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1. Let X be a closed Riemann surface of genus g =2 and let Aut X denote the group
of automorphisms of X where, in this paper, an automorphism means a conformal or
anticonformal self-homeomorphism. X is called hyperelliptic if it admits a conformal
automorphism J of order 2 such that X/H has genus 0, where H=(J) is the group of
order 2 generated by J. Thus X is a two-sheeted covering of the sphere which is branched
over 2g+2 points and J is the sheet-interchange map. J is the unique conformal
automorphism of order 2 such that X/(J) has genus 0 and it follows that if U € Aut X, then
UJU '=1J. Thus J is central in Aut X and H<<Aut X. (Cf. [8])

A symmetry of X is an anticonformal automorphism of order 2. Another type of
automorphism which occurs naturally is an anticonformal automorphism Q such that
Q?=J. Following Zarrow [13] we shall call such automorphisms pseudo-symmetries. If T
is a symmetry of X then so is JT. We shall call {T, JT} a pair of symmetries. Similarly, if Q
is a pseudo-symmetry {Q, JQ} is called a pair of pseudo-symmetries.

In this paper we shall be concerned with the number of conjugacy classes of pairs of
symmetries of a hyperelliptic surface and show that this is at most 3 if g is even, and at
most 4 if g is odd. We shall also find a sharp upper bound for the number of symmetries
of a hyperelliptic surface and show that there is at most one pair of pseudo-symmetries.
We also find conditions on the uniformizing Fuchsian group for a Riemann surface to be
pseudo-symmetric and describe the subspace of Teichmiiller space corresponding to
pseudo-symmetric surfaces.

The study of symmetric Riemann surfaces was begun by Klein (see e.g. [6]) and their
importance is partly due to their relationship to real algebraic curves. For some modern
papers on the subject see [2], [4], [11], [13]. In further work we shall study a symmetric
hyperelliptic surface according to the topological character of its symmetries, and this
motivated the study of conjugacy, as conjugate symmetries have the same topological
character.

2. Let G be the group of automorphisms of the hyperelliptic surface X. Then G/H is a
finite group of automorphisms of X/H, which being a Riemann surface of genus 0 may be
regarded as the Riemann sphere X. We now consider the symmetries and finite au-
tomorphism groups of 3. Every symmetry of 3 is conjugate in AutZ2 either to the
reflection z— Z or to the antipodal map z— —1/Z [2]. These are distinguished by the fact
that only the first of these has fixed points. In the following table we list the finite groups
of conformal automorphisms of 3, their possible extensions by adjoining anticonformal
automorphisms and information about the symmetries.

The information about the groups can be found in [3], §4.3, 4.4 and Table 2. The
symmetries are the involutions which lie in the extended group, but outside the original

group.
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Extended Number of conjugacy
Group group Number of symmetries classes of symmetries
C {Cq x C, 1(q odd), 2(q even) 1(g odd), 2(q even)
4 D, q 1(q odd), 2(q even)
D, C,xD, q+1(q odd), g+2(q even) 2(q odd), 4(q even)
A {C2 X A, 4 2
N Sa 6 1
S, C, xS, 10 3
As C,x As 16 2

As an example consider the group D,, where q is even, acting as a group o
conformal automorphisms. This is generated by P:z — 1/z and R:z —> £z, where &=
exp(2mi/q). The extended group is found by adjoining the antipodal map A:z—>-1/;
The anticonformal automorphisms have the form AP“R”, where O0<u=1 and 0=<v=
q—1. The symmetries are A, AR%*, APR®, (0<v=<gq—1). The 4 conjugacy classes o
symmetries are {A}, {ARY?}, {AP, APR?,..., APR%" %}, {APR, APR®, ..., APR" "}

We are using the result that every finite group of conformal automorphisms of 3. is .
group of rotations of ¥. Using the facts that a conformal automorphism of X is a linea
fractional transformation and that a rotation must commute with A we see that ever
rotation has the form

az—¢

z—> —, where aa+cc=1.
cz+a

Thus the rotation group of 3 is isomorphic to PSU(2,C). The other elements of th
extended groups are either reflections in planes passing through the origin or th
antipodal map A. As all these elements commute with A we see that the extended group
are all naturally isomorphic to subgroups of PSU(2, C) X C,, where the C, is generated b
A. The only symmetry in this group which acts without fixed points is A and hence ther
is at most one fixed point free symmetry in these extended groups, namely A itself. (C
the extended groups only D, and S, do not contain A).

3. Let G be the group of automorphisms of the hyperelliptic surface X. Then by §
there is a homomorphism &: G— PSU(Q2,C)Xx C,.

Lemma 1. If Te G and if ©(T) is a symmetry of 2, then T is either a symmetry or .
pseudo-symmetry of X.

Proof. The kernel of ® is {E, J}, where E is the identity, and so T>’=E or T°>=J. A
ker ® consists of conformal automorphisms, ® must preserve the sense of each element o
G. Thus T is sense reversing and hence is either a symmetry or a pseudo-symmetry.

If T,, T, are symmetries or pseudo-symmetries then the pairs {T,, JT }, {T,, JT,} ar
called conjugate if T, is conjugate in Aut X to either T, or JT, (and then JT), is conjugat
to JT, or T,).
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Lemma 2. {T,, JT,} is conjugate to {T,, JT,} if and only if ®(T,) is conjugate to ©(T,)
in ®(G).

Proof. Clearly ® maps conjugate pairs to conjugate symmetries. Now suppose that T
and T, are symmetries or pseudo-symmetries in G and that ®(T),) is conjugate to O(T,).
Then there exists S€ G such that ®(ST,S™")=®(T,). Hence ST, S 'T,'=E or J and
therefore {T,, JT;} is conjugate to {T,, JT,}.

It follows from the table in §2 that the number of pairs of symmetries and pairs of
pseudo-symmetries is at most 4. To calculate the number of conjugacy classes of
symmetries we have to distinguish them algebraically from pseudo-symmetries in relation
to ®. This is done in Theorem 2. For a prootf it is convenient to introduce non-Euclidean
crystallographic (NEC) groups.

An NEC group is a discrete subgroup of &£, the group of all automorphisms of D, the
unit disc. We let £* denote the subgroup of &£ consisting of conformal automorphisms so
that if T is a subgroup of £, then I is a Fuchsian group. The structure of NEC groups
with reflections is rather more complicated than the structure of Fuchsian groups, but in
this paper we shall only need to use NEC groups without reflections. (See [7] for the
structure of NEC groups). The reason for the importance of NEC groups in the study of
symmetries is quite clear. If X is a Riemann surface of genus g =2, then there is a torsion
free Fuchsian group K such that X is conformally equivalent to D/K. If X admits a
symmetry T, then T can be lifted to an element t€ £—£* such that tKt™' = K and *c K.
Now I'= K+ Kt is an NEC group and ¢ is either a reflection or a glide-reflection. A
glide-reflection acts without fixed points on D, a reflection has a whole non-Euclidean line
of fixed points. 1t follows that T acts without fixed points if and only if I' has no
reflections. (If T has fixed points then it leaves pointwise fixed k < g+ 1 disjoint Jordan
curves) (see [6]).

NEC groups without reflections can be divided into two families depending on
whether their quotient space is orientable or not. If D/I is orientable of genus g then I' is
a Fuchsian group. If there are r points on D/I" over which the projection map from D to

DJT" is branched with orders of ramification m,, ..., m, then I' has presentation
r 2
{al, by, ...,y by X1, ., X, H x [l abar' bt =xm=. . . =x™= 1}.
i=1 i=1

Here a;, b; are hyperbolic and the x; elliptic. We shall say that I' has signature
(g;+,my, ..., m).

m;=2 for i=1,...,r and are called the periods of I". If D/T’ is non-orientable with g
cross-caps then I' has a presentation of the form

r g
2_ — —_
{al”"?ag7x17---sxr Hxin ai_x;"ﬁ__.. x:"'——l},
i=1 i=1
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Here a; are glide-reflections and the x; elliptics, m,,..., m, are again the orders of
ramification. We shall say that I' has signature

(g:—my,...,m).

If there is no branching we shall write the signature as (g; +) or (g; —).
The measure of a fundamental region for I is

4 1
p,(I')=2'rr(ng—2+ Y (1——-)),
i=1 m;
where n =2 if D/T is orientable and n =1 if D/T" is non-orientable. If I'; <T',, then the
index is given by
IT2:Ty| = n(@T)/p(T). (1)

If T has signature (g; —, my, ..., m,), then the subgroup I'" =T N£" has signature
(g—1; +, my, my,..., m, m) by [10]. In particular if ' has signature (1; —, 2¢*'), then
I has signature (0; +, 2@#*?), where 2%’ means the period 2 is repeated k times.

If K has signature (g; +) then as Maclachlan ([8]) observed, D/K is hyperelliptic if
and only if K is a subgroup of index 2 in a group of signature (0;+,2%%*?), and the
induced automorphism is the hyperelliptic involution. Our main results on symmetries and
pseudo-symmetries follow from the next lemma.

Lemma 3. Let T have signature (1; —; 2*V). Then I' has a unique normal subgroup K
of index 4 with signature (g;+). If g is even, then I'/K=C,, an if g is odd, then
[/K=C,x C,.

Proof. Let I' have presentation
2 —_ 2 — — 2 —_
{a,x1,. .. Xge1| A%y ... Xge 1 =x7=. .. =x%,, =1}

Let g be even. We construct an epimorphism 6:I'— C, whose kernel is torsion free. For
this we need 8 to preserve the orders of elements of finite order. Let C, = {u |u*=1}; then
we must have 0(x;)=u?> (i=1,...,g+1) and as 6 is onto (a)=u*". As g is even the
relation a’x, ... x,., = 1 is then preserved and so 6 is an epimorphism. The kernel of 9 is
the normal subgroup generated by a® and hence is a Fuchsian group. As it is torsion free
it follows from (1) that it has signature (g; +). There are two epimorphisms from I' to C,
but as they differ by an automorphism of C, (namely u— u~') they both have the same
kernel. Also, there is no epimorphism from I' to C, whose kernel is torsion free when g is
odd.

On the other hand, suppose there is an epimorphism 6 :I'— C, X C, whose kernel has
signature (g; +), where g is even. Let C,x C,={u, v|u®*=v?=(uv)’=1}. As the kernel i
a Fuchsian group, it does not contain the glide reflection a. Assume without loss of
generality that 6(a) = u; then 6(x,) # u, for otherwise ax, would lie in the kernel, which i
impossible as ax, is anticonformal. Hence we can assume that 8(x,)=v. If 1<i=g+]
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then, as above, 8(x;) # u, but also 6(x;) # uv, for otherwise ax,x; would lie in the kernel
which is impossible. Hence 6(a)=u, 6(x;)=v, 1<i<g+1. From the relation
a’x1x, ... Xg+1 =1 we obtain u®v**' =1, implying that g is odd, a contradiction.
However, if g is odd there is an epimorphism from I' to C,x C, whose kernel has
signature (g;+), and using the fact that the automorphism group of C,XC, is the
symmetric group on the 3 nonidentity elements, we deduce that the kernel is unique.

Lemma 4. If Q is a pseudo-symmetry of X, then Q acts without fixed points on X and
X/{Q)=1l, the projective plane.

Proof. Suppose pe X and Q(p)=p. Let f: X—3 be the natural projection and let Q
induce a map B:%—3. Thus feQ=Bef and B must be a symmetry of 3 fixing f(p). It
follows that B must fix pointwise a whole Jordan curve x. If f(p’) € x, then fo Q(p") = f(p").
Hence Q(p’)=p’ or Q(p')=J(p'); but J= Q? and so we must have Q(p’) = p'. Therefore
Q and hence J fix an infinite number of points, which is a contradiction as J fixes only
(2g+2) points.

It follows that the symmetry B must act without fixed points and so X/(Q)=3/(B)=
.

Note. The fact that Q is fixed point free does not mean that X is a smooth covering
of II (which of course it cannot be) for Q®>=J does have fixed points.

Now let X = D/K where K has signature (g; +). Then K is uniquely determined up to
conjugacy in .

THeoOREM 1. X is pseudo-symmetric if and only if X has even genus and there is an
NEC group T of signature (1; —, 2*Y) such that K <aT'.

Proof. Suppose that X has even genus and that such an NEC group exists. By Lemma
3, I'/K=C, which we will suppose is generated by Q. As Q is the image in I" of a glide
reflection and as the kernel is a Fuchsian group, Q is anticonformal. I'" has signature (0;
+,2%¢2y and I'*/K is the subgroup of I'/K generated by Q>. By the remark preceding
Lemma 3, X is hyperelliptic and Q is the hyperelliptic involution. Thus X is pseudo-
symmetric.

Conversely, if X is pseudo-symmetric, then K is normal in an NEC group I of index
4 with the properties that I'* has signature (0; +,2%¢*?) and D/T'=D/K/T/K =11 (by
Lemma 4). It follows that T has signature (1;—,2%®*V) and as I[/K=C,, g is even.

The fact that a pseudo-symmetric surface has even genus also follows from the work
of Zarrow [13].

THeEOREM 2. Let X be a hyperelliptic surface of genus g. Then Q is a pseudo-symmetry
of X if and ony if g is even and ®(Q) = A, the antipodal map.
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Proof. If Q is a pseudo-symmetry then X has even genus by Theorem 1 and
®(Q)= A by Lemma 4.

Now suppose that g is even and ®(Q)= A. By Lemma 1, Q is a symmetry or a
pseudo-symmetry. Suppose that Q is a symmetry. Then as ®(Q) = &(JQ)= A both Q and
JQ would act without fixed curves. {E, J, Q, JQ} would be a group of automorphisms of X
isomorphic to C,XC, and we would be able to construct the following lattice of

subgroups
A II”’ A,
\K /
where K has signature (g; +), A; and A, have signatures (g+1; —) and I'" has signature
(0; +,2%2*?), Here A, and A, are the inverse images of the groups {Q), (JQ) under the
epimorphism 6:I'—T'/K. If ceT is a reflection, then 8(c)= Q or JQ; but then A, or A,
would contain reflections. Hence I' has no reflections and therefore it must have signature

(1;—,2®™), By Lemma 3, g is odd which is a contradiction. Therefore Q is a pseudo-
symmetry.

CoroLLARY. X admits at most one pair of pseudo-symmetries.

Proof. 1f {T,,JT,}, {T,,JT,} are two pairs of pseudo-symmetries then as ®&(T))=
O(T)=A, T),=T,, JT,=JT,or T,=JT,, JT,=T.,.

Using Lemma 2, Theorem 2 and its corollary it is now possible to determine the
number of conjugacy classes of pairs of symmetries in G, a group of automorphisms
containing anticonformal elements. If g is odd then it is equal to the number of conjugacy
classes of symmetries in ®(G), while if g is even, and if ®(G) contains A it is one less
than the number of symmetries in ®(G).

Number of conjugacy classes Number of conjugacy classes
of pairs of symmetries when of pairs of symmetries when

d(G) g is even g is odd

G X C, 0 (g odd), 1(q even) 1(q odd), 2 (q even)

D, 1(q odd), 2 (q even) 1 (g odd), 2 (q even)

C XD, 1 (g odd), 3 (g even) 2 (g odd), 4 (g even)

C, XA, 1 2

Ss 1 1

C, XS, 2 3

C, X Ag 1 2

From this table we deduce the following resuit.
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THeOREM 3. Let X be a hyperelliptic surface of genus g. If g is odd then X admits at
most 4 conjugacy classes of pairs of symmerries. If g is even then X admits at most 3
conjugacy classes of pairs of symmetries.

4. In this paragraph we present a family of surfaces for which the bound in Theorem
3 is attained. For each g there are infinitely many examples but the surfaces presented
here are the most interesting in that, except for 3 values of g, they have the greatest
number of symmetries of all hyperelliptic surfaces of genus g. For each g=2, they are the
unique hyperelliptic surface of genus g admitting a group of 8(g+1) conformal au-
tomorphisms and for infinitely many values of g this is the largest group of conformal
automorphisms for any Riemann surface of genus g. In this context they were discovered
independently by Accola [1] and Maclachlan [9]. Let

+(g) {R is4 SZg+2 (Rs)2 (R ls)2 }

(In the notation of [3] this is the group (4,2g+2|2,2).)

L*(g) contains the central involution R* and L*(g)/(R?)=D,.+,. Hence L*(g) has
order 8(g+1). It follows that (R)N{(S)={E}, and hence every element of the group has
the form RS, 0<i=<3, 0<<j<2g+1.

Let T be a Fuchsian group with signature (0; +,4,2g+2,2). There is an obvious
epimorphism ¥:T" — L*(g) whose kernel K(g) is a Fuchsian group with signature (g; +).
Let D/K(g)=Y(g). ¢ '(R?) has signature (0; +, 2*¢*?) (see e.g. Proposition 4 of [12])
and so Y(g) is hyperelliptic with hyperelliptic involution R?. (Alternatively, we could
follow Accola and construct Y(g) directly as a two-sheeted covering of the sphere
branched at the vertices of a regular (2g+2)—gon on the equatorial circle).

As R—>R™', §— S extends to an automorphism of L*(g) it follows by Theorem 2
of [11] that Y(g) is symmetric and has L(G)={R, S, T|T*=(TR)*=(TS)*=
§%*2=(RS)*=(R'S)*=E} as a group of automorphisms. Here T is a symmetry and
L(g) has order 16(g+1). We now find all the symmetries in L(g). The anticonformal
automorphisms all have the form TR'S’, and clearly TS’, TR?S' are a pair of symmetries.
Now

(TRS')?’=TRS'T'RS' =R 'S'/RS' = (S"'R?» 1§’ = R~%8%,
(We are using R™'SR = S$™'R? which is easily derivable from the relations for L*(G))

Thus TRS’ is a symmetry if and only if R¥ =S¥ =E. If g is odd this occurs when
j=0or j=g+1, but for g even this only occurs when j = (. Thus the only symmetries of
the form TRS’ are TR and TRS®*! when g is odd and TR when g is even. However, note
that when g is even, TRS®**! is a pseudo-symmetry. Now

S™Y(TS")S=TS™*?,

T-(TS")T=TS™,
o TS  jodd

R NTS R={ .
(TS) TS'R?> j even

We thus see that the 4 conjugacy classes of pair of symmetries and pseudo-symmetries
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are
1. {T, TR?*,{TS? TR>S?*,...,{TS?*, TR>S**},

2. {TS, TSR?, {TS® TR>S?, ..., {TS™", TR?S*"},
3. {TR, TR},
4. {TRS®**', TR3S**'}.

Classes 1, 2, 3 always consists of symmetries, while class 4 consists of symmetries if g is
odd and pseudo-symmetries if g is even. (Note that in these groups we get examples
where symmetries of a pair are themselves conjugate; for example R™'TR = TR?)

Y(g) admits 4g +4 symmetries if g is odd and 4g+2 symmetries if g is even. Now
D,, ., is the largest group of conformal homeomorphisms of 2 which lifts to a group on a
hyperelliptic surface of genus g. For D, has orbit lengths 2 and q in its action on 2 and, for
it to lift, the 2g +2 branch points must be an orbit implying that g =2g+2. It follows by
examining the table in §2 that Y(g) admits the greatest number of symmetries for a
hyperelliptic surface of genus g except possibly when ®(G)=C,x A,, C,XS,, S, or
C,x A, for low values of g.

As an example suppose that ®(G)=C, x S,. If G* is the subgroup of G consisting of
conformal homeomorphisms then ®(G*)=S, and the action of S, must lift up to the
hyperelliptic surface. The orbits of S, have lengths 6, 8 or 12 which can be considered as
the vertices of a regular cube, octahedron or the mid-points of an edge. Thus, if g is the
genus of the hyperelliptic surface 2g+2 =6, 8 or 12 and hence g=2, 3, or 5. For g=2, 3
we get more symmetries (namely 20) than occur in Y(2), Y(3).

By comparing with §8.8 of [3] we can get presentations for these groups as follows:

(g=2}{R, S| R®=8°=(RS)*=(R>S)*= E};
(g=3)}{R,S|R°=8*=(RS)*=(R™2S)*=E}.

The first group has centre (R*) and the second group has centre (R?), the quotient in both
cases being S,. Thus, both groups have order 48 and we can prove that they act on
symmetric surfaces as before. Therefore, for g =2 and g =3 we get hyperelliptic surfaces
with 18 and 20 symmetries respectively. (For g =2 the surface is the one which Coxeter
and Moser remark has been beautifully drawn by Burnside.)

In a similar way we can get a surface of genus 5 with 32 symmetries. (The group here
is{R, S| R"=S§>=(RS)*=(R*S)*= E}, centre (R®) and quotient As.) The next smallest
genus which A; lifts up to is g =9. We thus get the following result.

TueoreM 4. Let M(g) be the maximum number of symmetries for a hyperelliptic
surface of genus g. Then

M(2) =18,
M(3) =20,
M(5) =32,

M(g)=4g+2 (g even, g=4),
M(g)=4g+4 (g odd, g=17).
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Thus, the Accola-Maclachlan surfaces Y(g) can be considered, (for g# 2, 3, 5) as the
most symmetric of the hyperelliptic surfaces. It is interesting to compare with the elliptic
case (g=1).

Every complex torus is a two-sheeted covering of the sphere and again we have a
central involution in the automorphism group so we can speak of paired symmetries. If we
regard the torus as € modulo a lattice then this involution is induced by z——z.

The symmetries of complex tori are catalogued on page 65 of [2] and we see that the
torus obtained from the square lattice has 3 conjugacy classes of pairs of symmetries, that
obtained from a rectangular non-square lattice has 2 conjugacy classes of pairs and every
other symmetric complex torus has one conjugacy class of pairs of symmetries. Thus, the
square lattice gives the most symmetric torus. Now tori differ from Riemann surfaces of
higher genus in that they admit continuous groups of automorphisms, (induced by
z—z+A) and the torus obtained from the square lattice admits further automorphisms.
In particular it admits a group of 16 automorphisms induced by z— ez + 8, where ¢ = %1,
+i, § =0, 3, 3i, 3+3i. For simplicity of notation we regard these as being the automorph-
isms, so we consider & as being a residue class in C/Z[i]. Now let R(z) =iz, S(z) =iz +3.
Then

R*=8*=(RS)*=(R'S)*=E,

so that this group is L*(1).

Now let T(z) = iz. Then T gives a symmetry of the torus and T>=(TR)*=(TS)*=E.
The 3 conjugacy classes of symmetries given in [2] have representatives z— 2, z— iz,
z—>z+3, i.e. TR, T, TS’R?. (In this torus every symmetry is conjugate to its paired
symmetry.)

If we work in analogy to the cases where g=2, we would expect another conjugacy .
class, for example represented by TR>S*(z) = z +5+3i. However, TS is conjugate to TR
in the automorphism group of the torus but not in L(1). For if U(z)=z-1i
U YTS’R*»U=TR?*S>

S. Finally, we consider briefly the subspace of Teichmiiller space corresponding to
the pseudo-symmetric surfaces. The ideas and definitions can be found in [8]. See also [4],
[11].

Let K be a Fuchsian group with signature (g; +), such that D/K is pseudo-symmetric.
Then by Lemma 3, there exists a unique NEC group T of signature (1; —; 2*") such that
K<I'. The normal inclusion of K in I' gives rise to an embedding T(I')— T(K) of the
corresponding Teichmiiller spaces. The image of this inclusion corresponds to the set of
pseudo-symmetric surfaces Tp(K) in T(K). As the NEC group T is the unique normal
extension of I such that I'/K has order 4 (by the corollary to Theorem 2) we can argue as
in Lemma 3 of [8] that Tp(K) is a submanifold of T(I') with infinitely many components
all equivalent under the Teichmiiller modular group. Now the dimension of T(I') is half
the dimension of T(I'*) ([11]) and we obtain

dim Tp(K) = dim T(T) =4 dim T(T*)=2g—1.

We can now apply these ideas to a problem considered by Earle in [4]. If there is an
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anticonformal homeomorphism between Riemann surfaces X and Y then X and Y are
called conjugate surfaces. Symmetric Riemann surfaces are conformally equivalent to
their conjugate surfaces and in [4], Earle found examples of non-symmetric surfaces of
genera 2 and 5 which are conformally equivalent to their conjugates, by constructing
surfaces which admit anticonformal automorphisms of order 4 but none of order 2.

Let I have signature (1;—,2%*?). Then I'* has signature (0; +, 2¢*?). Hence most
Fuchsian groups isomorphic to I'* are maximal and hence most NEC groups isomorphic to
I' are maximal ([12]). The points in the image of the embedding of T(I') in T(K)
corresponding to these maximal groups will give pseudo-symmetric surfaces with no
further autornorphisms and, in particular, no symmetries. They are therefore non-
symmetric surfaces conformally equivalent to their conjugates. These surfaces will corres-
pond to a dense subset of Tp(K).

To construct such surfaces for odd g, we cannot use pseudo-symmetric surfaces, but
similar ideas will apply. For example, let I"; be a maximal group with signature
(2; —, 2% ). Define an epimorphism 6:T',—C,={u|u*=1}, by

6(a)=6(a,)=u
0(x)=u> (i=1,...,g-1).

If K is the kernel of 6, D/K, is a non-symmetric surface conformally equivalent to its
conjugate and such surfaces correspond to a dense subset of T(T;) embedded in T(Kj,).
Thus an infinite number of examples exist for each g=2.
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