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Abstract In this paper we use the Leray—Schauder continuation method to study the existence of
solutions for semilinear differential equations Lu + g{x,u) = h, in which the linear operator L on L2{Q)
may be non-self-adjoint, the Z/2(fi)-function h belongs to NX(L), the nonlinear term g(x,u) e O(|u|a)
as |u| —» oo for some 0 ^ a < 1 and satisfies

Jv(
/ { ) \ ( ) \ ^ ( ) K ) |

for a l ive N(L) - {0}, where/3 6 R , - a ̂  P sg 1 and 2a + 0 ^ 1, g^(x) = liminfu_,0O(g(i,u)u/|u|1-'3)
and g^{x) = liminfu_>_oo(g(x,u)u/|u|1-/3).
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1. Introduction

Let Q c RN (N ^ 1) be a bounded domain and H = L2(Q) with the inner product
(•> -)H, {U,V)H = Jnuv- We consider the following abstract differential equation

Lu + g(x,u) = h, (1.1)

where h € H is given, L : D(L) C H —> H is a closed, densely defined linear operator
satisfying the following conditions:

(Li) the null space N(L) of L is finite-dimensional;

(L2) the range R(L) of L is closed;

(L3) R{L) = N±(L);

(L4) the right inverse L~x : R(L) —¥ R(L) of L is a compact linear operator;

and p : i ? x K - > R i s a Caratheodory function satisfying

103

https://doi.org/10.1017/S0013091500020721 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500020721


104 C.-C. Kuo

(Gi) there exist constants a ^ 0, 0 < a < 1, and b 6 H, b ̂  0 such that for a.e. x e fi
and all u 6 R

|g(x,u)KaHQ + 6(x);

(G2) there exist constants |/?| ^ 1, ro ^ 0 and c € L2/(1+^(.f?) such that for a.e. x G i?
and |u| ^ ro

g(x,u)u^ c(x)\u\l~p]

(G3) ff g+(x)\w(x)\l-f}dx+ [
w(x)>0 Jw(x)<0

for all w G iV(L) - {0};

where g^{x) = \im.'\niu^oo{g{x,u)u/\u\l~13) and #J (z) =
The solvability of (1.1) has been extensively studied if L (or — L) = A + A, A may be
a non-self-adjoint uniformly elliptic operator with the principal eigenvalue A and the
nonlinearity g may be assumed to grow superlinearly in u as \u\ —¥ 00 (see [1,3,7,8,
11,13,14]). When A is self-adjoint with a higher eigenvalue A, and the nonlinearity
g has at most linear growth in u as \u\ —> 00, existence theorems of (1.1) are proved
in [2,4-6,12,15,16] if h satisfies the following Landesman-Lazer condition:

f h(x)v(x)dx< f g+(x)\v(x)\dx+ f 9o(x)\v(x)\dx, (1.2)
Jn Jv>o Jv<o

for each v € N(L) - {0}.
The purpose of this paper to give several abstract existence theorems of (1.1) by using

the Leray-Schauder continuation method (see [17]) when g(x,u) € O(|u|1//2) as |u| -* 00,
h € Ar-L(L) and (G3) may be satisfied with (} > 0 and 2a + (3 < 1, in which we improve
the main results of Ha [9], Hess [10] and Robinson and Landesman [18], where they
assume that g is a bounded function that satisfies (G2) and (G3) with c = ro = 0, /3 = 1
and h £ N-1^). Our results can be applied to many well-known differential operators.
For example, let J? be a bounded open set in M.N(N ^ 1 ) , and An be the nth eigenvalue
of the Laplacian - A : W2'2(Q) D Hl{fi) ->• L2{Q). We first consider the existence of
solutions of the problem

J ±(Au + Xnu) +g(x,u) = h on a.e. x = x € i? = Q,
\u = 0 on dfi,

where L : D{L) C L2(Q) -> L2(i?) is defined by

D(L) = {ue L2{n) I Au e L2{Q) and u = 0 on dO) and L(u) = ±(Au + Anu).

In order, we consider the existence of time-periodic solutions of problems

J ±[ut — Au — Anu] + g{x,u) = h on a.e. x = {x,t) € J? = fl x (—ir,n),
\ u = 0 on dQ x R,
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where L : D(L) c L2{Q) -* L2{H) is denned by

D(L) = {ue L2{Q) | Dtu, Au G L2{Q) and u = 0 on dQ x R}

and L(u) = ±{ut — Au - Anu); and

J ±[«« — Au + i/U( — Anu] + g(x, u) = h on a.e. x = (x,t) G /? = Q x (-7r,7r),

| u = 0 on dQ x K,

(1.5)

where v ^ 0, L : £>(L) C L2(f2) -4 L2(l?) is defined by

D{L) = {u£ L2(i?) | Aw,D t t u ,Au G L2(f?) and u = 0 on 9J? X R}

and L(u) = ±[utt — Au + uut — Aratt].

2. Existence theorems

In this section we shall always assume that the linear operator L is closed, densely defined
and satisfies (Li)-(L4).

Theorem 2.1. Let j : l ? x l - > R b e a Caratheodory function satisfying (G\) and
(G2) with 2a + (3 < 1. Then, for each h G NX(L), the problem (1.1) is solvable, provided
that (G3) holds.

Proof. Let P and Q be the orthogonal projections of H on N(L) and .R(L), respec-
tively, and let / : H —t H be a continuous function defined by

= k if HI < i,
M \u/IM|, if| |«||>l.

We consider the following semilinear equations

Lu + (1 - t)f{Pu) + tg(x, u) = th, (2.1)

for 0 ^ t ^ 1. Then the problem (2.1) has only a trivial solution when t = 0, and becomes
the original problem (1.1) when t = 1. To apply the Leray-Schauder continuation method,
it suffices to show that there exists RQ > 0 such that ||u|| < RQ for each 0 < t < 1 and
for all possible solutions u to (2.1). Now let u be a possible solution of (2.1) for some
0 < t < 1. By (L4) we have

IIQKII = \\L-l{{l-t)f{Pu) + tg{x,u) - th}\\

(2.2)
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for some constants Ci,C2 ^ 0 independent of u. To show that solutions to (2.1) for
0 < t < 1 have an a priori bound in H, we argue by contradiction, and suppose that
there exists a sequence {un} in H and a corresponding sequence {£„} in (0,1) such that
un is a solution to (2.1) with t = tn and ||un|| ^ n for all n. Let vn = un/||un||, then
\\vn\\ = 1, and, by (2.2), we have, for each n € N,

Since a < 1, the right-hand side of (2.3) tends to zero in R as n —> oo, and, since
{Pun} is bounded in /7 and N(L) is of finite dimension, we may assume, without loss
of generality, that {vn} is bounded by an L2(/2)-function independent of n, converges to
w in H, and is pointwise convergent to w on a.e. x € Q. It follows that un(x) —> oo for
a.e. x e fi+ = {y e fi \ w(y) > 0}, un[x) -» -oo for a.e. x e Q~ = {y E Q \ w{y) < 0},
and w ̂  0 because ||un|| = 1 for all n e N. Taking the inner product of (2.1) in H when
u = un and t = tn with Pun, we obtain from (L3) that

tn J g{x, un)Pun ^ (1 - tn) j f{Pun)Pun + tnj g{x, un)Pun

= tnfhPun. (2.4)

It is clear from the assumption of h G N-1 (L) that the right-hand side of the last equality
of (2.4) is equal to zero. Prom (Gi), (2.2) and the assumption of 2a + /3 < 1 that there
exist constants C3, C4 ^ 0 independent of n such that

\Jg(x,un)Qun\ J(a\un\
a + b)\Qun\

-t 0 as n -> 00. (2.5)

By (Gi), we have, for 0 7̂  \un(x)\ < r0,

( '

and, by (G2) and the assumption of 0 ^ 1, we also have for |ura(x)| > ro

^'^"Kl^^c^KI1^. (2.7)
| w n |

It follows from (2.6), (2.7) and the fact that |t>n| is pointwise bounded by an L2{Q)-
function independent of n, that we have {g(x,un)un/\un\

1~l3)\vn\
1~P is bounded from
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below by an L^^-function independent of n. Using (2.3), (2.4), (2.6), (2.7), the fact
that tnj^O and h € A -̂L(L), we also have

r g(x,un)un ,1-/3 , f g(x,un)un x_0

/un(x)>0 \u^\1~!3 lvn(x)<0 li/ I1-/3 ' "I(x)<0
;(i)#0

g(x,un)un 1-0

'3

g(x,Un)un 1 _ /

'3 ' " '

_ 1 /" / % /" g{x,Un)un . •!_£

tu(x)=O

(2.8)

Clearly, from (2.5), the assumption of 2a + /? < 1, the fact of vn(x) -> 0 for a.e.
x € fi^ = {y e Q | w(y) = 0} and the Lebesgue bounded convergence theorem that the
right-hand side of the last inequality of (2.8) is convergent to zero as n approaches oo.
Applying Fatou's Lemma to the left-hand side of the first equality of (2.8), we have

g+(x)\w(x)\1->3dx+ f
(x)>0 Jw(x)<0

+ J 9p{x)\w{x)\^Xn- dx

= f g+(x)\w(x)\1->3
Xn+dx+ f g^(x)\w(x)\^Xf2-dx-

q(x,un{x))un(x)

d x

vn(x) 1

iminf /
"^°° ^ ( x

+ liminf
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g(x,un{x))un{x)

+

Mx)? dx

)u (x) ,_ ,

^ l i

which contradicts the inequality (G3), and the proof is complete. •

By modifying slightly the proof of Theorem 2.1, we can obtain the following theorems
in which 2a + (3 may be equal to 1.

Theorem 2.2. Let g : fi xR ^ R be a Caratheodory function satisfying (Gi), (G2)
with 2a + j3 = 1 and /? < 1. Then the problem (1.1) is solvable for each h e ^Vx(i),
provided that (G3) holds and for a.e. x e 4?

lim ^ = 0. (2.9)

Proof. In proving Theorem 2.1, the condition 2a + f3 < 1 is used only to show
that the sequence {(l/Hunll1^) Jg{x,un)Qun} is convergent to zero in E. Thus we
can proceed exactly the same way as in the proof of Theorem 2.1, and it suffices to
prove that {(l/Hunll1"'3)/g(x,un)Qun} is convergent to zero. By the assumption of
(Gi), the sequence {Lun/||ura||

a} is bounded in H. Using the compactness of L~y that
{Qun/WunW*} has a subsequence that is convergent in H. We may assume without loss of
generality that {<2un/||un||Q} is bounded by an L2(/2)-function independent of n. Since
2a + 0 = 1 and /? < 1, we have a > 0. It follows from (2.9), the fact that un(x) —> 00
for a.e. x 6 J?+, un(x) —> —00 for a.e. x € fi~ and the Lebesgue bounded convergence
theorem that we have

g{x'Un)QU

/I . . .
tu(x)=0
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I

J\u/|un(i)|>7-0 |wn | a

-> 0 as re -> oo. (2-10)

D

Theorem 2.3. Let j : f l x R - > R b e a Caratheodory function satisfying (Gi), (G2)
with 2a + /? ^ 1. Then the problem (1.1) is solvable for each h 6 iVx(.L), provided that
for each w 6 iV(L) \ {0},

/ rt-fTiU/if'T-M1"'9 HT — on f?111
/ i//3 l,-l'^l"'V-i^| Q-C — °°- VZ-1JJ

iu(x)>0 ^tu(x)<0
Proof. By the assumption of 2a + /? ^ 1, we find that the left-hand side of the

first inequality of (2.5) is bounded by a constant independent of n and (2.8) is satisfied.
Clearly, both

w(x)=0 w(x)=0 " "

are bounded by a constant independent of n. Applying Fatou's Lemma to the left-hand
side of the first equality of (2.8), we have

/ g+(x)\w(x)\1-Pdx+ f
Jw(x)>0 Jw(x)<0

lim sup -
n—*oo I l

9(x,un)Qun

ui(x)=0

<OO,

| l - / 3

which contradicts the condition (2.11), and the proof is complete. •

If the null space of L enjoys the unique continuation property, then the assumption of
P < 1 in Theorem 2.2 is superfluous, and the following theorem can be proved.

Theorem 2.4. Under assumptions of Theorem 2.3, the problem (1.1) is solvable for
each h € A^X(L), provided that N(L) has the unique continuation property and both
(2.9) and (G3) hold.
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Proof. It suffices to prove that the theorem is true when /? = 1 and a = 0, and it
needs only to be shown that

g(x, un)Qun -> 0, as n —> oo. (2.12)

Indeed, the unique continuation property of N(L) implies that, for a.e. x 6 i?, |un(x)| ->
oo as n —> oo. It follows from this, (2.9) and the boundedness of {Qun} in H that (2.12)
is satisfied. Hence the proof is complete. •

If h = 0 in L2(J?) and (Lu,u)H > 0 for all u € D(L), then the condition (2.9) in
Theorem 2.4 is superfluous, and the following theorem can be obtained.

Theorem 2.5. Under the assumptions of Theorem 2.3. Assume that (LU,U)H ^ 0 for
all u e D(L), then the problem (1.1) is solvable, provided that h = 0 in L2(Q), N(L)
has the unique continuation property and (G3) is satisfied.

Proof. Taking the inner product of (2.1) in H when u = un and t = tn with un, we
have

tn / g(x,un)un < (Lun,un)H + (1 - tn) / f{Pun)Pun + tn g{x,un)un

= tnj hun = 0.

Combining this with (G3), we obtain

< / 9/s {X)\WKX)\ ax-\- 1 gp (x)\w{X)\ ax

Jw(x)>0 Jw(x)<0

l iminf M 0 / g{x,un)un

which is a contradiction. •

If a = 0, 0 = 1 and dim N(L) = 1, then the unique continuation property for N(L) in
Theorem 2.4 can be omitted, and the following theorem can be proved.

Theorem 2.6. Let g : tt xR ->R be a Caratheodory function satisfying (Gi), (G2)
with a = 0 and /? = 1. Assume that dim JV(L) = 1, then, for each h 6 NX(L), the
problem (1.1) is solvable, provided that both (G3) and (2.9) hold.

Proof. Let w € N(L) \ {0} be obtained as in the proof of Theorem 2.1, and let
Qw = {x\w(x) 7̂  0}. Then

/ g(x,un)Pun = / g(x,un)Pun < / hPun = 0.
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Therefore, if integrals in (2.4) and (2.5) are taken over Qw with a = 0 and 0=1, then
we have, analogously,

(x)<0
0< / g?(x)dx+ I

Jw(x)>0 Jw(x

< hminf / g(x,un)un
"-*00 Jnw

g(x,un)Qun

= 0, (2.13)

which has arrived at a contradiction. Hence the proof is complete. D

Remark 2.7. Under the special case a = 0, 0 = 1 and c{x) ^ CQ > 0 for a.e. i f f i
and a fixed positive number CQ. Conclusions of Theorems 2.4 and 2.6 have been obtained
by Ha [9] and Robinson and Landesman [18].

Remark 2.8. By slightly modifying the proofs of Theorems 2.1-2.6. The condition
h e NX(L) can be replaced by either (1.2) if 0 = 0; or h € L2(f2) is arbitrary and (G3)
is satisfied if —a ̂  0 < 0.

Finally, we give an example to show that problems (1.3)-(1.5) are solvable when the
nonlinearity g(x,u) has sublinear growth in u as |u| —> oo and (1.2) may be excluded.
Let a,0 e R, 0 ^ 0, a < 1 and 2a + 0 ^ 1, let c,de L2(J?) and let a G L°°{Q), a > 0.
We define

_ c(*)« :, .. ^ n

gi(x,u) =a(x)(sgau)\smu\\u\a, g2(x, u) = <
d(x)u

andg(x,u) = g1{x,u)+g2(x,u). Then \g(x,u)\ ^ HaHoolu^ + KiJI + l^a ; ) ! , ^^ ) = c(x),
9p(x) = d(x), and lim infu^^ g(x, u) = limsupu_>_oog(x,u) = 0 for 0 > 0. Hence one
of problems (1.3)—(1.5) is solvable, provided that

c{x)\v(x)\1-0dx+ [ d{x)\v{x)\x~0dx > f h{x)v(x)dx = 0
Jv(x)<o Jn/ [

for all v € N(L) - {0}, and either (i) 2a+ 0 < 1; or (ii) (2.9) is satisfied and 2a+ 0 = 1,
holds, where N(L) = N{A + Xn).
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