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Abstract

The work establishes the estimates of linear independence, transcendence, and algebraic independ-
ence measures of the values at algebraic points of a set of ^-functions, satisfying linear differential
equations with coefficients from C(z), rather close to their natural bounds.
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1. Notations and Definitions

The work establishes the estimates of linear independence, transcendence, and
algebraic independence measures of the values at algebraic points of a set of E-
functions, satisfying linear differential equations with coefficients from C(z),
rather close to their natural bounds. This history of the subject is given in [1],
[2] and [3].

In what follows K denotes an algebraic number field over Q of degree h and I
some imaginary quadratic field. If aeK, then a* = max |a;|, where <x1,...,ah

are the conjugates to a in K. i «««*
The algebraic independence measure of numbers £t , . . . , £m is the function

(1) <pitu...,tm;nl,...,nm;H) = min\P(tl,...,t)\,

where P = P(z,, ...,zm)eZ[z,, . . . , z j , P^O, HP^H, HP is the height of P and the
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386 A. B. Shidlovskii [2]

degree of P in zu ...,zm is less than or equal to nu ...,nm correspondingly, and the
maximum is considered over all the polynomials, satisfying these conditions.

If m = 1 then the function

(2)

is called the transcendence measure of number £.
If nk = 1, k = \,...,m, then (in homogeneous case) the function

(3) L(^,..

where a t e Z , \ak\^H,k = 1, ...,m,a\ + . . .+a*>0 , is called the linear independence
measure of numbers £,u...,£m and the function L(l;£;H) is the irrationality
measure of £.

We often consider as the measure of algebraic independence the function

(4) q^lt...,im;niH)

which is defined in an analogous way, but where the degree in zu ..., zm does not
exceed n, and in some cases the function

( 5 ) <P(ti,i> •••>£m,i'< •••> £i,s> •••>£ms,s'< nu...,ns; H),

which is defined in a similar way but where the set of the given numbers consists
of s groups and the numbers nu...,ns are the bounds of the degrees of P in the
corresponding groups of variables.

With the help of Dirichlet principle one can easily obtain the upper estimates of
measures for any sets of numbers £, (see, for example, [1] and [3]). In the theory of
transcendental numbers and its applications it is of interest to obtain the lower
estimates of measures for some classes of numbers t,.

If we know the lower estimate, for example, for <p(£; n; H), then this
estimate holds for \P(®\, where P(z)eZ[z], P(z)#0, degP^n, H

Siegel (see [4] and [5]) calls an entire function

(6) ££
an jE-function, if

(1) c.6K,n = 0 , l , . . . ;
(2) for any e>0, c* = O(nen), when n->oo;
(3) there exists a sequence {qn}, qneN, such that the numbers qnckeZK,

k = 0,1, ...,n, for all n = 0 ,1 , . . . , and for any e>0, qn — O(n€"), «->oo.
The ^-functions (6) with the coefficients of their power series from the field K

will be called A"£-functions.
In papers [3] and [6] /£-functions are considered which satisfy linear differential

equations with coefficients from C(z). For the set of values of such functions at
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[3] Values of £-functions 387

the points from I, rather precise lower estimates for linear independence,
transcendence and algebraic independence measures are obtained.

In this work after some changes in the definition of the E-lunction, the theorems
of papers [3] and [6] are essentially refined at the expense of the refinement of
the remainder term of the exponent. For the proof we use Siegel's well-known
method and its generalization, given in [7]. The most important lemmas of the
method are refined like that that is made in [8] but the main parameter, the order
of zero at z = 0 of the basic approximating form, is selected in an optimal way.

Besides, in the estimates of the transcendence measures in this paper, the degree
of the polynomial may enlarge together with the height up to some limit. A part
of the results of this paper is formulated without proof in [9] in a less precise form.
In paper [9] it was shown for the first time that it is possible to enlarge the degree
together with the height in the estimates of measures, obtained with the considered
method. Later a similar result in another case was established by Nesterenko
[10]. In the proofs of Theorems 3, 4 and 5 of this work we use the estimate of the
order of zero at z = 0 of a polynomial of z and the considered functions, obtained
in [10]. For absolute understanding of the subject matter of this paper it is necessary
to get acquainted with the works [3], [7] and [8].

We generalize the earlier introduced notions of measures and consider the alge-
braic independence, transcendence and linear independence measures with respect to
K, which are defined just like (1M5) with the only difference being that the
coefficients of the corresponding polynomial P or the linear form L belong to
Zn and the maximum of the moduli of the coefficients of P or of the linear form L
and of all their conjugates do not exceed H. The corresponding measures will be
denoted analogously to (l)-(5) but instead of the symbols q> and L we write
<pK and L|(.

Lastly, let us consider the homogeneous algebraic independence measures
(p°(£i,...,fm; «; H) and (p&(£i,-..,£„; n; H), which are defined by analogy with
(4) with the only difference being that in their definitions P(zu ...,zm) is a homo-
geneous polynomial of degree not greater than n, correspondingly from Z[zlt...,zm]
OTZK[Z1,...,ZJ.

It is evident that on establishing the estimates of the introduced measures
we have obtained the estimates for the values of polynomials in 7jK[zu...,zm]
with corresponding degrees and heights.

Let us change the definition of the ^-function in the following way. We call the
entire function (6) the ^-function, if it satisfies three conditions analogous to the
conditions of the original definition but in which the estimates of cn and qn are
replaced correspondingly by

c'n=O(c"), qn=O{c"),

where c ̂  1 is a fixed number.
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388 A. B. Shidlovskii [4]

It is easy to verify that the set of all ^-functions as well as in the case of the original
definition forms a ring of functions closed relative to differentiation, integration
from 0 to z and substitution z for Xz where A is an algebraic number. Note that all
the known ^-functions, satisfying linear differential equations with coefficients in
C(z) are ^-functions in the sense of the new definition.

To make clear the character of the dependence of the constants involved in the
definitions of the measures on the considered functions and numbers £, m and n,
we refine the definition of the ls-function. We shall say that the entire function
(6) belongs to the class KE(X, c; fi,q) if

(1) cBeK,w = 0 , l , . . . ;
(2) there exist constants A S= 1 and c > 1 such that c* < kit", n = 0 ,1 , . . . ;
(3) there exists a sequence {qn}, qneN, and constants / i ^ l , q>\, such that

qnckeZK, k = 0,l,...,«, for all n = 0 ,1 , . . . , and qn^puf, n = 0 , 1 , . . . .
Consider a set of functions

(7) /*(z)= £ ^f ,z», k = \ , . . . , m ,
n=0 n-

from the class KE(k, c; n,q). Then there exist sequences

(8) {qoj, <lo,n^l*oq5, Ho'ZV, ?o>0> k=\,...,m,

such that

(9) ^cnCt.veZK, v = 0, \,...,n, k=\,...,m.

Indeed, for example, we can take the sequence

(10) ?0,» = ? l ,n- -9m,», / ! = 0 , 1..../M,

where {qk,n}, k = 1, ...,m, are the sequences thet correspond by definition to each
of the #£-functions (7). Then it is evident that

(11) Mo^"1, ?o=9 m -

In some cases there may exist sequences of the form (8) for which ft0 < nm and
qo<qm as, for example, in the case of Lemma 6 given below.

Later on, for the set of ^is-functions (7) the numbers n0 and q0 will have the
sense determined above.

If ^eK we denote the conjugates to a number £ in K by £i, ...,£». We
denote by Kj, i=l,...,h, the algebraic number fields, conjugate to K and by
fl ;(z), ...,/m,i(z), / = \,...,h, the ^.E-functions obtained from the functions (7)
by replacing all the numbers ck>v by their conjugates from K, and call them the
functions, conjugate to functions (7). If a set of A'f-functions consists of several
groups and is numerated by two indices then the conjugate functions will be
denoted by the third index. Similar notations for conjugate functions will take
place for the set of A^£-functions, denoted by letter O with indices.
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[5] Values of ̂ -functions 389

In future we will consider the sets of ^is-functions (7) satisfying the system of

linear differential equations

m

(12) yk=Qk,o+ Z Qk.iyi, fc=l,...,m, QKieC{z),

or the system of homogeneous equations

(13) y'k= t S*.«*. k=l,...,m, <2MeC(z).

In this case (see [7]) the numerical coefficients of the polynomials are the numera-
tors and denominators of all the functions Qki in (12) or (13) may be selected from
ZJz] . Thus 0 M eK(z) .

Denote by T=T(z)eZK[z] and T° = r°(z)eZK[z] the polynomials which are
the least common denominators of all the rational functions Qki in (12) and (13).
Thus all TQk4eZK[z] and, accordingly, all T°Qk?ieZK[z].

Denote by g the largest of the degrees of m2 + l polynomials T° and T°Qkt,
k,i= \,...,m, and by G the largest of the moduli of the coefficients and their
conjugates of these polynomials. The letter p denotes the smallest of the orders of
zero at z = 0 of the AE-functions (7) which are under consideration.

If the considered set of functions splits into s groups and each of them satisfies
its own system of equation (12) or (13), then Tt = T,(z) or T°, = T°,(z), 1=1,..., s,
have just the same sense that T and T° have for systems (12) and (13).

Denote in what follows by the letter a, and by the same letter with various
indices, positive constants, which depend only on the class KE(A, c; fi; q), which
contains the considered ^-functions that is only on the field K and the numbers
A, c,n and q. By the letter y and by the same letter with various indices we denote
positive constants also depending on Ki?(A, c; \i, q), numbers p, q, G and the number

Note that the numbers a, y, ak and yk do not depend on m (the number of the

considered functions) and on the degrees of the polynomials considered below. The

positive constants 8 will depend only on the system of differential equations

which are satisfied by the considered functions. The constants 8 may depend on m,

generally speaking. The positive constants Q.(m) and Q^m) will depend only on

the class KE(A, c; n,q), the system of differential equations, which is satisfied by the

considered functions and the numbers/?, q, G, !; and m.

All the constants a, y, ak and yk are effective, that is, they may be calculated for

any concrete set of /TiE'-functions and the constants 8, and fi(m) and Cl^m) are not

effective generally speaking. In different cases the same letter will denote different

constants. In this paper square brackets are used for denoting the largest integer

in the considered numbers.

We call an irreducible set of functions (see [11]) a set of funct ions/ t (z) , . . . , /m(z)
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390 A. B. Shidlovskii [6]

analytic in some domain which constitutes a solution of the system of linear
homogeneous equations (13) if it is linearly independent over C(z) and an equation

t Pk(z)yk = 0, P*(z)eC[z], k=\,...,m,
&=i

where yl s ...,ym is some solution of the system (13), can take place only in the case
when Pk(z)yk = 0, k = 1, ...,m, is identically in z.

Let /K = /K(zi, ...,zm) be an arbitrary linear form, not identically zero, with co-
efficients from ZK of height H with respect to K and /K( = /K((zi, •••,zm), i = \,...,n,
be linear forms obtained from the form lK by replacing all its coefficients with their
conjugates from K,-.

2. The estimates of the measures of linear independence

THEOREM 1. Let the set of KE-functions (7), mis 2, constitute a solution of the
system of linear homogeneous differential equations (13) and be linearly independent
over C(z), £eK and £ r o (£)#0. Then there exist constants y and Cl(m), such that
if In In H > Q.(m) the inequality

(14) max |/K((/

holds and if k = I then the inequality

(15) L1(fl(0,-,fm(0

holds where p = 1 — m — ym"2(\n\nH)~*.

COROLLARY. Under the conditions of Theorem 1 there exist constants y and Sl
such that for any H the inequality

holds where p = 1 - m - y m 7 / 2 ( l n l n ( / / + 2 ) ) " i .

THEOREM V. If under the conditions of Theorem 1 the functions (7) constitute an
irreducible set of functions, then in the statements of Theorem 1 and its corollary,

[I, ifp<l,
O(m) = y2m5, O^m) = \

(exp{-(2/w-l)exp(y2/n5)}, i fp^ l ,
where

Theorem 1' states that under the condition of the irreducibility of the considered
set of functions, all the constants involved in the statements of Theorem 1 and its
corollary are effective.
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[7] Values of ^-functions 391

For the proof of the theorems formulated, we establish some auxiliary

propositions.

LEMMA 1 (see [5]). Let the coefficients of the linear forms

Lk = ak,1xl + ...+akqxg, k=\,...,p, p<q,

belong to Zg and

a'ki^A, A>0, k=l,...,p, i=\,...,q.

Then there exists a nontrivial solution xt, ...,xq, xteZK, i = \,...,q, of the system

of equations Lk = 0, k = 1, ...,p, such that

06) x;<n(riqAY<*-'>-\ i=\,...,q,

where n is a constant dependent only on the field K.

LEMMA 2. Let / t(z)eK£(A,c; n,q), k= \,...,m, «eN, and co = co(n) be a non-

decreasing function ofn,2^ co(n) ̂  n. Then there exist m polynomials

n

Pk(z)= Z bk,izi> k=l,...,m,
1=0

not all identically zero with the following properties

(l)bkileZK,l = 0,l,...,n,k=l,...,m,

(17) b'kfl<nnexp(<jln(2cq0)m
2a)n), 1 = 0,1,...,n, k=l,...,m;

(2) the linear form

(18) R = t Pu{z)fk{z) = £ av-
k=l v=0 V!

vanishes at z = 0 to the order not less than m(n + l) — [nco~1]— 1, so that

(19) av = 0, V = 0 , 1 ) . . . , / J J ( M + 1 ) - [ « O > - 1 ] - 2 ;

(3) the coefficients a, of the form (18) satisfy the condition

(20) a*<nn(2c)vexp(<7oln(2c£o)ffj
2ct>«), v^m{n + \)-[nm~l]-\.

PROOF. Let

(21) P&) = n\ t gk,v-., k=\,...,m,
v=0 V!

where g ^ e Z j . Then Pk(z)eZK[z].
Representing the considered ^is-functions in the form (7), set

(22) Pk(z)fk(z) = n! £ dKv^ k=\,...,m,
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where

(23) dKv

a s gk,f> — 0 while p >n. Then

(24) av = n

A. B. Shidlovskii

P=O \p) k'" *•""'"

:! Y <4. w v = 0 , 1 , 2 , . . . .

[8]

On multiplying both parts of the equalities (24) by qojn\, where {q0>y} is the
sequence (8), satisfying conditions (9) according to the conditions (19) and
equalities (23) we obtain m(« + l) — [noo*1] — 1 linear homogeneous equations for
finding out m(n+1) unknown coefficients gky.

(25) t t < 7 O , V ( - W - P S * , P = O> v = 0 , l , . . . ,

As in the equations (25), v^m(n+1), we have because of (11)

V*

v - p

Applying Lemma 1 to the system of equations (25) with

p = m(n+l)-[nco-l]-l, q = m(n+l), A = Xn

because of the inequality

Piq-pV1 = (m(n+l)-[nco~1]- l)([nco~ J ] + 1)" 1 <m(n+ l)n~l

we obtain g*jP6ZK not all equal to zero and according to the inequality (16) such
that

(26) \g+p\ < r,{r,mnAiim(2cqQ)m<"+1>} < exp(a, In (2cq0)m
2 am).

From equalities (21) and inequalities (26), we obtain the estimates (17) and from
equalities (23), (24) and inequalities (26) we obtain the estimates (20). The lemma is
proved.

Set

(27) t = [nw-l]+p + igm(m- I),

where n and cu have the same sense as in Lemma 2 and p and g are defined above.
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[9] Values of ^-functions 393

Let

(28) /?,= | ^.. / .(z), ^ , ,

be an arbitrary linear form of functions (7). Set

R^TOR,^, A: = 2 ,3 , . - ,

where T°R'k_1 is a linear form which arises after differentiation of the form Rk_k

by z and substitution of the right-hand side of the differential equations of system
(13) for/i(z), ...,/m(z) and multiplying them by T°. Then

m

(29) Rk= £ P».,/,(z), k=l,2,..., /y.eZ.Iz].
;=i

Let us denote by

(30) A = A(z)=|^ ,«ki=i „,

the determinant of the set of linear forms Rt,..., Rm.

LEMMA 3. Let the functions fk(z)eKE(X,c; n,q),k= l,...,m, constitute a solution
of the system of linear homogeneous differential equations (13) and be linearly inde-
pendent over C(z). Let further the linear approximating form Rt (28) be constructed
by Lemma 2 with some n. Then there exists a number n0 e N such that for any n^n0

the determinant A (30) of the system of linear forms Rt,..., Rm (29) does not vanish
identically and is of the form

(31) A(z) = zm(n+1)-[na>-1]-'"-'>A1(z), A,(z)#0,

where A!(z)eZK[z] and is of degree ru

The proof of Lemma 3 is quite analogous to the proof of Lemma 6 in [7] with
the use of Lemma 2 and with some formal changes which arise because of Lemma 2.
Then it occurs that

(32) no = 8+\gm{m-\)

and if the considered functions constitute an irreducible set of functions then by
Lemma 4 from [11]

(33) no=p + igm(m-l).

LEMMA 4. Let the functions fk(z), k = 1, ...,m, satisfy all the conditions of Lemma
3, the number n0 be defined by (32) (and in the corresponding case by (33)) and the
number t by (27), a e C, a7"°(a) / 0, and the linear form Rx = Rt(z) (26) be constructed
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394 A. B. Shidlovskii [10]

by Lemma 3 for any n^n0. Then the matrix of coefficients of the linear forms

(34) ||A.i(«)l|, k=l,...,m + t, 1=1,...,m,

has rank m.

Because of Lemma 3, Lemma 4 may be proved quite similarly to Lemma 7
from [7].

LEMMA 5. Let the functions fk(z)eKE(A,c; fi,q), k = 1, ...,m, constitute a solution
of the system of the linear homogeneous differential equations (13) and £ eK. Further
let the linear form i?, = /?j(z)(28) be constructed by Lemma 2 for some n and the
number t be defined by (27). Then for any k, satisfying the inequality k^m + t the
estimates

(35) \PkAOk\ <«"exp(y1

(36) | ^ ( 0 | < « - ( m - 1 )

hold and the estimate (36) remains valid if we change all the coefficients of the power
series Rk{z) and number £ to their conjugates from any field Kf.

PROOF. If the coefficients of the power series

<D(z)= £ <xkz\ ¥(z) = £ pkzk,
k=0 k=0

satisfy the conditions
l«*l<&, PK>0, k =1 ,2 , . . . ,

then we shall write O<*P. Besides that we shall denote

<I>(z)= £
fc=0

First of all we have

(37) T°(z)<G(l+zy,

where the numbers g and G are defined above.
Repeating word for word the arguments of Lemma 6 from [5] we obtain by

induction that

(38) Pk+lil(z)<$Gk(l+zy°+°exp(ln(2cq0)m
2con)nn f[ (vg+m + n),

v = 0

(39) Rk+ ^XCHl +zT II (vg+£)fii(z), k = 0,1,2,....
v=o \ dzj

and the relations (38) and (39) remain valid if we change the coefficients of the poly-
nomial Pk+ia(z) and of the power series Rk{z) by their conjugates from any field
K...
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[11] Values of ^-functions 395

We have n^n0 = 5+\gm(m— 1). Suppose that n and co are such that

(40) nco'1 >2m2ln2.

Then

(41) k^m + t = m + [nco~1]+p+igm(m-\)<y3nco~1.

Now from (38) and (41) it follows that

(42) PI ,(£)<exp{aIn(2cq0)m
2can + y+nco~1 Inn)n", k^m + t.

Further from (41) and (20) we have, setting a = m(n +1)- [no'1]- 1,

t-i / d\ ( d\k

II \vg+-)R1(z)<exp{ysnaj-1lnn)ll+-j R^

( d\ z
<exp(<T0la(2cq0)m

2con+ysnco 1lnn)n"[l+—) Y (2c)v—
\ dzj =a v!

fk\
<cxp(a0ln(2cq0)m

2(on+y5nco-1lnn)n" £ £ - (2c)v

« exp (a0 In (2cqo)m
2 con+y5nco~1 In «)«" 2* ^

a V!

Thus we obtain

\Ck-\f J\ •} \

(43) h 11 ( V 9 + T ^i(z)r <exp| ( v=o \ dzj J |

From (39) and (43) we find that

(44) \Rk^)\<exp(ff0ln(2cq0)m
2

Making equal the parts of the exponent in the right-hand side of the inequality
(42) we set

(45) co = m~ '(In «)*(ln (2cqo)y
i.

As co^2 by given data, n must satisfy the condition lnn^4m2ln(2cq0). Then

nto ~J = mn(ln (2c?0))*(ln n)~i> (In 2)* mn± > 2m2 In 2,

because cqo> 1 and ni>(ln«)i>2w (In 2)*. That means that (40) is true.
Putting the value co (45) into the estimates (42) and (44) we obtain the assertions

(35) and (36) of the lemma.
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PROOF OF THEOREM. 1. Let us consider an arbitrary linear form

, 1=1,...,m.

Let the functional linear form Ri(z) (28) be constructed by Lemma 2 with some
n and the forms Rk(z), k = 1,2..., are determined by the form R^z) in (29).

As the KE-iunctions (7) are linearly independent over C(z) and ^ r ° ( | ) # 0
then by Lemmas 3, 4 and 5 for any n > n0 where n0 is defined in (32) among the
numerical linear forms

(46) Rk(0, k=l,...,m + t, m + t<y3nco-\

we can select m linearly independent while estimates (35) and (36) hold and

(47) maxdegPkl(z)^yan, k = 1, ...,

Then among the linear forms (46) we can select m — 1 forms such that together
with Lo they are linearly independent. Let these forms be

(48) Ls = Rks(Z), ks^m + t, s=l,...,m-l.

Denote by A, A # 0 , the determinant of the linear forms (48) and Lo and by
A*! the cofactor of the element of A in the Ath row and the /th column. Then we
have

(49) /itf)A = Al j IL1 + ... + Am_1>ILm_1 + Amj/L0, U / ^ w .

Let us take / such that /,(£)#(), which is quite possible because
Then it follows from (49) that

(50) |Am _,| \L0\ ̂  \fi(£)\ |A|— (m — 1) max |A t , | max \Lk\.

With the help of the estimates (35) and (36) we obtain the inequalities

(51) |A*"

max | A y <exp(yiom2«(ln(2c9o)ln«)i)n(m"2)",

(52) max \Lk\ <exp(y2m2K(ln(2^0)lnn)*)n"(l""1)B.

Let aeN be such that a£, eZK. Then it follows from (47) that a7-" A = c '""AeZl f ,
and this implies, because A#0 , that

where At , . . . , Ah are the conjugates to A. Thus, for some i,

(53) |A,|>e-"..".
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[13] Values of E-tunctions 397

Let us replace the field K by the field Kf. That means, that in the power series
of all the functions (7) in the formL0 all the coefficients are replaced by their conju-
gates from the field K,- and the number £ by {f.

It is evident that after such a replacement all the arguments and estimates given
above remain valid. The inequality (50) will take the form

(54) A*m,1|L0)1.|^|/1,i(£j)l|A(|-(m-l) max A^, max |I*>f|,

where Lki denotes the linear form, corresponding in the field Kt to the form
Lk. If we replace the left-hand side of (52) by \LkA\ then, by Lemma 5, this inequality
remains valid.

From inequalities (54), (51), (52) and (53) we deduce that

(55) lLo.,1 >exp(-y12m2n(ln(2C?o)lnn)*)/r('"-1)'1

Take the minimal n such that the conditions

(56) n^n0, (lnn)*>2yl3(ln(2cq0)
im2,

and

(57) n" exp ( - y 13 m
2 «(ln (2cq0) In «)*) > 2H

are satisfied. Then from inequality (55) it follows that

(58) |Lo>>.|>iexp(-y12w2«(ln(2c9o)lnn)*)n-(m-1)n.

Under our assumptions beginning with some H the condition

(« - 1 ) ( - » exp (y13 m\n -1 ) (In (2cq0) In (« -1))*) ^ 2H,

holds and this implies that

(59) «"exp(-y13wj2n(ln(2^o)lnn)*)<2n^(l+(n-l)-1)'1-1

x exp(-y13w2(ln(2c?0))i(«(ln«)*-(«- l)(ln(n- \)f))<2eHn.

Taking logarithms, we obtain the inequality

nln-yi3m2«(ln(2c^0)lnn)*< ln(2e)+ l n ^ + Inn,

and because of the inequality (56), that implies that

(60) rtlnn<y14ln#,

and then, in accordance with inequalities (57), (59) and (60), we have

(61) 2J/<n"exp(-y13m2«(lnnln(2c?0))*)<y15#

and

(62)
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From (58), (60) and (61) we deduce that

where a = l — m — yilm
3(ln(2cq0))

i(lnlnH)~i and as, according to (11) qo = qm

and in view of inequalities (56) and (62), we have

(63) lAul>#*
where 6 = 1— m—y18rnll2(lnlnH)~*, while

l n l n # > max(y1 9ms,y1 6n0).
Set

(64) y = max(y18,yf9), Q(m) = max(y2m5,yJ 6lnn0).

Then since In In H>Q.(m), inequality (14) follows from inequality (63).
If K = I then inequality (14) implies inequality (15) because the moduli of the

complex conjugate numbers are equal.

The corollary and Theorem 1' now follow from this theorem and equalities (33)
and (64) in view of the fact that since In In H^y2 ms the inequality

(65) LMUZd. -,fm.tfd; H)>I4fiAtd, -,Ltfd', [expexp(y2ms)-1])
holds.

Theorem 1 implies a very useful theorem for applications to concrete functions.

THEOREM 2. Let the set of KE-functions (7), m>l, constitute a solution of the
system of linear differential equations (12) and be linearly independent with the
number 1 over C(z) and let ^eK, £r(£)#0. Then there exist constants y and Sl(m)
such that under the condition In In H>Q(m) the inequality

max \lKl(l,fUi(Q, ...,f

is true and if K = I then the inequality

is true where a = — m — y/«7/2(ln In/ / )"*.

The corollary to Theorem 2 and Theorem 2' analogous to the corollary to
Theorem 1 and Theorem 1' holds.

3. The estimates of the algebraic independence measures

The proof of Theorem 1 and Lemmas 6, 7 and 8 given below implies some more
general assertions.
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THEOREM 3. Let the set of IE-functions (7), m~^\, constitute a solution of the system
of the linear differential equations (12) and be algebraically independent over C(z),
and £e I, ^J(^)#0. Then there exist constants y and Q(m) such that the inequality

-y(n+ l)3m(wln(« + l))*(lnln(#+2))-*,

if p< 1,

where

p = Q(m)

THEOREM 3'. / / under the conditions of Theorem 3 the set of products

(66) /*!'(*)•••/£"(*),

constitutes for any N = 1,2,..., an irreducible set of functions then €l(m) = y.

LEMMA 6. Let the functions (7) belong to KE(A,c; fi,q) and let NeN. Then
M = (N+m)\/N\ml, products (66) belong to the class

(67) KE(XN, Nc; nmN,q"11" N+ *>),

and the sequence {qn} involved in the definition of class (67) may be selected suitable
for all the M functions (66), that is,

(68) /*o=MmN. qo=<rilnN+')-

PROOF. Consider one of the products (66) for which k1 + ...+km = s, l^s^N.
The product (66) may be considered as the product of some s of the functions
(7); some factors may be repeated. Arrange these s functions in an arbitrary order
and denote the coefficients of their power series by ytjn\, n = 0,1,..., / = 1,...,s,
correspondingly. Then

Mz)...fk
m"(z)= f ^z»,

«=o n\
where

n\

( 6 9 ) >•»= I '
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According to the definition of the class lLE(X,c; ft,q) we have

For any n in any item, involved in the right-hand side of (69), we arrange the
factors cl „ so that the second index does not increase, that is,

Then it is evident that nh^n, «,2<w/2, ...,n,s<«/5. Thus if we set

<7II = < 7 o , n < 7 o , [ i i / 2 ] ••• < 7 o , [ i t / N ] >

where {qOn} is the sequence (10) then qnyteZK, / = 0,1,...,« and n = 1,2,..., and
in view of (8) and (11) we obtain

q ^.nmsqm<1+it--+1/N'>''^:n
mNqn'ia(-N+iin

The lemma is proved.

Let $(z) be a function, analytical at z = 0. Denote by 0(O(z)) the order of zero
of <E>(z) at z = 0.

LEMMA 7 (Nesterenko, see [10], Theorem 3). Let PeC[z,xu...,xm],
degzP<«,degs<Af. Suppose that the functions fi(z),...,fm(z) analytical at z — 0
constitute a solution of the system of the linear differential equations (12) and are
algebraically independent over C(z). Set R(z) =P(z,f1(z)...,fjz)). Let the dimension
of the vector space over C(z) generated by the functions R(i)(z), i = 0,1,..., be equal
to I. Then

Let the A/i-functions (7) satisfy the system of the linear differential equations
(12). Consider the set of M = (N+m)l/Nlm\ products (66). By Lemma 12 from
[7] the functions (66) constitute a solution of a system of linear homogeneous
differential equations of the form (13) in which the number m is replaced by the
number M and the coefficients of this system have no poles, different from the
poles of the coefficients of system (12). Numerate the M functions (66) in an
arbitrary order and denote them by

(70)

Using Lemma 6, it is easy to verify that for the functions (70) the assertion of
Lemma 2, in which m is replaced by M, remains valid. If we suppose that the
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functions (7) are algebraically independent over C(z) then the assertions of Lemmas
3, 4 and 5, in which m is also replaced by M, are true for the functions (70). In
view of Lemma 7 we can refine now Lemma 3.

LEMMA 8. / / in Lemma 3 we replace number m by M and the KE-functions (7)
by KE-functions (70) while the functions (7) are algebraically independent over
C(z) then

PROOF. Let Rt{z) be the linear form of the functions (70), constructed by Lemma
2. By this lemma O{Ry(z))^Mn — [nco'1] — 1. But then in view of Lemma 7 we
have

(71) Mn- [nco - 1 ] - l< / / i + fi(m)iVt, T = (m+l)m+1+m+l.

The inequalities (71) imply that (M-l-co~l)n<£l1(m)Nz+2. If we assume that
l< M, then M—/> 1 and by the conditions of Lemma 2 we have co"1 <£. Thus
n<£21(/w)WT + 4. Then for n^2£ll(m)NT + 4 we have I = M, which implies the
lemma.

In view of the equality

the proof of Theorem 3 is quite analogous to the proof of Theorem 1 with the use
of Lemmas 6 and 8.

From inequality (63) and the equalities obtained with the help of Lemma 6 and
analogous to equalities (64), we deduce that for

lnln(#+2)>max(y2mAf4ln(Ar+l),?1 6ln«0)

= max (y2 mM* In ( # +1), y16(r In (N+1) + In il^m))),

and this means that for

In In (H+2) > Sl2(m) m(N+ l)4m In (N+1)

after replacing number N by n the assertion of Theorem 3 with C = 1 is true. In the
case

In In (H+ 2) ̂  Q2(w) m(N+ l)4m In (N+1).

Theorem 3 is proved with the help of the inequality for the functions (70)
analogous to inequality (65).

Theorem 3' follows from the proof of Theorem 3 in view of (33) in which m
is replaced by M.
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THEOREM 4. Let the set of IE-functions (7), m^2, constitute a solution of the
system of linear homogeneous equations (13) and be not connected by any homo-
geneous algebraic equation with coefficients from C(z) and let £ e l and
Then there exists constants y, yj, £l(m) such that the inequalties

hold where

d = y(n+ l ) 3 ( m -

5l is the result of replacing 8 by y inyl and

where
p = Q(m) (n + l ) 2 ( m - l\m In (n + l))*(ln In (#+2))"* .

The proof of Theorem 4 is analogous to the proof of Theorem 3; we need only
to consider (N+m— iy./N\(m — 1)! products (66) which satisfy the condition

THEOREM 4'. / / in Theorem 4 the set of the products (66) for which k1 + ...+km = N
constitutes for any N = 1,2,... an irreducible set of functions, then Q.(m) = y and,
correspondingly, Q(m) = yx.

THEOREM 5. Let s+t>0 and suppose that any of s, s^O, sets of the IE-functions

(72) /i,,00,...,/mi,«(z), mt>\, l=l,...,s,

constitute a solution of the corresponding system of linear differential equations

mi

yk,i= 6 * , o , i + Z Qk,i.iyt,i> Qk,t,ieC(z), k=l,...,mh 1=1,...,s,
;=i

and any of t, t ̂  0, sets of IE-functions

(73) <S>ul(z),...,^mitl(z), n,>l, l=l,...,t,

be a solution of the corresponding system of linear homogeneous differential equations

Ml

' Z ), k = \ , . . . , n i , 1 = 1 /.
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Further let m = mt +...+ ms + n1 +... + fit functions (72) and (73) be not connected
by any algebraic equation with coefficients from C[z] and homogeneous by any of
the t sets of functions (72) and let £el, {T^t) ...Ts(Z)T%(g) ...T°t(0^0. Then
there exist constants y and £l(m) such that the inequality

a (f (E\ f rtV • f <E\ f tfV <&1-l(g) ° " - - 1 - 1 ^ ) - •

JJ /rwe

=y( fl

f l ,
C =

[exp(—

n
n )( jft

and

The proof of Theorem 5 is analogous to the proofs of Theorems 3 and 4 if we
consider M products

/iiv • • • fe1 • • • /i':/ • • • firs.- *ili' • • • ^ . ' i 1 • • • *K? '>
(74)

0<fci . t + . . .+frM l j i<M|, / = I , . . . , * ; K U + . - . + K,,, , , = vk, A: = 1 , . . . , / M .

THEOREM 5'. / / in Theorem 5 the set of products (74) for any «, = 1,2,...,
/ = 1, ...,s, vk= 1,2,..., k = 1,...,/, constitutes an irreducible set of functions, then
ft(m) = y.
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Note that in Theorems 1-5 we may consider as the field K any algebraic number
field of a finite degree over Q, which contains all the coefficients of the power
series of the considered ^-functions and the number £.

The particular cases of Theorem 5 when s > 0, t = 0, and s = 0, t > 0 are of interest.
It is easy to reformulate Theorems 1-5 in the case when the considered functions
satisfy linear differential equations but not systems of such equations. For example,
we may set, in Theorems 2 and 3, fk(z) =/(<t~1)(z), k = 1, ...,m, where /(z) is a
solution of the equation

Pmy™ + ...+Piy'+Poy = Q, Pk,QeC[z),

and do the same thing with Q=0 in Theorems 1 and 4. In the case of Theorem 5
we may consider the solutions of several similar equations.

As Z<=K, we may omit the indices Kf and I of the measures L and q> in Theorems
1-5, that is the corresponding assertions are valid for the usual linear independence
and algebraic independence measures. With this, in the case of the field Kf, the
index i remains with the /T/s-functions and the number <!;.

In view of the fact in the applications of the general theorems to concrete func-
tions, the number m of the considered functions may be arbitrary everywhere in the
formulations of the theorems, the dependence of the estimates on m is taken into
account.

In all the Theorems 1-5 the constant y is effective and the constants Sl(m) and
ft^m) are non-effective. The result of Yu. V. Nesterenko enabled us to make the
constants involved in the estimates effective relative to the degrees of the considered
functions <p, but it does not give the total effect. If we do not use Lemma 7 then all
the assertions of Theorems 3-5 remain true but the constants C will be ineffective
relative to all parameters on which they depend.

In Theorems l ' -5 ' all the constants involved are effective. But we must note that
the proofs of the irreducibility of sets of functions are, as usual, very complicated
and may be obtained only when these functions are solutions of differential
equations of not too high orders.

The estimates of the measures in the theorems proved take place for any values
of m—the number of the considered functions. But for large enough values of m
and the degrees these estimates become rough. But the number m and the degrees
of the measures may grow together with H up to some limit and precise enough
estimates of the measures remain true.

From the proofs of Theorems 1 and 2 it becomes clear that m may grow depend-
ing on the growth of H. But the bound of the growth is not indicated effectively.
But in Theorems 1' and 2' this effective bound is established. For example,
in Theorem 1' for m<yo(lnlnH)1/s a precise enough estimate for L is obtained.
But for m ^ yo(ln In H)lls it becomes rough and the greater is m, the more and more
rough it becomes.
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Theorem 3 established a precise enough estimate of q> for

nAm In (n +1) < Q0(m) In In H,

But Clo(.
m) is a n ineffective constant. This estimate becomes not sharp for

«4mln(n+l)^no(w)lnln/f. In Theorem 3 the result is effective and a precise
estimate takes place for m(n+ l)4mln(« + l)^y~1lnln^. The situation is similar
in Theorems 4 and 5.

The theorems proved may be applied to many concrete functions. The result can
be written down at once if we have already proved either the linear independence
or the algebraic independence over C(z) of the considered functions.

Many works of this kind have been published. The review of some of them one
can find in [2]. The theorems of the present work enable us to refine all the estimates
published in [3] and [4].

Let us give some simple examples. Let cct,...,am be distinct numbers from I.
It is well known that the functions e"^, ...,e""z are linearly independent over C(z).
They satisfy the system y'k = xky, k = 1,..., m. It is also evident that these functions
form an irreducible set of functions. Thus by Theorem 1 we have

where
a = l-m-ymll2(lnln(H+2)-i,

and
fl, ifp

C =
[exp{-(2m-l)exp(y2ro5)}, ifp

where

Consider the ^-functions

oo (—1)"

^ ( z ) ?
satisfying the differential equation

In [11] it is proved that if A,/xeQ, A-/i#£(2A:+l), keZ, then the i(n+l)(n
products

for any n = 1,2,..., form an irreducible set of functions. Therefore by Theorem 3'
for such X and n and for any £ el, {#0 the inequality

0 , *;,„(£);«; H)>CHa
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holds, where

a = - \n(n + 3) - y«6(ln (n + l))*(ln In (i7+2))"*,
and

(1, i fp<l ,
C =

[exp{-(n2 + 3n+l)exp(y2/j8ln(«+l)}, if p ^ l ,
where

p = y«4(ln(n+ l))±(lnln(#+2))-±.

In a similar way one can obtain the quantitative estimates, corresponding to all
the theorems proved in [11].

Consider the function Kx(z) = KXt0(z). Let £ E I , £#0 and a1; ...,am be distinct
numbers from I. Then, arguing as in [11] it is easy to show that the set of
i(n +1) («+2) products

form an irreducible set of functions. Then by Theorem 5' with s = l,t = I,m1=2,
Hi = m, we have the inequality

cp^K^XKxiOl e\...,<*>•; n; \;H)>CH'
where

and
fl, i fp<

[exp {- ((« +1) («+2) m -1) exp y2 n8 w4(w+In (n +1))}*, if p ^
where

p = yn4m2(Tw+ln(n+ l))*(lnln(/f+2))-*
or the inequality

where a is as above, Pk{xltx2)eZl[x1,x2] and degPt<n, k=\, ...,m.
Denote

K0{2i) " 1
3 •

• 1

Then by Theorem 4
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where
b =» -7i-yn3(ln(n+l))*(lnln(#+2))-*,

and
fl, i fp<l ,

C =
(exp{-(2« + l)exp(y2n*ln(n + l))}) i f p ^ l ,

where
p = yn2(ln(n+l))*(lnln(#+2))-*.

In all the examples given, one can calculate the constants y if one makes a more
precise calculation of all the constants in the lemmas.
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