0, & \text{otherwise.} \end{cases}$$

Note that d(n) = 0 if $k \subset \mathbf{Q}(\zeta_{2n})$. By the theory of algebraic number fields, it is easy to see

$$dK_n|(2n)^{8n\varphi(2n)}D_0^{2n\varphi(2n)},$$

where D_0 is the discriminant of k as in the introduction. Theorems 1 and 2 in the Section 2 imply $\pi_C(x, K_n) = P(x, n)$ under the following condition c(n):

$$\begin{cases} k \not\subset \mathbf{Q}(\zeta_{2n}), & \text{if } N_{k/\mathbf{Q}}(\epsilon) = 1, \\ n : \text{odd and } k \not\subset \mathbf{Q}(\zeta_{2n}), & \text{if } N_{k/\mathbf{Q}}(\epsilon) = -1. \end{cases}$$

Note that if the condition c(n) is not satisfied, then d(n) = 0 holds. Hence we have

$$N(x) = \sum_{\substack{n \mid Q(\xi_1) \\ c(n)}} \mu(n) \pi_C(x, K_n) + O\left(\sum_{\substack{\xi_1 < q \le \xi_2 \\ c(q)}} \pi_C(x, K_q)\right) + O(x \log(\log x) / (\log x)^2).$$

LEMMA 5.
$$\sum_{\xi_1 < q \le \xi_2, c(q)} \pi_C(x, K_q) = O(x \log(\log x) / (\log x)^2).$$

Proof. It is easy to see that

$$\sum_{\substack{\xi_1 < q \le \xi_2 \\ c(q)}} \pi_C(x, K_q) = \sum_{\xi_1 < q \le \xi_2} d(q) \operatorname{Li}(x) + O\left(\sum_{\xi_1 < q \le \xi_2} d(q) \sqrt{x} \log(dK_q x^{[K_q:\mathbf{Q}]})\right).$$

Now we have

$$\sum_{\xi_1 < q \le \xi_2} d(q) \ll \sum_{q > 6^{-1} \log x} q^{-2} \ll 1/\log x,$$

and

$$\sum_{\xi_1 < q \le \xi_2} d(q) \log dK_q \ll \sum_{\xi_1 < q \le \xi_2} (\log q + 1) \ll \sqrt{x} (\log x)^{-2} < \sqrt{x} \frac{\log \log x}{(\log x)^2},$$

and lastly

$$\sum_{\xi_1 < q \le \xi_2} d(q) [K_q : \mathbf{Q}] \log x \ll \pi(\xi_2) \log x \ll \sqrt{x} (\log x)^{-2}$$
$$\ll \sqrt{x} \log \log x / (\log x)^2.$$

From these follows the assertion.

LEMMA 6.

$$\sum_{\substack{n \mid Q(\xi_1) \\ c(n)}} \mu(n) \pi_C(x, K_n) = \left(\sum_{n=1}^{\infty} \mu(n) d(n)\right) \operatorname{Li}(x) + O(x \log \log x / (\log x)^2).$$

 $\it Proof.~$ By using the Chebotarev density theorem under the GRH, we have

the left-hand side

$$= \sum_{n|Q(\xi_1)} \mu(n) \{ d(n) \operatorname{Li}(x) + O(d(n)\sqrt{x} \log(dK_n x^{[K_n:\mathbf{Q}]})) \}$$
$$= \left(\sum_{n|Q(\xi_1)} \mu(n) d(n) \right) \operatorname{Li}(x) + \sqrt{x} \log x O\left(\sum_{n|Q(\xi_1)} d(n) [K_n:\mathbf{Q}] \right)$$
$$+ \sqrt{x} O\left(\sum_{n|Q(\xi_1)} d(n) \log dK_n \right).$$

https://doi.org/10.1017/S0027763000007364 Published online by Cambridge University Press

The first term is equal to

$$\sum_{n\geq 1}\mu(n)d(n) + O\left(\sum_{n}^{\star}(n\varphi(n))^{-1}\right),$$

where $\sum_{n=1}^{\infty} f_{n}$ means that the sum on n which has a prime divisor larger than $\xi_1 = 6^{-1} \log x$, and it is easy to see

$$\sum_{n}^{*} (n\varphi(n))^{-1} < \sum_{n>\xi_{1}} \frac{1}{n^{2}} \frac{n}{\varphi(n)}$$
$$\ll \sum_{n>\xi_{1}} n^{-2} \sum_{d|n} 1/d = \sum_{d=1}^{\infty} 1/d \sum_{m>\xi_{1}/d}^{\infty} (md)^{-2}$$
$$\ll \sum_{d=1}^{\infty} 1/d^{3} \cdot \frac{1}{\xi_{1}/d} \ll 1/\xi_{1} \ll 1/\log x.$$

We note that $\log Q(\xi_1)/(6^{-1}\log x) = \sum_{q \le 6^{-1}\log x} \log q/(6^{-1}\log x) < 1.1$ and then $Q(\xi_1) < x^{1.1/6}$ if x is large. The second term is

$$\sqrt{x} \log x O\left(\sum_{n|Q(\xi_1)} 1\right) = \sqrt{x} \log x O(Q(\xi_1)^{\delta})$$
$$= O(x \log \log x / (\log x)^2)$$

where δ is an arbitrary small positive number. The third term is

$$\begin{split} \sqrt{x} O\bigg(\sum_{n|Q(\xi_1)} \Big(\frac{n\varphi(n)}{n\varphi(n)}\log n+1\Big)\bigg) &= \sqrt{x} O\bigg(\sum_{n< Q(\xi_1)} (\log n+1)\bigg) \\ &= O(\sqrt{x} Q(\xi_1)\log Q(\xi_1)) = \sqrt{x} O(x^{1.1/6}\log x^{1.1/6}) \\ &= O(x\log\log x/(\log x)^2). \end{split}$$

Thus we have

$$N(x) = \left(\sum_{n=1}^{\infty} \mu(n)d(n)\right) \operatorname{Li}(x) + O(x \log(\log x)/(\log x)^2)$$

and we have only to show that the infinite series $\sum_{n=1}^{\infty} \mu(n)d(n)$ is a positive constant to complete the proof of the main theorem. The absolute convergence follows from $\varphi(n) \gg n/\log\log n$ and then $|\sum_{n=1}^{\infty} \mu(n)d(n)| \ll \sum_{n=1}^{\infty} (\log\log n)/n^2 < \infty$. Set $c_0 := \sum_{n=1}^{\infty} \mu(n)d(n)$.

(I) The case of $N_{k/\mathbf{Q}}(\epsilon) = -1$.

In this case, we have $c_0 = \sum_{n=1, n: \text{odd}, D_0 \nmid n}^{\infty} \mu(n) d(n)$, where D_0 is the discriminant of k.

(I.1) The case of $D_0 \equiv 0 \mod 2$.

We have

$$c_0 = \sum_{\substack{n=1\\n:\text{odd}}}^{\infty} \frac{\mu(n)}{2n\varphi(n)} = \prod_q \left(1 - \frac{1}{q(q-1)}\right) = A > 0,$$

where q runs over the set of all prime numbers.

(I.2) The case of $D_0 \equiv 1 \mod 2$.

In this case, we have

$$c_{0} = \sum_{\substack{n=1, n: \text{odd} \\ D_{0} \nmid n}}^{\infty} \frac{\mu(n)}{2n\varphi(n)} = \sum_{\substack{n=1, n: \text{odd} \\ 2n\varphi(n)}}^{\infty} \frac{\mu(n)}{2n\varphi(n)} - \sum_{\substack{n=1, n: \text{odd} \\ D_{0} \mid n}}^{\infty} \frac{\mu(n)}{2n\varphi(n)}$$

$$= A - \sum_{\substack{m=1, m: \text{odd} \\ (m, D_{0})=1}}^{\infty} \frac{\mu(D_{0})\mu(m)}{2D_{0}m\varphi(D_{0}m)}$$

$$= A - \frac{\mu(D_{0})}{2D_{0}\varphi(D_{0})} \sum_{\substack{m=1, m: \text{odd} \\ (m, D_{0})=1}}^{\infty} \frac{\mu(m)}{m\varphi(m)}$$

$$= A - \frac{\mu(D_{0})}{2D_{0}\varphi(D_{0})} \prod_{\substack{q \nmid 2D_{0}}} \left(1 - \frac{1}{q(q-1)}\right)$$

$$= A \left\{ 1 - \frac{\mu(D_{0})}{2D_{0}\varphi(D_{0})} \prod_{\substack{q \mid 2D_{0}}} \frac{q(q-1)}{q^{2} - q - 1} \right\}$$

$$= A \left(1 - \mu(D_{0}) \prod_{\substack{q \mid D_{0}}} \frac{1}{q^{2} - q - 1} \right) > 0.$$

(II) The case of $N_{k/\mathbf{Q}}(\epsilon) = 1$. We note some facts.

- Suppose that *m* is odd square-free. $k \subset \mathbf{Q}(\zeta_{2m}) = \mathbf{Q}(\zeta_m)$ if and only if $D_0|m$. $k \subset \mathbf{Q}(\zeta_{4m})$ if and only if $D_0|4m$.
- $\sum_{m=1, m: \text{odd}}^{\infty} \mu(m) / m\varphi(m) = 2A.$

•
$$\sum_{m:\text{odd, square-free}} 1/m\varphi(m) = \prod_{2 \nmid p} \left(1 + \frac{1}{p(p-1)}\right) = 1.2957\cdots$$

Now we have

$$c_{0} = \sum_{n=1}^{\infty} \mu(n)d(n)$$

$$= \sum_{\substack{n:\text{even} \ge 1\\ \sqrt{\epsilon} \in k(\zeta_{2n}), \eta(\sqrt{\epsilon})\sqrt{\epsilon}=1}} \frac{\mu(n)}{n\varphi(2n)} + \sum_{\substack{n:\text{odd} \ge 1\\ \sqrt{\epsilon} \in k(\zeta_{2n})}} \frac{\mu(n)}{2n\varphi(n)} + \sum_{\substack{n\ge 1\\ \sqrt{\epsilon} \notin k(\zeta_{2n})}} \frac{\mu(n)}{2n\varphi(2n)}$$

$$= -\frac{1}{4} \sum_{\substack{m:\text{odd} \ge 1\\ \sqrt{\epsilon} \in k(\zeta_{4m}), \eta(\sqrt{\epsilon})\sqrt{\epsilon}=1}} \frac{\mu(m)}{m\varphi(m)} + \frac{1}{2} \sum_{\substack{m:\text{odd} \ge 1\\ \sqrt{\epsilon} \notin k(\zeta_{2m})}} \frac{\mu(m)}{m\varphi(m)}$$

$$+ \frac{1}{2} \sum_{\substack{m:\text{odd} \ge 1\\ \sqrt{\epsilon} \notin k(\zeta_{2m})}} \frac{\mu(m)}{m\varphi(m)} - \frac{1}{8} \sum_{\substack{m:\text{odd} \ge 1\\ \sqrt{\epsilon} \notin k(\zeta_{4m})}} \frac{\mu(m)}{m\varphi(m)}$$

$$= \frac{1}{2} \sum_{\substack{m:\text{odd} \ge 1\\ k \not \in \mathbf{Q}(\zeta_{2m})}} \frac{\mu(m)}{m\varphi(m)} - \frac{1}{4} \sum_{\substack{m:\text{odd} \ge 1\\ \sqrt{\epsilon} \notin k(\zeta_{4m})}} \frac{\mu(m)}{m\varphi(m)}$$

$$- \frac{1}{8} \sum_{\substack{m:\text{odd} \ge 1\\ k \not \in \mathbf{Q}(\zeta_{4m})}} \frac{\mu(m)}{m\varphi(m)}.$$

The absolute value of the sum of the second and third terms is less than

where the last inequality follows from $\sqrt{\epsilon} \notin k(\zeta_4)$.

If $4|D_0$, then the first term is equal to

$$\frac{1}{2}\sum_{m:\text{odd}}\frac{\mu(m)}{m\varphi(m)} = A = 0.3739\cdots$$

and hence $c_0 > 0$ holds.

If D_0 is odd, then the first term is

$$\begin{split} &\frac{1}{2} \sum_{\substack{m:\text{odd} \\ D_0 \nmid m}} \frac{\mu(m)}{m\varphi(m)} = \frac{1}{2} \sum_{\substack{m:\text{odd} \\ m\varphi(m)}} \frac{\mu(m)}{m\varphi(m)} - \frac{1}{2} \sum_{\substack{m:\text{odd} \\ D_0 \mid m}} \frac{\mu(m)}{m\varphi(m)} \\ &= A - \frac{\mu(D_0)}{2D_0\varphi(D_0)} \sum_{\substack{n:\text{odd} \\ (n,D_0)=1}} \frac{\mu(n)}{n\varphi(n)} \\ &= A - \frac{\mu(D_0)}{2D_0\varphi(D_0)} \prod_{\substack{q \nmid 2D_0 \\ q \mid 2D_0}} \left(1 - \frac{1}{q(q-1)}\right) \\ &= A \left(1 - \frac{\mu(D_0)}{2D_0\varphi(D_0)} \prod_{\substack{q \mid 2D_0 \\ q \mid 2D_0}} \frac{q(q-1)}{q^2 - q - 1}\right) \\ &= A \left(1 - \mu(D_0) \prod_{\substack{q \mid 2D_0 \\ q \mid 2D_0}} \frac{1}{q^2 - q - 1}\right) \\ &\ge A(1 - 1/19) = 0.3542 \cdots, \end{split}$$

where the inequality follows from the fact that D_0 is divisible by a prime ≥ 5 and hence we have $c_0 > 0$. Thus we have completed the proof of the main theorem.

References

- [H] C. Hooley, On Artin's conjecture, J. reine angew. Math., 225 (1967), 209–220.
- [IK] M. Ishikawa and Y. Kitaoka, On the distribution of units modulo prime ideals in real quadratic fields, J. reine angew. Math., 494 (1998), 65–72.
- [LO] J. C. Lagarias and A. M. Odlyzko, Effective version of the Chebotarev density theorem, Algebraic Number Fields (Fröhlich, ed.), Academic Press (1977), 409–464.
- [M] K. Masima, On the distribution of units in the residue class field of real quadratic fields and Artin's conjecture (in Japanese), RIMS Kokyuroku, 1026 (1998), 156–166.
- [S] J. P. Serre, Quelques applications du théorème de densité de Chebotarev, I.H.E.S., 54 (1981), 323–401.

Yen-Mei J. Chen Dept. of Math. Tamkang University Tamshui, Taipei Taiwan ymjchen@mail.tku.edu.tw

Yoshiyuki Kitaoka Dept. of Math. Meijo University Tenpaku-ku Nagoya, 468-8502 Japan kitaoka@meijo-u.ac.jp

Jing Yu Institute of Math. Academia Sinica Nakang, Taipei Taiwan and National Center for Theoretical Science Hsinchu Taiwan yu@math.sinica.edu.tw