EMBEDDING THEOREMS FOR GROUPS

by C. G. CHEHATA (Received 5th December, 1962)

1. Introduction

By a partial endomorphism of a group G we mean a homomorphic mapping μ of a subgroup A of G onto a subgroup B of G. If μ is defined on the whole of G then it is called a total endomorphism. We call a partial endomorphism totally extendable (or extendable) if there exists a supergroup $G^* \supseteq G$ with a total endomorphism μ^* which extends μ in the sense that $g\mu^* = g\mu$, whenever the right-hand side is defined (3).

In a previous paper (2), we derived necessary and sufficient conditions for a well-ordered set of partial endomorphisms $\mu(\alpha)$ of a group G to be extendable to a set of total endomorphisms $\mu^*(\alpha)$ of a supergroup G* such that each $\mu^*(\alpha)$ acts as an isomorphism on $G^*[\mu^*(\alpha)]^{n(\alpha)}$, where $n(\alpha)$ is a given positive integer. These conditions are in fact a generalisation of the conditions in case of a single extension (1).

In this work sufficient conditions are derived for the required extension, with the same condition imposed on $\mu^*(\alpha)$, to be established in case $\mu(\alpha)$ are partial endomorphisms of certain types of subgroups. In particular sufficient conditions for the extension of partial endomorphisms of *E*-subgroups are given; where the subgroup *H* of the group *G* is called an *E*-subgroup if every normal subgroup of *H* is the intersection with *H* of a normal subgroup of *G*. This is equivalent to the fact that if *N* is a normal subgroup of *H* then $N^G \cap H = N$, where N^G is the normal closure of *N* in *G*.

We conclude by deriving necessary and sufficient conditions for a wellordered set of partial endomorphisms of G to be all extendable to one and the same total endomorphism θ^* of a supergroup G^* such that θ^* is an isomorphism on $G^*(\theta^*)^m$ for some positive integer m.

2. Extension in a special case

We shall assume that G is a given group and $\mu(\alpha)$, where α ranges over a well-ordered set Σ , is a partial endomorphism of G mapping the subgroup $A(\alpha) \subseteq G$ onto the subgroup $B(\alpha) \subseteq G$. In (2) it was proved that the necessary and sufficient conditions for the existence of $G^* \supseteq G$ with total endomorphisms $\mu^*(\alpha)$ which extend $\mu(\alpha)$ such that for every α , $\mu^*(\alpha)$ acts as an isomorphism on $G^*[\mu^*(\alpha)]^{n(\alpha)}$, where $n(\alpha)$ is a positive integer are that if Ω is the semigroup freely generated by the $\mu(\alpha)$, then for every $\omega \in \Omega$ there exists a normal subgroup

 $L(\omega)$ of G such that

154

$$L(\omega) \subseteq L(\omega\omega_1)$$
 for all $\omega, \omega_1 \in \Omega$,(2.1)

for any $\alpha \in \Sigma$ and any positive integer *i*,

 $L[\mu(\alpha)] \cap A(\alpha)$ is the kernel of $\mu(\alpha)$,(2.3)

for every $\alpha \in \Sigma$ and $\omega \in \Omega$.

Theorem 1. With the previous notation, it is sufficient for the required extension to be established that if, for every $\alpha \in \Sigma$, $K[\mu(\alpha)]$ is the kernel of $\mu(\alpha)$ then

for every α , $\beta \in \Sigma$.

Proof. For every $\omega \in \Omega$, put

$$L[\mu(\alpha)\omega] = L[\mu(\alpha)] = K^{G}[\mu(\alpha)].$$

If $\omega = \mu(\alpha)\omega'$ and ω_1 are any words in Ω then

$$L(\omega) = L(\omega\omega_1) = K^G[\mu(\alpha)]$$

which simultaneously proves (2.1) and (2.2). Also

$$L[\mu(\alpha)] \cap A(\alpha) = K^{G}[\mu(\alpha)] \cap A(\alpha) = K[\mu(\alpha)]$$

is the kernel of $\mu(\alpha)$, which proves (2.3).

To prove (2.4) we note that if $\omega = \mu(\gamma)\omega'$ is any word in Ω then

$$[L\{\mu(\alpha)\omega\} \cap A(\alpha)]\mu(\alpha) = [L\{\mu(\alpha)\} \cap A(\alpha)]\mu(\alpha)$$

= $K[\mu(\alpha)]\mu(\alpha) = e$,
and $L(\omega) \cap B(\alpha) = L[\mu(\gamma)\omega'] \cap B(\alpha)$
= $K^{G}[\mu(\gamma)] \cap B(\alpha)$
= e , by (2.6).

This completes the proof of Theorem 1.

3. Extension in case of E-subgroups

Theorem 2. Let $A(\alpha)$ be E-subgroups of G. If we define $K[\mu(\alpha)] = e\mu^{-1}(\alpha)$ and inductively

$$K[\mu(\alpha)\omega] = K^{G}(\omega)\mu^{-1}(\alpha) \qquad (3.1)$$

i.e. the greatest subgroup of $A(\alpha)$ mapped into $K^{G}(\omega)$ by $\mu(\alpha)$, then for the required extension to be established it is sufficient that

 $K[\mu(\alpha)]^{m}$ are normal in G, i.e.(3.2)

 $K[\mu(\alpha)]^{m+1} = K[\mu(\alpha)]^m \mu^{-1}(\alpha); \text{ for } m = 1, 2, ..., \text{ whenever } x[\mu(\alpha)]^{n(\alpha)+1} \text{ is defined and is equal to e then} x[\mu(\alpha)]^{n(\alpha)} = e.(3.3)$

Proof. We can as in (3) prove that for any $\omega, \omega' \in \Omega$. Now we prove that $K[\mu(\alpha)]^{n(\alpha)+1} = K[\mu(\alpha)]^{n(\alpha)}.$ (3.5) $x \in K[\mu(\alpha)]^{n(\alpha)+1} = K[\mu(\alpha)]^{n(\alpha)}\mu^{-1}(\alpha),$ Let thus $x\mu(\alpha) \in K[\mu(\alpha)]^{n(\alpha)}$. Repeating we arrive at $x[\mu(\alpha)]^{n(\alpha)} \in K[\mu(\alpha)],$ and hence $x[\mu(\alpha)]^{n(\alpha)+1} = e.$ This implies by (3.3) that $x[\mu(\alpha)]^{n(\alpha)} = e,$ which in turn gives $x \in K[\mu(\alpha)]^{n(\alpha)}$. $K[\mu(\alpha)]^{n(\alpha)+1} \subseteq K[\mu(\alpha)]^{n(\alpha)};$ Thus $K[\mu(\alpha)]^{n(\alpha)} \subseteq K[\mu(\alpha)]^{n(\alpha)+1}$, from (3.4). but These two together prove (3.5). From (3.2) and (3.5) we get $K[\mu(\alpha)]^{n(\alpha)+2} = K[\mu(\alpha)]^{n(\alpha)+1}\mu^{-1}(\alpha)$ $= K[\mu(\alpha)]^{n(\alpha)}\mu^{-1}(\alpha)$ $= K[\mu(\alpha)]^{n(\alpha)+1}$ $= K[\mu(\alpha)]^{n(\alpha)}.$ More generally we have $K[\mu(\alpha)]^{n(\alpha)+i} = K[\mu(\alpha)]^{n(\alpha)}$ for any integer i > 0.....(3.6) Now put $L(\omega) = K^{G}(\omega)....(3.7)$ Thus from (3.4) and (3.6) we get $L(\omega) \subseteq L(\omega\omega')$ for any $\omega, \omega' \in \Omega$; and $L[\mu(\alpha)]^{n(\alpha)+i} = L[\mu(\alpha)]^{n(\alpha)}.$ for any $\alpha \in \Sigma$ and any integer i > 0. This proves (2.1) and (2.2). From (3.7) and the fact that $A(\alpha)$ are E-subgroups it follows immediately that $L[\mu(\alpha)] \cap A(\alpha) = K[\mu(\alpha)]$ is the kernel of $\mu(\alpha)$, which proves (2.3). The proof that (2.4) also holds is the same as in (3). This completes the

Special case. If the group G is abelian then every subgroup of G is an *E*-subgroup and condition (3.2) holds automatically. Thus we have the following result.

proof of Theorem 2.

Corollary. If G is abelian then it is sufficient for the required extension to be established that (3.3) holds.

4. Extending all $\mu(\alpha)$ to a single endomorphism

Theorem 3. For all $\mu(\alpha)$, $\alpha \in \Sigma$ to be extendable to one and the same total endomorphism θ^* of a group $G^* \supseteq G$ such that θ^* is an isomorphism on $G^*(\theta^*)^m$, for some positive integer m, it is necessary and sufficient that if we define θ to map any word $w(a_\tau) \in \{A(\alpha)\}$ onto $w(a_\tau\mu(\tau)) \in \{B(\alpha)\}$ where $a_\tau \in A(\tau)$, τ ranges over some finite set $I \subset \Sigma$, α ranges over Σ then

 θ is a one-valued mapping of $\{A(\alpha)\}$ onto $\{B(\alpha)\}$ which is a homomorphism, (4.1) there exists in G a sequence of normal subgroups

such that

$$L_1 \cap \{A(\alpha)\} \text{ is the kernel of } \theta,$$
$$[L_{j+1} \cap \{A(\alpha)\}]\theta = L_j \cap \{B(\alpha)\},$$

for j = 1, 2, ..., m.

Proof. (i). To prove the necessity of (4.1) we assume that the extension is already established, that is we assume the existence of $G^* \supseteq G$ and an endomorphism θ^* which extends $\mu(\alpha)$ for every $\alpha \in \Sigma$ to G^* such that θ^* is an isomorphism on $G^*(\theta^*)^m$.

For any $g^* \in G^*$, $g^*\theta^*$ is uniquely defined. In particular the map $w(a_t)\theta^*$ of any word $w(a_t) \in \{A(\alpha)\} \subseteq G^*$ is uniquely defined. Since θ^* extends $\mu(\alpha)$ for every $\alpha \in \Sigma$ then

$$w(a_{\tau})\theta^* = w(a_{\tau}\mu(\tau)) = w(a_{\tau})\theta$$

and thus the mapping θ is one-valued.

Moreover since θ^* extends θ then for any two words $w(a_{\rho})$, $w_1(a_{\tau}) \in \{A(\alpha)\}^+$ we have

$$[w(a_{\rho})w_{1}(a_{\tau})]\theta = [w(a_{\rho})w_{1}(a_{\tau})]\theta^{*}$$
$$= [w(a_{\rho})]\theta^{*}[w_{1}(a_{\tau})]\theta^{*}$$
$$= [w(a_{\rho})]\theta \cdot [w_{1}(a_{\tau})]\theta$$

which shows that θ is a homomorphism.

The proof that (4.2) is necessary is the same as in (1).

(ii). To prove the sufficiency of the conditions we put

$$A_1 = \{A(\alpha)\}, \quad B_1 = \{B(\alpha)\}.$$

Then θ becomes a partial endomorphism of G which maps A_1 onto B_1 . Thus because of (4.2) we can extend θ to a total endomorphism θ^* of $G^* \supseteq G$ such that θ^* acts as an isomorphism on $G^*(\theta^*)^m$. Since θ extends $\mu(\alpha)$ for every $\alpha \in \Sigma$, then so does θ^* .

This completes the proof of Theorem 3.

REFERENCES

(1) C. G. CHEHATA, An embedding theorem for groups, Proc. Glasgow Math. Assoc. 4 (1960), 140-143.

(2) C. G. CHEHATA, Generalisation of an embedding theorem for groups, *Proc. Glasgow Math. Assoc.*, 4 (1960), 171-177.

(3) B. H. NEUMANN and HANNA NEUMANN, Extending partial endomorphisms of groups, *Proc. London Math. Soc.* (3) 2 (1952), 337-348.

Faculty of Science The University Alexandria, Egypt