## A RECURSION FORMULA FOR THE COEFFICIENTS IN AN ASYMPTOTIC EXPANSION <br> by E. M. WRIGHT <br> (Received 19th August, 1958)

Mäny authors have proved results deducing an asymptotic expansion of

$$
F(z)=\sum_{n=0}^{\infty} f(n) z^{n}
$$

for large $|z|$ from the behaviour of $f(t)$, when $f(t)$ is regular in an appropriate part of the complex $t$-plane. For example, if, for some $\kappa>0$ and some $A_{m}, \alpha_{m}$,

$$
\begin{equation*}
f(t)=\sum_{m=1}^{M} \frac{\kappa A_{m}}{\Gamma\left(\kappa t+\alpha_{m}\right)}+O\left(\frac{1}{\Gamma\left(\kappa t+\alpha_{m+1}\right)}\right) \tag{1}
\end{equation*}
$$

for all large $|t|$ such that $\mathscr{R}(t)>C$, then, as $|z| \rightarrow \infty$ in a suitable sector in the $z$-plane, we have

$$
\begin{equation*}
F(z)=Z e^{Z}\left\{\sum_{m=1}^{M} A_{m} Z^{-\alpha_{m}}+O\left(Z^{-\alpha_{H+1}}\right)\right\} \tag{2}
\end{equation*}
$$

where $Z$ is an appropriate value of $z^{1 / \kappa}$.
Of course, the expansion (1) could be replaced by one of another form, but (1) has the merit of displaying the actual coefficients which occur in (2). So far as I am aware, the first notice of this phenomenon in special cases occurred in [1] and [6]; the general result was found in [7] and, independently, in [2]. See also [8].

A particular case of the generalised hypergeometric function studied in [6] is

$$
G(x)=\sum_{n=0}^{\infty} g(n) x^{n},
$$

where

$$
g(t)=\prod_{r=1}^{p} \Gamma\left(t+\beta_{\tau}\right) / \prod_{r=0}^{q} \Gamma\left(t+\gamma_{r}\right)
$$

and $q \geqslant p \geqslant 0$. If we write $\kappa=q+1-p$ and

$$
\mathfrak{\vartheta}=\sum_{r=1}^{p} \beta_{r}-\sum_{r=0}^{q} \gamma_{r}+\frac{1}{2}(\kappa+1),
$$

we can deduce from the well-known asymptotic expansion of the $\Gamma$-function that

$$
g(t)=a\left(\kappa^{\kappa}\right)^{t}\left\{\sum_{m=0}^{M} \frac{\kappa c_{m}}{\Gamma(\kappa t-\vartheta+m+1)}+O\left(\frac{1}{\Gamma(\kappa t-\vartheta+M+2)}\right)\right\}
$$

for large $|t|$ and $|\arg t|<\pi-\epsilon$, where $\epsilon>0, c_{0}=1$ and $a=(2 \pi)^{\mathbf{\ddagger}-\mathbf{i} \kappa_{\kappa}-\mathbf{-}-\vartheta}$. It then follows that, in a suitable sector of the $x$-plane enclosing the positive half of the real axis, we have

$$
\begin{equation*}
G(x)=a X^{\vartheta} e^{X}\left\{\sum_{m=0}^{M} c_{m} X^{-m}+O\left(X^{-M-1}\right)\right\} \tag{3}
\end{equation*}
$$

where $X=\kappa x^{1 / x}$.

Recently Riney [4,5] has found two linear recurrence relations satisfied by the $c_{m}$. In the one, $c_{m}$ is given in terms of all the preceding $c_{n}$; in the other, in terms of the preceding $q+1$ terms of the sequence. His method in each case depends on fairly elaborate manipulations of $g(t)$. My purpose here is to point out that $G(x)$ and its asymptotic expansion alike satisfy a simple differential equation and that from this a finite recurrence formula for the $c_{m}$ can be deduced fairly simply.

We write $\theta=x d / d x$ and

$$
P(t)=\prod_{r=1}^{p}\left(t+\beta_{r}\right), \quad Q(t)=\prod_{r=0}^{q}\left(t+\gamma_{r}\right)
$$

and note that

$$
Q(t) g(t+1)=P(t) g(t) .
$$

Again

$$
\begin{aligned}
x P(\theta) G(n) & =\sum_{n=0}^{\infty} P(n) g(n) x^{n+1} \\
& =\sum_{n=0}^{\infty} Q(n) g(n+1) x^{n+1} \\
& =Q(\theta-1) \sum_{n=0}^{\infty} g(n+1) x^{n+1} \\
& =Q(\theta-1)\{G(x)-g(0)\} .
\end{aligned}
$$

Hence, if $R(t)^{\prime}=Q(t-1)-x P(t)$, we have

$$
\begin{equation*}
R(\theta) G(x)=Q(-1) g(0) . \tag{4}
\end{equation*}
$$

This is the linear differential equation of the $(q+1)$-th order satisfied by $G(x)$.
We need not appeal to the general theory of asymptotic solutions of differential equations to see that (4) is satisfied asymptotically for (say) large positive $X$, if the right-hand side of (3) is substituted for $G(x)$. For $\theta G(x)$ is a function of the same form as $G(x)$ and so has a similar asymptotic expansion.

Let us write $\phi=X(d / d X)=\kappa \theta$,

$$
T(t)=\prod_{r=0}^{q}\left(t-\kappa+\kappa \gamma_{r}+\vartheta\right), \quad U(t)=\prod_{r=1}^{p}\left(t+\kappa \beta_{r}+\vartheta\right)
$$

and

$$
\begin{equation*}
S(t)=I^{\prime}(t-\vartheta)-X^{q+1-p} U(t-\vartheta)=\kappa^{\rho+1} R(t / \kappa) . \tag{5}
\end{equation*}
$$

${ }^{1} \mathrm{y}(4)$ and (5),

$$
\begin{equation*}
S(\phi) e^{X} \sum_{m=0}^{M} c_{m} X^{\mathfrak{\vartheta}-m}=O\left(X^{\mathfrak{\vartheta}+q-M} e^{X}\right) \tag{6}
\end{equation*}
$$

for any positive $M$. Now

$$
\phi X^{j} e^{X}=X^{j}(\phi+j) e^{X}
$$

and so

$$
S(\phi) e^{X} X^{\vartheta-m}=X^{\boldsymbol{\vartheta}-m} S(\phi+\vartheta-m) e^{X} .
$$

Since $T(t)$ is a polynomial in $t$ of degree $q+1$, we have

$$
T(t-m)=\sum_{s=0}^{q+1} T_{s}(-m) t(t-1) \ldots(t-s+1)
$$

where

$$
T_{s}(-m)=\sum_{r=0}^{s} \frac{(-1)^{s-r} T(r-m)}{r!(s-r)!}=\frac{\Delta^{s} T(-m)}{s!}
$$

in the usual notation of the difference calculus. Hence

$$
T(\phi-m)=\sum_{s=0}^{q+1} T_{s}(-m) X^{s}(d / d X)^{s}
$$

and

$$
e^{-X} T(\phi-m) e^{X}=\sum_{s=0}^{q+1} T_{s}(-m) X^{s}
$$

Similarly

$$
e^{-X} U(\phi-m) e^{X}=\sum_{\delta=0}^{p} U_{s}(-m) X^{*}
$$

Hence

$$
e^{-X} S(\phi+\vartheta-m) e^{X}=X^{q+1}\left\{\sum_{s=0}^{q+1} T_{Q+1-s}(-m) X^{-s}-\sum_{s=0}^{p} U_{p-s}(-m)^{-} X^{s}\right\}
$$

and so, by (6) and (7),

$$
\begin{equation*}
\sum_{s=0}^{q+1} T_{q+1-s}(s-m) c_{m-s}-\sum_{s=0}^{p} U_{p-s}(s-m) c_{m-s}=0 \tag{8}
\end{equation*}
$$

where $c_{n}=0$, when $n<0$.
We shall see later that

$$
\begin{gather*}
T_{q+1}(-m)-U_{p}(-m)=0, . .  \tag{9}\\
T_{q}(-m)-U_{p-1}(-m)=-\kappa m . \tag{10}
\end{gather*}
$$

Hence, if we replace $m$ by $m+1$ and $s$ by $s+1$ in (8), we have

$$
\begin{equation*}
\kappa m c_{m}=\sum_{s=1}^{q} T_{q-s}(s-m) c_{m-s}-\sum_{s=1}^{p-1} U_{p-s-1}(s-m) c_{m-s} \tag{11}
\end{equation*}
$$

where the second sum is empty if $p=0$ or 1 . This is the recurrence relation required.
If the largest $m$ for which we wish to calculate $c_{m}$ is of about the size of $q$, the coefficients in (11) can be most easily calculated by evaluating $T(t)$ for $t=q-1, q-2, \ldots,-m$ and then differencing these values up to $(q-1)$ times. If $m$ is large compared with $q$, we remark that

$$
T_{a-s}(s-m)=\sum_{r=0}^{s+1}(-1)^{s+1-r} T_{q+1-r}(0)(q+1-r)!(m-r)!/\{(m-s-1)!(q-s)!(s+1-r)!\}
$$

so that we need only calculate $T_{s}(0)$ (by differencing) for $s=0, \ldots, q+1$. Similarly

$$
U_{p-s-1}(s-m)=\sum_{r=0}^{s+1}(-1)^{s+1-r} U_{p-r}(0)(p-r)!(m-r)!/\{\{(m-s-1)!(p-s-1)!(s+1-r)!\}
$$

If the largest $m$ is small compared with $q$, these methods are not very efficient. In this case, let

$$
T^{\prime}(t)=\sum_{r=0}^{q+1} A_{r} l^{q+1-r}, \quad U(t)=\sum_{r=0}^{p} B_{r} t^{p-r},
$$

so that $A_{0}=B_{0}=1$ and

$$
\begin{equation*}
A_{1}=(\vartheta-\kappa)(q+1)+\kappa \sum_{r=0}^{q} \gamma_{r}, \quad B_{1}=p \vartheta+\kappa \sum_{r=1}^{p} \beta_{r} . \tag{12}
\end{equation*}
$$

We have

$$
\begin{equation*}
T(t-m)=\sum_{r=0}^{q+1} A_{r} \sum_{l=0}^{q+1-r}(-m)^{l}\binom{q+l-r}{l} t^{q+1-r-l} \tag{13}
\end{equation*}
$$

With the notation of Jordan [3], let us write $\mathfrak{S}_{n}^{8}$ for the Stirling number of the second kind, so that

$$
\begin{equation*}
S_{n}^{8}=\left[\Delta^{8} t^{n} / s!\right]_{t-0}, \quad S_{n}^{n}=1, \quad S_{n}^{n-1}=\frac{1}{2} n(n-1) \tag{14}
\end{equation*}
$$

By (13), we have

$$
T_{a+1-s}(-m)=\sum_{r=0}^{s} A_{r} \sum_{l=0}^{s-r}(-m)^{l}\binom{q+1-r}{l} S_{q+1-r-l}^{q+1-s}
$$

and similarly

$$
U_{p-s}(-m)=\sum_{r=0}^{8} B_{r} \sum_{l=0}^{s-r}(-m)^{l}\binom{p-r}{l} 5_{p-r-l}^{p-s}
$$

If $m$ is small, these formulae provide a convenient method of calculating the coefficients in (11) for $s \leqslant m$; no others are required. In particular, we can verify (9) and (10) very easily, using (12) and (14).

## REFERENCES

1. W. B. Ford, The asymptotic developments of functions defined by Maclaurin series (Ann Arbor, 1936).
2. H. K. Hughes, Bull. American Math. Soc., 50 (1944), 425-430.
3. C. Jordan, Calculus of finite differences (2nd edn., New York, 1947), 168-179.
4. T. D. Riney, Proc. Amer. Math. Soc., 7 (1956), 245-9.
5. T. D. Riney, Trans. American Math. Soc., 88 (1958), 214-226.
6. E. M. Wright, J. London Math. Soc., 10 (1935), 287-293; see also correction, ibid 27 (1952), 256.
7. E. M. Wright, Phil. Trans. Roy. Soc., A238 (1940), 423-451 and A239 (1941), 217-232.
8. E. M. Wright, Trans. American Math. Soc., 64 (1948), 409-438.

## The University <br> Aberdeen

