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Abstract The aim of this paper is to investigate and study the possible spectral pair (µM,D, Λ(M, S))
associated with the iterated function systems {φd(x) = M−1(x + d)}d∈D and {ψs(x) = M∗x + s}s∈S

in R
n. For a large class of self-affine measures µM,D, we obtain an easy check condition for Λ(M, S) not

to be a spectrum, and answer a question of whether we have such a spectral pair (µM,D, Λ(M, S)) in
the Eiffel Tower or three-dimensional Sierpinski gasket. Further generalization of the given condition as
well as some elementary properties of compatible pairs and spectral pairs are discussed. Finally, we give
several interesting examples to illustrate the spectral pair conditions considered here.
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1. Introduction

Let µ be a probability measure of compact support on Rn. We call µ a spectral measure
if there exists a set Λ ⊂ Rn such that the set of complex exponentials {e(λ · x) : λ ∈ Λ}
forms an orthonormal basis for L2(µ), where e(λ · x) = e2πiλ·x. The set Λ is then called
a spectrum for µ; we also say that (µ, Λ) is a spectral pair. A spectral measure often has
more than one spectrum (not translates of each other; see [10, Example 2.9 (a)]). It is
known that

(i) {e(λ · x) : λ ∈ Λ} is orthonormal in L2(µ) if and only if

µ̂(λ1 − λ2) = 0, ∀λ1, λ2 ∈ Λ, λ1 �= λ2; (1.1)

(ii) {e(λ · x) : λ ∈ Λ} is an orthonormal basis for L2(µ) if and only if∑
λ∈Λ

|µ̂(ξ − λ)|2 = 1, ∀ξ ∈ Rn. (1.2)
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We shall study the spectral self-affine measure µ associated with iterated function
system (IFS) {φd(x) = M−1(x + d)}d∈D and its dual IFS {ψs(x) = M∗x + s}s∈S , where
M ∈ Mn(Z) is an expanding integer matrix (i.e. all entries are integers and all the
eigenvalues of M have moduli greater than 1), D and S are finite subsets of Zn of the
same cardinality, |D| = |S|. Our self-affine measure, which is denoted by µM,D, is the
unique probability measure µ satisfying the self-affine identity

µ =
1

|D|
∑
d∈D

µ ◦ φ−1
d (1.3)

and is supported on T := T (M, D), where T (M, D) is the attractor (or invariant set) of
the IFS {φd}d∈D. Such a T (M, D) is the unique non-empty compact set satisfying

T =
⋃

d∈D

φd(T ) (1.4)

and is given by

T (M, D) :=
{ ∞∑

j=1

M−jdj : dj ∈ D

}
. (1.5)

Corresponding to the dual IFS {ψs}s∈S , we use Λ(M, S) to denote the expansive orbit
of 0 under {ψs}, that is

Λ(M, S) :=
{k−1∑

j=0

M∗jsj : k � 1 and sj ∈ S

}
. (1.6)

We shall focus our attention on the following question: under what conditions is Λ(M, S)
a spectrum for µM,D?

It is known that certain self-affine measures µM,D in Rn have an orthonormal basis for
L2(µM,D) consisting of complex exponentials. This was first observed by Jorgensen and
Pedersen [5] and studied further by Strichartz [9,10]. More recently, �Laba and Wang [7]
have established a large class of spectral Cantor measures associated with IFS, and given
a necessary and sufficient condition on the spectrum of such a measure in dimension 1,
which extends the studies by Jorgensen and Pedersen [5] and Strichartz [10]. The studies
in [5,7,9,10] also leave several open problems which have motivated the present research.

The aim of this paper is to investigate and study the possible spectral pair
(µM,D, Λ(M, S)) in Rn. We first present some elementary properties of a compatible pair.
We then extend the result of [7], and obtain an easy check condition for (µM,D, Λ(M, S))
not to be a spectral pair. Using this condition, we answer a question considered
in [4, 5, 9, 10] by showing that, in the Eiffel Tower or three-dimensional Sierpinski
gasket, the corresponding (µM,D, Λ(M, S)) is not a spectral pair. Further generaliza-
tion of the given condition is also discussed. Since the known examples of the spectral
pair (µM,D, Λ(M, S)) considered in the previous papers require M = diag[r, r, . . . , r], we
construct a spectral pair in which M is not of this form, and show that the spectral pair
is invariant under the Z-similarity of matrix M . We also give several examples in the
final section to illustrate the spectral pair conditions considered here.
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2. Compatible pairs

The concept of compatible pairs, following the terminology of [10], plays an important
role in the study of spectral measure. In this section we present certain of their elementary
properties.

Let B and S be finite subsets of Rn of the same cardinality q. We say (B, S) is a
compatible pair if the q × q matrix

HB,S := [q−1/2e(b · s)]b∈B, s∈S (2.1)

is unitary, i.e. HB,SH∗
B,S = Iq. Note that we use ‘∗’ to denote the conjugated transpose.

It follows from this definition that if (B, S) is a compatible pair, then so is (S, B), and
vice versa. Furthermore, we can translate either B or S and obtain another compatible
pair. Thus, we may assume without essential loss of generality that 0 belongs to both B

and S. Also note that, if B is given, there may not be any S such that HB,S is unitary.
Take, for example, B = {0, 1, 3}. We see that no subset S ⊂ R can be found such
that (B, S) is a compatible pair. This is because the equation z3 + z +1 = 0 has no roots
on the unit circle {z ∈ C : |z| = 1}.

For each finite subset A ⊂ Rn of the cardinality |A|, we define its symbol by

mA(t) :=
1

|A|
∑
a∈A

e−2πia·t.

Let

δA(x) :=
1

|A|
∑
a∈A

δ(x − a),

where δ(x − a) denotes a Dirac delta function (point measure) at a. Then

δ̂A(ξ) =
∫

e−2πix·ξ dδA(x) =
1

|A|
∑
a∈A

∫
e−2πix·ξ dδ(x − a) = mA(ξ). (2.2)

Proposition 2.1. Let B, S ⊂ Rn be finite sets of the same cardinality. Then the
following statements are equivalent:

(i) (B, S) is a compatible pair;

(ii) (RB, R∗−1S) is a compatible pair for any non-singular matrix R ∈ Mn(R);

(iii) mB(s1 − s2) = 0, for any distinct s1, s2 ∈ S;

(iv)
∑

s∈S |mB(ξ + s)|2 = 1, for all ξ ∈ Rn;

(v) (δB , S) is a spectral pair.

The proof of Proposition 2.1 can be found, explicitly or implicitly, in [5,7,10].

Proposition 2.2. Let D, S ⊂ Zn and M ∈ Mn(Z) with |det(M)| > 1 such that
(M−1D, S) is a compatible pair. Then the following statements hold.
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(i) The elements in D are distinct modulo M (i.e. di − dj �∈ MZn for distinct di, dj ∈
D), and the elements in S are distinct modulo M∗.

(ii) Suppose that D̂, Ŝ ⊂ Zn such that D̂ ≡ D(mod M) and Ŝ ≡ S(mod M∗). Then
(M−1D̂, Ŝ) is a compatible pair.

(iii) Define Dk = D + MD + · · · + Mk−1D and Sk = S +M∗S + · · ·+M∗(k−1)S. Then
(M−kDk, Sk) is a compatible pair.

Proof. If there exist distinct i and j such that di − dj ∈ MZn, then di = dj + Mzij

for zij ∈ Zn. Therefore,

e(M−1di · sk) = e(M−1dj · sk)e(zij · sk) = e(M−1dj · sk) (2.3)

holds for k = 1, 2, . . . , q. This shows that the matrix HM−1D,S has two identical rows i

and j, so it cannot be unitary: a contradiction. Hence, the elements in D are distinct
modulo M . Similarly, HM−1D,S will have two identical columns if the elements in S are
not distinct modulo M∗; again, this is a contradiction. This proves (i).

Let D̂ = {d̂1, d̂2, . . . , d̂q} ≡ D(mod M) and Ŝ = {ŝ1, ŝ2, . . . , ŝq} ≡ S(mod M∗). Then
d̂i = di + Mzi and ŝj = sj + M∗z̃j for zi, z̃j ∈ Zn, 1 � i, j � q. Since

e(M−1d̂i · ŝj) = e(M−1di · sj)e(M−1di · M∗z̃j)e(zi · sj)e(zi · M∗z̃j)

= e(M−1di · sj), (2.4)

the conclusion (ii) follows immediately from the definition.
Finally, (iii) is a special case of [10, Lemma 2.5]. �

Note that if we let M ∈ Mn(Z) with |det(M)| = m > 1 and B = {b1, b2, . . . , bm} be
a complete residue system (mod M), then {bj + MZn}m

j=1 constitutes a partition of Zn.
Under the assumptions of Proposition 2.2, we also have |D| = |S| � |det(M)|.

The following proposition may be considered as a generalization of the Gaussian com-
patible pair (see [10, Example 2.4 (a)]).

Proposition 2.3. Let M ∈ Mn(Z) with |det(M)| = m > 1. Assume that D is a
complete residue system (mod M). If S is a complete residue system (mod M∗), then
(M−1D, S) is a compatible pair.

Proof. Let D = {d1, d2, . . . , dm} and S = {s1, s2, . . . , sm}. Then (see [3, Lemma 5.1])

1
m

m∑
j=1

e(M−1dj · k) =

{
1 if k ∈ M∗Zn,

0 otherwise.
(2.5)

In view of the fact that sp − sq ∈ M∗Zn if and only if p = q, it follows from (2.5) that,
for any distinct sp, sq ∈ S,

mM−1D(sp − sq) =
1
m

m∑
j=1

e(M−1dj · (sp − sq)) = 0. (2.6)

Therefore, the desired result follows from Proposition 2.1. �
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Spectral self-affine measures in Rn 201

Note that, in Proposition 2.3, one possible choice of D and S is given by the formula

D := Zn ∩ M [0, 1)n and S := Zn ∩ M∗[0, 1)n.

3. Conditions for spectral pairs

Let M ∈ Mn(Z) be expanding, and let D and S be finite subsets of Zn. Jorgensen and
Pedersen [5] proved that if (M−1D, S) is a compatible pair, then the following conclusions
hold.

(i) {e(λ · x) : λ ∈ Λ(M, S)} is orthogonal in L2(µM,D).

(ii) Let Q(ξ) :=
∑

λ∈Λ(M,S) |µ̂M,D(ξ + λ)|2. Then Q(ξ) � 1 for all ξ ∈ Rn (the Bessel
inequality).

(iii) (µM,D, Λ(M, S)) is a spectral pair ⇐⇒ Q(ξ) = 1, for all ξ ∈ Rn (the Parseval
identity).

(iv) The function Q(ξ) has an entire analytic extension to Cn which is of linear expo-
nential growth in the imaginary direction. Furthermore, it satisfies the functional
identity

Q(ξ) =
∑
s∈S

|mD(M∗−1(ξ + s))|2Q(M∗−1(ξ + s)), ξ ∈ Rn. (3.1)

The right-hand side of (3.1) is known as the Ruelle transfer operator C defined on func-
tion Q. Equation (3.1) is equivalent to C(Q)(ξ) = Q(ξ). From Proposition 2.1 (iv),
C(1) = 1. The method of [5] is based on the identification of a function space which
contains Q(ξ)−1, then showing that C is strictly contractive and, as a consequence, that
Q(ξ) ≡ 1, when the axioms hold.

Note that, from the self-affine identity (1.3),

µ̂M,D(ξ) =
∞∏

j=1

mD(M∗−jξ).

The above conclusion (i) implies (1.1), i.e. Λ(M, S) ⊆ Λ(M, S)−Λ(M, S) ⊆ Z(µ̂M,D)∪{0}
(recall that 0 ∈ S is assumed), where Z(µ̂M,D) is the zero set of µ̂M,D. Strichartz [9]
provided a different way to verify Q(ξ) ≡ 1 by using an approach that is reminiscent of
the Cohen criterion in wavelet theory. In fact, Strichartz [9] proved the following.

Theorem 3.1. Let M ∈ Mn(Z) be expanding, D and S be finite subsets of Zn such
that (M−1D, S) is a compatible pair. Suppose that the zero set Z(mM−1D(t)) is disjoint
from the set T (M∗, S). Then (µM,D, Λ(M, S)) is a spectral pair.

Furthermore, Strichartz [10] extended the construction of a spectral pair to a larger
class of measures and spectra. �Laba and Wang [7] studied spectral Cantor measures
in R. They found that a compatible pair automatically yields a spectral measure [7,
Theorem 1.2], and give the following necessary and sufficient condition for Λ(N, S) to be
a spectrum [7, Theorem 1.3].
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Theorem 3.2. Let N ∈ Z with |N | > 1 and D ⊂ Z with 0 ∈ D and gcd(D) = 1. Let
S ⊂ Z with 0 ∈ S such that (N−1D, S) is a compatible pair. Then (µN,D, Λ(N, S)) is not
a spectral pair if and only if there exist s∗

j ∈ S and non-zero integers ηj , 0 � j � m − 1,
such that ηj+1 = N−1(ηj + s∗

j ) for all 0 � j � m − 1 (with ηm := η0 and s∗
m := s∗

0).

The study in [7] also leaves several questions unanswered. For example, does Theo-
rem 3.2 or something similar hold in higher dimensions? In the following, we modify the
techniques in [7] to extend and simplify the condition of Theorem 3.2.

Theorem 3.3. Let D, S ⊂ Zn be finite subsets of the same cardinality. Suppose that
M ∈ Mn(Z) is expanding and that (M−1D, S) is a compatible pair. If there exists a
non-zero s̃ ∈ Ŝ ≡ S(mod M∗) such that

(M∗ − I)−1s̃ ∈ Zn, (3.2)

then for any D̂ ≡ D(mod M), (µM,D̂, Λ(M, Ŝ)) is not a spectral pair. In particular,
Λ(M, Ŝ) is not a spectrum for µM,D.

Proof. Let η = (M∗ − I)−1s̃ ∈ Zn. Then η = M∗−1(η + s̃) and

M∗lη = η +
l−1∑
j=0

M∗j s̃, ∀l ∈ N. (3.3)

From Propositions 2.1 (iv) and 2.2 (ii), for any D̂ ≡ D(mod M),∑
ŝ∈Ŝ

|mD̂(M∗−1(ξ + ŝ))|2 = 1, ∀ξ ∈ Rn. (3.4)

In view of the fact that mD̂(M∗−1(η + s̃)) = mD̂(η) = 1, taking ξ = η in (3.4), we have,
for ŝ ∈ Ŝ,

mD̂(M∗−1(η + ŝ)) =

{
1 if ŝ = s̃,

0 if ŝ �= s̃.
(3.5)

For any λ = ŝ0 + M∗ŝ1 + · · · + M∗kŝk ∈ Λ(M, Ŝ), it follows from (3.5) that

mD̂(M∗−1(η + λ)) = mD̂(M∗−1(η + ŝ0) + ŝ1 + M∗ŝ2 + · · · + M∗(k−1)ŝk)

= mD̂(M∗−1(η + ŝ0))

=

{
1 if ŝ0 = s̃,

0 if ŝ0 �= s̃.
(3.6)

If ŝ0 �= s̃, then, from (3.6),

µ̂M,D̂(η + λ) =
∞∏

j=1

mD̂(M∗−j(η + λ)) = 0. (3.7)
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In the case when ŝ0 = s̃, i.e. λ = s̃ + M∗ŝ1 + · · · + M∗kŝk, we consider the second
factor of µ̂M,D̂(η + λ), and use (3.3) and (3.5) to conclude that

mD̂(M∗−2(η + λ)) = mD̂(M∗−2(η + s̃ + M∗ŝ1) + ŝ2 + M∗ŝ3 + · · · + M∗(k−2)ŝk)

= mD̂(M∗−1(η + ŝ1))

=

{
1 if ŝ1 = s̃,

0 if ŝ1 �= s̃.
(3.8)

If ŝ1 �= s̃, then, from (3.8), µ̂M,D̂(η + λ) = 0. When ŝ1 = s̃, i.e.

λ = s̃ + M∗s̃ + M∗2ŝ2 + · · · + M∗kŝk,

by the same argument, we consider the third factor of µ̂M,D̂(η + λ), and use (3.3)
and (3.5) to obtain µ̂M,D̂(η + λ) = 0 if ŝ2 �= s̃. After k steps, we see that if one of ŝj

in {ŝ0, ŝ1, . . . , ŝk} is not equal to s̃, then µ̂M,D̂(η + λ) = 0.
Suppose that λ = s̃ + M∗s̃ + M∗2s̃ + · · · + M∗ks̃. We consider the (k + 2)th factor of

µ̂M,D̂(η + λ) and conclude that

mD̂(M∗−(k+2)(η + λ)) = mD̂

(
M∗−(k+2)

(
η +

k∑
j=0

M∗j s̃

))

= mD̂(M∗−1(η + 0))

=

{
1 if 0 = s̃,

0 if 0 �= s̃,
(3.9)

which gives the desired result that µ̂M,D̂(η + λ) = 0 for any λ ∈ Λ(M, Ŝ). Since

Q1(η) :=
∑

λ∈Λ(M,Ŝ)

|µ̂M,D̂(η + λ)|2 = 0,

we know from the Parseval identity that (µM,D̂, Λ(M, Ŝ)) is not a spectral pair. In the
special case when D̂ = D, we also find that Λ(M, Ŝ) is not a spectrum for µM,D. This
completes the proof of Theorem 3.3. �

From Theorem 3.3, we can further prove the following more general result.

Theorem 3.4. Let D, S ⊂ Zn be finite subsets of the same cardinality. Suppose
that M ∈ Mn(Z) is expanding and (M−1D, S) is a compatible pair. If there exist
s̃0, s̃1, . . . , s̃p−1 ∈ Ŝ ≡ S(mod M∗) for some p � 1 such that

(M∗p − I)−1{s̃0 + M∗s̃1 + · · · + M∗(p−1)s̃p−1} ∈ Zn \ {0}, (3.10)

then, for any D̂ ≡ D(mod M), (µM,D̂, Λ(M, Ŝ)) is not a spectral pair.
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Proof. Let D̂p := D̂ + MD̂ + · · · + Mp−1D̂ and Ŝp := Ŝ + M∗Ŝ + · · · + M∗(p−1)Ŝ.
Then, from Proposition 2.2 (ii) and (iii), (M−pD̂p, Ŝp) is a compatible pair. Also, the
condition (3.10) is equivalent to

(M∗p − I)−1s̃ ∈ Zn \ {0},

where s̃ = s̃0 + M∗s̃1 + · · · + M∗(p−1)s̃p−1 ∈ Ŝp. Applying Theorem 3.3 to Mp, D̂p and
Ŝp instead of M , D̂ and Ŝ, we find that (µMp,D̂p

, Λ(Mp, Ŝp)) is not a spectral pair. In
view of the fact that

µ̂Mp,D̂p
= µ̂M,D̂ and Λ(Mp, Ŝp) = Λ(M, Ŝ), (3.11)

we thus deduce that (µM,D̂, Λ(M, Ŝ)) is not a spectral pair. �

It should be pointed out that (M∗p − I)−1Ŝp containing a non-zero integer point for
some p ∈ N is equivalent to the condition (3.10). For any x ∈ (M∗p − I)−1Ŝp, we know
that there exist ŝ0, ŝ1, . . . , ŝp−1 ∈ Ŝ such that

x = M∗−p(x + ŝ0 + M∗ŝ1 + · · · + M∗(p−1)ŝp−1)

= fŝp−1 ◦ fŝp−2 ◦ · · · ◦ fŝ1 ◦ fŝ0(x),

i.e. x is a fixed point of finite composition fŝp−1 ◦ fŝp−2 ◦ · · · ◦ fŝ1 ◦ fŝ0 of members of the
IFS {fŝ(x) = M∗−1(x + ŝ)}ŝ∈Ŝ . Hence, (M∗p − I)−1Ŝp ⊆ T (M∗, Ŝ). Since T (M∗, Ŝ) is
compact, in order to find out whether or not (3.10) holds we need only to check a finite
number of integers in T (M∗, Ŝ) having the form (3.10).

At the end of this section, we consider the following two special cases: the dimensions
n = 1 and the case |D| = |S| = |det(M)|.

Case 1 (n = 1). From the sufficient condition of Theorem 3.2,

Nη1 = η0 + s∗
0,

N2η2 = Nη1 + Ns∗
1 = η0 + s∗

0 + Ns∗
1,

...

Nmηm = η0 + s∗
0 + Ns∗

1 + · · · + Nm−1s∗
m−1.

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.12)

Since ηm = η0, the above condition (3.12) is equivalent to

η0 = (Nm − 1)−1{s∗
0 + Ns∗

1 + · · · + Nm−2s∗
m−2 + Nm−1s∗

m−1},

η1 = (Nm − 1)−1{s∗
1 + Ns∗

2 + · · · + Nm−2s∗
m−1 + Nm−1s∗

0},

...

ηm−1 = (Nm − 1)−1{s∗
m−1 + Ns∗

0 + · · · + Nm−2s∗
m−3 + Nm−1s∗

m−2},

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(3.13)

where s∗
j ∈ S and ηj are non-zero integers, 0 � j � m − 1. Observe that any one of

the conditions in (3.13) is just (3.10) if we let the dimensions n = 1, M = N , p = m
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and Ŝ = S in (3.10). Applying the same argument to any one of the non-zero integers ηj

in (3.13) gives µ̂N,D(ηj + λ) = 0 for all λ ∈ Λ(N, S), where 0 � j � m − 1. Hence,
from Theorems 3.2 and 3.4, we obtain the following necessary and sufficient condition
for Λ(N, S) to be a spectrum.

Theorem 3.5. Let N ∈ Z with |N | > 1 and D ⊂ Z with 0 ∈ D and gcd(D) = 1. Let
S ⊂ Z with 0 ∈ S such that (N−1D, S) is a compatible pair. Then (µN,D, Λ(N, S)) is
not a spectral pair if and only if there exist s∗

0, s
∗
1, . . . , s

∗
m−1 ∈ S, m � 1, such that

(Nm − 1)−1{s∗
0 + Ns∗

1 + · · · + Nm−1s∗
m−1} ∈ Z \ {0}. (3.14)

Note that, under the assumptions of Theorem 3.5, the above discussion shows that the
condition (3.14) is equivalent to ηj ∈ Z \ {0} for all 0 � j � m − 1, where ηj is defined
by (3.13). As a consequence of Theorem 3.5, we also get the following.

Corollary 3.6. Let N ∈ Z with |N | > 2 and D ⊂ Z with 0 ∈ D and gcd(D) = 1.
Suppose that S ⊂ Z with 0 ∈ S such that (N−1D, S) is a compatible pair. If S ⊆
[2 − |N |, |N | − 2], then (µN,D, Λ(N, S)) is a spectral pair.

Proof. For any s∗
0, s

∗
1, . . . , s

∗
m−1 ∈ S, m � 1, it follows from |s∗

j | � |N | − 2 that

−(|N |m − 1) < s∗
0 + Ns∗

1 + · · · + Nm−1s∗
m−1 < (|N |m − 1), (3.15)

which means that (Nm − 1)−1{s∗
0 + Ns∗

1 + · · · + Nm−1s∗
m−1} cannot be a non-zero inte-

ger. Hence, the desired conclusion follows from Theorem 3.5. �

Case 2 (|D| = |S| = |det(M)|). For M ∈ Mn(Z) with |det(M)| > 1 and for
the finite subsets D, S ⊂ Zn with |D| = |S| = |det(M)|, it follows from Propositions 2.2
and 2.3 that (M−1D, S) is a compatible pair if and only if D is a complete residue system
(mod M) and S is a complete residue system (mod M∗). In the case when M ∈ Mn(Z)
is expanding and D is a complete residue system (mod M), we can show the following.

Theorem 3.7. Let M ∈ Mn(Z) be expanding and D be a complete residue sys-
tem (mod M). Then µM,D is a spectral measure.

Proof. From a result in [12, Theorem 3.4], there exists a full-rank lattice Γ ⊆
Zn such that T (M, D) tiles Rn by Γ -translation. Equivalently, from a result in [2],
{e(λ · x) : λ ∈ Γ ∗} is an orthogonal basis for L2(T (M, D)) in the sense of Lebesgue mea-
sure µL, where Γ ∗ is the dual lattice of Γ . This also says that T (M, D) is a spectral set
with one of its spectra Γ ∗. Therefore, we have the Parseval identity∑

γ∗∈Γ ∗

|χ̂T (M,D)(ξ − γ∗)|2 = (µL(T (M, D)))2, ∀ξ ∈ Rn, (3.16)

where χ̂T (M,D) is the Fourier transform of the characteristic function χT (M,D). It can
be shown from (1.3) and (1.4) that χ̂T (M,D)(ξ) = µL(T (M, D))µ̂M,D(ξ). So we deduce
from (3.16) that ∑

γ∗∈Γ ∗

|µ̂M,D(ξ − γ∗)|2 = 1, ∀ξ ∈ Rn. (3.17)

Hence, Γ ∗ is a spectrum for µM,D and µM,D is a spectral measure. �
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Therefore, under the condition that (M−1D, S) is a compatible pair and |D| = |S| =
|det(M)|, we know that µM,D is a spectral measure. Is Λ(M, S) a spectrum for µM,D?
In the following we provide a necessary and sufficient condition for (µM,D, Λ(M, S)) to
be a spectral pair.

We first introduce the following generalization of p-adic integers (see [11]). Let
M ∈ Mn(Z) be an expanding integer matrix and let S ⊂ Zn be a complete residue system
(mod M∗) with 0 ∈ S. Then, for each x0 ∈ Zn, there is a unique canonical representation
of x0 in the form

∑∞
i=0 M∗isi, where si ∈ S, which will be abbreviated as s0s1s2 · · ·

and called the M∗-adic address of x0 ∈ Zn. It follows from Zn = S + M∗Zn that the
ith entry si, i = 0, 1, . . . , in the M∗-adic address of x0 is the unique element of S such
that si ≡ xi(mod M∗), where xi+1 = M∗−1(xi − si) (recursive algorithm). The M∗-adic
address s0s1s2 · · · of x0 is called finite if si = 0 for all i sufficiently large. It can be shown
that the M∗-adic address of every point x0 ∈ Zn is finite if and only if Λ(M, S) = Zn. If a
point x0 ∈ Zn has an M∗-adic address with repeating string si+1 · · · si+q, we say that x0

has a repeating address. Although a point x0 ∈ Zn may not have a finite M∗-adic address,
it can be proved that the M∗-adic address of any point in Zn is repeating [11, Lemma 2].

Lemma 3.8. Let M ∈ Mn(Z) be an expanding integer matrix and let S ⊂ Zn be a
complete residue system (mod M∗) with 0 ∈ S. Then (I − M∗r)−1Sr contains no non-
zero integer point for r = 1, 2, . . . if and only if Λ(M, S) = Zn.

Proof. Suppose first that (I − M∗r)−1Sr contains no non-zero integer point for r =
1, 2, . . . . We need to show that Λ(M, S) = Zn or, equivalently, the M∗-adic address of
every point x0 ∈ Zn is finite. If the M∗-adic address of some point y ∈ Zn is not finite,
then y ∈ Zn has a repeating address where the repetition is not zero. We assume that

y = s0s1s2 · · · sq−1
︷ ︸︸ ︷
sqsq+1 · · · sq+r−1

︷ ︸︸ ︷
sqsq+1 · · · sq+r−1 · · ·

for some q � 1 and r � 1. Then

y − y0 = M∗qx,

where

y0 = s0s1s2 · · · sq−1 and x =
︷ ︸︸ ︷
sqsq+1 · · · sq+r−1

︷ ︸︸ ︷
sqsq+1 · · · sq+r−1 · · · .

So x = M∗−q(y − y0) ∈ Zn consists of that portion of y that repeats from the beginning.
Also (I − M∗r)x =

∑r−1
i=0 M∗isq+i ∈ Sr, and therefore (I − M∗r)−1Sr contains a non-

zero point x ∈ Zn which does not have finite address: a contradiction. Hence, Λ(M, S) =
Zn.

On the other hand, if Λ(M, S) = Zn, then (I − M∗r)−1Sr contains no non-zero inte-
ger point for r = 1, 2, . . . . For if (I − M∗r)−1Sr contains a non-zero point x ∈ Zn

for some r, then (I − M∗r)x =
∑r−1

i=0 M∗isi with si ∈ S. The point x̃ ∈ Zn whose infi-
nite address consists of the repeated digits s0, s1, . . . , sr−1 satisfies the same equation:
(I − M∗r)x̃ =

∑r−1
i=0 M∗isi. Hence, x = x̃ has a repeating (non-finite) address; again this

is a contradiction. This proves Lemma 3.8. �
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Theorem 3.9. Let M ∈ Mn(Z) be expanding and let D, S ⊂ Zn be finite subsets
with |D| = |S| = |det(M)| and 0 ∈ D ∩S. Suppose that (M−1D, S) is a compatible pair.
Then (µM,D, Λ(M, S)) is a spectral pair if and only if

Λ(M, S) = Zn and µL(T (M, D)) = 1.

Proof. Suppose that (µM,D, Λ(M, S)) is a spectral pair. It follows from Theorem 3.4
that (I − M∗p)−1Sp contains no non-zero integer point for p = 1, 2, . . . . By Lemma 3.8,
we have Λ(M, S) = Zn. This in turn leads to∑

λ∈Zn

|µ̂M,D(ξ − λ)|2 =
∑

λ∈Λ(M,S)

|µ̂M,D(ξ − λ)|2 = 1, ∀ξ ∈ Rn, (3.18)

which yields ∑
λ∈Zn

|χ̂T (M,D)(ξ − λ)|2 = (µL(T (M, D)))2, ∀ξ ∈ Rn. (3.19)

Hence, {e(λ ·x) : λ ∈ Zn} is an orthogonal basis for L2(T (M, D)). Equivalently, T (M, D)
tiles Rn by Zn-translations or µL(T (M, D)) = 1.

On the other hand, it follows from µL(T (M, D)) = 1 that (3.19) holds, which gives
(3.18) by Λ(M, S) = Zn and χ̂T (M,D)(ξ) = µ̂M,D(ξ). This shows that µM,D is a spectral
measure with spectrum Zn. Therefore, we have the desired spectral pair (µM,D, Λ(M, S)).

�

Note that, in Theorem 3.9, either one of the two conditions Λ(M, S) = Zn and
µL(T (M, D)) = 1 cannot guarantee that (µM,D, Λ(M, S)) is a spectral pair. For example,

M =

[
1 2

−2 1

]
, D =

{(
0
0

)
,

(
0

±1

)
,

(
0

±2

)}
,

S =

{(
0
0

)
,

(
±1
0

)
,

(
0

±1

)}
,

(M−1D, S) is a compatible pair. Since T (M∗, S) is the fractal red cross, T (M∗, S)∩Z2 =
{(0, 0)T} [1, p. 58–59], we have Λ(M, S) = Z2. Furthermore, since the characteristic poly-
nomial of M is irreducible over Q, it follows from [12, Lemma 3.1 and Theorem 5.3]
that µL(T (M, D)) = 2. Hence, (µM,D, Λ(M, S)) is not a spectral pair. Examples 4.5
and 4.7 in the next section illustrate the other case, in which µL(T (M, D)) = 1 but
Λ(M, S) �= Zn, and thus Λ(M, S) is not a spectrum for µM,D.

4. Remarks and examples

We first consider the Z-similarity of the expanding integer matrices. Two matrices
M, M1 ∈ Mn(Z) are Z-similar, denoted by M ∼ M1, if there exists a unimodular matrix
P ∈ Mn(Z) (i.e. P is invertible and P−1 ∈ Mn(Z)) such that P−1MP = M1. The Z-
similarity is an equivalent relationship; its equivalence classes are called Z-similar classes.
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Let D, S ⊂ Zn be finite subsets of the same cardinality. Let M, M1 ∈ Mn(Z) be two
expanding matrices such that M ∼ M1 as above. Define D1 := P−1D, S1 := P ∗S. Then
from Proposition 2.1 (ii), (M−1

1 D1, S1) is a compatible pair if and only if (M−1D, S) is
a compatible pair. Also, from (1.5) and (1.6), we have

T (M1, D1) = P−1T (M, D), Λ(M1, S1) = P ∗Λ(M, S) (4.1)

and

µ̂M1,D1(ξ) =
∞∏

j=1

mD1(M
∗−j
1 ξ) =

∞∏
j=1

mD(M∗−j(P ∗−1ξ)) = µ̂M,D(P ∗−1ξ). (4.2)

Therefore, ∑
λ∈Λ(M1,S1)

|µ̂M1,D1(ξ + λ)|2 =
∑

λ∈Λ(M,S)

|µ̂M,D(P ∗−1ξ + λ)|2. (4.3)

It follows from (1.2) or the Parseval identity that (µM,D, Λ(M, S)) is a spectral pair if
and only if (µM1,D1 , Λ(M1, S1)) is a spectral pair. In this sense, we have the following.

Proposition 4.1. Spectral pairs and compatible pairs are invariant under the Z-
similarity.

Note that, in the above discussion, it is not necessary that the elements of matrices and
sets are integer. The usual similarity over R and sets in Rn will yield the same result. For
example, given the expanding matrix M ∈ Mn(R) and finite set D ⊂ Rn (not necessarily
an integer matrix and integer set), the self-affine measure µM,D also has the following
property.

Proposition 4.2. Let M ∈ Mn(R) be expanding, D ⊂ Rn be a finite set and Λ ⊂ Rn

be a discrete set. Suppose that P ∈ Mn(R) is non-singular with PM = MP . Then
(µM,D, Λ) is a spectral pair if and only if (µM,P −1D, P ∗Λ) is a spectral pair.

In fact, Proposition 4.2 follows from the same discussion as above by taking M1 = M

simply.
The Z-similar classification of expanding integer matrices was first studied by Lagarias

and Wang [8]. They showed that there are only six Z-similar classes of 2 × 2 integer
matrices with |det(M)| = 2. That is, the following proposition holds.

Proposition 4.3. Let M ∈ M2(Z) be expanding. If det(M) = −2, then

M ∼
[
0 2
1 0

]
. (4.4)

If det(M) = 2, then M is Z-similar to one of the following matrices:[
0 2

−1 0

]
, ±

[
1 1

−1 1

]
, ±

[
0 2

−1 1

]
. (4.5)

https://doi.org/10.1017/S0013091503000324 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091503000324


Spectral self-affine measures in Rn 209

The complete classifications for M ∈ M2(Z) with |det(M)| = 3, 4, 5 are given in [6].
Most of the expanding integer matrices in our example come from these Z-similar classes
such as (4.5).

Example 4.4. The Eiffel Tower (or three-dimensional Sierpinski gasket):

M =

⎡
⎢⎣2 0 0

0 2 0
0 0 2

⎤
⎥⎦ , D =

⎧⎪⎨
⎪⎩
⎛
⎜⎝0

0
0

⎞
⎟⎠ ,

⎛
⎜⎝1

0
0

⎞
⎟⎠ ,

⎛
⎜⎝0

1
0

⎞
⎟⎠ ,

⎛
⎜⎝0

0
1

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

S =

⎧⎪⎨
⎪⎩
⎛
⎜⎝0

0
0

⎞
⎟⎠ ,

⎛
⎜⎝1

1
0

⎞
⎟⎠ ,

⎛
⎜⎝1

0
1

⎞
⎟⎠ ,

⎛
⎜⎝0

1
1

⎞
⎟⎠
⎫⎪⎬
⎪⎭ .

(M−1D, S) is a compatible pair and (M∗ − I)−1 = I. Obviously, each non-zero element
s̃ ∈ S satisfies (M∗ − I)−1s̃ ∈ Z3. Therefore, Theorem 3.3 shows that (µM,D, Λ(M, S)) is
not a spectral pair (a question that cannot be answered in [4,5,9,10]).

For the general cases,

M =

⎡
⎢⎣r 0 0

0 r 0
0 0 r

⎤
⎥⎦ , D =

⎧⎪⎨
⎪⎩
⎛
⎜⎝0

0
0

⎞
⎟⎠ ,

⎛
⎜⎝

1
2r

0
0

⎞
⎟⎠ ,

⎛
⎜⎝ 0

1
2r

0

⎞
⎟⎠ ,

⎛
⎜⎝ 0

0
1
2r

⎞
⎟⎠
⎫⎪⎬
⎪⎭ ,

S =

⎧⎪⎨
⎪⎩
⎛
⎜⎝0

0
0

⎞
⎟⎠ ,

⎛
⎜⎝1

1
0

⎞
⎟⎠ ,

⎛
⎜⎝1

0
1

⎞
⎟⎠ ,

⎛
⎜⎝0

1
1

⎞
⎟⎠
⎫⎪⎬
⎪⎭ , r ∈ Z, |r| � 2,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.6)

(M−1D, S) is a compatible pair. It is known that if r = −2 or |r| � 4 and even, the
corresponding (µM,D, Λ(M, S)) is a spectral pair, while if |r| � 2 and odd, for example,
r = 3, then {e(λ ·x) : λ ∈ Λ(M, S)} is not orthonormal in L2(µM,D). The case r = 2 was
an open question for a long time. The discussion here provides an answer. Since D ⊂ Z3

for r ∈ Z and even, one cannot expect that a compatible pair (M−1D, S) automatically
yields an orthonormal system {e(λ ·x) : λ ∈ Λ(M, S)} in L2(µM,D) without the condition
D ⊂ Zn.

Example 4.5.

M =

[
0 2
1 0

]
, D =

{(
0
0

)
,

(
1
0

)}
, S =

{(
0
0

)
,

(
0
1

)}
.

Observe that

Ŝ =

{(
0
0

)
,

(
k1

k2

)}
≡ S(mod M∗) ⇐⇒ k1 ∈ Z, k2 ∈ 2Z + 1.

D̂ =

{(
0
0

)
,

(
k3

k4

)}
≡ D(mod M) ⇐⇒ k3 ∈ 2Z + 1, k4 ∈ Z.
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It follows from Theorem 3.3 that, for each k1 ∈ Z and k2 ∈ 2Z + 1, the orthonormal
system {e(λ · x) : λ ∈ Λ(M, Ŝ)} is not complete in L2(µM,D̂) for any k3 ∈ 2Z + 1 and
k4 ∈ Z. However, since M2k = 2kI, k ∈ Z, T (M, D) = [0, 1] × [0, 1] and

µ̂M,D(ξ1, ξ2) = e−π(ξ1+ξ2)i sin(πξ1)
πξ1

sin(πξ2)
πξ2

=
∫

T (M,D)
e−2πiξ·x dx, (4.7)

µM,D is simply the restriction of the Lebesgue measure µL to T (M, D) (this is a general
conclusion if µL(T (M, D)) = 1; see the proofs of Theorems 3.7 and 3.9). It is known that
{e(λ · x) : λ ∈ Z2} is an orthonormal basis for L2([0, 1]2). So µM,D is a spectral measure;
one of the spectra for µM,D is Z2. This shows that even if (µM,D, Λ(M, Ŝ)) is not a
spectral pair, we cannot assert that µM,D is not a spectral measure. The only assertion
is that Λ(M, Ŝ) is not a spectrum for µM,D if k1 ∈ Z and k2 ∈ 2Z + 1 (note that, in this
case, Λ(M, Ŝ) is a subset of Z2).

Example 4.6.

M =

[
0 2

−1 0

]
, D =

{(
0
0

)
,

(
1
0

)}
, S =

{(
0
0

)
,

(
0
1

)}
.

Observe that the condition (3.10) of Theorem 3.4 is not satisfied if Ŝ = S. We shall show
that (µM,D, Λ(M, S)) is a spectral pair by applying Theorem 3.1 or Theorem 3.9.

In fact, it follows from M2 = −2I that T (M∗, S) = [− 1
3 , 2

3 ] × [− 2
3 , 1

3 ]. The zero set
Z(mM−1D) of mD(M∗−1t) = eπit2/2 cos( 1

2πt2) is {(t1, 2k + 1) : t1 ∈ R, k ∈ Z}, which is
disjoint from the set T (M∗, S). Hence, (µM,D, Λ(M, S)) is a spectral pair by Theo-
rem 3.1. On the other hand, since T (M∗, S) contains no non-zero integer point, we
have Λ(M, S) = Zn by Lemma 3.8. One can check Λ(M, S) = Zn and µL(T (M, D)) = 1
directly to obtain the spectral pair (µM,D, Λ(M, S)) by Theorem 3.9.

Note that this is the first example of the spectral pair (µM,D, Λ(M, S)) in which M is
not a diagonal matrix. Of course, Z-similar classes of matrix M give such spectral pairs.
Also see the spectral pair produced by (4.13), below. Furthermore, compared with Exam-
ple 4.5, T (M, D) is a unit square [− 2

3 , 1
3 ] × [− 1

3 , 2
3 ], µM,D is the restriction of the Lebesgue

measure to T (M, D) but Λ(M, S) = Z2. In both examples, (M−1D, S) is a Gaussian
compatible pair.

In the case when

Ŝ =

{(
0
0

)
,

(
2k − 3k1 + 1

2k + 1

)}
or

{(
0
0

)
,

(
3k1

3(2k + 1)

)}
, k, k1 ∈ Z,

we have Ŝ ≡ S(mod M∗). It follows from Theorem 3.4 that, for any D̂ ≡ D(mod M),
Λ(M, Ŝ) is not a spectrum for µM,D̂. In particular, (µM,D, Λ(M, Ŝ)) is not a spectral
pair compared with the above established fact that (µM,D, Λ(M, S)) is a spectral pair
but S ≡ Ŝ(mod M∗).

Example 4.7. (a) Twin dragon:

M =

[
1 1

−1 1

]
, D =

{(
0
0

)
,

(
1
0

)}
, S =

{(
0
0

)
,

(
0
1

)}
.
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Since (M∗ − I)−1 ∈ M2(Z), for any Ŝ ≡ S(mod M∗), i.e.

Ŝ =

{(
0
0

)
,

(
k1

k2

)}
, k2 − k1 ∈ 2Z + 1,

it follows from Theorem 3.3 that the orthonormal system {e(λ · x) : λ ∈ Λ(M, Ŝ)} is not
complete in L2(µM,D̂) for any D̂ ≡ D(mod M).

(b) Terdragon:

M =

[
1 −1
1 2

]
, D =

{(
0
0

)
,

(
1
0

)
,

(
0
1

)}
, S =

{(
0
0

)
,

(
1
0

)
,

(
2
0

)}
.

Since (M∗ − I)−1 ∈ M2(Z), for any Ŝ ≡ S(mod M∗), i.e.

Ŝ =

{(
0
0

)
,

(
1 + k1 + k2

2k2 − k1

)
,

(
2 + k3 + k4

2k4 − k3

)}
, kj ∈ Z, 1 � j � 4,

it follows from Theorem 3.3 that, for any D̂ ≡ D(mod M), (µM,D̂, Λ(M, Ŝ)) is not a
spectral pair.

(c) Shark-jawed parallelogram [1, p. 45]:

M =

[
2 1
0 2

]
, D =

{(
0
0

)
,

(
1
0

)
,

(
1
1

)
,

(
0
1

)}
, S = D.

Since (M∗ − I)−1 ∈ M2(Z), for any Ŝ ≡ S(mod M∗), i.e.

Ŝ =

{(
0
0

)
,

(
2k1 + 1
2k2 + k1

)
,

(
2k3 + 1

2k4 + k3 + 1

)
,

(
2k5

2k6 + k5 + 1

)}
,

where kj ∈ Z, 1 � j � 6, it follows from Theorem 3.3 that the orthonormal system
{e(λ · x) : λ ∈ Λ(M, Ŝ)} is not complete in L2(µM,D̂) for any D̂ ≡ D(mod M).

Examples (a)–(c) have the same property that (M∗ − I)−1 ∈ M2(Z). This prevents
us getting an orthonormal basis in L2(µM,D) from the compatible pair. However, it
follows from Theorem 3.7 that in Example 4.7 there does exist an orthonormal basis in
L2(µM,D), i.e. µM,D is a spectral measure and one of the spectra is Z2. One can compare
this case with Example 4.5. On the other hand, since det(M∗ − I) = ±1, it follows from
Lemma 3.8 that there is no set S ⊂ Z2 that is a complete residue system (mod M∗) such
that Λ(M, S) = Z2.

It should be pointed out that, in (c), if we take

M =

[
2 1
0 2

]
, D = S =

{(
0
0

)
,

(
1
0

)}
, (4.8)
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then the corresponding result still holds. In fact, in this interesting case, we have

µ̂M,D(ξ) =
∞∏

j=1

1
2 (1 + e−2πiξ1/2j

)

= e−πξ1i
∞∏

j=1

cos
(

πξ1

2j

)

= e−πξ1i sin(πξ1)
πξ1

, (4.9)

where ξ = (ξ1, ξ2)T ∈ R2, and a familiar infinite product formula for cos(x/2j) (the
Euler–Vieta formula) is used as in (4.7). The zero set of µ̂M,D(ξ) is

Z(µ̂M,D) = {(ξ1, ξ2)T ∈ R2 : ξ1 ∈ Z \ {0}, ξ2 ∈ R}.

Incidentally, we have the known identity

∑
γ∈Z

∣∣∣∣ sin(π(γ + t))
π(γ + t)

∣∣∣∣2 = 1, ∀t ∈ R. (4.10)

Now define Λ by

Λ :=

{(
λ1

β(λ1)

)
∈ R2 : λ1 ∈ Z

}
, (4.11)

where β : Z → R is an arbitrary single-valued function.
It follows from (4.9)–(4.11) that

∑
λ∈Λ

|µ̂M,D(ξ − λ)|2 =
∑
λ1∈Z

∣∣∣∣ sin(π(ξ1 − λ1))
π(ξ1 − λ1)

∣∣∣∣2 = 1, ∀ξ ∈ R2. (4.12)

Hence, µM,D is a spectral measure and one of the spectra is given by (4.11). In the
case (4.8), both Λ(M, S) and Z2 are not spectra for µM,D, but the points {(λ1, 0)T ∈
R2 : λ1 ∈ Z} on the x-axis form a spectrum for µM,D, compared with the Lebesgue-
measure case, in which each spectrum for a spectral set cannot be contained in any
proper affine subspace of Rn (see [2, Remark (3), p. 109]).

Example 4.8. We consider the problem in [10, Example 2.9 (b)]. In dimension 1,
let M = 4 and D = {0, 2}. From a result in [5, Corollary 5.9], we see that µM,D is a
spectral measure. Choose S = {0, 5} and S̃ = {0, 3}. Then (M−1D, S) and (M−1D, S̃)
are compatible pairs. Strichartz [10, Example 2.9 (b)] showed that Λ(M, S) is a spectrum
for µM,D. However, if one tries to replace 5 by 3 in the choice of S, then Strichartz’s
theorem does not apply. This leaves the question of whether or not Λ(M, S̃) is a spectrum
for µM,D in [10]. In fact, from Theorem 3.3 above, one can easily show that the answer
to this question is negative.

Note that from Proposition 4.2 and (4.1), we know that Λ(M, S̃) is not a spectrum
for µM,D if and only if 2Λ(M, S̃) (where 2Λ(M, S̃) = Λ(M, 2S̃)) is not a spectrum
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for µM,
1
2D. So, by letting N1 = M = 4, D1 = 1

2D = {0, 1}, S1 = 2S̃ = {0, 6}, the
condition (3.14) is satisfied for the compatible pair (N−1

1 D1, S1) with m = 1 and s∗
0 = 6,

while the sufficient condition of Theorem 3.2 is satisfied with m = 1, η0 = 2 and s∗
0 = 6.

We also get the negative answer to the question from Theorem 3.5 or Theorem 3.2.

4.1. Concluding remarks

We now present several concluding remarks on the problems that existent in the process
of dealing with spectral self-affine measures.

The combination of Proposition 2.3 and Corollary 3.6 yields a large number of new
spectral pairs in dimension 1. Of course, most of these spectral pairs cannot be obtained
by Theorem 3.1 in a simple manner. This is because the condition of Theorem 3.1 can
be very difficult to check. Example 3.1 in [7] addresses the condition of Theorem 3.1 by
Strichartz. We note that this example is not exact. In fact, in the case when N = 5,
D = {0,±2,±11} and S = {0,±1,±2}, it follows from Proposition 2.3 and Corollary 3.6
that Λ(N, S) is a spectrum for µN,D. Since

mD

(
t

5

)
=

1
5

(
1 + 2 cos

4πt

5
+ 2 cos

22πt

5

)
,

the first non-negative zero of mD( 1
5 t) is located in the interval [0.60, 0.62]. Hence, the

zero set Z(m5−1D) of mD( 1
5 t) is disjoint from the set T (N, S) = [− 1

2 , 1
2 ]. By Theorem 3.1,

we also find that (µN,D, Λ(N, S)) is a spectral pair. To illustrate the superiority of our
result, the minor change in this example will do. Consider N = 5, D = {0,±7,±11}
and S = {0,±1,±2}. It follows from Proposition 2.3 and Corollary 3.6 that Λ(N, S) is a
spectrum for µN,D. Since

mD

(
t

5

)
=

1
5

(
1 + 2 cos

14πt

5
+ 2 cos

22πt

5

)
,

mD(0) > 0, mD

(
1
22

)
=

1
5

(
1 − 2 + 2 cos

7π

11

)
< 0,

we see that mD( 1
5 t) has a zero in [0, 5

22 ], which is contained in T (N, S) = [− 1
2 , 1

2 ]. Theo-
rem 3.1 fails to yield the desired conclusion.

Theorems 3.3 and 3.4 only give sufficient conditions for a set not to be a spectrum,
due to technical reasons (see the open problems in [7]). We do not know whether the
hypotheses in Theorems 3.3 or 3.4 are necessary. Compared with Theorem 3.5, some
condition which is similar to gcd(D) = 1 should be added to Theorems 3.3 and 3.4 in
order to obtain the necessity. But, compared with Theorem 3.9, this condition seems
to be superfluous. This is due to the fact that, in the case when |D| = |det(M)|, the
higher-dimensional generalization of the condition gcd(D) = 1 is Z[M, D] = Zn, and the
condition µL(T (M, D)) = 1 implies that Z[M, D] = Zn, where Z[M, D] is the smallest
M -invariant sublattice of Zn containing the difference set D − D. In the case when
|D| < |det(M)|, the lattice Z[M, D] in the spectral pair (µM,D, Λ(M, S)) may have
different properties: either full rank or non-full rank. For instance, let M , D and S be
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given by (4.6), where r = −2 or |r| � 4 and even. Then the corresponding Z[M, D] is a
full-rank lattice. On the other hand, if we consider

M =

[
−2 0
0 2

]
, D =

{(
0
0

)
,

(
1
0

)}
, S =

{(
0
0

)
,

(
1

−1

)}
, (4.13)

then (µM,D, Λ(M, S)) is a spectral pair but Z[M, D] is not a full-rank lattice. To see this,
we first note that if M , D and S are given by (4.13), then (M−1D, S) is a compatible
pair and

µ̂M,D(ξ) = eπξ1i/3 sin(πξ1)
πξ1

, ξ = (ξ1, ξ2)T ∈ R2. (4.14)

So the Λ given by (4.11) is one of the spectra for µM,D. We then see that

Λ(M, S) =

⎧⎨
⎩

k−1∑
j=0

(
(−2)js1,j

2js2,j

)
:

(
s1,j

s2,j

)
∈ S, k � 1

⎫⎬
⎭ , (4.15)

and {k−1∑
j=0

(−2)js1,j : s1,j ∈ {0, 1}, k � 1
}

= Z. (4.16)

This shows that Λ(M, S) has the form (4.11), where β(λ1) : Z → {0,−1,−2, . . . } is a
certain single-valued function. Hence, (µM,D, Λ(M, S)) is a spectral pair and Z[M, D] =
{(k, 0)T : k ∈ Z} is not a full-rank lattice in R2.

In the Eiffel Tower or three-dimensional Sierpinski gasket, we have shown that the
condition (M∗ − I)−1 ∈ Mn(Z) or det(M∗ − I) = ±1 led us to the conclusion that the
orthogonal system {e(λ ·x) : λ ∈ Λ(M, S)} is not complete in L2(µM,D). Thus, we cannot
obtain the orthogonal basis from the compatible pair in this case. Even so, µM,D may be
a spectral measure.

Acknowledgements. I am indebted to Professor K. S. Lau for his valuable sugges-
tions. I also thank Professor Y. Wang for a helpful discussion on the subject during his
visit to The Chinese University of Hong Kong.

References

1. O. Bratteli and P. E. T. Jorgensen, Iterated function systems and permutation
representations of the Cuntz algebra, Mem. Am. Math. Soc. 663 (1999), 1–89.

2. B. Fuglede, Commuting self-adjoint partial differential operators and a group theoretic
problem, J. Funct. Analysis 16 (1974), 101–121.
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