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The invariance of the equations of linear stability of a physical 
system under a change of sign of the dependent variables implies that 
we cannot foresee, once an instability is detected, in which direction 
the system will evolve. In the context of radial dynamical stability 
this means that the linear analysis does not allow us to discriminate 
between a subsequent contraction or expansion. To fix up the arrow of 
the evolution beyond the onset of the instability, a nonlinear analysis 
is required. 

Recently mathematicians have developed a broad framework currently 
known as "catastrophe theory" (CT) which can be typified as a systemati
cally precise equivalent to the analysis of a singular point of a vector 
field. Therefore we are entitled to expect that CT offers an ideal 
context for a nonlinear description of stellar stability. To take full 
advantage of CT however, we have to meet two conditions for our system : 
(a) it is a "gradient system", i.e. stable equilibrium states correspond 
to the minima of a potential ; (b) the total number of "effective" 
dependent variables ("behaviour variables" in Zeeman's 1977 terminology) 
must not exceed 2. At first sight these requirements seem so stringent 
that one might rightly wonder whether Nature has any such systems in 
store. To our surprise the problem of radial dynamical stability can 
actually be reformulated to obey both requirements. Under conservation 
of entropy the equilibrium states of a star satisfy a minimum energy 
theorem. The total energy which plays the part of the potential of CT 
(condition a) is given in standard notations by 

M 
E {r} = / dm {U [V (r,r),S(m),X(m)] - Gm/r} 1 

o 

(V is here the specific volume, X stands for the composition profiles 
and r is the derivative of the radial position with respect to mass). 
The explicit form of V in terms of r and r flows from the conservation 
of mass. Any distribution r(m) that renders the functional E{r} minimum 
specifies a dynamically stable equilibrium state. Since r(m) stands in 
fact for an infinity of behaviour variables, namely the radial location 
at any mass point m, one has to devise a method to drastically reduce 
this number of variables to << 2 in order to -conform to condition (b). 
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This can be performed if we focus on the neighbourhood of a neutral 
model. 

To this end we consider a set of data D (total mass, fixed entropy 
distribution, fixed composition profile and given thermodynamics 
U = U(V,S,X)). Let r (m) be the corresponding equilibrium model for 
which (1) takes on the minimum value E {r }. We next alter slightly 
the initial data, to obtain new models characterized by distributions 
r(m). Without loss of generality the latter can be related to rQ(m) by 
an expression of the form 

r(m) = r (m)(l + n(m)6z) ,6 z = (R - R )/R , n(M) = 1 , 2 

where 6z is the relative excess of the new radius with respect to that 
of the reference model and ri(m) is a function of m. On substitution of 
(2) into the energy functional (1) we generate the following Taylor 
expansion in z : 

E {r0(l + n<5z)} - E Q {rQ} = E^z + . .. + EN 6z
N + . . . , 3 

where the coefficients E , n = 1,2,...,N are functionals of r and n. 
n o 

Note at this stage that the quantities ri(m) and 6z still make up an 
infinite number of behaviour variables. 

The reference model being neutral, the coefficients E , n = 1,2,... 
of the RHS of (3) must vanish up to n = 3 at least. In fact E-, has to 
vanish identically in T) to satisfy the stationarity condition of the 
energy ; this fixes r (m). One can convince oneself that E. = 0 is 
equivalent to the equation of the radial neutral eigenfunctions which 
provides r|(m). Moreover as a consequence of the nondegeneracy of the 
eigenvalues of this Sturm-Liouville type problem, r|(m) is necessarily 
unique. The same nondegeneracy argument can be used to show that E-
does not vanish together with E, and E„ (with one prominent exception, 
namely a star with F = 4/3 all over the configuration (cf. Demaret et 
al., 1978)) For the cypical reference model expansion (3) thus reduces 
to „ , 

V(Sz) = {rQ(l + n<5z)} - Eo{rQ} = E3 Sz + 0(6z ) , 4 
where r and n(m) are now uniquely fixed so that E„ becomes a constant. 
In (4) just a single behaviour variable survives, namely 6z, so that we 
now do satisfy condition (b). 

To complete our analysis it remains to compare the potential (4) to 
the list of "catastrophes" classified in CT. It is seen to coincide „ 
with the simplest representative of this list, the "fold", v(x) = ± x . 
Under an arbitrary perturbation this potential is deformed into 
v(x,y) = ± x + yx, which represents the universal unfolding of the 
fold catastrophe. It is characterized by a single parameter ("control 
parameter"). 

The message of CT is then twofold : i) Under any slight alteration 
of the reference model, in particular under natural evolution, the new 
models distribute over a branch of a parabola in a 6z -Yplane, where 
Y parametrizes the modification ; the vertex of the parabola coincides 
with the neutral model. In other words, the most contrived local behav
iour of a linear series R - y of hydrostatic models is given by folds ; 
critical points of higher complexity (multiple points,...) are not 
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allowed to occur, ii) Since the star seeks a minimum of energy the 
arrow of the evolution at the fold cata-

r SQ\ V(6i)# r >o strophe is fully determined by the sign of 
} N /— i t-hg easily calculable integral Eg : if 

E3 > (<) 0 at the onset of the instability, 
the star will undergo a contraction (expan
sion) (fig. 1). A particularly instructive 
situation arises if I\ differs sufficiently 
little from 4/3, say Tx= 4/3 + 0(e),the 
correction depending on the local physics. 

... ., Then the functional Eo reduces to 
fig. 1 J 

E3 = 3/2 / dm PV { Tt -4/3 + 4 ( ) J + 0(e2) , 5 
o 31nV b'x 

so that a sufficient condition for contraction (expansion) obtains if 
the curly bracket is positive (negative). For massive stars which are 
essentially convective, the thermodynamic derivative in (5) can be 
replaced by the local derivative in the model. If then the 0(e) term 
entering T is roughly linear in the density, we notice that this crite
rion implies that if I\ decreases outwards, the star must contract 
(expand) once it becomes unstable. 

Elementary CT thus nicely captures the outcome of radial dynamical 
instabilities. Since requirement (a) remains true for nonradial dynamic
al motions as well, one may ask whether the same mathematical framework 
applies for nonradial stability. The typical neutral model occurs now 
when the entropy profile becomes flat in one zone of the star. But such 
a model displays an infinite number of neutral g-modes ; this property 
prevents us from eliminating the infinity of behaviour variables. Hence 
we cannot satisfy requirement (b). Standard CT is thus unable to cope 
with the unfolding of this neutral model, simply because the archetypal 
patterns it gives rise to are too numerous : in fact there is a conti
nuous infinity of distinct regimes beyond the limit of stability. 

The breakdown of CT in the field of nonradial dynamical stability -
i.e. in the characterization of the onset of stellar convection - is to 
be traced to its pervading assumption of smoothness. To efficiently deal 
with convection the latter premiss is to be dispensed with. A novel 
mathematical frame in which smoothness is superseded by infinite irregu
larity is indeed offered by fractal theory (Mandelbrot, 1977). The latter 
enables one to encompass unwieldy structures such as "strange attractors" 
and "chaos", currently encountered in elementary hydrodynamic models 
(Ruelle and Takens, 1971). Attempts to tame convection via fractals have 
already been sketched by Frisch (1978). 

Successful applications of CT to other direct stellar stability 
considerations have been made by Casti (1974 ; collapse), Poston and 
Stewart (1978 ; bifurcation of Maclaurin spheroids), Barbaro et al. 
(1979 ; Lynden-Bell's gravothermal catastrophe). The CT formalism is 
however of much wider applicability. In particular questions connected 
with the unfolding of multiple eigenvalues receive an elegant solution 
in this context (Arnold, 1976 ; Poston and Stewart, 1978). The recently 
stressed phenomenon of "avoided crossing" of g-modes (Aizenman et al., 
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1977 ; Christensen-Dalsgaard, 1979) emerges from CT as a mere effect of 
the structural instability of the crossing : What requires an explana
tion is not the avoided crossing but the possible occurrence of actual 
crossings ! The latter always stem from a special invariance group 
("symmetry") of the underlying stellar model, as flows directly from an 
application of the von Neumann-Wigner (1929) perturbation scheme. This 
point was already explicited in Perdang (1969) for the avoided crossing 
observed in compressible cylinders, which precisely degenerates into an 
actual crossing for the incompressible model (Ostriker, 1964). In the 
framework of secular stability CT predicts that if a crossing of two 
real secular eigenvalues occurs for a given model, then arbitrarily 
nearby models must exist which have complex roots. 
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