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Results of point-particle direct numerical simulations of downward gas–solid flow in
smooth and rough vertical channels are presented. Two-way coupling and inter-particle
collisions are included. The rough walls are shaped as fixed layers of tiny spherical
particles with diameter much smaller than the viscous wall unit. The turbulence
attenuation induced by the free solid particles in the gas flow is shown to be enhanced
with increasing wall roughness. The so-called feedback force, the force exerted by the
free particles on the gas, is decomposed into three contributions: the domain average
of the mean feedback force, the non-uniform part of the mean feedback force and
the fluctuating part of the feedback force. Since the non-uniformity of the mean
feedback force increases with wall roughness, the effect of the non-uniform part of
the mean feedback force is investigated in detail. For both smooth and rough walls,
the non-uniform part of the mean feedback force is shown to contribute significantly
to the particle-induced turbulence attenuation.
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1. Introduction
It is well known that small heavy particles with large Stokes number dampen

turbulence (Tsuji, Morikawa & Shiomi 1984; Gore & Crowe 1989; Hetseroni
1989; Elghobashi & Truesdell 1993; Kulick, Fessler & Eaton 1994; Li et al. 2001;
Yamamoto et al. 2001; Ferrante & Elghobashi 2003; Mito & Hanratty 2006; Vreman
2007). In their experiments on particle-laden plane channel flow, Kulick et al. (1994)
reported a strong attenuation of the air turbulence intensity at low solid volume
fraction but significant solid mass loading. Particularly strong turbulence attenuation,
75 % reduction of the streamwise gas velocity fluctuation at the centreline, was
observed for copper particles of 70 µm at a mass loading ratio of 0.8. The Reynolds
number of the unladen case based on friction velocity and channel half-width was
Reτ = 644. Compared with the scale of the turbulence, the copper particle diameter
was small (d+p ≈ 2.3, where d+p denotes the particle diameter dp in wall units). An
understanding of the mechanisms of the turbulence modification by particles is
far from trivial, because there are so many different interactions and mechanisms
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104 A. W. Vreman

involved: physical instabilities, turbulence, particle–fluid interactions, particle–particle
interactions and particle–wall interactions. Particle–wall interactions are influenced by
complicated factors like electrostatic effects and wall roughness.

The experimental work of Kulick et al. (1994), hereafter referred to as KFE1994,
has frequently been used for comparison with results of numerical simulations of
vertical (downward) particle-laden channel flows (Wang & Squires 1996; Li et al.
2001; Rouson & Eaton 2001; Yamamoto et al. 2001; Segura 2004; Kubik & Kleiser
2006). In all these simulations the Eulerian–Lagrangian method was used. Simulations
of this type solve the (incompressible) Navier–Stokes equations in the Eulerian frame
for the continuous phase and solve Lagrangian equations for the dispersed phase. The
particles are treated as point particles, and a correlation for the force of the fluid on
the particle is applied. This means that the boundary layers on the particle surfaces
are not resolved. Dependent on whether the equations of the continuous phase are
solved with large-eddy simulation (LES) or with direct numerical simulation (DNS),
we call the Euler–Lagrangian method point-particle LES (PP-LES) or point-particle
DNS (PP-DNS). Thus, in PP-LES only the large-scale turbulence is resolved, while
in PP-DNS, apart from particle boundary layers and wakes, all scales of the flow are
resolved. This name has been chosen to contrast the method with particle-resolved
DNS, in which also the boundary layers on the particle surfaces are fully resolved.

An important difference between the experiments of KFE1994 and simulations
of these experiments reported in the literature is that the mean particle velocity in
the experiments was much lower than in the simulations. Experiments of Benson,
Tanaka & Eaton (2005) showed that the relatively low mean particle velocities in the
experiments of KFE1994 were most probably due to rough walls in the development
section of the flow, approximately 30 cm upstream of the measurement location. In
addition, Benson et al. (2005) performed measurements for fully rough walls, i.e. a
case in which the measurement location had been moved very close to the rough
development section. In the fully rough case, the streamwise turbulence intensity of
the gas phase was not attenuated but amplified. The mass loading ratio was 0.15,
and the roughness height was 250 µm, approximately eight times the viscous length
scale. The effects of much smaller roughness heights were investigated by Kussin &
Sommerfeld (2002); however, not for vertical but for horizontal particle-laden channel
flow. In these experiments, the turbulence was not amplified by the rough walls;
in contrast, turbulence attenuation became stronger with increasing wall roughness.
The smallest particle diameter for which this effect was observed was 100 µm
(d+p ≈ 5.4) and the corresponding turbulence attenuation of the streamwise gas velocity
fluctuation at the centreline was approximately 30 % for the highest wall roughness
at a mass loading ratio of 0.7. In view of this literature, our first research question
is then whether turbulence attenuation in vertical particle-laden channel flow can be
enhanced by rough walls.

The effect of wall roughness on particle-laden turbulence has also been addressed
in various simulation studies, see for example Sommerfeld (1992), Squires & Simonin
(2006), Vreman (2007), Konan, Simonin & Squires (2011), Breuer, Alletto &
Langfeldt (2012) and Alletto & Breuer (2013). In these works stochastic models for
the particle–wall collisions were used. The stochastic wall roughness model of Breuer
et al. (2012) is based on model-inherent geometric relations which are theoretically
implied if the wall roughness has the geometry of a layer of fixed spheres. An
important geometric relation that is taken into account is the so-called shadow effect
(Sommerfeld & Huber 1999), which means that particles that approach the wall with
a given angle cannot reach particular regions of the rough wall (shadowed regions).
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Turbulence attenuation in particle-laden channel flow 105

However, no simulation study, in particular no PP-DNS study, could be found in
which the effects of smooth and rough walls on the particle-induced turbulence
attenuation were compared.

Turbulence attenuation has also been simulated for downward particle-laden pipe
flow, with use of PP-DNS up to a mass loading ratio of 1.1 (Vreman 2007). These
simulations were inspired by the experiments of Caraman, Borée & Simonin (2003)
and Borée & Caraman (2005). The Reynolds number based on friction velocity and
pipe radius was Reτ = 140, lower than the Reynolds number in KFE1994. In addition
to PP-DNS, a simplified simulation was performed by Vreman (2007): DNS of a pipe
flow forced by a linear term, proportional to the relative velocity between the phases.
No explicit particles were included; instead, the particle velocity was prescribed,
such that the streamwise component was constant in space and time and the other
components were zero. Strong turbulence attenuation was observed, even if the linear
forcing term was just proportional to the mean relative velocity between the phases.
The key feature of the simple forcing term was its non-uniformity in the wall-normal
direction; the force was positive near the wall and negative at the centre.

Indeed, in wall-bounded gas–solid flow, the mean profile of the relative velocity of
the phases is usually not constant in the wall-normal direction. Since the density of
the particles is much larger than the density of the gas, a particle that moves from
the bulk region to the wall will in general not have lost all its streamwise momentum
when it arrives at the wall. As a result, the mean particle velocity profile is usually
flatter than the mean fluid velocity profile, such that the mean relative velocity is
non-uniform in the wall-normal direction. Consequently, the feedback force, the mean
force exerted by the particles on the gas, is also non-uniform in the wall-normal
direction (at least if the particle concentration is uniform). The non-uniformity is
relatively strong in channels with rough walls; experiments indicate that the particle
velocity profile is flatter for rough than for smooth walls (Benson et al. 2005). Is
a change of turbulence attenuation with increased wall roughness perhaps related
to increased non-uniformity of the mean feedback force? It is not evident that the
non-uniformity of the mean feedback force is relevant for turbulence attenuation,
since the turbulence kinetic energy equation for particle-laden flow does not contain
a term with the mean feedback force. This leads to the second research question
of the present paper: what role does the non-uniform part of the mean feedback
force play in particle-laden channel flows at conditions comparable to the KFE1994
experiments? Is the finding that the non-uniform mean feedback force is one of the
mechanisms that leads to turbulence attenuation in particle-laden pipe flow at low
Reynolds number (Vreman 2007) also valid for particle-laden channel flow at at least
four times larger Reynolds number?

To answer the two research questions formulated above, we perform PP-DNS of
downward particle-laden flow in smooth and rough vertical channels. For reasons
mentioned in the next section, inter-particle collisions are included in the simulations.
The Reynolds number Reτ is 642 and the mass loading ratio is 0.8, such that
the simulations correspond to the case with the strongest turbulence attenuation
in KFE1994. To investigate the effect of the mean feedback force on turbulence
attenuation, PP-DNS results will be compared with DNS results of single-phase
channel flow with non-uniform streamwise forcing. The non-uniform forcing in each
of the latter simulations is a function of the wall-normal coordinate only and is
prescribed by the mean feedback force extracted from a PP-DNS. The experiments
of Kussin & Sommerfeld (2002) have not been selected as reference cases for the
simulations, because of the first research question, but also because the turbulence
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106 A. W. Vreman

attenuation observed in these experiments was less strong than in KFE1994. In
addition, PP-DNS of the most relevant case for turbulence attenuation from Kussin
& Sommerfeld (2002) has to deal with the complications of even higher Reynolds
number (Reτ = 950) and larger d+p (the errors in the particle drag force correlation
increase with d+p ).

Unlike in the references mentioned above, no stochastic wall roughness model
is used in the simulations. Instead, the walls in the rough cases are covered with
tiny fixed spherical ‘wall particles’ of diameter dp,w, and all collisions between free
particles and wall particles are taken into account. A similar type of roughness has
been used in experiments (Ligrani & Moffat 1986). In single-phase flow, the effect of
wall roughness on turbulence can usually be ignored if the roughness size is less than
five wall units (Jimenez 2004). Indeed, experiments on single-phase boundary layers
have shown that the effects of roughness on single-phase turbulence are negligible, if
k+rms < 0.5 and k+l < 10 (Flack & Schultz 2014), where krms is the root-mean-square
fluctuation of the surface elevation and kl is the peak-to-trough roughness height. In
this regime, surface elements do not modify the skin friction in single-phase flow,
since viscosity damps out eddies created by the surface roughness elements (Flack
& Schultz 2014). The wall roughness in the present simulations satisfies k+rms 6 0.11
and k+l 6 0.32 and is therefore sufficiently small to allow smooth boundary conditions
for the gas phase. Thus, in the simulations the wall roughness can modify the gas
turbulence only via the particles.

The structure of the paper is as follows. In § 2, we introduce the flow cases, describe
the PP-DNS method and discuss the modelling assumptions. In § 3, we present the
results of the PP-DNS, for smooth and rough channels, to show the effect of wall
roughness on turbulence attenuation. Results are shown for the decomposition of the
feedback force in a mean uniform, a mean non-uniform and a fluctuating part. The
streamwise mean momentum equation is analysed. In addition, the turbulence kinetic
energy budgets are compared. In § 4, we present results of non-uniformly forced DNS
of single-phase channel flow to demonstrate the isolated effect of a non-uniform mean
feedback force. In addition, we perform a linear stability analysis of the effect of a
linear feedback force on the instability of laminar particle-laden channel flow, also for
a case in which the mean feedback force is non-uniform. Finally, the conclusions are
summarized in § 5.

2. Flow cases and method
2.1. Simulation cases

To investigate the topics mentioned in the introduction, numerical simulations are
performed. The configuration and parameters of the simulation cases are based
on two experimental cases in KFE1994: the unladen case and the particle-laden
case for which the strongest reduction of turbulence was measured. Although
the basic presentation will be in dimensional variables, to retain the advantage
of dimensional checking, the relevant non-dimensional numbers will be specified.
Table 1 shows an overview of four simulations, A0–A3. The unladen flow (A0) is a
turbulent channel flow at Reynolds number Reτ = 642, based on channel half-width
H = 0.02 m, wall friction velocity uτ ,0 = 0.4896 m s−1 and kinematic viscosity
ν = 1.525 × 10−5 m2 s−1. Thus, the viscous length scale of the reference flow is
equal to δν = H/Reτ = 31.15 µm. The centreline velocity equals ucl,0 = 10.42 m s−1

and the bulk velocity is 9.212 m s−1. In addition, the gas is air with a constant
density of ρ = 1.2 kg m−3, and the flow in the vertically positioned channel is
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Turbulence attenuation in particle-laden channel flow 107

Case Mass loading ratio φ Wall roughness

A0 0 (unladen) Smooth
A1 0.8 Smooth
A2 0.8 Rough; dp,w = 10 µm
A3 0.8 Rough; dp,w = 20 µm

TABLE 1. The four simulation cases A0–A3.

downward (gravity acceleration g = 9.8 m s−2). The diameter of the (free) particles
in the laden cases is dp = 70 µm, and the density of the particles is the density of
copper, ρp = 8800 kg m−3. The Stokes response time, τp = ρpd2

p/(18ρν), is equal
to 0.131 s, which corresponds to a Stokes number τpuτ ,0/δν ≈ 2060. The particle
diameter is small compared with the length scale of most turbulent eddies, dp≈ 0.45η
at the centre and dp ≈ 1.55η at the wall, where η = (ν3/ε)1/4 is the Kolmogorov
length scale, based on the unladen turbulence dissipation rate (ε), which is a function
of the distance to the nearest wall. The domain-averaged solid volume fraction of the
particles is the same in the three laden cases, namely 1.092 × 10−4. By definition,
the mass loading ratio parameter φ is equal to the overall solid volume fraction
multiplied by ρp/ρ, thus φ = 0.801 (80 %). The walls are smooth in case A1 and
rough in cases A2 and A3. The wall in case A3 is rougher than in case A2. The
wall roughness will be defined in a separate section.

2.2. The Eulerian–Lagrangian approach
The unladen case (A0) is simulated with DNS, while the laden cases (A1–A3) are
simulated with an Eulerian–Lagrangian method, PP-DNS with two-way coupling and
inter-particle collisions. For an introduction to the Eulerian–Lagrangian method, the
reader is referred to Crowe, Sommerfeld & Tsuji (1998), Deen et al. (2007) and
van der Hoef et al. (2008). The method can be one-way coupled (the particle–fluid
interaction appears in the particle equations only), two-way coupled (the particle–fluid
interaction appears in the fluid and particle equations) or two-way coupled with
inter-particle collisions included. In PP-LES studies of dilute vertical downward
particle-laden channel flow at Reτ ≈ 640 in the literature, all three types have been
used: one-way coupling (Wang & Squires 1996), two-way coupling (Segura 2004)
and two-way coupling with inter-particle collisions (Yamamoto et al. 2001).

PP-DNS studies of vertical downward particle-laden plane channel flow in the
literature were hitherto limited to lower Reynolds number: Reτ = 180 with one-way
coupling (Rouson & Eaton 2001), Reτ = 210 with two-way coupling (Kubik & Kleiser
2006), and Reτ = 125 (Li et al. 2001) and Reτ = 150 (Mito & Hanratty 2006) with
two-way coupling and inter-particle collisions. If we include PP-DNS of horizontal
or non-gravitational particle-laden plane channel flows in our discussion, one-way
coupled simulations of such flows were (for example) performed at Reτ = 150
(Pedinotti, Mariotti & Banerjee 1992; Marchioli & Soldati 2002), Reτ = 300 (Lavezzo
et al. 2010) and Reτ = 950 (Geurts & Kuerten 2012; Kuerten & Brouwers 2013),
two-way coupled simulations up to Reτ = 395 (Kuerten, van der Geld & Geurts
2011; Zhao, Andersson & Gillissen 2013) and two-way coupled simulations with
inter-particle collisions at Reτ = 125 (Nasr, Ahmadi & McLaughlin 2009).

In view of the above review of the literature, PP-DNS with two-way coupling
and inter-particle collisions is a state-of-the-art method to simulate particle-laden
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108 A. W. Vreman

channel flow at Reτ = 642. For most particle-laden flows, including the present
flow, it is not yet feasible to perform a DNS that resolves the boundary layers
around the particles. In the class of feasible methods, two-way coupled PP-DNS with
inter-particle collisions is probably the most advanced one. In addition, the present
PP-DNS cases have several new features. First, although Reτ = 642 is not high, the
Reynolds number is approximately four times higher than in previous studies of
turbulent channel flows using the same method (PP-DNS with two-way coupling and
inter-particle collisions). Although a detailed study of the effect of Reynolds number
falls outside the scope of this paper, the effect will be briefly addressed at the end
of § 3.3. Second, it is the first time that wall roughness effects have been included
in PP-DNS plane channel flow. It is not expected that the results would be very
different if PP-LES at the same Reynolds number were used. Point-particle DNS
has been chosen because it is feasible for this Reynolds number and it does reduce
uncertainties caused by the simulation method to some extent, simply because the
range of scales taken into account is larger than in PP-LES. Without correction, the
turbulence intensity and turbulence kinetic energy in LES are generally lower than
in DNS (how much lower depends on the resolution of the LES). Third, it is the
first time that all interactions between the particles and the rough walls have been
simulated with a fully deterministic approach. A comparison between the deterministic
model and existing stochastic models falls outside the scope of this paper.

2.3. Governing equations
The governing equations of the gas phase are ∇ · u= 0 and

∂u
∂t
=−u · ∇u− 1

ρ
∇P+ ν∇2u+ f + ge1 + ae1, (2.1)

where u is the gas velocity, P is the part of the pressure that is periodic in the
streamwise direction and f the feedback force, the force exerted by the particles on the
gas per unit mass of gas. The gravity term points in the direction of the mean flow;
the unit vector in the streamwise direction is denoted with e1. In addition, ρa(t) is
the (time-dependent) domain-averaged streamwise component of the pressure gradient,
discussed in a later section. Time is indicated by t, and the streamwise, normal and
spanwise directions are indicated by x1, x2 and x3 respectively. The computational
domain is given by [0,L1]× [0,L2]× [0,L3], with L1= 6H and L2=L3= 2H. Periodic
boundary conditions are imposed in the streamwise and spanwise directions, while in
the normal direction no-slip boundary conditions are applied to the gas at the walls.

For the discretization of these equations a staggered central differencing method
is used, second order in the normal and fourth order in the homogeneous directions
(Vreman & Kuerten 2014a). The implementation of the no-slip boundary conditions
of the tangential velocities at the wall involves third-order extrapolations of these
velocities to ghost cells, based on the boundary condition and the velocities in the
first three grid cells off the wall (see Vreman (2014) for a discussion of different
implementations of the no-slip condition on a staggered grid). The pressure Poisson
equation is solved by a direct method (fast Fourier transforms in the homogeneous
directions). The temporal discretization is an explicit compact storage Runge–Kutta
method with Runge–Kutta coefficients 1/3, 1/2 and 1, in fact the three-stage variant
of the four-stage method of Jameson & Baker (1983), see also Vreman (2014). The
time step 1t is equal to 10−5 s. The spatial grid contains 512× 320× 256 cells and
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Turbulence attenuation in particle-laden channel flow 109

is stretched in the normal direction by the tangent hyperbolical function (Vreman
2014). The grid points x2,j of the cell centres are located at

x2,j =H

(
1+ tanh(1.65(−1+ 2(j− 1

2)/320))
tanh(1.65)

)
, j= 1, 2, . . . , 320. (2.2)

The uniform streamwise and spanwise grid spacings are equal to 7.5δν and 5.0δν
respectively. The grid spacing in the normal direction varies from 0.99δν at the wall to
7δν at the centre of the channel. These are standard grid sizes for DNS of single-phase
channel flow (Moser, Kim & Mansour 1999) and are sufficiently small to compute
mean velocity and Reynolds stress profiles accurately (Vreman & Kuerten 2014a,b).

The particles are tracked in a Lagrangian framework. The following equations are
solved for each particle p:

dxp

dt
= vp, (2.3)

mp
dvp

dt
=Fp

coll +Fp +mpge1, (2.4)

Ip
dωp

dt
= Tp

coll + Tp. (2.5)

In scalar particle variables, p is written as a subscript, while in vector particle
variables p is written as superscript.

The particle position, velocity and angular velocity are respectively denoted by xp,
vp and ωp, while mp =πρpd3

p/6 is the mass of the particle and Ip = (mpd2
p)/10 is the

moment of inertia of the particle. The force and torque caused by the inter-particle
collisions and particle–wall collisions on particle p at time t are represented by Fp

coll
and Tp

coll, while the force and torque exerted by the gas on the particle are represented
by Fp and Tp. These forces and torques will be defined in later subsections.

The time integration of the particle position and velocity is performed with forward
Euler with (at least) three time steps per time step 1t of the Runge–Kutta method
used for the gas phase. The forward Euler method has been selected because the
time step is not the same for each particle, due to collisions. Since there are many
collisions per time step, it is not efficient to update all particles after each collision.
The time levels after stages 1, 2 and 3 of the Runge–Kutta method are t + 1t/3,
t + 1t/2 and t + 1t respectively. The basic particle time step, 1tp, is set to 1t/3
in stage 1, 1t/6 in stage 2 and 1t/2 in stage 3. For particles that experience one or
more collisions within 1tp, the time integration over 1tp is divided into two or more
substeps.

The feedback force at location x and time t is defined by

f (x, t)= 1
ρ

∑
p

Fp(t)δx(x− xp), (2.6)

where the δx is the delta function with unit m−3. The discretization of this equation
is

f (x, t)= 1
ρ|Vx|

∑
p

wp(x, t)Fp(t), (2.7)
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where |Vx| is the volume of the Eulerian (gas phase) grid cell Vx around x, and the
coefficients wp(x, t) represent the force distribution coefficients. The simplest way is to
define wp(x, t)= 1 if the particle location xp(t) is inside Vx and wp(x, t)= 0 otherwise.
However, we use a slightly different approach, which is more accurate and also more
convenient on a staggered grid. In this approach the three gas velocity components
are transferred from staggered to cell-centre positions (the cell centre is the position
where also the pressure and the velocity divergence of the grid are defined). Then
the gas velocity in xp is defined by linear interpolation of the cell-centre gas velocity
to particle locations (particle centres). Then the particle forces Fp are computed. The
weights of the linear interpolation just mentioned are reused to distribute the particle
force, which is defined at the particle centre, to the eight surrounding cell-centre
positions. Finally, the force f is transferred to the staggered positions at cell faces
by taking the average over the appropriate two cells for each component. No special
treatment is used in the wall proximity. There, the cell size spacing in the normal
direction is approximately two times smaller than the particle size, but the effective
volume of fluid over which a particle force is distributed is still considerably larger
than the particle volume. At the wall, the Eulerian cell volume |Vx| is equal to 6.3
particle volumes. Due to the averaging of f to the staggered positions, the particle
force is distributed over at least 2|Vx|. At least, because due to the use of weight
coefficients wp in (2.7), the effective fluid volume over which each particle force is
distributed is generally larger than 2|Vx|.

The unladen case A0 is initialized by a parabolic mean profile with a suitable
divergence-free perturbation. The particle-laden cases A1–A3 are initialized by a
snapshot of the turbulent velocity field of case A0. Statistical averaging is started
only after transient effects have disappeared. In each case the statistical averaging time
is at least 0.5 s, which corresponds to 38 flow-through times, with the flow-through
time defined by the streamwise channel length divided by the gas bulk velocity. Each
particle-laden case contains 116 756 particles.

2.4. Particle–gas forces
The force Fp, exerted by the gas on a single free particle, is parametrized by the
well-known Schiller–Naumann standard drag correlation:

Fp = mp

τp
(1+ 0.15Re0.687

p )(u− vp), (2.8)

where Rep is the Reynolds number of the particle, defined by dp|u − vp|/ν. Based
upon recent literature on the relevance of the lift force (Zeng et al. 2008), the inertial,
added mass and history force (Armenio & Fiorotto 2001; Bagchi & Balachandar 2003;
Burton & Eaton 2005), and hydrodynamic particle–particle interactions (Vreman
2007; Nasr et al. 2009), explicit models for these forces are not included. In one-way
coupled simulations of similar case, Rouson & Eaton (2001) tested the lift force
expression derived by McLaughlin (1993) and found that the term is negligible
compared with the particle drag in the same direction. Fully resolved simulations of
a single small particle in isotropic turbulence (Bagchi & Balachandar 2003; Burton
& Eaton 2005) and in wall-bounded turbulence (Zeng et al. 2008) indicate that the
standard drag law provides a good description for the mean force on the particle.
However, these references also show that the error in the fluctuating force may be
large and that incorporation of other terms of the Maxey Riley equation is no remedy
for this limitation. A simulation method that fully resolves the boundary layers around
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the particles would of course be a more accurate method to simulate the turbulence
modification. However, such a simulation is not possible yet for the present case, in
which the flow domain contains more than 105 small moving particles.

The particle angular velocity ωp is included in the PP-DNS, since it is required to
describe non-ideal collisions, in particular collisions with non-zero tangential friction.
The particle angular velocity is both generated and dissipated by non-ideal collisions
via Tp,c. In addition, the particle angular velocity is influenced by the particle drag
torque Tp. The drag torque is included, because it was found to dampen the particle
angular velocity fluctuation considerably. The drag torque is modelled by (Takagi
1977; Dennis, Singh & Ingham 1980; Yamamoto et al. 2001)

Tp =− 1
2ρ(C1Re−1/2

p,a +C2Re−1
p,a +C3Rep,a)(

1
2 dp)

5|ζ p|ζ p. (2.9)

In this equation ζ p = ωp − (∇ × u)/2 and Rep,a = d2
p|ζ p|/4ν is the particle Reynolds

number based on the angular velocity difference. The torque coefficients (C1,C2,C3)
are given by (0, 50.27, 0) if Rep,a< 1, (0, 50.27, 0.0418) if 1<Rep,a< 10, (5.32, 37.2,
5.32) if 10<Rep,a < 20, (6.44, 32.2, 6.44) if 20<Rep,a < 50 and (6.45, 32.1, 6.45) if
Rep,a > 50.

2.5. Particle collisions
Although the volume fraction of the particle-laden simulations is only of the order
of 10−4, all collisions between particles are taken into account. It is often mentioned
that inter-particle collisions are negligible if the volume fraction is smaller than 10−3.
This may be the case in isotropic turbulence; for wall-bounded turbulence it has
repeatedly been shown that collisions do significantly influence the results if the
volume fraction is of the order of 10−4 or even lower (Li et al. 2001; Yamamoto
et al. 2001; Vreman 2007; Nasr et al. 2009). These references show that collisions
reduce the tendency of preferential concentration of particles. Without collisions all
particles slowly accumulate either at the walls or at the centre (Rouson & Eaton
2001), while with collisions a statistically stationary steady state can be achieved.

The particle collisions are modelled with a hard-sphere collision model. The normal
restitution coefficient is given by er = 0.95 and the tangential friction coefficient by
µ = 0.3, which are the same values as in Yamamoto et al. (2001). The tangential
restitution coefficient is given by β0 = 0.33 (Hoomans 1999). Two particles p and
q collide when the distance between their point-particle locations is equal to (dp +
dq)/2. Conservation of momentum and angular momentum during collision between
two particles p and q implies the following modification of the particle velocity and
angular velocity (Hoomans et al. 1996; Hoomans 1999):

vp = vp,0 + J/mp, (2.10)
vq = vq,0 − J/mq, (2.11)

ωp =ωp,0 − dp

2Ip
n× J, (2.12)

ωq =ωq,0 − dq

2Iq
n× J, (2.13)

where the superscript zero denotes the values before collision. The normal unit vector
n is defined by (xp − xq)/|xp − xq|. The relative velocity vector before collision is
defined by

vpq,0 = (vp,0 − 1
2 dpω

p,0 × n)− (vq,0 + 1
2 dqω

q,0 × n), (2.14)
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with normal component vn = vpq,0 · n. The tangential unit vector t is defined by
(vpq,0 − vnn)/|vpq,0 − vnn|. The impulse vector J is then defined as J = Jnn + Jtt,
where the normal component Jn is given by −(1 + er)vn/B2 and B2 = 1/mp + 1/mq.
The tangential component Jt depends on the maximum Coulomb friction µJn and
Jβ = (1+ β0)(v

pq,0 · t)/B1 with B1 = 7B2/2. It can be proven that at contact µJn > 0
and Jβ > 0. If Jβ 6 µJn, the collision is of the sticking type and Jt =−Jβ . However,
if Jβ > µJn, the collision is of the sliding type and Jt = −µJn (Hoomans et al.
1996; Hoomans 1999). Since (2.13) with a plus instead of a minus sign was also
encountered in the literature, it is stressed that both minus signs in (2.12) and (2.13)
are correct. This directly follows from the conservation of angular momentum about
the centre of mass of the two particles during a collision.

If particle p is involved in collision k, we define Jp,k = mp(v
p − vp,0), where vp

is the post- and vp,0 the pre-collision velocity of particle p at collision k. Thus, for
the particles p and q involved in collision k, we have Jq,k = −Jp,k = −J. For any
particle p not involved in collision k, Jp,k=0. If particle p collides with a plane wall in
the x2 direction, then the relative velocity vector is aligned with the x2 direction. The
equations for a particle–wall collision can be derived from those of a particle–particle
collision in the limit dq→∞ and mq→∞.

The collision force and torque vectors, Fp
coll and Tp

coll, can be expressed as a sum
of temporal delta functions, one delta function for each collision,

Fp
coll =

∑
k

Jp,kδt(t− tcoll,k), (2.15)

Tp
coll =−

1
2

dp

∑
k

(nk × Jk)δt(t− tcoll,k), (2.16)

where k is the index that runs over all collisions (note that Jp,k = 0 for any particle p
not involved in collision k). The time of collision k is denoted by tcoll,k. The unit of
the delta function δt is s−1. If the collisions were ideal, er would be 1 and β0 would
be −1, then Jt, n× J and Tp

coll would be zero. If in addition the rotational drag force
were neglected, the angular particle velocities would remain constant in time and there
would be no need to include them in the simulation.

An efficient search for collision partners is facilitated by a uniform secondary grid
(120× 40× 40 cells). Each cell of this secondary grid has a list attached that contains
the particle indices for the particles located in that cell. Collisions that involve a free
particle in a certain cell of the particle grid are detected by checking all particles in
the neighbouring cells. The lists are set up before each particle time step and updated
after each collision. To ensure that no collision is missed, the absolute velocity of each
particle is verified to remain smaller than the size of the particle grid cells divided by
twice the basic particle time step. In addition, for each collision it is verified that the
particle involved touches the other particle (or the wall) without any overlap.

2.6. Forcing of the flow
Before we describe the forcing technique, the two averaging operators used in this
paper are defined. The statistical mean of a quantity Q is defined by

Q(x2)= 1
2(t2 − t1)

∫ t2

t1

∫ L1

0

∫ L3

0
(Q(x1, x2, x3, t)+ cQQ(x1, L2 − x2, x3, t)) dx3 dx1 dt,

(2.17)
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where t1 and t2 are two times, such that (theoretically) t2 − t1 → ∞. To increase
the statistical sample size in practice, both halves of the channel are included in the
average, using a parity coefficient cQ, equal to 1 for even and −1 for odd statistical
quantities. Thus, cQ= 1 in the computation of, for example, u1, u3, u2

1, u2
2, u2

3, ∂u2/∂x2,
f1, u2f2, while cQ=−1 in the computation of, for example, u2, u1u2, ∂u1/∂x2, f2. The
ensemble average of particle properties, also denoted with an overbar, is similarly
defined, except that the integrals over the x1–x3 planes are replaced by averages over
all particles in (or near) these planes. The fluctuation of a quantity is defined by
Q′ =Q−Q. In addition, we introduce the domain average of a quantity Q:

〈Q〉(t)= 1
L1L2L3

∫ L1

0

∫ L2

0

∫ L3

0
Q(x1, x2, x3, t) dx3 dx2 dx1. (2.18)

The domain average applied to a mean quantity, 〈Q〉, is the same as the mean quantity
averaged over the x2 direction and does not depend on t, x1, x2, x3.

The overall force balance of the flow is given by the sum of the domain-averaged
mean gas and domain-averaged mean particle momentum equation in the streamwise
direction:

ρ(1+ φ)g+ ρa− ρu2
τ/H + Fwall = 0, (2.19)

where uτ = (ν du/dx2)
1/2 is the friction velocity. The term Fwall represents the

streamwise force exerted by the walls on the particles per unit of volume,

Fwall = 1
(t2 − t1)L1L2L3

∫ t2

t1

∑
p

Fp
coll,1 dt, (2.20)

where the index p runs over all free particles. If this index ran over the free particles
that collide with the wall (or collide with fixed wall particles), then the force would
be equal and opposite, since the sum over the forces of all collisions between free
particles is zero (Jq,k =−Jp,k).

The overall balance, (2.19), shows that it is not easy to decide what should remain
constant in a study where laden cases are compared with an unladen case. Suppose
that the streamwise pressure gradient, ρa, is held constant. Then an increase of φ
necessarily implies an increase of the wall friction forces, ρu2

τ/H−Fwall, which means
that the fluid friction velocity, uτ , or the particle–wall friction force, −Fwall, increases.
If the latter were negligible, uτ at φ = 0.8 would become 1.81/2 = 1.34 times larger
than in the unladen case, i.e. the friction Reynolds number and probably also the bulk
Reynolds number would become much larger, such that the grid would have to be
finer than in the unladen case.

The literature on vertical particle-laden channel or pipe flows shows that, instead
of the streamwise pressure gradient, another quantity is usually fixed in a comparison
between laden and unladen cases. In the experiments of KFE1994, the mean centreline
velocity of the gas was fixed, since the authors state on pp. 116–117: ‘for each set
of particle conditions, the tunnel speed was adjusted so that the laden-flow velocity
matched the unladen-flow velocity at the centreline’. In the simulations of Yamamoto
et al. (2001) the quantity (1+ φ)g+ a was fixed. In the simulations of Segura (2004)
the bulk flow was apparently fixed, since the authors mention that the simulations were
run at the same bulk Reynolds number. Mito & Hanratty (2006) explicitly mention
that the bulk velocity was fixed. In the pipe flow experiments of Caraman et al. (2003)
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and Borée & Caraman (2005) and corresponding simulations of Vreman (2007), the
bulk flow was fixed as well.

In view of the above discussion of the literature, the present simulations are
performed for a prescribed bulk velocity, which means that a(t) is adapted at each
time step to keep the domain-average velocity constant. The same bulk velocity is
prescribed in each simulation case. Since the numerical scheme is fully explicit and
conserves momentum, there is no need for a control algorithm; L1L2L3(g + a(t)) is
set equal to the instantaneous viscous shear stress integrated over the walls minus the
instantaneous streamwise feedback force integrated over the spatial domain. Forcing
to maintain a constant volumetric flow rate is also a standard approach in DNS of
unladen turbulent channel flows. Since the effects of the particles on the mean gas
velocity are relatively small (see the next section), a comparison for constant bulk
velocity can be expected to lead to the same conclusions as a comparison for constant
centreline velocity.

2.7. Wall roughness
A rough wall is defined as a plane coated with tiny wall particles, half-spheres of
diameter dp,w, with the circular side of each half-sphere fixed on the plane. The wall
particles are arranged in square pitch of size dp,w; each wall particle touches four
neighbouring wall particles, two of these neighbours are aligned in the x1 direction,
the other two are aligned in the x3 direction. For this pattern, the standard deviation of
the wall roughness krms is approximated by 0.172dp,w, while the peak-to-trough wall
roughness kl is equal to 0.5dp,w. The diameter dp,w of the wall particles is smaller than
the wall unit δν =H/Reτ = 31 µm: dp,w= 10 µm in case A2 and dp,w= 20 µm in case
A3. Thus, k+rms = 0.055 and k+l = 0.16 in case A2, while k+rms = 0.11 and k+l = 0.32 in
case A3. As discussed in the introduction, these values are sufficiently small to justify
the application of smooth boundary conditions for the gas phase.

The equations for a collision between a free particle p and a wall particle q can
be derived from the equations for a collision between two free particles by taking
the limit mq →∞, such that vq and ωq remain zero. There are a large number of
wall particles in the rough cases (96 million in case A2, 24 million in case A3).
Fortunately, due to the regular structure of the locations of these particles, it is not
necessary to store the positions of all wall particles. In the simulations, wall-particle
positions were stored for a square of 9 mm2; from these positions the positions of the
other wall particles were recomputed whenever they were required.

In the present paper, a rough wall denotes a wall with a bumpy surface, while a
smooth wall denotes a wall with a flat surface. In both the smooth and rough cases,
the coefficient of friction µ is 0.3 for particle–particle and particle–wall collisions.
Thus, the smooth wall is in fact a flat frictional wall (Jenkins & Louge 1997). In
addition, it is remarked that bumpiness in the form of spheres fixed to a plane
is a well-known concept in granular flow experiments (Pouliquen 1999). In the
granular flow literature, a so-called specularity coefficient has been used to describe
phenomenologically the diffusive scatter of particles caused by bumpiness of the
surface of the boundary (Johnson & Jackson 1987).

3. Point-particle DNS results
3.1. Velocity and volume fraction statistics

The basic characteristics of the mean velocity profiles and particle collision
frequencies are shown in table 2. Columns two to six contain the gas friction
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FIGURE 1. (Colour online) Mean gas (a) and mean particle streamwise velocity profile (b),
normalized with the unladen centreline velocity ucl,0. Unladen DNS A0 (dashed) and the
laden simulations A1 (solid, no markers), A2 (solid, circles) and A3 (solid, triangles). The
filled circles and filled triangles represent experiments of Kulick et al. (1994) for copper
particles at φ = 0.4 and φ = 0.2 respectively; the stars represent a fully rough experiment
of Benson et al. (2005) at φ = 0.15. The unladen mean velocity profile is shown in both
(a) and (b).

Case uτ ub ucl vb vcl p–p collisions p–w collisions
(m s−1) (m s−1) (m s−1) (m s−1) (m s−1) (million s−1) (million s−1)

A0 0.490 9.212 10.42 — — — —
A1 0.481 9.212 10.54 10.02 10.79 0.471 0.335
A2 0.487 9.212 10.37 8.71 8.92 1.043 2.000
A3 0.488 9.212 10.20 7.16 7.33 1.585 3.166

TABLE 2. Dimensional mean streamwise velocity and collision frequency characteristics
in the unladen case, A0, and the three laden cases, A1 (smooth wall), A2 (rough wall,
dp,w = 10 µm) and A3 (rough wall, dp,w = 20 µm).

velocity uτ , gas bulk velocity ub= 〈u1〉, gas mean centreline velocity ucl, particle bulk
velocity vb = 〈v1〉 and particle mean centreline velocity vcl. The last two columns
contain the overall collision frequencies. A p–p collision is a collision between two
free particles somewhere in the domain. A p–w collision is a collision between a free
particle and a wall or, in the rough-wall cases, a particle fixed on a wall. We will
refer to the values in the table during the discussion of figures 1–4. Like in KFE1994
and in the work of Benson et al. (2005), the mean and fluctuation velocity profiles
in the figures in this section have been normalized with the mean centreline velocity
of the unladen case, ucl,0 = 10.42 m s−1. A typical run of a particle-laden case with
rough walls, which was performed on an eight-core (16-thread) processor of a Linux
cluster, took approximately two weeks (wall-clock time); roughly 50 % of that time
was used by the particle collision module.

The mean velocity profiles of the two phases are shown in figure 1. According
to KFE1994 the mean gas velocity profile in the experiments was not significantly
modified in the laden cases up to a mass loading ratio of 0.4. The experimental
uncertainty in the mean gas-phase velocity profiles was reported to be approximately
2 %. The near-wall flow, including uτ , could not be measured in the laden cases. In
the present simulations, the effect of the particles on the mean gas velocity profile
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appears also to be small, in particular in case A2 (rough wall, 10 µm); the mean gas
velocity profiles of case A2 and the unladen case apparently coincide in figure 1(a).
Quantitatively, the difference between the mean gas velocity profiles of A2 and A0 is
less than 1 % for uτ and ucl, while the maximum deviation, 2.6 %, is attained in the
near-wall region (at y+ ≈ 7). Figure 1(a) indicates that, compared with case A2, the
particles in cases A1 and A3 have a slightly larger effect on the mean gas velocity
profile, but quantitatively the effects are also small in these cases (see table 2).

The mean particle velocity profile is flatter than the mean gas velocity profile in
simulations A1–A3. An explanation of this feature of wall-bounded flows laden with
heavy particles was already given in the introduction. The wall roughness is observed
to lower and to flatten the mean particle velocity, like in experiments (Benson et al.
2005). The mean particle velocity becomes lower because the rough wall causes more
friction. The particle centreline velocity vcl is 0.86ucl,0 in case A2 and 0.70ucl,0 in case
A3. The mean particle velocity becomes flatter due to stronger transverse mixing; the
interaction of the particles with the rough wall enhances the wall-normal (transverse)
particle velocity fluctuation in particular (Kussin & Sommerfeld 2002; Benson et al.
2005; Squires & Simonin 2006; Vreman 2007; Breuer et al. 2012), as will be shown
in figure 3. The mean particle profiles in cases A2 and A3 are nearly horizontal, like
the mean particle velocity profile measured in a fully rough channel (Benson et al.
2005), shown in figure 1(b). In addition, two mean particle velocity profiles from
Kulick et al. (1994) are shown in figure 1(b). Since no particle velocity statistics for
φ= 0.8 are shown in KFE1994, we include experimental data for φ= 0.4 and φ= 0.2.
These data probably give indications for the behaviour at φ = 0.8, since the data
in KFE1994 indicate that particle velocity statistics are not as sensitive to the mass
loading ratio as the gas velocity fluctuations. The KFE1994 mean particle velocity
profile for φ = 0.4 is almost as low as the one of simulation A3, but apparently
not as flat. According to Benson et al. (2005), the mean particle velocity profiles in
the experiments of KFE1994 were lowered due to (poorly defined) wall roughness
in the development section of the flow. The flow had 0.30 m to recover from these
effects, which corresponds to approximately 0.04 s (based on a particle bulk velocity
of approximately 7.5 m s−1). The time for recovery was significantly smaller than the
Stokes response time (τp = 0.131 s).

Figure 2 shows that wall roughness of sufficiently small size is able to enhance
particle-induced turbulence attenuation in vertical channels. The root-mean-square gas
velocity fluctuations, RMS(ui), and the Reynolds shear stress, R12, are shown; by
definition RMS(ui) = R1/2

ii , where Rij = u′iu′j is the Reynolds stress tensor. Figure 2
clearly shows attenuation of the turbulence in all three laden cases. In each of
the laden cases, the three fluctuations and the Reynolds shear stress are attenuated
compared with the unladen counterparts. The attenuation in the rough cases (A2
and A3) is clearly stronger than in the smooth case (A1). The strongest turbulence
attenuation is found at the channel centre, where the root mean square of the
streamwise velocity fluctuation in the rough cases is reduced by approximately 75 %
of the unladen value. As indicated in the introduction, enhancement of turbulence
attenuation by wall roughness has been observed in experiments on horizontal
particle-laden channel flow (Kussin & Sommerfeld 2002). In these experiments
the size of the wall roughness was also smaller than the viscous length scale, the
maximum peak-to-trough roughness was k+l ≈ 0.5. In the experiments on vertical
particle-laden channel flow by Benson et al. (2005), however, the turbulence was
amplified in the fully rough case. The mass loading ratio in this experiment was
relatively low (0.15), while the walls were roughened by a wire mesh with 250 µm
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FIGURE 2. (Colour online) Root mean square of gas velocity fluctuations (a–c) and gas
Reynolds shear stress (d), normalized with the unladen centreline velocity ucl,0. Unladen
DNS A0 (dashed) and the laden simulations A1 (solid, no markers), A2 (solid, circles) and
A3 (solid, triangles). The filled triangles represent the experiment of Kulick et al. (1994)
for copper particles at φ = 0.8.

thick wires in a square pattern with squares of 1 mm2. This corresponds to a
peak-to-trough roughness of k+l ≈ 8 and a roughness standard deviation of k+rms ≈ 3.
Roughness of this size might have modified the turbulence in the unladen-flow
experiment, see the criteria of Flack & Schultz (2014), discussed in the introduction.

Compared with the unladen simulation, the centreline value of the streamwise
(wall-normal) gas velocity fluctuation in case A1 is reduced by 34 % (44 %). The
turbulence attenuation in this case is stronger than predicted by the two-way coupled
LES (Segura 2004), which did not include inter-particle collisions. In that work the
centreline streamwise (wall-normal) velocity fluctuation was reduced by 15 % (25 %)
at φ = 0.8. Thus, two-way coupled PP-DNS with inter-particle collisions predicts
stronger turbulence attenuation than two-way coupled PP-LES without inter-particle
collisions. Nevertheless, the discrepancy between the simulation data for smooth
channels and the available experimental data for turbulence attenuation in vertical
particle-laden channel flow remains large. It is stressed that we do not conclude that
the turbulence attenuation found in KFE1994 was enhanced by wall roughness. In
these experiments, only the development section was probably rough. For a mass
loading ratio of φ= 0.15, Benson et al. (2005) showed that, unlike the mean particle
velocity, the gas-phase statistics measured in a relatively smooth measurement section
were hardly influenced by a rough development section. In addition, the roughness
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FIGURE 3. (Colour online) Root mean square of particle velocity fluctuations (normalized
with the unladen centreline velocity ucl,0) (a–c) and mean particle volume fraction (d).
Laden simulations A1 (solid, no markers), A2 (solid, circles) and A3 (solid, triangles).
The filled circles represent the experiment of Kulick et al. (1994) for copper particles at
φ= 0.4; the stars represent a fully rough experiment of Benson et al. (2005) at φ= 0.15.
The filled squares denote representative values of the very flat particle fluctuation profiles
in the high-roughness experiment of Kussin & Sommerfeld (2002) for dp = 100 µm and
φ = 0.5.

size of the walls of the development section in the experiments of Benson et al.
(2005), and probably in the experiments of KFE1994, was in a different regime from
the roughness size used in the present simulations. However, we can conclude, after
detailed reading of Benson et al. (2005), that there is probably a lack of experimental
data on turbulence attenuation in particle-laden flows in vertical channels for which
both the development and measurement section are known to be smooth or have the
same specified wall roughness. The only experiments on such vertical particle-laden
channel flows seem to be the experiments at φ = 0.15 of Benson et al. (2005).
However, attenuation of turbulence is not reported there; no (clear) attenuation of
turbulence is observed when the centreline streamwise velocity fluctuations of the
laden smooth case and the unladen smooth case are compared (the filled right-pointing
triangles in figures 3 and 7 in the reference).

It is possible that the quantitative discrepancy between the turbulence attenuation
in simulation and experiment is caused by a limitation of the simulation method:
PP-DNS does not resolve the boundary layers around the particles. As the wall is
approached, the ratio of particle diameter and Kolmogorov length scale dp/η, which
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FIGURE 4. (Colour online) Mean (a) and RMS (b) of ω3, the spanwise component of the
particle angular velocity, normalized with ucl,0/(0.316dp). Laden simulations A1 (solid, no
markers), A2 (solid, circles) and A3 (solid, triangles).

is approximately 0.45 at the centre, increases. It equals 1 at x2 ≈ 0.09H and attains
a maximum of approximately 1.55 at the wall. This applies to the unladen case; the
ratio is slightly reduced in the laden cases. With increasing dp/η, the error in the
fluctuating part of the particle drag force model increases. This error was shown to
be between 15 % and 30 % at dp/η = 2 (Burton & Eaton 2005). Due to this error,
the dissipation via the particle-induced source term in the turbulence kinetic energy
equation, introduced in § 3.3, is often underpredicted in point-particle simulations
(Hwang & Eaton 2006; Balachandar & Eaton 2010). However, as mentioned in
§ 2, PP-DNS is the most advanced method to date applicable to a simulation at
this Reynolds number and particle size; a particle-resolved DNS of the statistically
stationary state of a channel flow at Reτ ≈ 640 with more than 105 particles sized
around the Kolmogorov scale is not feasible yet. In addition, a particle-resolved DNS
will still have to deal with the issue of how an inelastic collision between two solid
particles in a gas or between a (rough) wall and a solid particle in gas should be
modelled.

The discussion above shows that more research is needed to draw definitive
conclusions about the reason for the large quantitative discrepancy between simulation
results for smooth vertical channels and available experimental results. On the one
hand, it cannot be ruled out that the rough development section in KFE1994 had an
effect on the turbulence attenuation statistics. On the other hand, the simulated
turbulence attenuation probably underpredicts the turbulence attenuation by an
unknown amount. It is not within the scope of the present paper to settle this
issue. The purpose of this paper is to show the qualitative effect of wall roughness of
relatively small size on turbulence attenuation in vertical particle-laden channel flow
and to show that uniformity of the mean feedback force can contribute to turbulence
attenuation. Since at least the qualitative effect of particles on the turbulence is
reproduced by the simulations, the fundamental limitation of PP-DNS is not expected
to alter the conclusions of the present paper.

Before we proceed to analyse the simulated turbulence attenuation in more detail in
the next sections, we discuss a few more statistics of the particles. Experiments have
shown that the streamwise and wall-normal spanwise particle velocity fluctuations
are strongly increased by wall roughness (Kussin & Sommerfeld 2002; Benson et al.
2005). The same trend is found in the simulations, see figure 3(a–c), in which
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experimental results are included for comparison. It is observed that the spanwise
particle velocity fluctuation, for which no experimental results could be found, is only
approximately 50 % of the wall-normal particle velocity fluctuation, in the cases with
rough walls. Figure 3(b) shows that the wall-normal fluctuation in the experiment
of KFE1994 quickly recovered from the wall roughness of the development section
that, according to Benson et al. (2005), caused the low mean particle velocity profile.
An explanation could be that if particles entered the measurement section with a
wall-normal velocity of approximately 1 m s−1 (the level of the fluctuation in the
fully rough experiment), they had a high probability to collide with the smooth wall
of the measurement section before the velocity was measured (the channel width was
0.04 m and the residence time in the measurement section before measurement was
approximately 0.04 s).

The simulated mean particle volume fraction profiles, shown in figure 3(d), are
fairly uniform. A weak tendency of particles to concentrate at the channel centre is
observed, most clearly in the case with smooth walls (A1).

The increase of the kinetic energy in the particle velocity fluctuations with
increasing wall roughness is accompanied by an increase of the overall collision
frequencies, which are shown in the last columns of table 2. The first observation
is that the collision frequencies strongly increase with increasing wall roughness.
The second observation is that a significant proportion of all particle collisions are
p–p collisions, 58 %, 34 % and 33 % in cases A1, A2 and A3 respectively. Thus,
if p–w collisions are included, it seems appropriate to include also p–p collisions
in simulations of this type, although the overall particle volume fraction is low.
Others have shown that p–p collisions significantly flatten the mean particle velocity
profile and the mean particle volume fraction velocity profile at low volume fractions
(Li et al. 2001; Yamamoto et al. 2001; Vreman 2007; Nasr et al. 2009). At larger
volume fractions p–p collisions were shown to enhance the transfer from the kinetic
energy in the streamwise particle velocity fluctuations to the kinetic energy in both
the normal and spanwise particle velocity fluctuations (Vreman et al. 2009).

The mean and fluctuation of the spanwise component of the angular velocity
of the particles are shown in figure 4. The mean streamwise and mean normal
components are zero, while the fluctuation of each of these components is roughly
50 % of the spanwise fluctuation. The magnitude of the angular velocity increases
with wall roughness. This observation and the observation that the angular velocity
profiles peak at the wall indicate that particle–wall collisions play an important role
in the production of angular velocity. It is remarked that the total kinetic energy of a
spherical particle is given by (mp(|vp|2+ (d2

p|ω|2)/10))/2. For this reason the particular
angular velocity profiles were multiplied by (1/10)1/2dp/ucl,0 to allow comparison with
the particle translative velocity fluctuations shown in figure 3. The angular kinetic
energy appears to be roughly 10 % of the kinetic energy in the translative velocity
fluctuations.

3.2. The feedback force and the streamwise mean momentum equation
The attenuation of the gas-phase turbulence observed in the simulations must be
caused by the feedback force, the term f in the equations that govern the continuous
phase. To investigate this term in more detail, it is decomposed into three parts,

f = 〈f 〉 + f nu + f ′. (3.1)
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FIGURE 5. (Colour online) Non-uniform part (a) and RMS (b) of the particle drag force
in the streamwise component of the gas momentum equation, f

nu
1 and RMS(f1), normalized

with ρu2
τ ,0/H. Laden simulations A1 (solid, no markers), A2 (solid, circles) and A3 (solid,

triangles). In (a) an estimate based on experimental results (KFE1994) is also shown, as
described in the text.

Case −ρu2
τ/H ρ〈f 1〉 ρg ρa Fwall F̃1 ρφg

A0 −1 0 0.818 0.182 0 0 0
A1 −0.966 0.617 0.818 −0.469 −0.038 −0.617 0.655
A2 −0.988 −0.476 0.818 0.647 −1.131 0.476 0.655
A3 −0.994 −2.160 0.818 2.336 −2.815 2.160 0.655

TABLE 3. Domain-averaged streamwise forces (terms in the streamwise momentum
equations), normalized with ρuτ ,02/H. The forces on the gas are listed in columns two
to five. The forces on the particles are listed in columns six to eight. The quantity F̃1
denotes Fp

1 summed over all particles and averaged over time. Unladen case (A0) and the
three laden cases (A1 with smooth wall, A2 with rough wall, A3 with rougher wall).

The three parts are the uniform part of the mean feedback force, the non-uniform part
of the mean feedback force,

f nu = f − 〈f 〉, (3.2)

and the fluctuating part of the feedback force, f ′. The normal and spanwise
components of the first two parts are negligible. The decomposition of the streamwise
component of the feedback force is shown in the second column of table 3 (the
uniform part of the mean force), in figure 5(a) (the non-uniform part of the mean)
and in figure 5(b) (the root-mean-square profile of the fluctuation).

Table 3 shows an overview of all terms in the domain-averaged streamwise
momentum equations. The sum of the terms is zero in each case, for both the gas
and particle momentum equations. The force exerted by the wall on the gas strongly
increases with wall roughness. As a result the mean particle velocity profile becomes
lower, and the particles exert a negative domain-averaged feedback force on the
gas in the rough cases. Therefore, the streamwise pressure gradient ρa needs to
increase to maintain the constant gas bulk velocity in the rough cases. The effect of
a larger forcing term a in single-phase flow is a larger friction velocity uτ and also a
larger bulk velocity ub and a larger mean centreline velocity ucl or, in other words,
a larger Reynolds number of the flow.
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By definition, the uniform part of the mean feedback force does not depend on time
and space, therefore it affects the flow in a similar way to a; in fact g+a+〈 f 1〉 could
be lumped into a single term. The magnitude of that single term sets uτ and thereby
the Reynolds number Reτ of the flow. Thus, the effect of the mean feedback force is
a change of the Reynolds number if the mean streamwise pressure gradient (ρa) is
not changed. As discussed in § 2.6, a is modified to maintain a constant volume flow
and to have the same bulk velocity in each case. In this way the mean feedback force
is not able to change the bulk Reynolds number, while the variation of uτ (and Reτ )
among the different cases remains small (table 2). Comparison of the values of a in
table 3 with the unladen value indicates that if we had fixed the pressure gradient, the
(bulk) Reynolds number would have increased in the smooth laden case but decreased
in the rough laden cases.

The non-uniform part of the feedback force, shown in figure 5(a), appears to be
a monotonically decreasing function in the channel half (0, H) for simulations A1–
A3. The slope of the profile is steep in the near-wall region and zero at the centre.
Thus, the non-uniformity is much stronger near the wall than in the centre region.
The non-uniformity of the feedback force is apparent in each laden simulation and
increases with increasing wall roughness. Provided that the particle volume fraction
is uniform, the non-uniformity of the profile is directly related to the uniformity of
the mean relative velocity profile, v1− u1. As explained in the introduction, the mean
particle velocity tends to be flatter than the mean gas velocity, such that the mean
relative velocity tends to be non-uniform. It is remarked that the definition of f

nu
1

implies that the volume average or the integral over x2 of f
nu
1 is zero. This means that

even for a profile f 1 that is non-uniform in the near-wall region only, the non-uniform
part f

nu
1 can be non-zero in the centre region. The effect of the non-uniformity on the

turbulence is not only local. Instead of the slope (derivative) of f
nu
1 , it is the primitive

of f
nu
1 that will appear to be tied to the Reynolds shear stress. As a global measure

of the non-uniformity of the feedback force, we introduce the parameter β,

β = 1
u2
τ ,0

∫ H

0
|f nu

1 | dx2, (3.3)

which is in fact the normalized L1-norm of f
nu
1 . For simulations A1, A2 and A3, we

find β = 0.43, β = 0.73 and β = 0.87 respectively.
Very flat mean particle velocity profiles have been observed in experiments in

rough channels (Benson et al. 2005). Kulick et al. (1994) also reported that the mean
particle velocity profile was flatter than the mean gas velocity profile, in particular
in the near-wall region (see figure 1b). It is appropriate to consider figure 1(b) again,
since according to the experimental data for φ = 0.4 the slope of the mean particle
velocity profile is not smaller than the slope of the unladen mean gas velocity profile
for 0.7H< x2 <H. To show that nonetheless the experiments in KFE1994 do support
the notion of a non-uniform part of the mean feedback force, we provide an estimate
of f

nu
1 based on experimental data. We define

f exp =
φ

τp
〈1+ 0.15(|v1 − u1|dp/ν)

0.687〉(v1 − u1), (3.4)

and substitute φ = 0.8 and τp = 0.131 s. Since for the mean particle velocity profile
at φ = 0.8 no experimental data are available, we approximate v1 by the data for
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φ = 0.4 and φ = 0.2. The two approximated v1 profiles are linearly interpolated from
the experimental data. Between the wall and the measurement point nearest to the
wall, the profile is horizontally extrapolated from the measurement point. This is also
reasonable for the φ = 0.4 data, since the φ = 0.2 data show that the mean particle
velocity profile is flat in the near-wall region, except for a cusp very close to the
wall. For v1 taken from the φ = 0.4 experiment, f exp − 〈f exp〉 is shown in figure 5(a)
(the domain-averaged factor in (3.4) is then 1.69). The shape of the profile is more
or less similar to the shapes of f

nu
1 obtained from simulations A1–A3, although it

is not monotonically decreasing on the entire channel half. The corresponding global
non-uniformity parameter β is equal to 0.59, in between those of simulations A1 and
A2. Alternatively, if v1 is taken from the φ = 0.2 experiment, we find β = 0.47.
Since the profile of the non-uniform part of the feedback force obtained with the
latter estimate is very similar to the profile of simulation A1, we do not show the
curve in figure 5(a), to keep the figure clearer. It is concluded that the existence of a
non-uniform part of the mean feedback force is supported by experimental data.

Since the Reynolds shear stress is strongly modified by particles (figure 2d), the
balance of the mean streamwise momentum of the gas should also be modified. Owen
(1969) noted the importance of the mean streamwise momentum equation, since in the
context of the reduction of the gas turbulence in wall-bounded particle-laden flows
he wrote in a footnote ‘in a statistically steady flow, an increasing proportion of the
shear stress developed in the gas phase is transferred to the particles, in the form
of a momentum flux, as the wall is approached’. In the following we consider the
mean streamwise momentum equation of the gas in detail. For lower Reτ this has
been done before by Mito & Hanratty (2006) in PP-DNS of channel flow (Reτ = 150)
and by Vreman (2007) in PP-DNS of pipe flow (Reτ = 140). The derivation below
shows similarities with the derivations in these papers.

The streamwise component of the mean momentum equation of the gas phase can
be written as

dR12

dx2
= ν d2u1

dx2
2
+ f 1 + g+ a. (3.5)

The domain-averaged mean momentum equation of the gas phase is then derived as

−u2
τ/H + 〈f 1〉 + g+ a= 0. (3.6)

If this equation is subtracted from (3.5), we obtain the following equation for the
Reynolds shear stress:

dR12

dx2
= u2

τ

H
+ ν d2u1

dx2
2
+ f

nu
1 . (3.7)

This is an interesting equation, as it shows the dependence of the Reynolds shear
stress on the non-uniform part of the mean feedback force f

nu
1 . This term is zero for

a uniform mean feedback force, and then R12− ν du1/dx1 is a straight line with slope
u2
τ/H, like in the unladen flow. After non-dimensionalization with ρu2

τ/H, (3.7) has
the form

H
u2
τ

dR12

dx2
= 1+ νH

u2
τ

d2u1

dx2
2
+ H

u2
τ

f
nu
1 . (3.8)

All terms in (3.7) have been computed for cases A1–A3: the first term on the right-
hand side is shown in table 3 (after multiplication by the density), the last term on
the right-hand side is shown in figure 5(a) and the left-hand side and second term on
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FIGURE 6. (Colour online) Differentiated Reynolds shear stress (a) and the mean of the
viscous term in the streamwise component of the gas momentum equation (b), normalized
with ρu2

τ ,0/H. Laden simulations A1 (solid, no markers), A2 (solid, circles) and A3 (solid,
triangles).

the right-hand side are shown in figure 6. The mean viscous term appears to be hardly
influenced by particles and is negligible at the centre (figure 6b); the normalized centre
value is roughly −0.02. Provided that the mean viscous term at the centre remains
negligible, the slope of the Reynolds shear stress normalized with u2

τ/H must decrease
at the centre of the channel due to the negativity of the non-uniform part of the mean
feedback force at the centre. In the present cases the effect of the particles on u2

τ is
not very large; in particular, in case A2 the effect is small, approximately 1 %.

The integration of (3.8) between position x2 and H yields

− 1
u2
τ

R12(x2)= 1− x2

H
− ν

u2
τ

du1

dx2
(x2)+ 1

u2
τ

∫ H

x2

f
nu
1 dx′2. (3.9)

In the derivation the properties R12 = 0 and du1/dx2 = 0 at x′2 = H have been used.
Since f

nu
1 is a monotonically decreasing function of between 0 and H and its integral

between 0 and H is by definition zero, we have∫ H

x2

f
nu
1 (x

′
2) dx′2 < 0, if 0< x2 <H. (3.10)

Thus, in the case where the mean velocity profile does not change and the
non-uniform part of the mean feedback force is monotonically decreasing in the
interval (0, H), the effect of particles is a reduction of minus the Reynolds shear
stress (−R12) in the interval (0, H). As long as the reduction of −R12 is such that
−R12 remains positive in the interval (0, H), this reduction is a reduction of the
absolute Reynolds shear stress and thus an attenuation of an important statistical
quantity of the gas turbulence. Conversely, if the Reynolds shear stress is attenuated
but the mean gas velocity profile remains the same, then (3.9) shows that the mean
feedback force must be non-uniform. If we define the attenuation of the Reynolds
shear stress by 1R12 = R12 − R0

12 (R0
12 is the unladen profile), then the assumption of

unchanged mean velocity profile implies

−1R12 =
∫ H

x2

f
nu
1 dx′2, (3.11)
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which is a direct relation between the attenuation of the Reynolds shear stress and
the non-uniform part of the mean feedback force. The mean gas velocity profiles in
KFE1994 are not modified by particles for mass loading ratios up to φ=0.4. Equation
(3.11) shows that in cases where the mean gas velocity remains the same, a relatively
large attenuation of R12 is equivalent to a relatively large non-uniform part of the mean
feedback force. Since the turbulence attenuation of streamwise and wall-normal gas
velocity fluctuations was very strong in the KFE1994 experiments, the attenuation of
the Reynolds shear stress was probably also strong (the Cauchy–Schwarz inequality
implies |R12|6 RMS(u1)RMS(u2)). It seems therefore that also the non-uniform part
of the mean feedback force in these experiments must have been quite large, despite
the fact that the measured mean particle velocity profile was not yet as flat as in
simulations and experiments with (fully) rough walls.

Although the derivation above shows that the Reynolds shear stress and the non-
uniform part of the mean feedback force are related, it does not prove that this non-
uniformity causes the turbulence attenuation or part of the turbulence attenuation. The
combination of turbulence attenuation and an unchanged mean velocity profile could
also produce the non-uniformity of the drag force. Intuitively this may not be very
likely, but at least there is another cause of turbulence attenuation that should be
investigated, which is the fluctuating drag force. Figure 5 shows that the magnitude
of the fluctuation of the drag force f ′ is larger than the magnitude of the non-uniform
part of the drag force. To investigate the role of the fluctuating drag force, we proceed
with an investigation of the turbulence kinetic energy budget.

3.3. The feedback force and the turbulence kinetic energy budget
Unlike the mean feedback force, the fluctuating feedback force occurs in the
turbulence kinetic energy equation of the gas phase. The corresponding term has
in general a dissipative effect. It has hitherto been regarded as the mechanism by
which the particle-induced turbulence attenuation should be explained.

The turbulence kinetic energy of the gas phase is defined by K= (u′ · u′)/2= (R11+
R22 + R33)/2. The budget or balance equation of K is given by

PK +DK + εK + SK + AK = 0, (3.12)

where

PK =−R12
du1

dx2
, (3.13)

DK = d
dx2

(
−1

2
(u′ · u′)u′2 −

1
ρ

P′u′2 + ν
dK
dx2

)
, (3.14)

εK =−ν∇u′ : ∇u′, (3.15)

SK = u′ · f ′, (3.16)
AK = a′u′1. (3.17)

Here, PK is the turbulence production, DK is the sum of turbulent diffusion, pressure
diffusion and viscous diffusion, εK is minus the turbulence dissipation and SK is a
particle-induced energy source term (often negative). The term AK is the correlation
between the streamwise velocity fluctuation and the fluctuation of the domain-averaged
pressure gradient. Since AK is expected to be small, the term is usually omitted, but
its negligibility should be verified if a is a function of time.
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FIGURE 7. (Colour online) Turbulence kinetic energy budget in the near-wall region:
turbulence production PK (a), total diffusion DK (b), turbulence dissipation εK (c) and
particle-induced source term SK (d), normalized with u3

τ ,0/H. Unladen DNS A0 (dashed)
and the laden simulations A1 (solid, no markers), A2 (solid, circles) and A3 (solid,
triangles).

The budget of turbulence kinetic energy is shown in figure 7 (for the near-wall
region) and in figure 8 (for the core region). The term AK is not shown, since its
absolute value normalized with u3

τ ,0/H was less than 0.003, negligible indeed. It is
observed that all other terms in the budget are strongly affected by the particles.
In particular, the turbulence production is reduced across the entire channel, the
turbulence dissipation is reduced, while the reduction of DK in the centre region
of the channel shows that also turbulence transport from the wall to the centre is
strongly inhibited by the particle motion. The term SK is interesting in particular; it
has since long been recognized that this term plays an important role in turbulence
attenuation (Elghobashi & Truesdell 1993). It is the correlation between the fluctuating
feedback force and the fluctuating gas velocity. The correlation tends to be negative
if the standard drag law is used and the particle fluctuation and fluid fluctuation
are decorrelated. If the second condition is not fulfilled, the term may be positive.
In regions with weak gas turbulence but strong particle velocity fluctuation, the
instantaneous oscillations of gas regions produced by particles that cross the region
may be larger than the turbulence generated by (nonlinear) channel flow instabilities.
Gas fluctuations created by particle fluctuations are probably positively correlated,
which tends to make SK positive. Very close to the wall SK is positive for A1–A3,
while at the channel centre SK is positive in cases A2 and A3. In cases A2 and A3, the
turbulence attenuation is strong, and the particle velocity fluctuations are large. Thus,
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FIGURE 8. (Colour online) Turbulence kinetic energy budget in the core region: turbulence
production PK (a), total diffusion DK (b), turbulence dissipation εK (c) and particle-induced
source term SK (d), normalized with u3

τ ,0/H. Unladen DNS A0 (dashed) and the laden
simulations A1 (solid, no markers), A2 (solid, circles) and A3 (solid, triangles).

the particles produce some turbulence kinetic energy, which is immediately dissipated
by viscosity. The latter contributes to the viscous dissipation, which possibly explains
why the centreline dissipation of case A3 is hardly reduced compared with the (small)
unladen dissipation.

Perhaps the most surprising feature of the energy budget equation is that strong
turbulence attenuation is possible, while the quantity SK remains relatively small. In
case A3, the domain average of SK is approximately zero, such that the term has no
net dissipative effect, although the turbulence attenuation is strong. As discussed in
§ 3.1, Hwang & Eaton (2006) found that a point-particle model of SK underpredicts the
dissipation by particles in isotropic turbulence if dp 'η, see also Balachandar & Eaton
(2010). Nevertheless, the observation that a simulation of the Navier–Stokes equations
shows strong turbulence attenuation in a case where the feedback term has no net
dissipative effect remains surprising.

We finish this section with a brief discussion of the influence of the Reynolds
number on turbulence attenuation. In the present PP-DNS of gas–solid channel
flow with smooth walls at mass loading ratio 0.8 and Reτ = 642, the turbulence is
significantly reduced but still relevant. However, in a PP-DNS of gas–solid pipe flow
with smooth walls at a similar mass loading ratio, 0.77, but lower Reynolds number,
Reτ = 140, the gas-phase turbulence production, the Reynolds shear stress and also
the radial diagonal component of the Reynolds stress tensor were negligibly small,
less than 10 % of the unladen values (Vreman 2007). Although pipe flow and channel
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flow are not equivalent, this comparison seems to suggest that turbulence attenuation
becomes less pronounced with increasing Reynolds number.

4. The effect of a non-uniform mean feedback force
4.1. Direct numerical simulation of turbulent channel flow with non-uniform forcing

Turbulence attenuation in particle-laden channel flows is often attributed (solely)
to the fluctuating feedback force, since that is the only part of the feedback force
that appears in the particle-induced source term SK in the turbulence kinetic energy
equation. However, (4.7) shows that an important statistical quantity of the turbulence,
the Reynolds shear stress, is related to the primitive of the non-uniform part of the
mean feedback force, in particular if the mean gas velocity profile is not much
affected. This leads to the hypothesis that a non-uniform part of the mean feedback
force acts as one of the causes of turbulence attenuation in particle-laden channel
flow. So far, this is only an hypothesis, because the possibility that the non-uniform
part of the mean feedback force is not a cause but just a consequence of turbulence
attenuation has not been ruled out yet.

To demonstrate that a non-uniform feedback force is able to attenuate the turbulence
by itself, three additional direct numerical simulations are performed, B1–B3, in which
the effect of the mean feedback force is isolated. Unlike A1–A3, these simulations do
not use the point-particle model, at least not explicitly. Simulation B1 is a DNS of
the Navier–Stokes equations with forcing f = f1(x2)e1. Thus, in these cases f2 = f3 =
0 and f1 is a function of x2 only. The function f1 in simulation B1 is precisely the
mean feedback force of simulation A1. Similarly, simulations B2 and B3 use the mean
feedback forces of simulations A2 and A3 respectively. The fluctuating feedback force
is not used in simulations B1–B3. Like in simulations A1–A3, the domain average of
the streamwise pressure gradient (ρa) is adapted to fix the bulk velocity in B1–B3 to
9.212 m s−1. Thus, the turbulence modification in B1 (B2, B3) compared with case
A0 can only be caused by the profile of the non-uniform part of the mean feedback
force A1 (A2, A3). That profile is shown in figure 5(a).

The results of simulations B1–B3 are shown in figure 9. It appears that the
turbulence is also significantly attenuated in these cases, although the attenuation is
not as strong as in cases A1–A3. For example, in case B1 the centreline value of the
streamwise (wall-normal) fluctuation is reduced by 33 % (26 %); in case A1 it was
reduced by 34 % (44 %). The spanwise velocity fluctuation, not shown for these cases,
is attenuated in a similar way to the wall-normal velocity fluctuation. The attenuation
observed in cases B1–B3 cannot be caused by SK , the particle-induced source term in
the turbulence kinetic energy equation, since this term is zero in these cases (f ′ = 0).
This means that the attenuation in B1–B3 must be caused by the mean streamwise
feedback force. Wall roughness makes the mean particle force more non-uniform
(figure 5a), and simulations B1–3 show that stronger non-uniformity leads to more
turbulence attenuation.

While the difference between case B1 (B2, B3) and the unladen case A0 gives an
estimate of the contribution of the mean feedback force to the turbulence modification
in case A1 (A2, A3), the difference between case A1 (A2, A3) and case B1 (B2,
B3) gives an estimate of the contribution of the fluctuation of the feedback force to
the turbulence modification in case A1 (A2, A3). Both contributions turn out to be
significant.

Compared with the modification of the velocity fluctuations and the Reynolds
shear stress, the modification of the mean velocity profile in cases B1–B3 is small,
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FIGURE 9. (Colour online) Mean streamwise velocity u1 (a), RMS(u1) (b), RMS(u2) (c)
and Reynolds shear stress R12 (d), normalized with the unladen centreline velocity ucl,0.
Results from four direct numerical simulations: A0 (dashed), B1 (solid, no markers), B2
(solid, circles) and B3 (solid, triangles). The forcing in B1–B3 is f 1e1 with the mean force
f 1 taken from A1, A2 and A3 respectively.

in particular in case B1; in cases B2 and B3 the effects on the linear profile are
somewhat larger than in cases A2 and A3. The friction velocity uτ is equal to
0.490 m s−1, 0.496 m s−1, 0.501 m s−1 and 0.504 m s−1 in cases A0, B1, B2 and B3
respectively. The bulk velocity is by definition the same in each case. The centreline
velocity ucl is equal to 10.42 m s−1, 10.40 m s−1, 10.08 m s−1 and 9.97 m s−1 in
cases A0, B1, B2 and B3 respectively. Thus, with increasing non-uniformity of the
forcing, uτ increases slightly and ucl decreases slightly; in other words the mean
profile becomes less rounded. How can this be reconciled with case A2, in which
both uτ and ucl were almost identical to uτ ,0 and ucl,0? The smaller change of the
mean gas velocity profile in case A2 compared with B2 can only be explained by
an interplay of the non-uniform part of the mean feedback force and the fluctuating
feedback force. Both parts attenuate the turbulence. However, the non-uniform mean
part tends to make the mean profile less rounded, while the fluctuating part tends to
make the mean profile more rounded. These two effects on the mean gas velocity
profile cancel to certain extent; this is most clearly visible in case A2.

4.2. Linear stability analysis
As another illustration of the response of the Navier–Stokes equations to a feedback
force with a non-uniform mean part, a linear stability analysis is performed. We
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consider the linear instability of a laminar velocity profile to two-dimensional
perturbations, as described by the Orr–Sommerfeld equations (Criminale, Jackson
& Joslin 2003). In linear stability theory the flow is decomposed into a base
profile U(x2) and a velocity perturbation fluctuation proportional to the Fourier
mode exp(i(α1x1 − γ t)), where i = (−1)1/2, α1 is a prescribed streamwise spatial
wavenumber and the frequency γ is the complex eigenvalue.

For simplicity of the analysis we consider a linear version of the feedback force,
f = c(v− u), with c= (φ/τp)(1+ 0.15R0.687), where the constant R is a representative
particle Reynolds number which does not depend on time and space. As a further
simplification, we assume that the particles move with a uniform velocity, v = Ve1,
where V is a constant. Since c is uniform, the value of the uniform particle velocity
V is irrelevant for the flow dynamics, since cV , g and a can be lumped into a single
parameter b= g+ a+ cV .

The unperturbed momentum equation of the linearized problem becomes

ν
d2U
dx2

2
− cU + b= 0, (4.1)

and U(0)=U(2H)= 0. The analytical solution of this equation is

U(x2)=U0
cosh(λH)− cosh(λx2 − λH)

cosh(λH)− 1
, (4.2)

where U0 denotes the centreline velocity and λ2 = c/ν. The constants b and U0 are
related by

b= cU0cosh(λH)
cosh(λH)− 1

. (4.3)

Three examples of base profiles U(x2) are shown in figure 10(a). For λ→ 0, the
profile converges to the standard parabolic profile U0x2(2H− x2)/H2, while for λ→∞,
the profile converges to U0 for 0< x2 < 2H.

The Orr–Sommerfeld equation for the eigenfunction of the normal velocity
component, denoted by û2(x2), reads(

U − γ

α1

)
(û′′2 − α2

1 û2)−U′′û2 = 1
iα1
[ν(û′′′′′2 − 2α2

1 û′′2 + α4
1 û2)− c(û′′2 − α1û2)], (4.4)

where the prime denotes differentiation with respect to x2. The non-conventional term
proportional to c represents the fluctuating feedback force. The equation above can be
derived from the evolution equation of the Laplacian of the normal component of the
velocity perturbation, following the procedure described in Criminale et al. (2003).

The linear growth rate Im(γ ), the imaginary part of γ , is shown in figure 10(b)
for several cases, all for Re = U0H/ν = 14 000, roughly the same as the Reynolds
number based on the mean centreline velocity of the unladen DNS. It appears that
a very modest flattening of the base flow (λ= 1) leads to a strong reduction of the
most unstable growth rate. Comparison with a case with the mean feedback force, but
without the fluctuating feedback force (λ= 1 in (4.2) and c= 0 in (4.4)), shows that
the linear stabilization is primarily caused by the mean feedback component which
slightly changes the parabolic profile. The critical value for λ is approximately 1.3;
for λ> 1.3 the system is linearly stable for all α1.
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FIGURE 10. (Colour online) (a) Base velocity profile in the linear stability theory (4.2)
for λ→ 0 (red dashed), λ= 1 (blue solid) and λ= 10 (black squares). (b) Linear growth
rate (normalized by U0/H) as a function of the streamwise wavenumber α (normalized
by H−1) for λ→ 0 (red dashed), for λ= 1 and c= λ2ν (blue solid), and for λ= 1 and
c= 0 (black dash–dotted).

4.3. The equation of the velocity fluctuation
Since the mean feedback force does not occur in the turbulence kinetic energy
equation or in any of the equations of the Reynolds stresses, the question may arise
of how a non-uniform mean feedback force can contribute to significant turbulence
attenuation. It is tempting to assume that the mean feedback force can only modify the
turbulence via a modification of the mean gas velocity profile, which does explicitly
appear in the Reynolds stress equations. However, the mean gas velocity profile is not
necessarily significantly modified, consider for example case A2. According to this
argument, the mean feedback force cannot play an important role in the turbulence
attenuation, at least not in case A2. In the following we will indicate where this
intuitively logical argument fails.

The presumption in the argument is that the Reynolds stress equations and the mean
flow are all that is required to describe the turbulence. This is not correct. Even if
the mean velocity profile is prescribed, the Reynolds stress equations do not form a
closed set. The argument would be valid if it were possible to close the unclosed
terms (for example turbulence transport, pressure strain and turbulence dissipation)
by algebraic models in terms of the Reynolds stresses and the mean velocity profile.
However, an accurate closure of this type is unknown and may not exist. Of course,
additional transport equations can be derived for the unclosed expressions, but then
these additional equations will suffer from similar closure problems.

These closure problems are avoided if we consider the system of equations for the
mean and instantaneous fluctuation of the gas velocity. For simplicity, we assume that
the forcing term f is known as input as a vector field that varies in time and space.
The following system is then a closed system for the mean and fluctuation of the gas
velocity:

∂u′

∂t
=−u′ · ∇u′ − 1

ρ
∇P′ + ν∇2u′ − u1

∂u′

∂x1
+
(

du′1u′2
dx2
− u′2

du1

dx2
+ a′

)
e1 + f ′, (4.5)

∇ · u′ = 0, (4.6)
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du′1u′2
dx2
= u2

τ

H
+ ν d2u1

dx2
2
+ f

nu
1 , (4.7)

〈u1〉 = ub,0, (4.8)

a′ =−ν
〈
∂2u′1
∂x2

2

〉
− 〈f ′1〉, (4.9)

where ub,0 is the prescribed gas bulk velocity and the expression for a′ follows
from the requirement that the domain-averaged streamwise velocity remains constant,
d〈u1〉/dt = 0. This is a complete system of integro-differential equations for the
unknowns u′, P′, u1 and a′, for given f , ub,0, initial condition for u′ and no-slip
boundary conditions for u′ and u1. The unknown a′ can easily be eliminated by
substitution of the last equation into (4.5).

In the above system only (4.5) contains a time derivative; only this equation is an
evolution equation, the other equations are additional constraints. One constraint is the
incompressibility constraint, another one is (4.7). In other words, the field u′ can only
evolve such that the statistical average of u′1u′2 satisfies a constraint in which the non-
uniform part of the mean feedback force explicitly appears. Thus, although the mean
feedback force does not explicitly appear in (4.5), this does not mean that u′ would
not depend on it. To clarify this further, we substitute (4.7) into (4.5), assume a′ = 0
(then d〈u1〉/dt is not necessarily zero), skip (4.8) and prescribe uτ = uτ ,0. We obtain

∂u′

∂t
= −u′ · ∇u′ − 1

ρ
∇P′ + ν∇2u′ − u1

∂u′

∂x1

+
(

u2
τ ,0

H
+ ν d2u1

dx2
2
+ f

nu
1

)
e1 − u′2

du1

dx2
e1 + f ′, (4.10)

∇ · u′ = 0, (4.11)
du′1u′2
dx2
= u2

τ ,0

H
+ ν d2u1

dx2
2
+ f

nu
1 , (4.12)

which is a closed system for u′, P′ and u1, for given f
nu
1 , f ′, uτ ,0, initial condition for

u′ and no-slip boundary conditions for u′ and u1. In this formulation the fluctuating
velocity explicitly depends on the non-uniform part of the mean feedback force. If
we contract (4.10) with u′, the product u′1f

nu
1 appears. The mean of this product is

zero, and that is why it does not appear in the statistical turbulence kinetic energy
equation. Although f

nu
1 has no mean dissipative effect, it can modify the dynamics

of u′, and the consequence may be that statistical correlations that do appear in the
turbulence kinetic energy equation (production, transport and dissipation) are reduced.
The appearance of f

nu
1 in the equation of u′ is a nonlinear effect. In linear stability

theory all terms that are quadratic in u′ vanish; in particular, the left-hand side of
(4.12) is then replaced by zero, such that the sum of the three terms between brackets
in (4.10) also vanishes.

5. Conclusions

Point-particle direct numerical simulations of downward particle-laden vertical
channel flows were performed. In order to investigate the effect of wall roughness
on particle-induced turbulence attenuation, both smooth and rough walls were applied
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in the simulations. Inter-particle collisions were included. A new element in the
computational method was that wall roughness was taken into account with a
deterministic instead of a stochastic model. The wall roughness was represented
by packed layers of spherical particles attached to the wall. The diameter of these
fixed wall particles was smaller than the viscous wall unit. The mass loading ratio
of the particle-laden channel was 0.8, and the Reynolds number (of the unladen
case) was equal to Reτ = 642. Previous simulations of turbulence attenuation in the
literature were either performed at lower Reynolds number or the PP-LES method
was used.

As an answer to the first research question formulated in the introduction, we found
that wall roughness enhances the turbulence attenuation in vertical particle-laden
channel flow, at least when the size of the wall roughness is sufficiently small. This
was not obvious, since the same conclusion was only known from experiments
of horizontal channel flow (Kussin & Sommerfeld 2002), while the available
experimental results in vertical channel flow did not show attenuation of the turbulence
(Benson et al. 2005). This can be explained, as it now seems, by the fact that the
roughness size in the latter experiments was, albeit not very large in terms of wall
units, much higher than in the experiments of Kussin & Sommerfeld (2002) and in
the simulations in the present paper.

The effect of wall roughness is that the mean particle velocity profile, which is
also in smooth channel flow flatter than the mean gas velocity profile, is flattened
further. As a consequence, the non-uniformity of the mean feedback force is
increased. Non-uniformity of the mean feedback force is one of the causes of
turbulence attenuation in particle-laden channel flow. The latter was shown by
DNS of single-phase flow with non-uniform forcings. In each of these cases, the
non-uniform forcing was a mean feedback force profile from a PP-DNS. Moreover,
in these additional simulations significant turbulence attenuation was found, albeit
not as strong as in the point-particle simulations. The attenuation increased with
increased non-uniformity of the mean forcing term. It is concluded that not only the
fluctuating component but also the (non-uniform) mean component of the particle
force contributes to turbulence attenuation. The combined effect of both components
on the mean gas velocity is relatively small, because the mean component tends to
flatten and the fluctuating component tends to round the mean gas velocity profile.
Furthermore, a linear stability analysis was performed, which showed that not only
turbulent fluctuations, but also the linear growth rate of the perturbation superimposed
on a laminar profile, is reduced by a non-uniform mean particle force.

Any PP-DNS is only a pseudo-DNS, since particle boundary layers and wakes are
not resolved. This limitation and possible consequences were discussed. It would be
interesting to resimulate the cases studied in this work with particle-resolved DNS.
Hopefully this will be possible one day.
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