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Abstract

Let R be a ring with 1 and £„(/?) be the subgroup of GLn(R) generated by the matrices / + retj, r e R,
i ^ j . We prove that the subgroup Pnn of En+a (R) consisting of the matrices of shape (Ao j ) , where
A € £„(/?). A € Ej,(R) and B e MatnS(/?), is (2, 3, 7)-generated whenever R is finitely generated and
n, h are large enough.
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1. Introduction

We recall that a non-trivial group is said to be (2, 3, 7)-generated if it is an epimorphic
image of the infinite triangle group A(2, 3, 7), defined by the presentation (X, Y |
X2 — Y3 — (XY)1 = 1). The relevance of (2, 3, 7)-generated groups stems from
their relation with the normal structure of the classical modular group and the theory
of Riemann surfaces. In particular, the finite (2, 3, 7)-generated groups (the so-called
Hurwitz groups) are realizable as automorphism groups of maximal order of compact
Riemann surfaces of genus at least 2. Over the recent years, it has been shown that
the class of (2, 3, 7)-generated groups is indeed quite large (see [LTW, LT], and the
references quoted there). Naturally, since (2, 3, 7)-generated groups are perfect, much
attention has been devoted to simple or close to simple groups. In particular, while
the seminal paper [Co] had already shown that the finite alternating groups An are

© 2001 Australian Mathematical Society 0263-6115/2001 SA2.00 + 0.00

187

https://doi.org/10.1017/S1446788700002834 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002834


188 L. Di Martino and M. C. Tamburini [2]

Hurwitz provided n > 167, [LTW] and [LT] show that most finite classical groups
are Hurwitz, provided their Lie rank is large enough. The prototype key-result in
this context is Theorem A in [LTW]. Let R be an arbitrary ring with 1 and, for
each n e N, define En(R) to be the group generated by the set of n x n matrices
{/ + retj | r e R, 1 < i: ^ j < n). It is well known that, for n > 3, En(R) = SLn(R)
if R is commutative and either a semi-local or a Euclidean domain (see [HO'M]).
In particular, En(R) contains En(R0) = SLn(i?o), where Ro denotes the subring of
R generated by 1. Theorem A in [LTW] asserts that, if R is finitely generated, then
£„(/?) is (2, 3,7)-generated for all sufficiently large n. However, it was also noticed
that Theorem A could be applied in order to prove (2, 3, 7)-generation for certain
semi-simple groups and even for groups that are far apart from the semi-simple ones.
Namely, it was proven in [LTW] that if n > 287, the direct product of t copies of
SLn(F9), where Fq denotes the finite field of order q — p", is Hurwitz provided
t < g[<»-287>/84]. ̂ d moreover, that there exist Hurwitz groups which are extensions
of p-groups of arbitrarily large derived length by the group SLn(Fq). Pushing further
in this direction, but still in connection with groups of Lie type, in this paper we prove
that the subgroup

• IG 2) A e Em(R), A € EdR), B € MatM(fl)

of En+A(R) is (2, 3, 7)-generated, whenever R is finitely generated and n, h are large
enough. Note that, for n, h > 3, Pn,a(R) coincides with the commutator subgroup
of a maximal parabolic of En+h(R). Clearly, Pn,a(R) is the semidirect product of the
'unipotent radical' N, consisting of the matrices of shape ('0" * ), and the 'standard Levi
subgroup' L, isomorphic to En(R) x E^R), consisting of the matrices of shape (* ^) .
Then, via suitable variations of the techniques developed in [LTW], the following is
proven:

THEOREM. Let R be generated by elements t\,..., tm, where 2t\ — i\ is a unit ofR
of finite multiplicative order. Then PnS(/?) (and therefore also the Levi subgroup L)
is (2, 3, l)-generatedfor all n,h> 84(/w + 1) + 180 + 216.

2. Joining representations via handles

Let E be the canonical basis of the free /?-module (E) consisting of all row vectors
of size |E|. We assume |E| < oo and let the group GLm(R) act on the right on
(E). We also identify the symmetric group Sym(E) with the group of permutation
matrices. As above, we let A(2, 3, 7) = (X, Y | X2 = K3 = (X Y)1 = 1).

https://doi.org/10.1017/S1446788700002834 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002834


[3] (2, 3, 7)-generation of maximal parabolic subgroups 189

DEFINITION. If f : A(2, 3, 7) ->• GL^C/?) is a representation, a 2-subset {a2, a3)
of E is called a handle for \Js if the following conditions are satisfied:

(1) y}f(X) fixes a2, a3 and the submodule (E \ [a2, a3});
(2) yfr(Y) acts as one of the cycles (at, a2, a3)

±l for some ax e E and fixes
{•Z\{aua2,a3}).

We note that, whenever \j/ is a permutation representation, our definition of a handle
coincides with that given by Conder in [Co]. In the sequel, we will always assume
that ij/(Y) acts as ( d , a2, a3).

LEMMA 1. Let [a2,a3], {b2,b3} be disjoint handles for a representation \js of
A(2, 3, 7) and suppose that Z € GL|£|(/?) induces the identity on (E \ {a2, a3, b2, b3})
and acts on (a2, a3, b2, b3) in one of the following ways:

where a e R.
Then ijf(X)Z is an involution and \fr(X)Z\lr(Y) is conjugate to \//(XY). In

particular, one can define a representation ijf : A(2, 3, 7) —*• GL^(R) by setting

The easy proof of the above Lemma is given in [LTJ. Clearly, the handles of xj/
different from [a2, a3) and {b2, b3), if any, are still handles of \jr. This fact allows
repeated application of Lemma 1. In the following we are interested in commutators.
In order to use in a more direct way the results of Conder, we find it convenient to
write [a, b] for the commutator aba~lb~l. (We warn the reader that this notation
differs from that used in [LTW] and [LT], where [a, b] stands for a~*b~xab).

LEMMA 2. Under the assumptions of Lemma 1, set y = [\js(X), ip'(Y)] and y =

(1) Both a2 and b2 are fixed by y and y.
(2) Suppose that A is a subset of E such that each of the submodules (A) and

( E \ A) is invariant under y. Setting a{ = a2i)f{Y~x),b\ = b2\js(Y~l), assume further
that A1 = {a\\}r(X), a3, bi\Jf(X), b3] is a subset of A. Then

(i) {E \ A) is y-invariant and y acts on (E \ A) in the same way as y;

(ii) (A) is y-invariant.

(3) Suppose that y acts on A as a permutation consisting of two cycles of respective
lengths \x = H\ + [i2, v — V\ + v2 of the following shape:

, bu...,b3).
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190 L. Di Martino and M. C. Tamburini [4]

If Z is of type (2) assume further that fi2 = v2. Then yKA) has order l.c.m.(/ii +

PROOF. (1) Direct calculation.
(2) Using (1), we see that, for each v e £ \ A1? vy = vy. Thus (i) follows at once

from the assumptions that A| c A and (E \ A) is y-invariant. As for (ii), for each
v € A \ Ai, we get vy = vy 6 (A). Thus, we need to show that, if v e Ai, then
vy € (A). For this purpose we assume first that Z is of type (1). In this case:

= b{ = b1f(X)y, a3y = bnlr(XY~l) = b3y,
b3y = a^(X Y~l) = a3y.

Hence A{y = A\y c (A), by our assumptions. Next, assume that Z is of type (2).
Then

Oif(X)y = -a, + ah = -a^(X)y + ab^{X)y € (A)
a3y = -a , f (Xr ' ) + abifiXY'1) = -a,y + ab3y e (A).

Finally, b{^(X)y = bx= b^(X)y e (A) andfc3y = b^iXY'1) = b3y e (A).
(3) Suppose first that Z is of type (1). By the above considerations, y acts on A as

u . . . , q3).

Next, suppose that Z is of type (2), hence by assumption \x2 = v2. Then y acts on A as

u...,b3). •
M2 M2

COROLLARY 3. Let ty : A(2, 3, 7) —• GL^iC/?) fee a permutation representation.
For i = 1 , . . . , k, assume that {a^, a\] and {b'2, b'3} are disjoint handles for ty and that
Zi acts on the submodule (a'2, a'3, b'2,b3) in one of the ways described in Lemma 1,
fixingpointwise (S \ {a2, a3, b2, b\}). Let f : A(2, 3, 7) - • GL|E|(/?) be defined by

As above, set y = [f{X), f{Y] and y = [jr(X), f(Y]. For each i < k, let A' be a
(y)-invariant subset of Y, containing {a\ijf(X), a3}, where a\ — a2\jr(Y~l). Similarly,
let B' bea {y)-invariant subset of T, containing { b\\jr{X), b3], where b\ — b2ir(Y~x).
Assume further that A1 n B' = 0. Then, setting Uk = U*=1(A' U B1'). each of the
submodules (A1, B'),..., (A*, Bk) and{Y,\Uk) is y-invariant, andy acts on (T,\Uk)
in the same way as y.
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[5] (2, 3, 7)-generation of maximal parabolic subgroups 191

PROOF. Assume k = 1. Then A ' U B 1 = £/, is y-invariant by assumption. It
follows that E \ Ui is also y -invariant, since y acts as a permutation on E. Thus our
claim follows from Lemma 2, with A = U\. Now assume k > 1 and consider the
representation (p defined by <p(X) = ty(X)Zx ... Zk_u cp(Y) = f(Y). Set £/*_, =
U*r,'(A'Ufi')- By induction, each of the submodules (A1, Bl),..., {Ak~l, Bk~l) and
(E \ C4_i) is invariant under [<p(X), <p(Y)] = yv, and yv acts on (E \ £/*_!) in the
same way as y. Thus yv acts as a permutation on E \ £/*_i, fixing each of the sets Ak,
BkandE\Uk. In particular, yv fixes <E \ Uk)®(Al, B1)®- • -©(A*"1, Bk~l) - ( E \
(Ak U Bk)). Now we have ^ ( X ) = cp(X)Zk, ${Y) = <p(Y). Application of Lemma 2
to the representation (p, with A — Ak U fi*, shows that the submodules (A*, Bk) and
(E \ (A* U Bk)) are both invariant under y, and that y acts on <E \ (A* U Bk)) in
the same way as y9. It follows that (A1, Bl),..., (A*"1, 5*"1) are also y-invariant.
Since (E \ Uk) < (E \ (A* U B*)) n (E \ £/*_,), we conclude that p acts on (E \ Uk)
in the same way a s / . •

3. The (2,3, 7)-generators for Pn,a(R)

Let J2 = {u,- | 1 < / < «} and fi = {u,- | 1 < / < «} be the canonical bases
for the free /?-modules consisting of row vectors of sizes n and h respectively. Thus
Pn^(R) acts naturally, on the right, on the direct sum (£2) © (&). In order to describe
a pair of (2, 3, 7)-generators x, y for the group Pna(R), we make use of 17 diagrams
introduced by Conder in [Co]: namely the diagrams G,E, A (pages 78 and 79)
with 42, 28, 14 vertices respectively, and 14 diagrams Hv (page 84) with v vertices,
v e D = {36, 42, 57, 77, 115, 135, 136, 142, 144, 165, 180, 187, 195, 216}.

We assume n ^ 10 (mod 14) unless n = n = 10 (mod 14), and set:

/ = 42, 7 = 0 if n = h = 10 (mod 14);

/ = 180, 7 = 0 if n ^ 10 (mod 14), n # 12 (mod 14);

/ = 180, 7 = 187 if n # 10 (mod 14), h = 12 (mod 14).

As the elements of D give all residues modulo 14, if n and h are large enough, then
there exist uniquely determined a, a > 2, b, b e {0, 1, 2} and d,d e D such that we
can write:

d, n-I = 42a + 14b + d.

We think of ft and Q as a union of Conder diagrams. Namely, let

Qo = G, U • • • U Ga U Hd U Hh ft0 = Gx U • • • U G-a U Hd U Hj,
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where each G,, G, is a copy of G, whereas A, E, Hj, Hj are copies of A, E, Hd, Hj
respectively, and Hi = 0 if / = 0, Hj = 0 if / = 0. Then we set:

£2 = £2 o i f6 = O, £2 = fi0UA if b = 1, Q = £20 U E if b = 2,

£2 = £2 o i f£ = O, £2 = £~2OUA if fc = 1, £2 = £2 0 U£i f fo = 2.

We label the points of Q (and likewise those of £2, putting bars everywhere) as follows:

G, = {vj | 42(i - 1) + 1 < ; < 42J), 1 < i < a;

A = {w, \ 1 < i < 14}, £ = {w,: | 1 < i < 28};

^ = {w, | 42a + 1 <j < n - /}; fli = {uy | n - / + 1 < y < «}.

In order to construct JC , _y, we start with apermutation representation of A (2, 3, 7) =
(X, Y | X2 = Y3 = (X K)7 = 1) on (£2) 0 (£2), defined by

where £, y, f, y are given below. For this purpose, let £/ be one of Conder diagrams
mentioned above. U depicts a transitive permutation representation ij/y of A(2, 3, 7)
on the set of vertices of U, hence of degree v = \U\. For each i < a, we write
§,- = i M X ) , y,- = ^ ( K ) . Then we define:

\/=i / \;=i

where ^7/,(X) = ^H,(Y) = 0 if I = 0, and set

if fe = 0;

, if * = 1;

We fix our labelling so that

, V2i)(v22, V3g)(v26,

, V31)(V36, V40XU38, U42),
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[7] (2, 3, 7)-generation of maximal parabolic subgroups 193

for i > 1, the actions of £, = £|G, and yt = y^G. are obtained translating the indices by
42(i - 1);

= (Wi, W4)(w5, W9)(W6, WU)(W7, WIO)(WS, Wn)(w[2, W[4),

i, w3j+2, w3j+3);

= (wl,w4)(w5, w9)(w6, wn){w~i, wx0)(wi, wx3){wX2, W24)

, w26)(wl5, Wi6)(wiS, wl9)(w2U w22)(w23, w25)(w21,

^3y + l, Wy+2, W3j+3).

o<y<8

According to the chosen labelling, the three handles in each G, are denoted respec-
tively by

{^2+42(1-1). U3+42(/-l)}, {U]4+42(/-i), Wl5+42(/-l)}. {w32+42(/-l)> u33+42(/-l)}

and the handle in A or E by [w2, w3}. We denote by {b^, b\\ the handle in Hv, v e D.
| and y are defined in a similar way with respect to SI.

DEFINITION OFi AND y. The (2, 3, 7)-generators of Pn^(R) are obtained by ex-
tending the above permutation representation of A(2, 3, 7) to the linear representation
on (fi)0 (Q):

where ^,^,xi,xt and r are defined below. Note that, in order to have enough handles
for repeated application of Lemma 1, we need to impose the condition a, a > 2m + 2,
where m is the number of generators / , , . . . , rm of the ring R.

£ is a permutation of order 2 which, by repeated application of Lemma 1 to £, with
E = Q and Z of type (1): joins each diagram G, to Gi+i (1 < / < a — 1) via the last
handle of G/ and the first handle of G,+1; joins Ga_i either to A or to E via the central
handle of Ga-\; joins Ga to //d via the central handle and, if / ^ 0, joins Ga to Ht via
the last handle. Namely:

l ) f = t>2+42i, f ( l l )

(^-1)? = ^3 a n d i f l ¥" 0,
U15+42(o-l) = ^ 3 -
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The permutation £ is defined similarly with respect to £2. It follows that X \-* (^ ~ J,

Y \-> y defines a permutation representation of A (2, 3, 7), which is transitive on each
of Q and fi. Actually, it will turn out that (§f, y) = Alt(fi) and (f £, y) = Alt(fi).

As in [LTW], x\ is an involution of En{R) which, by repeated application of
Lemma 1 to §£ with £ = Q and Z of type (2), joins the first two handles of Gx and
then joins in pairs the central handles of G2, G3, . . . , G2n~2, G2m-\- Namely:

V2X\ = -V2

^14+42(2./-3)* 1 — ~^14+42(2j-3) + tj Vl4+42(2y -2)> 2 < j < Ttl',

u15+42(2j-3)-xl = ~v 15+42(2; -3) + tj Vl5+42(2;-2)> 2 < _/ < m .

i i is defined in a similar way with respect tofl. ThusX H> M^' ^^ J, Y i-> y defines
a linear representation of A(2, 3, 7). It will be shown that the image of A(2, 3,7)
under this representation is the full Levi subgroup L of Pnh{R).

Finally, applying Lemma 1 to (***' ~Xi V with E = fi U 6 and Z of type (2), we
define an element T of the unipotent radical N, which joins the central handles of
Ga-.2 and Ga_2 as follows:

V 14+42(a-3)7' — — Ul4+42(a-3) '

u15+42(a-3) T = — Ul5+42(a-3) + u15+42(a-3).

4. Action of the commutator

For each subset A of Q. we identify Alt(A) with the group of even permutation
matrices of En(R) which fix every point of Q \ A. We make a similar identification
for Alt(A), where A c Q. Moreover, we set:

Alt(A) = { fa y \ se Al t (A) j , Alt (A) = { (^ f \ \ s e Alt(A) J .

Let ^ be a permutation representation of A(2, 3, 7). A cycle c of the commutator
[^(X), ylf(Y)] is called useful in [Co], if c has prime odd length and contains an orbit
of \(r(X) and two points from an orbit of ̂ (Y).

LEMMA 4. Let d, I, x, y be defined as in Section 3. The following properties
hold:

(i) x2 = ? = ^
(ii) (JC, y) contains Alt(r U Ty), where VOTy c Hv and T is the support of a

useful cycle c of'[VO/.W, ^HV(Y)], V € {d, I}.
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[9] (2, 3, 7)-generation of maximal parabolic subgroups 195

PROOF, (i) Repeated application of Lemma 1, starting with the representation \j/ :

A(2, 3, 7) -* GLn+n(R) such that f{X) = (* ° ) = f, f{Y) = (J ?) = y.

(ii) We need to determine the decomposition of {Q, Q) into [x, y]-invariant sub-
modules and the orders of the corresponding restrictions of [x, y]. Following the
notation of Section 3, we first note that:

= ("6, "28, "37, "42, "24, "4 , " l , "9 , "38, "35, "41, "lO, Vj)

("18, "29. "7 , "12, "23, "16, ^ " l 3 , " 2 1 , " 8 , "5 , " l l , "25, "15)

("36, "30, "19. "27. "22, "34, "31, "39, "20, " l 7 , "26, "40, "33> o f Order 1 3 ;

— (w6, wi4, w9, wio, ton, u>4, wu Wj, w-i, w5, wn, wu, w3) of order 13;

[fE{X), fE(Y)] = (W6, W23,W13, W4, Wi,Ws,W25,Wu,W3)

(W5, 10,2, W20, W24, W9, WW, Wl5, Wl6, W-i)

(1U14, i"28, "^22, w n , W21, ^ 2 7 , w^26, ^ 1 8 , ^ i 9 ) o f o r d e r 9 .

We intend to apply Corollary 3 to the permutation representation X \-+ %, Y \-+ y,
where | is defined as in (i). Thus, for each pair of handles {a2, a^}, (b'2, b'3] in J2 U Q
(i < k, say) which have been used in the definition of £, £, jt], JCI and T in order
to join Conder diagrams, we assume that [al

2, a3] is contained in a diagram of type
G, and denote by A' the orbit of length 13 of [f, y] which contains {ajf, a^}, where
a\ = a^"1- Similarly, if {b'2, b'3} is contained in a diagram of type G, A or E, we
denote by B' the orbit of length 13 or 9 of [f, y] which contains {b\%,b'3}, where
foj = b'2y~l. Otherwise, we denote by B' the diagram Hv or Wf, v, v e D, which
contains {b2, b\}. By Corollary 3, setting U = (J*=1 (A' U B'), each of the submodules
(A1, B1') and {(Q U J2) \ C/) is invariant under [JC, y]. Moreover, [x, y] acts on the last
submodule in the same way as [f, y], that is, as a permutation matrix of order dividing
9 • 13. To compute the orders of the restrictions of [x, y] to each submodule (A1, B')
we distinguish the following cases.

(a) Suppose [b'2, b'3] belongs to a diagram of type G, A or E. Noting that, in the
last two cases, the join is of type (1), we are in the situation of Lemma 2 (3), with
A = A' U B', /X\ = 6, /x2 = 7 and either V] = 6, v2 = 1 or vi = 4, v2 = 5. It follows
that \x, y]i(A',B-) has order 13 or 11.

(b) Suppose [b'2, b'3} belongs to a diagram of type H. Table 1 below gives the cycle
structure of the restriction of [x, y] to A' U Hv, v e D. This table is deducible from
the table in [Co, page 87], noting that [JC, y]\{A',Hv) coincides in Conder's notation with
(xyt)2, where t is the symmetry in the vertical axis of G U //„. Every useful cycle
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(A1, H42)

(A1, H57)
(A', tf142>
(A1, HUs)
(A\ //144>
(A1, //187)
(A1, H2l6)

(A1, H-n)
<A\ H36)

(A1, //,35>
(A', Hn6)
(A', H165>
(A', //(so)

L.

1
1
1
1
1
1
1
1
1
1
1
1
1

Di Martino and M. C. Tamburini

23
23
132

II2

122

152

132

II2

122

122

132

122

122

3
3!
I4

22

I2

I2

I4

I2

4:

I3

I4

I4

I2

FABLE

11
57
3 :
52

53

42

42

22

!5
3'
42

22

52

17

1.

2 12 2

U:

11
82

92

5
42

11
I2.
5
42

62

! 17 124 23
i4 152 17
11217 3O2

102 124 152 43
116 2 7 2 122 132 172322

9417

5282 II2 19212

I I 3 126

5 4 8 4 I I 6 19
7 2 8 2 I I 2 132 19 47

(A', //195) 1 322 22 52 62 72 134 142 23

is denoted in bold and has length belonging to the set n = {5,17,19,23,43,47}.
Note that b'2 is fixed, whereas b'3 belongs to a non-trivial orbit whose length is listed in
column 2. In particular, the support of the useful cycle intersects trivially the handle
{b2, Z>3).

Using all the above data and setting y = [x, y], m = 32 • 9 • 7 • 11 • 13, we see that

V o \ktyT)
acts as the identity on both Q. \ (Ga U Hd U Hi) and £2 \ {G-a U Hd U Hj). Moreover,
denoting by h the product of the primes in n , it is easy to check the following facts:

(1) Suppose n = h = 10 (mod 14). Then, by assumption, / = 42 and 1=0. It
follows n-l = n-l = 10 (mod 14). Hence d = d = 136 = 10 (mod 14). Thus
[££> y]m consists of cycles of length k e [5,23} and a single cycle c17 of length 17,
which is useful and whose support is contained in H42- On the other hand, [f £, y]m

consists of a single cycle c5 of length 5, which is useful and whose support is contained
in Wi36. It follows that

(2) Suppose n # 10 (mod 14). Then / = 180 = 12 (mod 14). It follows that
n-l^k-2 (mod 14), hence d £ 180 = -2 (mod 14). We claim that also d ^ 180.
To check this, consider first the case h ^ 12 (mod 14). Then / = 0 implies d ^ 180.
Finally, if n = 12 (mod 14), then / = 187 = 5 (mod 14) implies d = 11 = 1
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[11] (2, 3, 7)-generation of maximal parabolic subgroups 197

(mod 14). Thus [£f, y]m consists of cycles of length k e Tl\ {47} and a single cycle
c47 of length 47, which is useful with support contained in HiS0-

(2.1) Assume h =£ 12. Then [^,y]m consists of cycles of length k e n \ {47} and
a single cycle cp of length p e Tl \ {47}, which is useful with support contained in
Hd. It follows that

and (y")"/p = ^Q _° ) , where a e Alt(ft).

(2.2) Assume n = 12. Then [f£, y]m consists of cycles of length k e n \ {47}
and a single cycle c43 of length 43, which is useful with support contained in HIS1. It
follows that

If c is one of the useful cycles occurring in Table 1 and F denotes its support, then
F n Fy ^ 0 by definition, and a direct computation via Conder diagrams (see [Mo])
shows that |FUF_y | > |F |+3. Thus, by Lemma 3 in [LT], based on a classical theorem
of Jordan, (c, cy) = Alt(F U Fy). Setting c = ci7 in case (1) and c = c47 in case (2),
we conclude that ((5 ,° ) . ( o #°)) = Alt(r U I » , where F c Hv, v € {d, I}. D

5. Proof of the theorem

LEMMA 5. Alt(ft) x Alt(ft) < (x, y).

PROOF. Let F c Hv and c be as in Lemma 4. Observe that, by the remarks made
just before Table 1, i ] r = (££V = H\r = (V^C^OV- It follows that c is also a cycle
of each of the commutators [x, y], [££, y] and [f, y]. Suppose that S is a maximal
subset of ft with respect to the following properties: F U Fy c S and Alt(S) < (x,y).
Since F contains two points from an orbit of y, we have S D Sy ^ 0. It follows
that (Alt(5), Alt(Sy) = Alt(5 U Sy), hence (ATt(5), Alt(S)*) = ATt(5 U Sy). Thus
S = Sy by the maximality of S. Suppose that S ^ ft. By the transitivity of (£f, y)
on ft, there exists v e S such that u££ € ft \ S. Since F contains an orbit of £ and
|F| > 5, there exists w ^ w' e F such that w% e {w, w'} and v £ {w, w'}. Note that
s = (v, w, w') 6 Alt(5) and either sH = (vi-t;, w', w) or sH — (v^, w, w'%). Thus,
in each case, w e 5nsupp(^)- It follows that (Alt(S), s^) = Alt(SU{u£f }U{u>'£}).
Let A U A be the subset of ft U ft consisting of the handles used to define X\, x\ and
T. Then (ft, ft) = (A, A) © (ft \ A) © (ft \ A), where each direct summand is
i-invariant and x acts on (ft \ A) as %% does. Since v ^ v%£ and {w, w'} c F, it is
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clear that (v, w, w') < {Q \ A). Hence (s
0 ,° ) € Alt(S) and

= Alt(S U {«£?} U {«/£}).

But this contradicts the maximality of S, as i>££ £ S. We conclude that S = Q, that
is Alt(fi) < (x, y). This, together with (1), (2.1) and (2.2) in the proof of Lemma 4,
implies that ( J ? ) € {x, y), where c is a useful cycle of prime length. Applying to Q
the same arguments as above, we finally get Alt(£2) < {x, y). •

For any subset A of £2 we denote by EA(R) the subgroup of EQ(R) = En(R)
which fixes every point of £2 \ A. Similarly for fi. Moreover, we set

LEMMA 6. (i, y) contains (L, 7), w/iere L = En(R) x EQ(R) is the Levi subgroup
ofPn,n{R).

PROOF. We recall that i = ( K
o" ^ ) 7. As (** f° ) € Alt(ft) x ATt(fi), it follows

from Lemma 5 that (*0' ? ) 7 € (JC, y). Note that the subgroup £ generated by the
latter element and Alt(ft \ Gfl_2) preserves the decomposition (J2, Q.) = (Q\ Ga-2) ©
(Q \ Ga-i) © (^ -2 , Ga-2); as a matter of fact, £ is a subgroup of the direct product:

Since, under our assumptions, n = | S21 > 84(w+1)+180+216, it follows from [LTW]
that En\Gii_2(R) is generated by elements xx\ and y, where JC, y e Alt(fi \ Ga_2). A
fortiori, (xi, Alt(fi \ Go_2)) = £(Q\GO.2>(^)- Since the latter group is perfect, (x, y)
contains the derived subgroup E' = £n\co_2(^) of E. In particular, (x

0' f_) e (x, y)
and, again by [LTW], ((x

0' ° ) , Alt(fi)) = En(R) is contained in {jc, y). In a similar
way one shows that (x, y) contains Efr(R). It follows that T € {x,y). •

LEMMA 7. Assume n,h>3. Then Pn,n(R) = (L, T^), where 7, = (£ e " ^ 2 2 ) .

PROOF. Let A = (/»-<'"-f'^2, ° ) , B = ('«-"•-<«+«"-*< ° ) . As mentioned in
the introduction, SL(n, ^?0) < En(R), where /?0 = 21 R . It follows that A,B £ L
and Z = 7,A7,B = (£ ^ ' ) 6 (L, 7,). For any r e f i , let Sr = ( '"T21 ,°). Then
[Z S 'Z- ' I r € /?} = \{\ 721)j r € /?} < (L, 7,). The normal closure of this root
subgroup under the matrices of shape (S ?)» where a and r run over the set of even
permutation matrices, is the whole of N. •
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Observe that 71 differs from T by an element of L. Thus, by Lemma 6 and
Lemma 7, (x, y) = PnA(R), and our theorem is proven.
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