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Abstract

The work establishes the estimates of linear independence, transcendence, and algebraic independ-
ence measures of the values at algebraic points of a set of E-functions, satisfying linear differential
equations with coefficients from C(z), rather close to their natural bounds.
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1. Notations and Definitions

The work establishes the estimates of linear independence, transcendence, and
algebraic independence measures of the values at algebraic points of a set of E-
functions, satisfying linear differential equations with coefficients from C(z),
rather close to their natural bounds. This history of the subject is given in [1],
[2] and [3].

In what follows K denotes an algebraic number field over Q of degree 4 and I
some imaginary quadratic field. If a€K, then a* = max |a,|, where ay,...,a,

are the conjugates to « in K. 1<i<h
The algebraic independence measure of numbers &,, ..., &, is the function
(l) (P(él, LR ] ém; nh '-"nm; H) = min IP(fl’ AR ] 6)"

where P = P(z,,...,2,,)€Z[z,, ..., 2,), P#0, Hpo< H, Hp is the height of P and the
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386 A. B. Shidlovskii 2]

degree of Pin z,,...,z, is less than or equal to ny, ..., n,, correspondingly, and the
maximum is considered over all the polynomials, satisfying these conditions.
If m = 1 then the function

2 o(¢; n; H) = min |P(&)]

is called the transcendence measure of number &.
If n, =1, k=1,...,m, then (in homogeneous case) the function

3) L, ...,¢&; H)y=min|a, &+ ... +a, &,

where a,€Z, |a| <H,k = 1,...,m,a? + ... +a% >0, is called the linear independence
measure of numbers &,,...,&, and the function L(1; £; H) is the irrationality
measure of &.

We often consider as the measure of algebraic independence the function

(4) (P(éh'--,ém; n; m

which is defined in an analogous way, but where the degree in z,, ..., z,, does not
exceed n, and in some cases the function

&) Oy 1 lms s Ehe s Cny s My 0 HD,

which is defined in a similar way but where the set of the given numbers consists
of s groups and the numbers n,, ...,n, are the bounds of the degrees of P in the
corresponding groups of variables.

With the help of Dirichlet principle one can easily obtain the upper estimates of
measures for any sets of numbers ¢ (see, for example, [1] and [3]). In the theory of
transcendental numbers and its applications it is of interest to obtain the lower
estimates of measures for some classes of numbers £.

If we know the lower estimate, for example, for @(&; n; H), then this
estimate holds for |P(&)|, where P(z)e Z[z], P(z)#£0, degP<n, Hp < H.

Siegel (see [4] and [5]) calls an entire function

©) = % e

an E-function, if

1 c,eK,n=0,1,...;

(2) for any ¢>0, ¢, = O(n*"), when n— o0;

(3) there exists a sequence {q,}, ¢,€N, such that the numbers g,c,eZ,

k=0,1,...,nforalln=0,1,..., and for any £¢>0, g, = O(n"), n— co.

The E-functions (6) with the coefficients of their power series from the field K
will be called KE-functions.

In papers [3] and [6] 7E-functions are considered which satisfy linear differential
equations with coefficients from C(z). For the set of values of such functions at
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the points from I, rather precise lower estimates for linear independence,
transcendence and algebraic independence measures are obtained.

In this work after some changes in the definition of the E-function, the theorems
of papers [3] and [6] are essentially refined at the expense of the refinement of
the remainder term of the exponent. For the proof we use Siegel’s well-known
method and its generalization, given in [7]. The most important lemmas of the
method are refined like that that is made in [8] but the main parameter, the order
of zero at z = 0 of the basic approximating form, is selected in an optimal way.

Besides, in the estimates of the transcendence measures in this paper, the degree
of the polynomial may enlarge together with the height up to some limit. A part
of the results of this paper is formulated without proof in [9] in a less precise form.
In paper [9] it was shown for the first time that it is possible to enlarge the degree
together with the height in the estimates of measures, obtained with the considered
method. Later a similar result in another case was established by Nesterenko
[10]. In the proofs of Theorems 3, 4 and 5 of this work we use the estimate of the
order of zero at z = 0 of a polynomial of z and the considered functions, obtained
in [10]. For absolute understanding of the subject matter of this paper it is necessary
to get acquainted with the works [3], [7] and [8].

We generalize the earlier introduced notions of measures and consider the alge-
braic independence, transcendence and linear independence measures with respect to
K, which are defined just like (1)-(5) with the only difference being that the
coefficients of the corresponding polynomial P or the linear form L belong to
Zx and the maximum of the moduli of the coefficients of P or of the linear form L
and of all their conjugates do not exceed H. The corresponding measures will be
denoted analogously to (1)-(5) but instead of the symbols ¢ and L we write
¢x and L.

Lastly, let us consider the homogeneous algebraic independence measures
@°%&yy s Emy n; H) and @8(¢,, ..., Ep; n; H), which are defined by analogy with
(4) with the only difference being that in their definitions P(z,, ..., z,,) is a homo-
geneous polynomial of degree not greater than n, correspondingly from Z[z,, ..., z,]
or Zglzy, ..., 2]

It is evident that on establishing the estimates of the introduced measures
we have obtained the estimates for the values of polynomials in Zy[z,,...,z,]
with corresponding degrees and heights.

Let us change the definition of the E-function in the following way. We call the
entire function (6) the E-function, if it satisfies three conditions analogous to the
conditions of the original definition but in which the estimates of ¢, and g, are
replaced correspondingly by

¢ =0(c"), g,=0(c"),

where ¢>1 is a fixed number.
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It is easy to verify that the set of all E-functions as well as in the case of the original
definition forms a ring of functions closed relative to differentiation, integration
from O to z and substitution z for Az where A is an algebraic number. Note that all
the known E-functions, satisfying linear differential equations with coefficients in
C(z) are E-functions in the sense of the new definition.

To make clear the character of the dependence of the constants involved in the
definitions of the measures on the considered functions and numbers &, m and »n,
we refine the definition of the E-function. We shall say that the entire function
(6) belongs to the class KE(4,c; u,q) if

D) c,eK,n=0,1,...;

(2) there exist constants A> 1 and ¢> 1 such thatc, <An",n=0,1,...;

(3) there exists a sequence {g,}, ¢,€N, and constants p>1, g=1, such that

4. €Zg, k=0,1,...,n,foralln=0,1,...,and g, <pug",n=0,1,....

Consider a set of functions

©) fd2) = 2 Lo k=lm

from the class KE(4, ¢; p,q). Then there exist sequences

(8) {qO.n}’ 9o, n\”OqO’ ”Ozﬂ’ q0>q9 k= 19'-~’m
such that

) JonCxv€Zlg, v=0,1,..,n, k=1,...,m

Indeed, for example, we can take the sequence

(10) Gon=41nGum n=0,1,..m

where {g; .}, k = 1, ...,m, are the sequences thet correspond by definition to each
of the KE-functions (7). Then it is evident that

1n HoS U™, qo=q".

In some cases there may exist sequences of the form (8) for which y,< ™ and
gdo<q™ as, for example, in the case of Lemma 6 given below.

Later on, for the set of KE-functions (7) the numbers pu, and g, will have the
sense determined above.

If £€K we denote the conjugates to a number & in K by ¢&,,...,&,. We
denote by K,, i=1,...,h, the algebraic number fields, conjugate to K and by
f1.42)s ...sfm,i(2), i =1,...,h, the K;E-functions obtained from the functions (7)
by replacing all the numbers ¢, , by their conjugates from K; and call them the
functions, conjugate to functions (7). If a set of KE-functions consists of several
groups and is numerated by two indices then the conjugate functions will be
denoted by the third index. Similar notations for conjugate functions will take
place for the set of KE-functions, denoted by letter @ with indices.
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In future we will consider the sets of KE-functions (7) satisfying the system of
linear differential equations

(12) V= Oxo+ _Zl Oy k=1,...,m, 0 ;€C(2),

or the system of homogeneous equations

(13) y;-_— Z Qk,iyl" k= 1""’m9 Qk,iec(z)'
i=1

In this case (see [7]) the numerical coefficients of the polynomials are the numera-
tors and denominators of all the functions Qy ; in (12) or (13) may be selected from
Zg[z). Thus Q, ;€K(2).

Denote by T = T(z)e Zx[z] and T° = T°(z) e Zg[z] the polynomials which are
the least common denominators of all the rational functions @y ; in (12) and (13).
Thus all TQ, ;€ Zx[z] and, accordingly, all T°Q, ;€ Zg|z].

Denote by g the largest of the degrees of m?+1 polynomials 7° and T°Q:.
k,i=1,...,m, and by G the largest of the moduli of the coefficients and their
conjugates of these polynomials. The letter p denotes the smallest of the orders of
zero at z = 0 of the KE-functions (7) which are under consideration.

If the considered set of functions splits into s groups and each of them satisfies
its own system of equation (12) or (13), then T, =T(2) or T, =TY2), I=1, ..., 5,
have just the same sense that T and 7° have for systems (12) and (13).

Denote in what follows by the letter o, and by the same letter with various
indices, positive constants, which depend only on the class KE(4, c; u; q), which
contains the considered E-functions that is only on the field K and the numbers
A,c,pu and g. By the letter y and by the same letter with various indices we denote
positive constants also depending on KE(4, ¢; u,q), numbers p,q, G and the number
tek.

Note that the numbers o, y, 6; and y; do not depend on m (the number of the
considered functions) and on the degrees of the polynomials considered below. The
positive constants § will depend only on the system of differential equations
which are satisfied by the considered functions. The constants § may depend on m,
generally speaking. The positive constants Q(m) and Q,(m) will depend only on
the class KE(A, c; u,q), the system of differential equations, which is satisfied by the
considered functions and the numbers p, ¢, G, ¢ and m.

All the constants g, 7, 6, and 7, are effective, that is, they may be calculated for
any concrete set of KE-functions and the constants §, and Q(m) and Q,(m) are not
effective generally speaking. In different cases the same letter will denote different
constants. In this paper square brackets are used for denoting the largest integer
in the considered numbers.

We call an irreducible set of functions (see [11]) a set of functions f,(2), ...,f.(z)
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analytic in some domain which constitutes a solution of the system of linear
homogeneous equations (13) if it is linearly independent over C(z) and an equation

Z Pk(z)yk=0a Pk(Z)EC[Z], k=l’---9m9
k=1

where yy, ..., ¥, is some solution of the system (13), can take place only in the case
when Pi(z)y, =0, k = 1, ..., m, is identically in z.

Let lg = K(z4, ..., 2,) be an arbitrary linear form, not identically zero, with co-
efficients from Zy of height H with respect to K and /g, = Ik, (2}, ..., z), i = 1,...,m,
be linear forms obtained from the form I by replacing all its coefficients with their
conjugates from K;.

2. The estimates of the measures of linear independence

THEOREM 1. Let the set of KE-functions (1), m=2, constitute a solution of the
system of linear homogeneous differential equations (13) and be linearly independent
over C(z), £€K and ET%(E)#0. Then there exist constants y and Q(m), such that
if Inln H>Q(m) the inequality
(14) max |l (f1 (&), oo fm, dED) > H?

I<i<h

holds and if k =1 then the inequality

1% L(f1(8), ... fm(&)s H)>H*
holds where p = 1 —m—ym?/*(Inln H)™ %,

COROLLARY. Under the conditions of Theorem 1 there exist constants y and Q,(m),
such that for any H the inequality

Li(f1(&)s - ful&); H)>Qy(m) H?
holds where p = 1 —m—ym™*(Inln (H+2))"%.

THEOREM 1'. If under the conditions of Theorem 1 the functions (7) constitute an
irreducible set of functions, then in the statements of Theorem 1 and its corollary,

1, if p<1,
Q(m) = y*m®, Q,(m) =
exp{—(m—Dexp(Zm®)}, if p>1,
where
p =ym*?*(nln (H+2)"%

Theorem 1’ states that under the condition of the irreducibility of the considered

set of functions, all the constants involved in the statements of Theorem 1 and its
corollary are effective.
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For the proof of the theorems formulated, we establish some auxiliary
propositions.
LeMMA 1 (see [S]). Let the coefficients of the linear forms
Li=ay 1 x1+...+aqgx,, k=1,...,p, p<q,
belong to Zy and
a,;<A4, A>0, k=1,...,p, i=1,...,q.

Then there exists a nontrivial solution xi, ..., xg, x,€Zg, i = 1,...,4, of the system
of equations L, =0, k =1, ..., p, such that

(16) X;<ning AP, i=1,...q,
where 1 is a constant dependent only on the field K.

LemMma 2. Let fi(z)eKE(@,c; 11,9), k=1,...,m, neN, and w = w(n) be a non-
decreasing function of n, 2< w(n)<n. Then there exist m polynomials

Pk(z) = Z bk,lzl’ k = 19--~5ma
=0

not all identically zero with the following properties
(1) bk’[EZK, = 0, 1, (A k= 1, ey m,
(A7) b ,<n"exp(cln(ege)m*wn), 1=0,1,...,n, k=1,...,m;

(2) the linear form

18) R= 3 A@AD= T a5
vanishes at z = 0 to the order not less than m(n+1) —[nw™*]—1, so that
(19) a,=0, v=0,1,...,mn+1)—[no"1]-2;
(3) the coefficients a, of the form (18) satisfy the condition
(20) a,<n"(2c)’ exp(ooIn(2eqy) m* wn), vem(n+1)—[nw~']—1.
Proor. Let

v

(21) Pk(z) =n! Z gk,v%, k= ly"-’ms
v=0 .

where g, , € Zg. Then Pi(z) e Zg[z].
Representing the considered KE-functions in the form (7), set

2 POKD =0t T, dhy=y k=1,
v=0 .
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where
" (v
(23) dk,v = Z - gk,p Ck,v—p9
p=0 p
as gy , = 0 while p>n. Then
(24) a,=n! Z dey, v=0,1,2,....
k=1

On multiplying both parts of the equalities (24) by g, ,/n!, where {g, ,} is the
sequence (8), satisfying conditions (9) according to the conditions (19) and
equalities (23) we obtain m(n+1)—[nw~']—1 linear homogeneous equations for
finding out m(n+ 1) unknown coefficients g ,:

k=1 p=

(25) Y ¥ qoyv(£>ck,v_pgk,p=0, v=0,1,...,mn+1)—[ro"1]-2.
()

As in the equations (25), v<m(n+ 1), we have because of (11)

v L
40,v</loq'6'("+ 1) sﬂmqg(n+ l)’ <;)<2m(n+ 1), ck,vslcm(n+ l)’

*

Applying Lemma 1 to the system of equations (25) with
p=mn+D—[no *1—-1, g=mn+1), A=2u"QRecqo)""*",
because of the inequality
plg—p) ' = (mn+1)—[ho ' 1-D(ro™ '+ 1)~ <mn+1)n" o <2mo,

we obtain g, ,€ Zg not all equal to zero and according to the inequality (16) such
that

(26) |gi.o| < ninmniu™2cqo)™™* V} < exp (o, In (2cg0) m* wn).

From equalities (21) and inequalities (26), we obtain the estimates (17) and from
equalities (23), (24) and inequalities (26) we obtain the estimates (20). The lemma is
proved.

Set
@7 t = [no™'1+p+igm(m—1),

where n and w have the same sense as in Lemma 2 and p and g are defined above.
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Let
(28) Rl = 121 Pl,lfl(z), Pl,leZK[ZL I= 1"--sm9

be an arbitrary linear form of functions (7). Set
R,=T°R,_,, k=23,..,

where T° R, _, is a linear form which arises after differentiation of the form R, _,
by z and substitution of the right-hand side of the differential equations of system
(13) for £,(2), ..., f,(z) and multiplying them by T°. Then

(29) Re= 3 Poifdd), k=1,2..., PucZglz]
I=1

Let us denote by
(30) A =A@ =[Py lii=1,...m
the determinant of the set of linear forms R, ..., R,

LEMMA 3. Let the functions fi(z)eKE(4,c; p,q), k = 1,...,m, constitute a solution
of the system of linear homogeneous differential equations (13) and be linearly inde-
pendent over C(z). Let further the linear approximating form R, (28) be constructed
by Lemma 2 with some n. Then there exists a number ny €N such that for any n>n,

the determinant A (30) of the system of linear forms R, ..., R, (29) does not vanish
identically and is of the form

@31 A(z) = T DTIOTITRIR A (), Ay(2)#0, n>ny,
where A (z)eZg[z] and is of degree r,, 0<r, <1.
The proof of Lemma 3 is quite analogous to the proof of Lemma 6 in [7] with

the use of Lemma 2 and with some formal changes which arise because of Lemma 2.
Then it occurs that

(32) ny =96+4igm(im—1)

and if the considered functions constitute an irreducible set of functions then by
Lemma 4 from [11]

(33) ng =p+igm(im—1).
LeMMa 4. Let the functions f(z), k = 1, ..., m, satisfy all the conditions of Lemma

3, the number ny be defined by (32) (and in the corresponding case by (33)) and the
number t by (27), € C, aT%(2) £0, and the linear form R, = R,(z) (26) be constructed
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by Lemma 3 for any n>n,. Then the matrix of coefficients of the linear forms
Ry(®), .s Ropso(0) ((29))
(34) [P@], k=1,...m+t, I=1,...,m,

has rank m.

Because of Lemma 3, Lemma 4 may be proved quite similarly to Lemma 7
from [7].

LEMMA 5. Let the functions fi{z)eKE(4,c; p,q), k = 1, ..., m, constitute a solution
of the system of the linear homogeneous differential equations (13) and £ €K. Further
let the linear form R, = R,(z)(28) be constructed by Lemma 2 for some n and the
number t be defined by (27). Then for any k, satisfying the inequality k<m+t the

estimates
(35) | Py i(£)¥| < n"exp (y, mn(In (2cqo) In n)*)
(36) |Ru(&)| <n™ "~ D"exp (y, mn (In (2¢g,) In n)?),

hold and the estimate (36) remains valid if we change all the coefficients of the power
series R,(z) and number € to their conjugates from any field K;.

Proor. If the coefficients of the power series

O(z) = Z o z*, W(2)= Z Bx zx,
k=0 k=0
satisfy the conditions
|aklgﬁk’ ﬁkzo, k= 1523-"9
then we shall write ® <V, Besides that we shall denote

D)= 3 lul 0()<d().
k=0
First of all we have
(37 T°(2)<G(1+2zy¥, T°2) Qk,(2)<G(1+2),

where the numbers g and G are defined above.
Repeating word for word the arguments of Lemma 6 from [5] we obtain by

induction that
k=1

(38) Pyyy (2) < GH(1 +2)*"exp (In2cqo)m* wm)n® [] (vg+m+n),
v=0

k-1

(39) Ri+1(2)<G* 1 +2)* ] (vg+%>ﬁ1(z), k=0,1,2,...,

v=0

and the relations (38) and (39) remain valid if we change the coefficients of the poly-

nomial Py, ,(z) and of the power series Ri(z) by their conjugates from any field
Kl‘-
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We have n2ny, = 6 +4gm(m—1). Suppose that » and w are such that

(40) nw”™1>2m?In2.
Then
41) ksm+t=m+[no 1+p+igmim—1)<ysno=!.

Now from (38) and (41) it follows that

42) P, (&) <exp(olnQego)m* on+ynw~ ' Inn)n", k<m+t.

Further from (41) and (20) we have, setting a = m(n+1)—[nw™1]—1,

Ij <Vg+ d) 1(2)<exp (ysnw™ llnn)(1+ d) @

V

d k
<exp (0o In(2cqo) m* wn+ysnw ™" Inn) n"( 1+ d_z) (2c)"

IIMs

x

k v—p
<exp (g, In(2eqo) m? wn+ysnw ™ Inn)n" p;o v;ﬂ (;) ey (vz_ 1

<exp(goIn2eqo)m* wn+ysno~*Innm)n"2% Y (2c)"+"-z—

v=a—k

<

Thus we obtain

LT o))

From (39) and (43) we find that

“43) <exp (o, In(2cqgo) m* wn+ygnw = Inm)n~n=Ln,

(44)  |R(®)| <exp(oolnegy)m* wn+y,nw ™ tInn)yn~ ™~ k<m4t.

Making equal the parts of the exponent in the right-hand side of the inequality
(42) we set

(45) o = m~*(lnn)*(In (2cq,)) " 2.
As w>2 by given data, n must satisfy the condition In#n>4m?In(2¢cq,). Then
nw™ ! = mn(ln 2cq,))*(Inn)~* > (In 2)* mn* > 2m*In 2,

because cg, > 1 and n* > (Inn)* > 2m (In 2)*. That means that (40) is true.
Putting the value w (45) into the estimates (42) and (44) we obtain the assertions
(35) and (36) of the lemma.
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PrROOF OF THEOREM. 1. Let us consider an arbitrary linear form
Lo =t f1(©)+ ... *+tp fE), |ug|+...+|u,|>0, ueZy, uy<H, lI=1,...,m.

Let the functional linear form R;(z) (28) be constructed by Lemma 2 with some
n and the forms Ry(z), k = 1,2..., are determined by the form R,(z) in (29).

As the KE-functions (7) are linearly independent over C(z) and &éT°(6)#0
then by Lemmas 3, 4 and 5 for any n>n, where n, is defined in (32) among the
numerical linear forms

(46) R(&), k=1,....,m+t, m+t<ysno™?!,
we can select m linearly independent while estimates (35) and (36) hold and
47) maxdegPy (2)<ysn, k=1,...m+t, I=1,...,m.

Then among the linear forms (46) we can select m— 1 forms such that together
with L, they are linearly independent. Let these forms be

(48) Li=R (&), ks<m+t, s=1,...,m—1

Denote by A, A#0, the determinant of the linear forms (48) and L, and by
Ay, the cofactor of the element of A in the kth row and the /th column. Then we
have

(49) S A=A Li+.. .+ Ay Ly + Ay Ly, 1<I<m.

Let us take / such that f,(£)#0, which is quite possible because T°(¢)#0.
Then it follows from (49) that

(50) |Amd) |Lo| 2 |fi(€)| |A] —=(m—1) max [A,,| max |L,|

1sksm—1 1sk<sm-1

With the help of the estimates (35) and (36) we obtain the inequalities

D |Ak || <exp (yo m? n(In (2cqo) Inm)¥) n™~ 1",
max  [Af | <exp(y,om? n(In (2cqo) Inn)t) n™= 2,
I<ksm-1
(52) max  |L| <exp(y, m? n(ln (2cqy) Inn)t)n= = n,

I1<sksm—-1

Let aeN be such that af € Zg. Then it follows from (47) that @’" A = e""" Ae Z,
and this implies, because A#0, that

@A) ... (| ) > 1,
where Ay, ..., A, are the conjugates to A. Thus, for some i,

(53) |A,-|>e_7“".
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Let us replace the field K by the field K;. That means, that in the power series
of all the functions (7) in the form L, all the coefficients are replaced by their conju-
gates from the field K; and the number & by ¢&,.

It is evident that after such a replacement all the arguments and estimates given
above remain valid. The inequality (50) will take the form
(54) An Lo i 211, &) |Al| —(m—1) max A;c,l max |L,

I1sksm-—1 1<sksm-—1
where L, ; denotes the linear form, corresponding in the field K; to the form
L,. If we replace the left-hand side of (52) by |L, ;| then, by Lemma 5, this inequality
remains valid.

From inequalities (54), (51), (52) and (53) we deduce that

(55)  |Lo,i| >exp(—y;2m*n(In(2cqo) Inn)t)n=¢m= 1
x (1 — Hn""exp (7,3 m? n(In 2cq,) In n)*)).

Take the minimal » such that the conditions

(56) n>ny, (Inn)*>2y,:(n(2cq,)* m?,

and

&7)) n"exp (—y;3 m*n(ln (2¢cq,) Inn)*) > 2H

are satisfied. Then from inequality (55) it follows that

(58) |Lo,i| >4 exp (=712 m* n(In (2¢go) Inn)) n= =,

Under our assumptions beginning with some H the condition
(n—1)""Dexp(y,s m*(n—1)(n (2cq,) In (n— 1)) < 2H,
holds and this implies that
(59) n"exp(—y13m? n(ln 2cqo) Inn)?) < 2nH(1 +(n—1)"1)" "1
x exp (—7y,3 m*(In (2cqo)) (n(In n)* — (n— 1) (In (n— 1)))) < 2eHn.
Taking logarithms, we obtain the inequality
nln—y,3m?n(In (2cqo) Inn)* < In(2e)+ In H+ Inn,

and because of the inequality (56), that implies that

(60) nlnn<y,,InH,

and then, in accordance with inequalities (57), (59) and (60), we have
61 2H<n"exp(—yam?n(Innln Qeqo))?) <y,s H

and

(62) InlnH>y,6lnn.
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From (58), (60) and (61) we deduce that
|Lo,;| > H",
where a = 1—m—1y,,m3*(In(2cq,))¥(Inln H)™* and as, according to (11) g = ¢™
and in view of inequalities (56) and (62), we have
(63) |Lo ;| > H®
where b = 1—m—y,,m"*(Inln H)™*, while

Inln H> max (y;o m5, 7,6 1)
Set

(64 y=max(y1s,71s), Q(m) = max(y>m®,y;6Inn,).

Then since In In H > Q(m), inequality (14) follows from inequality (63).
If K = I then inequality (14) implies inequality (15) because the moduli of the
complex conjugate numbers are equal.

The corollary and Theorem 1’ now follow from this theorem and equalities (33)
and (64) in view of the fact that since Inln H<y? m® the inequality

(65) Ly(f1,4$), ceesSm,i(&)s HYZL(f1,(EDs -5, i(ED)s [eXPeXP()’2 m3)—1))
holds.

Theorem | implies a very useful theorem for applications to concrete functions.

THEOREM 2. Let the set of KE-functions (1), m=>1, constitute a solution of the
system of linear differential equations (12) and be linearly independent with the
number 1 over C(z) and let €K, ET(E)#0. Then there exist constants y and Q(m)
such that under the condition Inln H>Q(m) the inequality

max |lg (1,f1,(&), o fm, ()| > H?

1<i<h

is true and if K = 1 then the inequality
Ll(fl;fl(é), ~--7fm(é); H)>Ha

is true where a = —m—ym”'*(Inln H)™%,
The corollary to Theorem 2 and Theorem 2’ analogous to the corollary to

Theorem 1 and Theorem 1’ holds.

3. The estimates of the algebraic independence measures

The proof of Theorem 1 and Lemmas 6, 7 and 8 given below implies some more
general assertions.
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THEOREM 3. Let the set of LE-functions (7T), m = 1, constitute a solution of the system
of the linear differential equations (12) and be algebraically independent over C(z),
and E€l, ET(E)#0. Then there exist constants y and Sm) such that the inequality

(Pl(fl(é)’ . ’fm(c); n, H) >CH®
holds, where

a=1—@n+m)!n'm) " —yn+1)*"(min(n+1))*(nln (H+2))"%,
and
1, if p<1,
¢= 14 .
exp {—((n+ n" (l +£—z(m—))— 1>exp Q¥ (m)ym(n+1)*"In(n+ 1))}, ifpz1,

where
p = Q(m)(n+1)*(min(n+1))}(nln (H+2)) .

.
THEOREM 3'. If under the conditions of Theorem 3 the set of products
(66) 5@ ...fr2), 0<k,+...+K,<N,

constitutes for any N = 1,2, ..., an irreducible set of functions then Q(m) = y.

LEMMA 6. Let the functions (7) belong to KE(A,c; u,q) and let NeN. Then
M = (N+m)!/Nm!, products (66) belong to the class

(67) KE(L", Ne; ym, g ¥ D),

and the sequence {q,} involved in the definition of class (67) may be selected suitable
for all the M functions (66), that is,

©®) Ho =™, g0 =g"mN*Y)

Proor. Consider one of the products (66) for which k,+...+k,, =5, I<s<N.
The product (66) may be considered as the product of some s of the functions
(7); some factors may be repeated. Arrange these s functions in an arbitrary order
and denote the coefficients of their power series by y, ,/n!, n=0,1,..., I=1,...,5,
correspondingly. Then

[+ o]

@ S = Y B
n=0 n!
where
n!
69 = —_— e P
( ) yn m-}-,.%—n,=nnl!"'ns!‘yl’”l 'y."'

https://doi.org/10.1017/51446788700013409 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700013409

400 A. B. Shidlovskii (16

According to the definition of the class KE(4, c; u,q) we have

n!
- . .
y"< j vl,n ...'ys,"
it A=t !.ond T .

1
A" z Ll’(!’s"él"(e}\’)"_
ny+...+n=n "1! ns!

For any » in any item, involved in the right-hand side of (69), we arrange the
factors ¢; , so that the second index does not increase, that is,

‘YI,M ys,n, = yl,,n,l yl,,n,sy nll 2”’22 Zn;’.

Then it is evident that n;, <n, n,,<n/2,...,n; <n/s. Thus if we set

dn =90,n90,(n/21 - 9o,[n/N D

where {g, ,} is the sequence (10) then g,7,€Zg, /=0,1,...,nand n=1,2, .., and
in view of (8) and (11) we obtain

qnsﬂmsqm(l+ﬂ...+l/N)n<#qumln (N+l)n.

The lemma is proved.

Let ®(z) be a function, analytical at z = 0. Denote by O(®(z)) the order of zero
of ®(z) at z = 0.

LeMMA 7 (Nesterenko, see [10], Theorem 3). Let PeClz, x,,...,x,], P#0,
deg, P<n,deg; < N. Suppose that the functions f,(2),...,f(z) analytical at z=0
constitute a solution of the system of the linear differential equations (12) and are
algebraically independent over C(z). Set R(2) =P(z,f,(2) ..., a(2)). Let the dimension
of the vector space over C(z) generated by the functions R¥(z), i =0, 1, ..., be equal
to . Then

OR@))KIn+Qm)N*, t=m+1)""' +m+1.

Let the KE-functions (7) satisfy the system of the linear differential equations
(12). Consider the set of M = (N-+m)!/N!m! products (66). By Lemma 12 from
[7] the functions (66) constitute a solution of a system of linear homogeneous
differential equations of the form (13) in which the number m is replaced by the
number M and the coefficients of this system have no poles, different from the
poles of the coefficients of system (12). Numerate the M functions (66) in an
arbitrary order and denote them by

(70) D,(2), ..., Bp(2).

Using Lemma 6, it is easy to verify that for the functions (70) the assertion of
Lemma 2, in which m is replaced by M, remains valid. If we suppose that the

https://doi.org/10.1017/51446788700013409 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700013409

[17] Values of E-functions 401

functions (7) are algebraically independent over C(z) then the assertions of Lemmas
3, 4 and 5, in which m is also replaced by M, are true for the functions (70). In
view of Lemma 7 we can refine now Lemma 3.

LeEMMA 8. If in Lemma 3 we replace number m by M and the KE-functions (7)
by KE-functions (70) while the functions (7) are algebraically independent over
C(2) then

ne=Q(mN', t=m+1)"*"'+m+1.

PROOF. Let R,(z) be the linear form of the functions (70), constructed by Lemma
2. By this lemma O(R,(2))> Mn—[nw ']—1. But then in view of Lemma 7 we
have

n Mn—[no~ }-1<h+QMm)N°, t=m+)""1+m+1.

The inequalities (71) imply that (M —/—w ™) n<Q,(m) N*+ 2. If we assume that
I<M, then M—I>1 and by the conditions of Lemma 2 we have w~! <. Thus
n<Q,(m)N*+4. Then for n=>2Q,(m) N°+4 we have /= M, which implies the
lemma.

In view of the equality
¢1(f1,i(5i), ---,fm,i(fi); N, H)= Ll(q)x,i(fi)a ---,(I)M,i(fi); MH)

the proof of Theorem 3 is quite analogous to the proof of Theorem 1 with the use
of Lemmas 6 and 8.

From inequality (63) and the equalities obtained with the help of Lemma 6 and
analogous to equalities (64), we deduce that for

Inln (H+2)>max (y2mM*In(N+1),y,61nn,)
= max (P mM*In(N+1),y,6(tIn (N+1)+1InQ,(m))),
and this means that for
Inln (H+2)>Q*m)m(N+1)*"In(N+1)

after replacing number N by n the assertion of Theorem 3 with C = 1 is true. In the
case

Inln(H+2)<Q*(m)m(N+1)*"In(N+1).

Theorem 3 is proved with the help of the inequality for the functions (70)
analogous to inequality (65).

Theorem 3’ follows from the proof of Theorem 3 in view of (33) in which m
is replaced by M.
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THEOREM 4. Let the set of YE-functions (7), m>2, constitute a solution of the
system of linear homogeneous equations (13) and be not connected by any homo-
geneous algebraic equation with coefficients from C(z) and let E€l and ETO(E)#0.
Then there exists constants y, y,, Q(m) such that the inequalties

PYF1E)s s f(&)s m3 HY>CHI ™M™,

F©  fuer® mms,
""(fm(é)""’ G ’”’H)>CH ’
hold where

M=@n+m-Dnm-1DH"1,
6 = p(n+ 1" V(min(n+1))}(nln(H+2)"%,
0, is the result of replacing 6 by y in y, and
1, if p<1,
C= 1 exp{=((1+ )" 1 +yQ" ' (m)-1)
x exp(QX(m)m(n+1)*™~"Vin(n+1))}, if p>1,

where
p = Qm)(n+ 12" Y(min(n+ 1))*(nln (H+2) 3.

The proof of Theorem 4 is analogous to the proof of Theorem 3; we need only
to consider (N+m—1)!/N(m—1)! products (66) which satisfy the condition
ki+...+k,=N.

THEOREM 4'. If in Theorem 4 the set of the products (66) for whichk,+...+k,, =N
constitutes for any N = 1,2, ... an irreducible set of functions, then Q(m) =y and,
correspondingly, Q(m) = v,.

THEOREM 5. Let s+t >0 and suppose that any of s, s >0, sets of the 1E-functions
(72) fl,l(z)’---afml,l(z)a ml>1s l= 1,...,S,

constitute a solution of the corresponding system of linear differential equations

m
V1= Qroat Zl Oxinyipy Ok,ii€C@), k=1,...m, lI=1,..,s,
i=

and any of t, t 20, sets of 1E-functions
(73) (Dl,l(z)a---,q)m,,l(z)’ ”121’ = l’“',’:

be a solution of the corresponding system of linear homogeneous differential equations

I
Xt = Z‘ GeiaXin 9ra1€C@), k=1,..,m, I=1,..,t
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Further let m =m+...+ my+p; + ... + y, functions (72) and (73) be not connected
by any algebraic equation with coefficients from C[z] and homogeneous by any of
the t sets of functions (72) and let E€X, ET((E)...T(E)TYUE)... TYE)#0. Then
there exist constants y and QA(m) such that the inequality

D,,,(8) Dyy-1a(),
D,,1(0) 7 @18

Lo veesHgl Vigeves Vi H>>CH1'""'”,

o1 (fl,l(ﬁ), RYY SRL(3 IR FUF (9 Y M (9

@,,,(5) CD,,, O
D, 7 0,0’

is true where

_{ 1 Gtm)t\ & (et — D!
M"( 11 ) i Vel — 1!

=7( fI (”1+1)3m')( 1—'[ (Vk+1)3(""-1))
=1 k=1

x(min(y +...+n,+v,+ ... +v,+ D)} (Inln (H+2))"*

1, if p<l,
C=

exp(—AexpB?), ifp>1,
={( 1 (n:+1)“')( i (vk+1)"'="1)(1+yn-‘(m»—1},
=1 k=1
B= Q(m)( ﬁ ("s+1)2"">( ﬁ (Vk+1)2(""'”)
i=1 k=1

x(min@m,+...+n,4+v,+ ... +v,+ 1))}

and

p = B(nln(H+2))"%.

The proof of Theorem 5 is analogous to the proofs of Theorems 3 and 4 if we
consider M products
Fhtt e ot f S @ O @

(74)

Okt tky <m, I=1, .86+ K, =V k=1,...,m

THEOREM 5°. If in Theorem 5 the set of products (714) for any n, = 1,2, ...,

I=1,..,8v.=12,..., k=1,..,t constitutes an irreducible set of functions, then
Q(m) = y.
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Note that in Theorems 1-5 we may consider as the field K any algebraic number
field of a finite degree over Q, which contains all the coefficients of the power
series of the considered E-functions and the number &.

The particular cases of Theorem 5 when s >0, t = 0, and s = 0, £ > 0 are of interest.
It is easy to reformulate Theorems 1-5 in the case when the considered functions
satisfy linear differential equations but not systems of such equations. For example,
we may set, in Theorems 2 and 3, f,(z) = f*"V(z), k = 1,...,m, where f(z) is a
solution of the equation

Pmy("')+...+P1y'+Poy= Q, Pk’QEC[Z]a

and do the same thing with Q=0 in Theorems 1 and 4. In the case of Theorem 5
we may consider the solutions of several similar equations.

As Z< K, we may omit the indices K; and I of the measures L and ¢ in Theorems
1-5, that is the corresponding assertions are valid for the usual linear independence
and algebraic independence measures. With this, in the case of the field K;, the
index i remains with the KE-functions and the number &.

In view of the fact in the applications of the general theorems to concrete func-
tions, the number m of the considered functions may be arbitrary everywhere in the
formulations of the theorems, the dependence of the estimates on m is taken into
account.

In all the Theorems 1-5 the constant y is effective and the constants Q(m) and
Q,(m) are non-effective. The result of Yu. V. Nesterenko enabled us to make the
constants involved in the estimates effective relative to the degrees of the considered
functions ¢, but it does not give the total effect. If we do not use Lemma 7 then all
the assertions of Theorems 3-5 remain true but the constants C will be ineffective
relative to all parameters on which they depend.

In Theorems 1°-5’ all the constants involved are effective. But we must note that
the proofs of the irreducibility of sets of functions are, as usual, very complicated
and may be obtained only when these functions are solutions of differential
equations of not too high orders.

The estimates of the measures in the theorems proved take place for any values
of m—the number of the considered functions. But for large enough values of m
and the degrees these estimates become rough. But the number m and the degrees
of the measures may grow together with H up to some limit and precise enough
estimates of the measures remain true.

From the proofs of Theorems 1 and 2 it becomes clear that m may grow depend-
ing on the growth of H. But the bound of the growth is not indicated effectively.
But in Theorems 1’ and 2’ this effective bound is established. For example,
in Theorem 1’ for m<yy(Inln H)*'* a precise enough estimate for L is obtained.
But for m > y,(Inln H)'/% it becomes rough and the greater is m, the more and more
rough it becomes.

https://doi.org/10.1017/51446788700013409 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700013409

[21] Values of E-functions 405

Theorem 3 established a precise enough estimate of ¢ for
r*"In(n+1)<Qy(m)Inln H,

But Q,(m) is an ineffective constant. This estimate becomes not sharp for
n*"In(n+1)=2Qy(m)Inln H. In Theorem 3 the result is effective and a precise
estimate takes place for m(n+1)*"In(n+1)<y~'Inln H. The situation is similar
in Theorems 4 and 5.

The theorems proved may be applied to many concrete functions. The result can
be written down at once if we have already proved either the linear independence
or the algebraic independence over C(z) of the considered functions.

Many works of this kind have been published. The review of some of them one
can find in [2]. The theorems of the present work enable us to refine all the estimates
published in [3] and [4].

Let us give some simple examples. Let «,,...,a, be distinct numbers from L
It is well known that the functions e*:%, ..., e*~* are linearly independent over C(z2).
They satisfy the system y, = o, ¥, k = 1,...,m. It is also evident that these functions
form an irreducible set of functions. Thus by Theorem 1 we have

Li(e™, ..., e"; H)>CH®,

where
a=1—-m—ym"*(nln(H+2)" %,
and
1, if p<1l,
C=
exp{—(Cm—1exp(y>*m®)}, if p>1,
where

p = ym5'%(Inln (H+2))"%.

Consider the E-functions

Ku)= 3 7 2\ s —1,2
e n=0 (A+1)(A+n)(‘u+1)(u+n) 2] SH 3Ly ciey

satisfying the differential equation

224+2u+1 4) 41
y"+—+y‘+(l+—zz—ﬂ)y = z—f

In [11] it is proved that if A, ueQ, 1 —u#3Q2k+1), keZ, then the (n+1)(n+2)
products
K’)‘.:u(z) K’j‘,,zu(z)’ Oskl +k2 Sn,

for any n = 1,2, ..., form an irreducible set of functions. Therefore by Theorem 3’
for such 4 and yx and for any é€l, £+#0 the inequality

oK, (0, K3 ,(&); n; HY>CH®
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holds, where

= —4n(n+3)—ynS(In (n+ 1))*(Inln (H+2)) "%,

1, if p<l,
C=

exp{—(m*+3n+Dexp(y*ntln(n+1)}, if p>1,

and

where
p = yn*(In(n+1))*(nln (H+2)) "%

In a similar way one can obtain the quantitative estimates, corresponding to all
the theorems proved in [11].

Consider the function K;(z) = K, (z). Let ¢€1, £#0 and «y, ..., a, be distinct
numbers from I. Then, arguing as in [11] it is easy to show that the set of
4(n+1)(n+2) products

KX (E2) K¥(Ez)exp((Ky 0y + ... +Kp®)2), O<k +ky=n, Kk +...+x,=1,

form an irreducible set of functions. Then by Theorem 5’ withs = 1,t=1,m; =2,
1y = m, we have the inequality

oK), K (6); €, ...,e; n; 1; H)>CH®

where
a=1-3m+1)(n+2)—y®m3@n+In(n+1))(nln (H+2))"%,
and
1, if p<l,
C=
{exp{—((n+ D(r+2)m—1expy?n®m*(m+In(n+1))}2, if p=1
where

p = yn*m*(m+In(n+1))*(nln (H+2))~*
or the inequality
[P 1K), K () et + ... + Po(K(8), K (£)) €| > CH,
where a is as above, Pi(xy, x,) € Z;[x,, x,] and deg P, <n, k=1,...,m.
Denote
_ L Ko(2) 1

=i— =1+
K,(2i 1
o(20) 2+_3_+

Then by Theorem 4
o(w; n; H)>CH®
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where
b= —n—yn®*(n(n+1))}(Inln(H+2))"2,
and
1, if p<1,
C=
exp{—(2n+Dexp(y?n*ln(n+1))}, if p=1,
where

p = yn*(Iln(n+1))(Inln(H+2))"*.

In all the examples given, one can calculate the constants y if one makes a more
precise calculation of all the constants in the lemmas.
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