A NOTE ON CUMULATIVE SUMS OF MARKOVIAN VARIABLES

R. M. PHATARFOD

(received 2 July 1964)

Consider a positive regular Markov chain $X_{0}, X_{1}, X_{2}, \cdots$ with s (s finite) number of states $E_{1}, E_{2}, \cdots, E_{3}$, and a transition probability matrix $P=\left(p_{i j}\right)$ where $p_{i j}=\operatorname{Pr}\left\{X_{r}=E_{i} \mid X_{r-1}=E_{j}\right\}(r \geqq 1)$, and an initial probability distribution given by the vector p_{0}. Let $\left\{Z_{r}\right\}$ be a sequence of random variables such that

$$
Z_{r}=h_{i j}, \text { when } X_{r-1}=E_{j}, X_{r}=E_{i},
$$

and consider the sum $S_{N}=Z_{1}+Z_{2}+\cdots Z_{N}$. It can easily be shown that (cf. Bartlett [1] p. 37),

$$
\begin{equation*}
\Phi_{N}(t)=E\left[e^{t S_{N}} \mid p_{0}\right]=t_{1}^{\prime} \sum_{1}^{s} \lambda_{i}^{N}(t) \boldsymbol{s}_{i}(t) t_{i}^{\prime}(t) \boldsymbol{p}_{0} \tag{I}
\end{equation*}
$$

where $\lambda_{1}(t), \lambda_{2}(t) \cdots \lambda_{s}(t)$ are the latent roots of $\boldsymbol{P}(t) \equiv\left(p_{i s} e^{t_{i i_{i j}}}\right)$ and $s_{i}(t)$ and $t_{i}^{\prime}(t)$ are the column and row vectors corresponding to $\lambda_{i}(t)$, and so constructed as to give $t_{i}^{\prime}(t) s_{i}(t)=1$ and $t_{i}^{\prime}(0)=t_{i}^{\prime}, s_{i}(0)=s_{i}$, where t_{i}^{\prime} and s_{i} are the corresponding column and row vectors, considering the matrix $\boldsymbol{P}(0) \equiv \boldsymbol{P}$. Denote $\boldsymbol{t}_{i}^{\prime}(t) \boldsymbol{p}_{0}$ by $\boldsymbol{\alpha}_{i}(t)$.

We assume that $E\left[e^{Z_{r} t} \mid X_{r-1}=E_{\text {, }}\right]$ exists for real t in an interval I about zero, and for all E_{j}. Hence $E\left[e^{S_{N} t}\right]$ exists for t in I and therefore can be differentiated any number of times with respect to t in I. We have, differentiating (1) once, putting $t=0$, and noting that $\boldsymbol{t}_{i}^{\prime}(t) s_{j}(t)=\delta_{i j}$,

$$
\begin{equation*}
E\left[S_{N}\right]=N \lambda_{1}^{\prime}(0)+\alpha_{1}^{\prime}(0)-\left[\frac{d t_{1}^{\prime}(t)}{d t}\right]_{0} s_{1}-\left[\frac{d t_{1}^{\prime}(t)}{d t}\right]_{0} \sum_{2}^{{ }_{2}^{2}} \lambda_{i}^{N} s_{i} t_{i}^{\prime} p_{0} \tag{2}
\end{equation*}
$$

We denote the third and fourth terms on the R.H.S. of (2) by A and $B\left(N \mid \boldsymbol{p}_{0}\right)$ respectively. It can be noted that $B\left(N \mid \boldsymbol{p}_{0}\right) \rightarrow 0$ as $N \rightarrow \infty$, irrespective of the initial distribution \boldsymbol{p}_{0}.

If the Markov chain is initially stationary, i.e. if the initial distribution p_{0} is the same as the limiting distribution s_{1}, we have

$$
E\left(S_{N}\right)=N \lambda_{1}^{\prime}(0) .
$$

In this case the random variables $\left\{Z_{r}\right\}$ have indentical distributions, and we have $\lambda_{1}^{\prime}(0)=E(Z)$, the mean of the common distribution.

Theorem. Let $b(<0)$ and $a(>0)$ be two fixed numbers and let n be the smallest positive integer such that S_{n} does not lie in the open interval (b, a). Then,

$$
\begin{equation*}
E\left[S_{n}\right]=E(n) E(Z)+\alpha_{1}^{\prime}(0)-E\left[\beta^{\prime}\left(0 \mid X_{n}\right)\right] \tag{3}
\end{equation*}
$$

where $\beta\left(t \mid X_{n}\right)$ is the j th element of $t_{1}^{\prime}(t)$, if $X_{n}=E_{j}$.
The above result is the Markovian analogue of Wald's lemma [3]:

$$
E\left[\sum_{i-1}^{n} Z_{i}\right]=E(Z) E(n)
$$

for the sequence of independent and identical random variables $\left\{Z_{r}\right\}$.
Proof. Consider two positive integers M and N, with $M>N$. Let P_{N} and Q_{N} denote the probability that $n \leqq N$ and $n>N$ respectively. (It can be proved, [Phatarfod [2]] that for all $s, N^{s}\left(1-P_{N}\right) \rightarrow 0$ as $N \rightarrow \infty$.) Let E^{*} and $E^{* *}$ denote conditional expectations under conditions $n \leqq N$ and $n>N$ respectively. We then have,

$$
\begin{equation*}
E\left[S_{M}\right]=P_{N} E^{*}\left[S_{n}+\left(S_{M}-S_{n}\right)\right]+\left(1-P_{N}\right) E^{* *}\left[S_{N}+S_{M}-S_{N}\right] \tag{4}
\end{equation*}
$$

We also have from (2),

$$
\begin{align*}
E^{*}\left[S_{n}+S_{M}-S_{n}\right]=E^{*}\left[S_{n}\right]+E^{*}[(M-n) E(Z) & +\beta^{\prime}\left(0 \mid X_{n}\right) \\
& \left.-A-B\left(M-n \mid X_{n}\right)\right] \tag{5}
\end{align*}
$$

and

$$
\begin{align*}
E^{* *}\left[S_{N}+S_{M}-S_{N}\right]=E^{* *}\left[S_{N}\right]+E^{* *}[(M-N) & E(Z)+\beta^{\prime}\left(0 \mid X_{N}\right) \tag{6}\\
& \left.-A-B\left(M-N \mid X_{N}\right)\right]
\end{align*}
$$

From (2), (4), (5) and (6), we obtain,

$$
\begin{align*}
\alpha_{1}^{\prime}(0)-B\left(M \mid p_{0}\right) & =P_{N} E^{*}\left[S_{n}-n E(Z)+\beta^{\prime}\left(0 \mid X_{n}\right)-B\left(M-n \mid X_{n}\right)\right] \tag{7}\\
& +\left(1-P_{N}\right) E^{* *}\left[S_{N}-N E(Z)+\beta^{\prime}\left(0 \mid X_{N}\right)-B\left(M-N \mid X_{N}\right)\right] .
\end{align*}
$$

Now, let $M \rightarrow \infty$, keeping N fixed. $B\left(M \mid \boldsymbol{p}_{\mathbf{0}}\right)$ and $B\left(M-N \mid X_{N}\right) \rightarrow 0$ as $M \rightarrow \infty$. Also $E^{*}\left[B\left(M-n \mid X_{n}\right)\right] \rightarrow 0$, since the expectation is taken under condition $n \leqq N$. Hence, we have

$$
\begin{aligned}
\alpha_{1}^{\prime}(0)=P_{N} E^{*}[& \left.S_{n}-n E(Z)+\beta^{\prime}\left(0 \mid X_{n}\right)\right] \\
& +\left(1-P_{N}\right) E^{* *}\left[S_{N}-N E(Z)+\beta^{\prime}\left(0 \mid X_{N}\right)\right]
\end{aligned}
$$

Taking the limit when $N \rightarrow \infty$, we have, since $P_{N} \rightarrow 1$, and $N\left(1-P_{N}\right) \rightarrow 0$, and $E^{* *}\left[S_{N}\right], E^{* *}\left[\beta^{\prime}\left(0 \mid X_{N}\right)\right]$ bounded,

$$
\alpha_{1}^{\prime}(0)=E\left[S_{n}\right]-E(n) E(Z)+E\left[\beta^{\prime}\left(0 \mid X_{n}\right)\right],
$$

giving us the required result (3).

References

[1] Bartlett, M. S., An introduction to Stochastic Processes, Cambridge University Press (1955).
[2] Phatarfod, R. M., Sequential Analysis of dependent observations - I (to be published in Biometrika).
[3] Wald, A., Sequential Tests of Statistical Hypotheses, Annals. of Math. Statistics 16 (1945), 115.

Monash University, Victoria.

