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ABSTRACT

Numerical evaluation of compound distributions is one of the central
numerical tasks in insurance mathematics. Two widely used techniques are
Panjer recursion and transform methods. Many authors have pointed out
that aliasing errors imply the need to consider the whole distribution if
transform methods are used, a potential drawback especially for heavy-
tailed distributions. We investigate the magnitude of aliasing errors and
show that this problem can be solved by a suitable change of measure.
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1. INTRODUCTION

The starting point for stochastic modelling in insurance mathematics is the
assumption that claims made to an insurance company are of random size
and arrive at random time. A widely used stochastic model for this situation
stipulates that the claim arrival times constitute a Poisson process of
constant rate, that the claim sizes are independent and identically
distributed, and that claim sizes are independent of the arrival process.
This classical risk model is discussed in many textbooks; see e.g. Beard,
Pentikainen and Personen (1984), Grandell (1991) or Hipp and Michel
(1990).

As a consequence of the structural model assumptions the quantities of
interest depend on the rate A of the Poisson arrival process and the
distribution /i of the individual claims only. One such quantity is the
distribution v of the total claim amount over a given period of time, say
[0, /]. If pk is the probability of exactly k claims in [0, /] and with "*"
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denoting convolution, v can be written in the form

(1-1
/t=0

i.e. v is a compound distribution. In the classical model the number of claims
has a Poisson distribution so that

^ f (1.2)
and v is a compound Poisson distribution. The compound geometric case, with
/>/t = (1 — p) p for some p £ (0,1), is important in connection with ruin
probabilities; see Section 4 below. For general compound distributions
(Pk)keN0

 c a n De any sequence of non-negative real numbers with J2T=oPk = 1-
If Xi, X2, ... are independent random variables with distribution /J, and if r is
another random variable, independent of the X-variables and with
P(T = k) = pk for all A; e No, then u is the distribution of the random sum
ST :— X\ + X2 + ... + XT; we take this sum to be zero if r = 0. In the context
of insurance modelling, the Jf-values are the individual claims and ST is the
total claim amount.

The question of how to calculate v from /x and (j>k)keN n a s attracted
much interest over the last decades and continues to be an active topic of
research; see e.g. Embrechts, Griibel and Pitts (1993), where transform
methods are explained and reviewed, and Asmussen and Binswanger (1997),
who advocate a simulation approach in the case of compound geometric
distributions. These methods can both be applied for general compound
distributions. In the classical risk model the special cases of compound
Poisson and compound geometric distributions are of main interest. For
these and p, of lattice type there exists a recursive scheme due to Panjer; see
Panjer (1981) or Kapitel 3 in Hipp and Michel (1990). Further methods
exist, and several authors have investigated the relative merits and potential
drawbacks of the various approaches; see e.g. Biihlmann (1984), Buch-
walder, Chevallier and Kliippelberg (1993) and Schroter (1995).

The situation described above is typical for stochastic modelling insofar
as cases in which v can be given explicitly are few and far between, so various
approximations have to be made which all entail some inevitable associated
error. These errors are random if the Monte Carlo method is employed.
Both Panjer recursion and the transform approach depend on an
initial discretization of the claim size distribution fi: For a given
discretization parameter h > 0 let fj,/, be the distribution concentrated on
/zN0 = {nh:n <s No} with
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In words, intervals of length h are lumped to their respective centres. If h is
small enough then the compound distribution i//, associated with \XH is close
to the compound distribution v associated with /x (if e.g. "close" refers to the
supremum distance of the distribution functions). In a companion paper,
Griibel and Hermesmeier (1999), we discuss the discretization error and
show that it can often be reduced dramatically with the help of extrapolation
techniques; see also Embrechts, Griibel and Pitts (1993) for a "weak" result
in this direction. This is of interest for transform and recursion methods. In
the present paper we ignore the discretization error and assume that the
claim size distribution is of lattice type, i.e. concentrated on some
hN$, h > 0. A simple scaling argument shows that we may then assume that
h = 1, so that we are dealing with claim size distributions concentrated on
the non-negative integers. Of course, both recursion and transform methods
require an additional truncation step, i.e. we replace the infinite set No by
{0, 1, ..., N - 1} with some N e N. Panjer recursion, if it applies and if we
ignore errors from floating point representation etc., obtains the exact values
p({n}), n = 0, ..., N — 1, from /j({n}), n = 0, ..., N — 1. Transform meth-
ods introduce an additional error, the aliasing error, essentially a wrap-
around effect due to the replacement of the usual summation of integers by
summation modulo the truncation point TV, but their operation count grows
as N log N only if the fast Fourier transform (FFT) algorithm is used
whereas recursion needs an operation count of order N2. Therefore, for the
comparison of these methods, the order of magnitude of the aliasing error
and techniques for its reduction are of theoretical and practical importance.
In this connection heavy-tailed claim size distributions are of special interest,
see Asmussen and Binswanger (1997) and the recent monograph by
Embrechts, Kluppelberg and Mikosch (1997).

In the present paper we obtain a simple general bound for the aliasing
error. We further show that the local behaviour of the functional that maps
[i to v can be used to investigate the asymptotic behaviour of this error as the
truncation point N tends to infinity. From this analysis it follows that the
general bound is asymptotically sharp in cases where the tail of the
individual claim size distribution decreases at a faster rate than the tail of the
compound distribution. We also discuss the case where these tails are of the
same order of magnitude. In our view this approach contributes to the
theoretical understanding of transform methods. From a practical point of
view, and especially for heavy-tailed claim size distribution, our second
finding appears to be of some immediate use: We show that aliasing errors
can be eliminated for all practical purposes by a suitable change of measure.
This technique is of considerable importance in many areas of probability
and statistics and is also known as exponential tilting and closely related to
the Esscher transform.

The paper is organized as follows. In Section 2 we first give a summary of
the transform method. This has been done previously by other authors, see
e.g. Buhlmann (1984) or Embrechts, Griibel and Pitts (1993), so we keep this
brief. Our treatment will be somewhat abstract, which enables us to expose
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the simplicity of the underlying ideas once a bit of notation is introduced.
We then discuss the aliasing error and explain the exponential change of the
measure. Section 2 ends with the description of an algorithm designed to
reduce such errors. In Section 3 we look at a particular numerical example,
taken from Embrechts, Griibel and Pitts (1993), which was chosen to exhibit
the aliasing error in an extreme case. The algorithm introduced in Section 2
is shown to work well. Section 4 explains two related applications, to the
calculation of ruin probabilities and the mean function in the Sparre-
Andersen model of risk theory. Some concluding remarks are collected in
the final section.

2. RESULTS

Distributions \x that are concentrated on No can be described by the sequence
a = (an)nen of their atoms an := /z({«}). Such sequences are elements of the
space

of absolutely summable complex sequences, which, when endowed with the
norm

«=0

becomes a Banach space. Conversely, every a e £\ defines a complex valued
finite measure on No. We can similarly interpret the elements
aN = (UQ , ..., tf^Lj) of the standard TV-dimensional unitary vector space
C^ as complex-valued measures on the cyclic group G/v of order TV. This
group may ,be identified with {0, 1, ..., TV —1} if the usual arithmetic
operations are carried out modulo TV. We will use the letters a, b, c, ... for
elements of i\ and aN, bN, cN, ... for elements of C^and we write an or
{aN)n for the nth component of a sequence a or a vector aN; note that
indices start at n = 0 in both cases. On C^ we will use the norm

aN\\\ : = Yln=o \an (tne "city block norm"; it should be clear from
the context whether ||-||, refers to i\ or CN).

Both No and Gyy have an additive structure, which leads to the notion of
convolution for measures on these sets. The convolution product c = a * b of
two sequences a = (an)neNo, b = (bn)neNo£ t\ is defined by

n

cn :='Y2ambn-m for all «eM(|.
m=0
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For elements aN, hN of CN we use the same symbol "*" and put

( « " * O « : = E ^ e m
 fora11 n = 0 , l , . . , N - l ,

m=0
where the fr^-index is obtained on subtracting in G/v, i.e. modulo N.
T h e norm inequality \ \ a * b \ \ ^ < \\a\\x\\b\\x h o l d s f o r a l l a , b E £ \ , a n d s i m i l a r l y
11^*^11, < llfl^llill^lli for all aN,bN GCN; we even have
jja*/>||i= ||fl||il|^||i if all entries of a and b are non-negative. We write a*k

for the klh convolution power of a <E £\ and use the convention a*0 = <*>o,
where 600 = 1 and 6on = 0 for n > 0. The sequence <5o is the unit element with
respect to convolution; the corresponding definitions for CN should be
obvious.

In this formal framework the relationship between the distribution of
individual claims and the distribution of the total claim amount is given by a
nonlinear operator (functional) *,

A:=0

Here and in the following we regard the sequence (j>k)keN a s fixed; Pk is the
probability of exactly k claims. For some special />-sequences the elements of
b = *(a) can be obtained recursively: If e.g. pk = e~aak/kl for all k G No,
then

a "
b0 = e-"

{i-"o), bn = -J2mamt>n-m for all n e N. (2.1)
n

m=\
This formula arises in the context of discrete infinite divisibility, see e.g.
Johnson, Kotz and Kemp (1992), p. 352. It provides the basis for Panjer's
recursive algorithm for the computation of compound Poisson distributions.

Since convolution can also be done in C^ we have an analogue of * for
measures on GAS

aN

k=0

This is the total claim size distribution function if the aggregate claims are
readjusted by subtracting a suitable multiple of iV whenever the sum
overshoots the threshold N.

We now connect the sequence and vector spaces by three bounded linear
operators, which represent truncation, zero padding and aliasing respec-
tively:

TN-.^^C", {TN(a))n~an for n = 0,...,N-l,
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(UN(aN)) : = K ' fo* » = 0v v "n [ 0, otherwise,

VN : tx -+ CN, (VN(a))n : = ] T a n + j N f o r n = 0 , ..., N-\.
7=0

With "Id" denoting the identity operator on C^ we obviously have

TNoUN=VNoUN = Id, (2.2)

and, due to the rules of addition modulo N,

VN(a *b)= VN{a) * VN{b) for all a, b e i\

(note that "*" refers to different spaces on the two sides of this formula).
This, together with the continuity of VN, implies

•*NoVN=VNo $. (2.3)

To complete our notational round up we require Fourier transformation.
For a e £\ the Fourier transform a is given by

oo

a : [0,2TT) - • C, a{6) := ^ a j n ( > for all 0 G [0,2TT). (2.4)

n=0

Let WN := exp(2ni/N) be the canonical N'h root of unity. The Fourier trans-
form (aN)A of some aN e C^ is given by

N-\

m=0

If we define an N x JV-matrix W = (ww)^/=l by wu :— wN~ ~
then, in matrix notation, (aN)A= WaN. Writing W for the complex
conjugate of W we further have W~x = N~* W and consequently

v 1 /V"1

it W n P j r for » = °. •••'N- >. (2-6)
i V m=0

i.e. there is a simple inversion formula for Fourier transformation on GN.
Note that Fourier transformation on GN is a numerically stable operation:
apart from a constant factor both W and W7"' are unitary matrices so that
blow-up of approximation errors due to rounding etc. need not be feared.

It is well-known that convolution becomes pointwise multiplication on
the transform side, i.e.

(a*bf=a-b, (aN*bN)^(aN)A-(bN)A (2.7)
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for all a,b G £\, aN,bN e C^ (multiplication of vectors is understood to be
componentwise-we regard the elements of C^ as complex functions on the
set {0, ..., N — 1}). Let H be the probability generating function of the
/>-sequence, i.e.

oo

H : { z e C : \z\ < 1}-> C, # ( z ) : = ^ x l v _ .
/t=0

Then the following identities, which are fundamental for our purposes and
again are well-known, follow easily from (2.7),

for all a, aN in the respective range of definition. We mention in passing that

the relation

(VN(a))A =a(2im/N) for n = 0, ..., N-\ '

between the transforms on £\ and CN leads to an immediate proof of
relations such as (2.3).

Putting pieces together we arrive at the following transform algorithm for
the computation of an approximation bN to the compound distribution
b := fy(a) for a given claim size distribution a.

Algorithm 1
(i) truncate the input sequence a at some threshold N : a —> aN := Tf/(a);
(ii) apply (2.5) to the result of step (i): aN —> (aN) ;
(iii) apply H to the result of step (ii): (aN)A^ H o (aNf = (^N(aN))A;
(iv) apply (2.6) to the result of step (iii): {^N{aN))A-> bN := 1 ^ o TN(a).

Note that we used (2.8) in Step (iii); for many cases of interest H can be given
explicitly. Apart from errors such as those induced by the floating point
representation of real numbers on a computer steps (ii)-(iv) of this algorithm
evaluate compound distributions on G^ exactly.

It is clear that things might go badly wrong if there is substantial mass
near N, as this mass will simply be wrapped around the threshold N and
reappear at 0 (a year 2000 problem, so to speak). This can seriously distort
the outcome, especially for heavy-tailed distributions. The following
theorem gives bounds for the aliasing error bN — T]v(b), b := *(a).

Theorem 2
With b and bN as above,

oc

bn < bN
n < bn + J2bn+jN for n = 0, ..., N-\.

7=1

In particular, ^bN — 7V(6)||j< S^A'^n-
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Proof: On t\ and CN we consider the componentwise ordering, e.g. we write
c > 0 if all components of c are non-negative. In particular, this holds for a
as its entries are probabilities. Note that * is monotone in the sense of

a,be£u 0<a<b

and similarly with $>N. For the truncation operator we have

T N ( a * b) < TN{a) * TN(b) f o r a l l a , b e £ \ , a , b > 0 .

This implies

bN = ^ N o T N { a ) = Y j f
k=0
oo

k=o

k=o

which is the left hand side of the inequality. Further, T^(a) < Vs{a) because
of a > 0, hence monotonicity of $>N and (2.3) together give

*JV o TN(a) <VNo VN{a) = VN o *(a) = VN(b),

which yields the right hand side. Q

Note that the upper bound Y1T=N ^" n a s a simple interpretation in the
risk model, it is the probability that the sum of the claims exceeds the
threshold N. In particular, we can draw the qualitative conclusion that the
aliasing error becomes negligible with increasing N. For practical purposes,
however, a more quantitative statement would be of interest. Using the
componentwise ordering introduced in the above proof we can rewrite the
first statement of the theorem as

TN{b) <bN < VN(b), (2.9)

with the central term the result of the algorithm and the left term the target
value. Is the general upper bound Fyy(ft) too conservative? To deal with
questions of this type we investigate the asymptotic behaviour of bN as
N —> oo, using a differentiability property of the functional $. We assume
that the sequence {pk)km0defining * satisfies the condition

X>2W<°o, (2.10)
k=\
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and may then define another functional <& by

k=\

Lemma 3
If a(N),NeN and a are elements of {a <E l\ : \\a\\x< \} with
\\a{N) - a||,—>• 0 as N —>• o o , then

- tt(<i) - $ ( f l ) * (a(N) -a)\\l=O( \\a(N) - a\\i ) .

Proof: Simple algebra shows that, for all k € N,

k-\

a{N)*k - a*k = (a(N) - a) * _
7=0

In particular, it follows with the norm inequality that

L ( / V ) * * -a*k <k- \\a{N) - a\\x f o r a l l k € N .

We can now write

oc k—2

=2 y=0

oo * -2 Ar-2-/
a-j % - - • - • Mk-z-i-i

A:=2 ,/=0 1=0

The /-sum in the last term is bounded in norm by O(k2) so that the assertion
follows on using (2.10). •

We can now obtain an expansion of the difference between the result of
Algorithm 1 and the upper bound in Theorem 2 in terms of Y1T=N

 a«' i-e- the
tails of the distribution of individual claims.

Theorem 4
Assume that (2.10) holds; let a(N) := UN o TN(a). Then, as N -> oo,

\\VN{b)-bN - VN($(a))* F i V(f l-a(/y)) | | 1=of
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Proof: Using (2.2) and (2.3) we obtain

VN{b) - bN = VN o *( f l ) - VN o TN{a)

= VNo VNoUNo TN(a)
(2.11)

Lemma 3 shows that

- *(a) - $(a) * (a(N) - a)| |,= — a\

Clearly, applying VN does not increase the norm, and ||a(iV) — a||,=

To use this theorem in connection with the asymptotic behaviour of
aliasing errors we note that (2.9) implies

bN - -bN\\x= \\VN(b) - TN(b)\\v

The first term is the aliasing error Y2n=o ^ — bn , the right hand side is the
tail Y1T=N bn of the compound distribution. For the middle term we obtain
from Theorem 4,

VN(b) - bN\\x= * VN(a - fl

Using the fact that all entries of $(a) and a - a(N) are nonnegative we
obtain

* VN(a - = | |$(a) * (a - a

n=N

so we have the following relation between the aliasing error, the tail of the
individual claims and the tail of the compound distribution,

N-l

M=0 n=N n=N
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As a first consequence we see that under certain circumstances the upper
bound in Theorem 2 is asymptotically tight in the sense that the output bN

of the algorithm is asymptotically closer to VN(b) than to TN(b): If
Y^=Nan = °{Y,7=Nb") t h e n w e obtain

\ (2 13)

This condition means that the tail of the distribution of individual claims is
asymptotically negligible in comparison to the tail of the total claim size
distribution. It is obviously satisfied if e.g. claim sizes are bounded. Indeed,
in this case we obtain from (2.11) that bN = VN(b) for all N > No,
No := min{TV G N : Y.7=N

 a" = 0}> hence the upper bound in Theorem 2
cannot be improved without further conditions on the claim size
distribution.

Of course, if the individual tails J2T=N
 an a r e of the same order as the

compound tails Y1T=N «̂ tnen (2.13) may fail to hold. A notable example for
this situation is the case where (j>k)/ceN decreases at an exponential rate (as in
the compound Poisson and compound geometric case) and where the claim
size distribution is of subexponential type, i.e. (in the present discrete setup)

E (o<;),
n=N n=N

where the tilde means that the ratio of the two quantities tends to 1 as
N —> oo. The class S of subexponential distributions has been the object of
much research as it provides the natural setting for many limit theorems;
see e.g. Embrechts, Goldie and Veraverbeke (1979), Embrechts and
Veraverbeke (1982) and the references therein. In particular, under the
above assumptions,

n=N n=N

so (2.12) leads to

y ^ V - l l . A ' , v -AT-1 I , AT _ u.

lim ^^ = lim =~ = 0. (2-15)

Note, however, that the fact that in this case the outcome of the algorithm is
asymptotically closer to the left than to the right boundary of the interval
provided by Theorem 2 is of somewhat marginal significance because of the
large size of this interval. Nevertheless, it would be interesting to know
whether a second order refinement of (2.14) together with the use of higher
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order derivatives of \& would lead to more precise statements on the
asymptotic behaviour of the aliasing error for subexponential claim size
distributions.

Subexponential distributions are heavy-tailed. Related classes S(-y),
7 > 0, with exponential rate of tail decrease can be defined by the
requirements

«=0 «=N+1 «=/V n=/V n=N

in which case we necessarily have K = X ^ o el"an{> !)• Again, this is a well-
studied class; see Chover, Ney and Wainger (1973) in addition to the above
references for S = S(0). For such distributions it holds that

n=N n=N

provided that pt = O(p~k) for some p > K. The //-functions that are of
interest to us have a strictly monotone first derivative so that H'(\) < H'(K).

Hence (2.12) implies that bN is asymptotically strictly between the two
bounds in Theorem 2, i.e. we have a behaviour intermediate between (2.13)
and (2.15):

The above considerations show that the local behaviour of the functional \&
can be used to relate the asymptotics of the aliasing error to the tail
behaviour of the distributions involved. From a purely practical point of
view the main conclusion remains, however, that for the purposes of
Algorithm 1 it would be desirable to have rapidly decreasing compound
tails. The main idea of the alternative algorithm that we propose now is a
change of measure that forces the tails of the compound distribution to
decrease at an exponentially rate.

The mathematical basis for our aliasing error reduction method is the
observation that "an exponential change of measure commutes with the
compound distribution functional". To make this precise we require one
final bit of notation: For a G l\ and ^ e l , let Ega be the complex sequence
defined by

{Eea)n := e'n0an for all n £ No.
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COMPUTATION OF COMPOUND DISTRIBUTIONS I 2 0 9

The opera tor Eg tilts the input sequence, 9 is the tilting parameter. F o r
6 > 0 Eg maps £\ into l\ and | |£'ea| |1< 11 tar Mi- We further have for all a,b G t\,

{{E0a) * {E0b))n = V {E0a)m{Eeb)n_
z /
m=0

m=0

so that Eg(a* b) = Eg(a) * E$(b). From this we easily obtain
^ o Eo = Eoo^, which is the idea behind the following algorithm.

Algorithm 5
(i) Tilt the input sequence a with some suitable 9 > 0 : a —• ag := Eg(a);
(ii) truncate the result of step (i) at some threshold N : ag —> a^ :
(iii) apply (2.5) to the result of step (ii): a% —>• («^)A;
(iv) a/jp/y / / to /Ae mw/? o/*te/> (iii): (af)A^ H o (a^)A= (*w(
(v) appfy (2.6) /o f/ze mvw/? o/^e/> (iv): (*jv(a^))A^ b% := ^
(vi) undo the tilting: bN

B -> ^^ := £ _ ^ ^ .

The exponential tilting in step (i) produces rapidly decreasing tails, hence the
aliasing error introduced by steps (ii)-(v) will be small by Theorem 2 if N is
large. At least for small indices n the inevitable blow-up of errors introduced
by the multiplication with potentially large factors in step (vi) is negligible in
comparison with the overall improvement.

3. A NUMERICAL EXAMPLE

In Embrechts, Griibel and Pitts (1993) the difficulties arising from aliasing
(and discretization) errors were illustrated in a special case, where the claim
size distribution was taken to be the stable distribution with index 1/2. This
distribution is concentrated on the non-negative real numbers and has an
additional scale parameter a, the corresponding density is

ft / Or \

/ „ ( * ) : = - = = e x p - — , x>0.

Since /„ */^ = fn+n it is easy to obtain a corresponding compound
distribution numerically to any desired degree of precision directly from
the definition (1.1). In the above paper the Fourier transform based
approximation for the distribution function of the associated compound
Poisson distribution with Xt = 20 in (1.2), i.e. the numerical approximation
resulting from discretization and subsequent application of Algorithm 1, was
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compared to the true distribution function and it was found that, even with
N = 16384 discretization intervals, the supremum distance would never be
less than 0.034, irrespective of the truncation point.

Here we ignore the discretization error, which we will investigate in Part II
of the present paper, and we compare the results obtained with Panjer
recursion and transform methods. We also compare individual probabilities
instead of distribution functions: By design, the supremum distance between
the distribution functions cannot be smaller than the probability that the
compound distribution exceeds the threshold value, if the supremum is taken
over the whole real line. This elementary observation applies to both Panjer
recursion and the transform based algorithm.

In practice the parameter 9 involved in the exponential tilting cannot be
chosen arbitrarily large as this might result in under- or overflow errors. A
rough guideline would take the truncation point XQ = Nh into account. The
minimal and maximal factors arising in steps (i) and (vi) of Algorithm 5
would be exp(±9xo); a value of about 20 for the product 9XQ will in general
not lead to numerical difficulties.

Table 1 gives some numerical values for the special case described above;
N = 1024 discretization intervals of length 1 were used. The second column
gives the true values for u([x — 0.5, x + 0.5]), the third the corresponding
approximations obtained after discretization and use of (2.1). The column
labeled "Algl" shows the results of Algorithm 1, the unadorned Fourier
transform algorithm. The alias or "wrap-around" effect is easily seen: the
results for small x-values are at least an order of magnitude always from the
true values. The remaining columns were obtained with Algorithm 5, with
tilting parameters 9 = 0.001, 0.0049 and 0.0244 respectively, corresponding
to the values 1, 5 and 25 of the product of tilting parameter and truncation
threshold discussed above.

TABLE 1

COMPOUND PROBABILITIES AND APPROXIMATIONS

X

1

10

100

1000

true

1.078E-07

3.075E-05

1.156E-03

2.013E-04

Panjer

2.462E-07

3.432E-05

1.156E-03

2.012E-04

Algl

2.064E-04

2.380E-04

1.321E-03

2.134E-04

Alg5a

7.346E-05

1.067E-04

1.215E-03

2.056E-04

AlgSh

1.560E-06

3.562E-05

1.157E-03

2.013E-04

Alg5c

2.462E-07

3.432E-05

1.156E-03

2.012E-04

Obviously, the accuracy is improved considerably by the change of
measure. This is perhaps easier to see in Table 2, where the logarithm of the
ratio of the approximation and the value obtained by recursion is displayed.
The "large" value for x = 1000 in the last column can be explained by the
occurrence of large factors in the last step of Algorithm 5: with tilting
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parameter 9 = 0.001 factors of the order 1010 appear and rounding errors
begin to be important. The sum of all absolute differences between the
probabilities obtained with Panjer's algorithm and the transform based
algorithms were 0.0714, 0.0255, 0.000459 and 0.0000003121 respectively,
which is further support for the overall conclusion that for practical
purposes the aliasing error can be eliminated by a judicious use of
Algorithm 5. The upper bound Yl^=N^n from Theorem 2 takes the value
0.4641 in this example, much larger than the actual value 0.0714. Note that
this is an example with a subexponential claim size distribution, so this is in
accordance with (2.15). We finally note that a comparison of the values in
the second and third column of Table 1 shows that there is a pronounced
discretization error, again most notable for small x-values.

TABLE 2

LOGARITHMIC DIFFERENCES

X

1

10

100
1000

Algl

6.732
1.936

0.134

0.059

Alg5a

5.698
1.134

0.050

0.022

AlgSb

1.84659
0.03715

0.00092

0.00040

AlgSc

0.0000000110
0.0000000001

0.0000000000

0.0000247729

4. RELATED APPLICATIONS

In this section we briefly mention two further applications of the above
methods in the context of risk theory, the calculation of ruin probabilities in
the classical model with Poisson arrivals and the calculation of the mean
aggregate claim size as a function of time in the Sparre-Andersen model.
Details, including numerical examples, can be found in Hermesmeier (1997).

The probability of ruin as a function of the initial capital (risk reserve),
given a specific premium income mechanism, is another central quantity of
interest in risk theory. Let Yt be the insurance surplus at time t. When a
claim of size Xt arrives at time Tt then the stochastic process Y — {Y,)t>0 has
a corresponding downward jump, i.e. YT. — YTj_ — —X;. The classical model
assumes that Y increases linearly between claims with rate c, c is the premium
income rate. Let

ip{u) = P(Y, < 0 for some t > 0| Yo = u)
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be the probability that ruin will eventually occur if the initial risk reserve is u.
We assume that the claim size distribution has finite mean me and that the
relative safety loading

is strictly greater than 0; ruin is certain if 6 < 0. Let [i\ be the tail measure
associated with the claim size distribution /i, p,\ is the distribution with
density function x —> [i((x, oo))/mc • Ruin probabilities can be related to the
distribution of the maximum of a random walk with negative drift, and
classical random walk theory leads to the representation

( 1 - / > ) W ( ( K , ° ° ) ) > with p-j— (4.1)
k=0 ' + °

(see e.g. Asmussen (1987), Chapter XIII). Hence ip is the tail function of a
distribution v of the form (1.1) with/?,, = (1 — p)"p, i.e. the tail function of a
compound geometric distribution.

This situation is essentially the same as the one treated in Section 2, and
the same arguments apply. Again, for the weights in (4.1) a recursive method
is available (here too the first step is discretization), transform methods
apply, aliasing errors arise and can be handled as in Section 2. There is a
considerable literature relating the asymptotics of ip to the tails of the claim
size distribution; see e.g. Embrechts and Veraverbeke (1982).

In the Sparre-Andersen model the assumption that the claim arrival times
form a Poisson process is generalized to a situation where the times between
claim arrivals are independent and identically distributed random variables.
Let fiQ be the distribution of these interarrival times. From a technical point
of view, the arrival rate A in Section 1 is replaced by the distribution /x0- Let
5/ be the aggregate claim size at time /. Then, as explained in Embrechts,
Griibel and Pitts (1993), the stochastic process S = (S,)t>0 is a renewal
reward process, and for the calculation of e.g. the mean function t —> ESt

of S the renewal measure J2T=o Mo* associated with /Jo is important. This
corresponds to a situation of type (1.1) with/?* = 1, but the renewal measure
is not finite as these weights are not summable. One possibility to overcome
the resulting difficulties is to rewrite the renewal equation in such a way that
one arrives safely back in t\ (see Embrechts, Griibel and Pitts (1993)), a
different one is to use the ideas of Section 2 and to consider tilted renewal
sequences. Finally, the ruin probability function in this more general model
continues to be of the form (4.1), but \i\ depends on /M> and the claim size
distribution \i in a more complicated way. We still have the connection to the
supremum of a random walk, which also occurs in connection with the
stationary waiting time in a G/G/l queue, so that the transform based
algorithm in Griibel (1991) can be used.
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5. CONCLUSIONS AND COMMENTS

We have already mentioned in Section 1 that the operation count grows
quadratically in N if bo, ..., bff-i are evaluated with Panjer recursion. On
first sight the matrix multiplications in (2.5) and (2.6) seem to be no different,
but if N is e.g. a power of 2, then the fast Fourier transform (FFT) algorithm
can be used, resulting in an operation count of the order N log N only.
Buhlmann (1984) conducted some explicit comparisons and found a timing
advantage for the FFT-based algorithm from /V = 256 onwards. The 15
years which elapsed since then have seen an enormous increase in computing
power available on the desktop-we have used transform based algorithms
with N = 1048576 (= 220) and more. Recursion with N of this magnitude is
not feasible. The significance of large TV-values is especially important if high
quantiles of the distribution of the total claim amount are to be calculated
(or, correspondingly, risk reserves with very small probability of ruin). In the
situation explained in Section 3, for example, the 0.95-quantile of the total
claim size distribution is about 106, and with discretization intervals of the
length considered in our numerical example we would still have a noticeable
discretization error (see Table 1) and already require the value 220 for N.

Algorithm efficiency can also be decisive in connection with statistical
analyses. Given that the structural assumptions are accepted as a sensible
approximation to the real situation, practical usage of the model would need
to begin with inference on A and /i.We refer the reader to Pitts (1994) and the
references given there for inference on compound distributions. Modern
statistical techniques such as bootstrap confidence regions require the
numerical evaluation of the estimator in a great many cases (resamples),
which is feasible only if an efficient algorithm is available.

Finally, shifting from a given measure to a new one that has an
exponential density with respect to the original measure is an important
technique in many areas of theoretical and applied probability and statistics.
It underlies saddle point approximations, it is a standard technique in large
deviation theory, it can be found in the stochastic analysis treatment of the
Black-Scholes formula, and the concept of exponential families in traditional
mathematical statistics makes use of this idea. Exponential tilting also
connects the classes S and 5(7) that were used in Section 2. On the
transform side this shift corresponds to a shift of the integration range in the
complex domain, which we could do here in view of the fact that claim size
distributions are concentrated on the non-negative half-line. Transform
methods per se can handle two-sided distributions (in contrast to recursion
methods), but in the context of exponential tilting this advantage is lost. The
gain is in the effective elimination of aliasing errors, which makes it possible
to use transform algorithms if e.g. only low order quantiles are of interest, a
situation which up to now was considered to be the exclusive domain of
recursion algorithms.
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