ON THE SOLVABILITY OF SEMILINEAR DIFFERENTIAL EQUATIONS AT RESONANCE

CHUNG-CHENG KUO
Department of Mathematics, Fu Jen University, Taipei, Taiwan, Republic of China

(Received 22 December 1997)

Abstract

In this paper we use the Leray-Schauder continuation method to study the existence of solutions for semilinear differential equations $L u+g(x, u)=h$, in which the linear operator L on $L^{2}(\Omega)$ may be non-self-adjoint, the $L^{2}(\Omega)$-function h belongs to $N^{\perp}(L)$, the nonlinear term $g(x, u) \in O\left(|u|^{\alpha}\right)$ as $|u| \rightarrow \infty$ for some $0 \leqslant \alpha<1$ and satisfies $$
\int_{v(x)>0} g_{\beta}^{+}(x)|v(x)|^{1-\beta} \mathrm{d} x+\int_{v(x)<0} g_{\beta}^{-}(x)|v(x)|^{1-\beta} \mathrm{d} x>0
$$ for all $v \in N(L)-\{0\}$, where $\beta \in \mathbb{R},-\alpha \leqslant \beta \leqslant 1$ and $2 \alpha+\beta \leqslant 1, g_{\beta}^{+}(x)=\liminf _{u \rightarrow \infty}\left(g(x, u) u /|u|^{1-\beta}\right)$ and $g_{\beta}^{-}(x)=\liminf u_{u-\infty}\left(g(x, u) u /|u|^{1-\beta}\right)$.

Keywords: Landesman-Lazer condition; Leray-Schauder continuation method
AMS 1991 Mathematics subject classification: Primary 35J11, 47H11, 47H15

1. Introduction

Let $\Omega \subset \mathbb{R}^{N}(N \geqslant 1)$ be a bounded domain and $H=L^{2}(\Omega)$ with the inner product $(\cdot, \cdot)_{H},(u, v)_{H}=\int_{\Omega} u v$. We consider the following abstract differential equation

$$
\begin{equation*}
L u+g(x, u)=h \tag{1.1}
\end{equation*}
$$

where $h \in H$ is given, $L: D(L) \subset H \rightarrow H$ is a closed, densely defined linear operator satisfying the following conditions:
(L_{1}) the null space $N(L)$ of L is finite-dimensional;
(L_{2}) the range $R(L)$ of L is closed;
(L_{3}) $R(L)=N^{\perp}(L) ;$
$\left(L_{4}\right)$ the right inverse $L^{-1}: R(L) \rightarrow R(L)$ of L is a compact linear operator;
and $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ is a Caratheodory function satisfying
$\left(G_{1}\right)$ there exist constants $a \geqslant 0,0 \leqslant \alpha<1$, and $b \in H, b \geqslant 0$ such that for a.e. $x \in \Omega$ and all $u \in \mathbb{R}$

$$
|g(x, u)| \leqslant a|u|^{\alpha}+b(x)
$$

$\left(G_{2}\right)$ there exist constants $|\beta| \leqslant 1, r_{0} \geqslant 0$ and $c \in L^{2 /(1+\beta)}(\Omega)$ such that for a.e. $x \in \Omega$ and $|u| \geqslant r_{0}$

$$
g(x, u) u \geqslant c(x)|u|^{1-\beta}
$$

$\left(G_{3}\right)$

$$
\int_{w(x)>0} g_{\beta}^{+}(x)|w(x)|^{1-\beta} \mathrm{d} x+\int_{w(x)<0} g_{\beta}^{-}(x)|w(x)|^{1-\beta} \mathrm{d} x>0
$$

for all $w \in N(L)-\{0\} ;$
where $g_{\beta}^{+}(x)=\liminf _{u \rightarrow \infty}\left(g(x, u) u /|u|^{1-\beta}\right)$ and $g_{\beta}^{-}(x)=\liminf _{u \rightarrow-\infty}\left(g(x, u) u /|u|^{1-\beta}\right)$. The solvability of (1.1) has been extensively studied if L (or $-L$) $=A+\lambda, A$ may be a non-self-adjoint uniformly elliptic operator with the principal eigenvalue λ and the nonlinearity g may be assumed to grow superlinearly in u as $|u| \rightarrow \infty$ (see $[\mathbf{1}, \mathbf{3}, \mathbf{7}, \mathbf{8}$, 11, 13, 14]). When A is self-adjoint with a higher eigenvalue λ, and the nonlinearity g has at most linear growth in u as $|u| \rightarrow \infty$, existence theorems of (1.1) are proved in $[2,4-6,12,15,16]$ if h satisfies the following Landesman-Lazer condition:

$$
\begin{equation*}
\int_{\Omega} h(x) v(x) \mathrm{d} x<\int_{v>0} g_{0}^{+}(x)|v(x)| \mathrm{d} x+\int_{v<0} g_{0}^{-}(x)|v(x)| \mathrm{d} x \tag{1.2}
\end{equation*}
$$

for each $v \in N(L)-\{0\}$.
The purpose of this paper to give several abstract existence theorems of (1.1) by using the Leray-Schauder continuation method (see [17]) when $g(x, u) \in O\left(|u|^{1 / 2}\right)$ as $|u| \rightarrow \infty$, $h \in N^{\perp}(L)$ and (G_{3}) may be satisfied with $\beta>0$ and $2 \alpha+\beta \leqslant 1$, in which we improve the main results of Ha [9], Hess [10] and Robinson and Landesman [18], where they assume that g is a bounded function that satisfies $\left(G_{2}\right)$ and $\left(G_{3}\right)$ with $c=r_{0}=0, \beta=1$ and $h \in N^{\perp}(L)$. Our results can be applied to many well-known differential operators. For example, let $\tilde{\Omega}$ be a bounded open set in $\mathbb{R}^{N}(N \geqslant 1)$, and λ_{n} be the nth eigenvalue of the Laplacian $-\Delta: W^{2,2}(\tilde{\Omega}) \cap H_{0}^{1}(\tilde{\Omega}) \rightarrow L^{2}(\tilde{\Omega})$. We first consider the existence of solutions of the problem

$$
\text { (i) }\left\{\begin{array}{l}
\pm\left(\Delta u+\lambda_{n} u\right)+g(x, u)=h \text { on a.e. } x=\tilde{x} \in \Omega=\tilde{\Omega} \tag{1.3}\\
u=0 \text { on } \partial \Omega
\end{array}\right.
$$

where $L: D(L) \subset L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is defined by

$$
D(L)=\left\{u \in L^{2}(\Omega) \mid \Delta u \in L^{2}(\Omega) \text { and } u=0 \text { on } \partial \Omega\right\} \quad \text { and } \quad L(u)= \pm\left(\Delta u+\lambda_{n} u\right)
$$

In order, we consider the existence of time-periodic solutions of problems
(ii) $\left\{\begin{array}{l} \pm\left[u_{t}-\Delta u-\lambda_{n} u\right]+g(x, u)=h \text { on a.e. } x=(\tilde{x}, t) \in \Omega=\tilde{\Omega} \times(-\pi, \pi), \\ u=0 \text { on } \partial \tilde{\Omega} \times \mathbb{R},\end{array}\right.$
where $L: D(L) \subset L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is defined by

$$
D(L)=\left\{u \in L^{2}(\Omega) \mid D_{t} u, \Delta u \in L^{2}(\Omega) \text { and } u=0 \text { on } \partial \tilde{\Omega} \times \mathbb{R}\right\}
$$

and $L(u)= \pm\left(u_{t}-\Delta u-\lambda_{n} u\right) ;$ and

$$
\left\{\begin{array}{l}
\pm\left[u_{t t}-\Delta u+\nu u_{t}-\lambda_{n} u\right]+g(x, u)=h \text { on a.e. } x=(\tilde{x}, t) \in \Omega=\tilde{\Omega} \times(-\pi, \pi) \tag{iii}\\
u=0 \text { on } \partial \tilde{\Omega} \times \mathbb{R}
\end{array}\right.
$$

where $\nu \neq 0, L: D(L) \subset L^{2}(\Omega) \rightarrow L^{2}(\Omega)$ is defined by

$$
D(L)=\left\{u \in L^{2}(\Omega) \mid D_{t} u, D_{t t} u, \Delta u \in L^{2}(\Omega) \text { and } u=0 \text { on } \partial \tilde{\Omega} \times \mathbb{R}\right\}
$$

and $L(u)= \pm\left[u_{t t}-\Delta u+\nu u_{t}-\lambda_{n} u\right]$.

2. Existence theorems

In this section we shall always assume that the linear operator L is closed, densely defined and satisfies $\left(L_{1}\right)-\left(L_{4}\right)$.

Theorem 2.1. Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Caratheodory function satisfying (G_{1}) and $\left(G_{2}\right)$ with $2 \alpha+\beta<1$. Then, for each $h \in N^{\perp}(L)$, the problem (1.1) is solvable, provided that $\left(G_{3}\right)$ holds.

Proof. Let P and Q be the orthogonal projections of H on $N(L)$ and $R(L)$, respectively, and let $f: H \rightarrow H$ be a continuous function defined by

$$
f(u)= \begin{cases}u, & \text { if }\|u\| \leqslant 1 \\ u /\|u\|, & \text { if }\|u\|>1\end{cases}
$$

We consider the following semilinear equations

$$
\begin{equation*}
L u+(1-t) f(P u)+t g(x, u)=t h \tag{2.1}
\end{equation*}
$$

for $0 \leqslant t \leqslant 1$. Then the problem (2.1) has only a trivial solution when $t=0$, and becomes the original problem (1.1) when $t=1$. To apply the Leray-Schauder continuation method, it suffices to show that there exists $R_{0}>0$ such that $\|u\|<R_{0}$ for each $0<t<1$ and for all possible solutions u to (2.1). Now let u be a possible solution of (2.1) for some $0<t<1$. By $\left(L_{4}\right)$ we have

$$
\begin{align*}
\|Q u\| & =\left\|L^{-1}\{(1-t) f(P u)+t g(x, u)-t h\}\right\| \\
& \leqslant\left\|L^{-1}\right\|\|(1-t) f(P u)+t g(x, u)-t h\| \\
& \leqslant\left\|L^{-1}\right\|\left((1-t)+a\|u\|^{\alpha}+\|b\|+\|h\|\right) \\
& \leqslant C_{1}+C_{2}\|u\|^{\alpha} \tag{2.2}
\end{align*}
$$

for some constants $C_{1}, C_{2} \geqslant 0$ independent of u. To show that solutions to (2.1) for $0<t<1$ have an a priori bound in H, we argue by contradiction, and suppose that there exists a sequence $\left\{u_{n}\right\}$ in H and a corresponding sequence $\left\{t_{n}\right\}$ in $(0,1)$ such that u_{n} is a solution to (2.1) with $t=t_{n}$ and $\left\|u_{n}\right\| \geqslant n$ for all n. Let $v_{n}=u_{n} /\left\|u_{n}\right\|$, then $\left\|v_{n}\right\|=1$, and, by (2.2), we have, for each $n \in \mathbb{N}$,

$$
\begin{equation*}
\left\|Q v_{n}\right\| \leqslant \frac{\left(C_{1}+C_{2}\left\|u_{n}\right\|^{\alpha}\right)}{\left\|u_{n}\right\|} \tag{2.3}
\end{equation*}
$$

Since $\alpha<1$, the right-hand side of (2.3) tends to zero in \mathbb{R} as $n \rightarrow \infty$, and, since $\left\{P v_{n}\right\}$ is bounded in H and $N(L)$ is of finite dimension, we may assume, without loss of generality, that $\left\{v_{n}\right\}$ is bounded by an $L^{2}(\Omega)$-function independent of n, converges to w in H, and is pointwise convergent to w on a.e. $x \in \Omega$. It follows that $u_{n}(x) \rightarrow \infty$ for a.e. $x \in \Omega_{w}^{+}=\{y \in \Omega \mid w(y)>0\}, u_{n}(x) \rightarrow-\infty$ for a.e. $x \in \Omega_{w}^{-}=\{y \in \Omega \mid w(y)<0\}$, and $w \not \equiv 0$ because $\left\|v_{n}\right\|=1$ for all $n \in \mathbb{N}$. Taking the inner product of (2.1) in H when $u=u_{n}$ and $t=t_{n}$ with $P u_{n}$, we obtain from $\left(L_{3}\right)$ that

$$
\begin{align*}
t_{n} \int g\left(x, u_{n}\right) P u_{n} & \leqslant\left(1-t_{n}\right) \int f\left(P u_{n}\right) P u_{n}+t_{n} \int g\left(x, u_{n}\right) P u_{n} \\
& =t_{n} \int h P u_{n} \tag{2.4}
\end{align*}
$$

It is clear from the assumption of $h \in N^{\perp}(L)$ that the right-hand side of the last equality of (2.4) is equal to zero. From $\left(G_{1}\right),(2.2)$ and the assumption of $2 \alpha+\beta<1$ that there exist constants $C_{3}, C_{4} \geqslant 0$ independent of n such that

$$
\begin{align*}
\frac{\left|\int g\left(x, u_{n}\right) Q u_{n}\right|}{\left\|u_{n}\right\|^{1-\beta}} & \leqslant \frac{\int\left(a\left|u_{n}\right|^{\alpha}+b\right)\left|Q u_{n}\right|}{\left\|u_{n}\right\|^{1-\beta}} \\
& \leqslant \frac{\left(C_{3}\left\|u_{n}\right\|^{\alpha}+C_{4}\right)\left(C_{1}+C_{2}\left\|u_{n}\right\|^{\alpha}\right)}{\left\|u_{n}\right\|^{1-\beta}} \\
& \rightarrow 0 \text { as } n \rightarrow \infty \tag{2.5}
\end{align*}
$$

By $\left(G_{1}\right)$, we have, for $0 \neq\left|u_{n}(x)\right| \leqslant r_{0}$,

$$
\begin{align*}
\frac{\left|g\left(x, u_{n}\right) u_{n}\right|}{\left|u_{n}\right|^{1-\beta}}\left|v_{n}\right|^{1-\beta} & \leqslant \frac{\left|g\left(x, u_{n}\right)\right|\left|u_{n}\right|}{\left\|u_{n}\right\|^{1-\beta}} \\
& \leqslant \frac{\left[a r_{0}^{\alpha}+b(x)\right] r_{0}}{\left\|u_{n}\right\|^{1-\beta}} \tag{2.6}
\end{align*}
$$

and, by $\left(G_{2}\right)$ and the assumption of $\beta \leqslant 1$, we also have for $\left|u_{n}(x)\right|>r_{0}$

$$
\begin{equation*}
\frac{g\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{1-\beta}}\left|v_{n}\right|^{1-\beta} \geqslant c(x)\left|v_{n}\right|^{1-\beta} \tag{2.7}
\end{equation*}
$$

It follows from (2.6), (2.7) and the fact that $\left|v_{n}\right|$ is pointwise bounded by an $L^{2}(\Omega)$ function independent of n, that we have $\left(g\left(x, u_{n}\right) u_{n} /\left|u_{n}\right|^{1-\beta}\right)\left|v_{n}\right|^{1-\beta}$ is bounded from
below by an $L^{1}(\Omega)$-function independent of n. Using (2.3), (2.4), (2.6), (2.7), the fact that $t_{n} \neq 0$ and $h \in N^{\perp}(L)$, we also have

$$
\left.\left.\begin{array}{rl}
\int_{\substack{v_{n}(x)>0 \\
w(x) \neq 0}} \frac{g\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{1-\beta}}\left|v_{n}\right|^{1-\beta}+\int_{\substack{v_{n}(x)<0 \\
w(x) \neq 0}} \frac{g\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{1-\beta}}\left|v_{n}\right|^{1-\beta} \\
& =\int_{\substack{v_{n}(x) \neq 0 \\
w(x) \neq 0}} \frac{g\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{1-\beta}}\left|v_{n}\right|^{1-\beta} \\
& =\int_{\substack{u_{n}(x) \neq 0 \\
w(x) \neq 0}} \frac{g\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{1-\beta}}\left|v_{n}\right|^{1-\beta} \\
& =\int_{u_{n}(x) \neq 0} \frac{g\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{1-\beta}}\left|v_{n}\right|^{1-\beta}-\int_{\substack{n_{n}(x) \neq 0 \\
w(x)=0}} \frac{g\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{1-\beta}}\left|v_{n}\right|^{1-\beta} \\
& =\frac{1}{\left\|u_{n}\right\|^{1-\beta}} \int g\left(x, u_{n}\right) u_{n}-\int_{\substack{u_{n}(x) \neq 0 \\
w(x)=0}} \frac{g\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{1-\beta}}\left|v_{n}\right|^{1-\beta} \\
& \leqslant \frac{1}{\left\|u_{n}\right\|^{1-\beta}} \int g\left(x, u_{n}\right) Q u_{n}-\int_{\substack{u_{n}(x) \neq 0 \\
w(x)=0}} \frac{g\left(x, u_{n}\right) u_{n}}{\left|u_{n}\right|^{1-\beta}}\left|v_{n}\right|^{1-\beta} \\
& \leqslant \frac{1}{\left\|u_{n}\right\|^{1-\beta}}\left|\int g\left(x, u_{n}\right) Q u_{n}\right|+\int_{\substack{\left|u_{n}(x)\right|>r_{0} \\
w(x)=0}}|c|\left|v_{n}\right|^{1-\beta}+\int_{0<\left|u_{n}(x)\right| \leqslant r_{0}}^{w(x)=0}< \tag{2.8}
\end{array}\right] \frac{a r_{0}^{\alpha}+b}{\left\|u_{n}\right\|^{1-\beta}}\right] .
$$

Clearly, from (2.5), the assumption of $2 \alpha+\beta<1$, the fact of $v_{n}(x) \rightarrow 0$ for a.e. $x \in \Omega_{w}^{0}=\{y \in \Omega \mid w(y)=0\}$ and the Lebesgue bounded convergence theorem that the right-hand side of the last inequality of (2.8) is convergent to zero as n approaches ∞. Applying Fatou's Lemma to the left-hand side of the first equality of (2.8), we have

$$
\begin{aligned}
& \int_{w(x)>0} g_{\beta}^{+}(x)|w(x)|^{1-\beta} \mathrm{d} x+\int_{w(x)<0} g_{\beta}^{-}(x)|w(x)|^{1-\beta} \mathrm{d} x \\
&= \int g_{\beta}^{+}(x)|w(x)|^{1-\beta} \chi_{\Omega_{w}^{+}} \mathrm{d} x+\int g_{\beta}^{-}(x)|w(x)|^{1-\beta} \chi_{\Omega_{w}^{-}} \mathrm{d} x \\
&= \int_{w(x) \neq 0} g_{\beta}^{+}(x)|w(x)|^{1-\beta} \chi_{\Omega_{w}^{+}} \mathrm{d} x+\int_{w(x) \neq 0} g_{\beta}^{-}(x)|w(x)|^{1-\beta} \chi_{\Omega_{\bar{w}}^{-}} \mathrm{d} x \\
& \leqslant \int_{w(x) \neq 0} \liminf _{n \rightarrow \infty}\left[\frac{g\left(x, u_{n}(x)\right) u_{n}(x)}{\left|u_{n}(x)\right|^{1-\beta}}\left|v_{n}(x)\right|^{1-\beta} \chi_{\Omega_{v_{n}}^{+}}\right] \mathrm{d} x \\
& \quad+\int_{w(x) \neq 0} \liminf _{n \rightarrow \infty}\left[\frac{g\left(x, u_{n}(x)\right) u_{n}(x)}{\left|u_{n}(x)\right|^{1-\beta}}\left|v_{n}(x)\right|^{1-\beta} \chi_{\Omega_{v_{n}}^{-}}\right] \mathrm{d} x \\
& \leqslant \liminf _{n \rightarrow \infty} \int_{w(x) \neq 0} \frac{g\left(x, u_{n}(x)\right) u_{n}(x)}{\left|u_{n}(x)\right|^{1-\beta}}\left|v_{n}(x)\right|^{1-\beta} \chi_{\Omega_{v_{n}}^{+}} \mathrm{d} x \\
& \quad+\left.\liminf _{n \rightarrow \infty} \int_{w(x) \neq 0} \frac{g\left(x, u_{n}(x)\right) u_{n}(x)}{\left|u_{n}(x)\right|^{1-\beta}} v_{n}(x)\right|^{1-\beta} \chi_{\Omega_{v_{n}}^{-\beta}} \mathrm{d} x
\end{aligned}
$$

$$
\begin{aligned}
& =\liminf _{n \rightarrow \infty} \int_{\substack{v_{n}(x)>0 \\
w(x) \neq 0}} \frac{g\left(x, u_{n}(x)\right) u_{n}(x)}{\left|u_{n}(x)\right|^{1-\beta}}\left|v_{n}(x)\right|^{1-\beta} \mathrm{d} x \\
& \\
& \quad+\liminf _{n \rightarrow \infty} \int_{\substack{v_{n}(x)<0 \\
w(x) \neq 0}} \frac{g\left(x, u_{n}(x)\right) u_{n}(x)}{\left|u_{n}(x)\right|^{1-\beta}}\left|v_{n}(x)\right|^{1-\beta} \mathrm{d} x \\
& \leqslant \liminf _{n \rightarrow \infty}\left[\int_{\substack{v_{n}(x)>0 \\
w(x) \neq 0}} \frac{g\left(x, u_{n}(x)\right) u_{n}(x)}{\left|u_{n}(x)\right|^{1-\beta}}\left|v_{n}(x)\right|^{1-\beta} \mathrm{d} x\right. \\
& \\
& \left.\quad+\int_{\substack{v_{n}(x)<0 \\
w(x) \neq 0}} \frac{g\left(x, u_{n}(x)\right) u_{n}(x)}{\left|u_{n}(x)\right|^{1-\beta}}\left|v_{n}(x)\right|^{1-\beta} \mathrm{d} x\right] \\
& \leqslant 0
\end{aligned}
$$

which contradicts the inequality $\left(G_{3}\right)$, and the proof is complete.

By modifying slightly the proof of Theorem 2.1, we can obtain the following theorems in which $2 \alpha+\beta$ may be equal to 1 .

Theorem 2.2. Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Caratheodory function satisfying $\left(G_{1}\right),\left(G_{2}\right)$ with $2 \alpha+\beta=1$ and $\beta<1$. Then the problem (1.1) is solvable for each $h \in N^{\perp}(L)$, provided that (G_{3}) holds and for a.e. $x \in \Omega$

$$
\begin{equation*}
\lim _{|u| \rightarrow \infty} \frac{g(x, u)}{|u|^{\alpha}}=0 \tag{2.9}
\end{equation*}
$$

Proof. In proving Theorem 2.1, the condition $2 \alpha+\beta<1$ is used only to show that the sequence $\left\{\left(1 /\left\|u_{n}\right\|^{1-\beta}\right) \int g\left(x, u_{n}\right) Q u_{n}\right\}$ is convergent to zero in \mathbb{R}. Thus we can proceed exactly the same way as in the proof of Theorem 2.1, and it suffices to prove that $\left\{\left(1 /\left\|u_{n}\right\|^{1-\beta}\right) \int g\left(x, u_{n}\right) Q u_{n}\right\}$ is convergent to zero. By the assumption of (G_{1}), the sequence $\left\{L u_{n} /\left\|u_{n}\right\|^{\alpha}\right\}$ is bounded in H. Using the compactness of L^{-1} that $\left\{Q u_{n} /\left\|u_{n}\right\|^{\alpha}\right\}$ has a subsequence that is convergent in H. We may assume without loss of generality that $\left\{Q u_{n} /\left\|u_{n}\right\|^{\alpha}\right\}$ is bounded by an $L^{2}(\Omega)$-function independent of n. Since $2 \alpha+\beta=1$ and $\beta<1$, we have $\alpha>0$. It follows from (2.9), the fact that $u_{n}(x) \rightarrow \infty$ for a.e. $x \in \Omega_{w}^{+}, u_{n}(x) \rightarrow-\infty$ for a.e. $x \in \Omega_{w}^{-}$and the Lebesgue bounded convergence theorem that we have

$$
\begin{aligned}
& \frac{1}{\left\|u_{n}\right\|^{1-\beta}}\left|\int g\left(x, u_{n}\right) Q u_{n}\right| \\
& \leqslant \frac{1}{\left\|u_{n}\right\|^{1-\beta}}\left[\int_{\left|u_{n}(x)\right| \leqslant r_{0}}\left|g\left(x, u_{n}\right) Q u_{n}\right|+\int_{\substack{\left|u_{n}(x)\right|>r_{0} \\
w(x) \neq 0}}\left|g\left(x, u_{n}\right) Q u_{n}\right|\right. \\
& \left.\quad+\int_{\substack{\left|u_{n}(x)\right|>r_{0} \\
w(x)=0}}\left|g\left(x, u_{n}\right) Q u_{n}\right|\right]
\end{aligned}
$$

Theorem 2.3. Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Caratheodory function satisfying $\left(G_{1}\right)$, (G_{2}) with $2 \alpha+\beta \leqslant 1$. Then the problem (1.1) is solvable for each $h \in N^{\perp}(L)$, provided that for each $w \in N(L) \backslash\{0\}$,

$$
\begin{equation*}
\int_{w(x)>0} g_{\beta}^{+}(x)|w(x)|^{1-\beta} \mathrm{d} x+\int_{w(x)<0} g_{\beta}^{-}(x)|w(x)|^{1-\beta} \mathrm{d} x=\infty . \tag{2.11}
\end{equation*}
$$

Proof. By the assumption of $2 \alpha+\beta \leqslant 1$, we find that the left-hand side of the first inequality of (2.5) is bounded by a constant independent of n and (2.8) is satisfied. Clearly, both

$$
\int_{\substack{\left|u_{n}(x)\right|>r_{0} \\ w(x)=0}}|c(x)|\left|v_{n}(x)\right|^{1-\beta} \mathrm{d} x \quad \text { and } \quad \int_{\substack{0<\left|u_{n}(x)\right| \leqslant r_{0} \\ w(x)=0}} \frac{a r_{0}^{\alpha}+b(x)}{\left\|u_{n}\right\|^{1-\beta}} \mathrm{d} x
$$

are bounded by a constant independent of n. Applying Fatou's Lemma to the left-hand side of the first equality of (2.8), we have

$$
\begin{aligned}
& \int_{w(x)>0} g_{\beta}^{+}(x)|w(x)|^{1-\beta} \mathrm{d} x+\int_{w(x)<0} g_{\beta}^{-}(x)|w(x)|^{1-\beta} \mathrm{d} x \\
& \quad \leqslant \limsup _{n \rightarrow \infty}\left[\frac{1}{\left\|u_{n}\right\|^{1-\beta}}\left|\int g\left(x, u_{n}\right) Q u_{n}\right|+\int_{\substack{\left|u_{n}(x)\right|>r_{0} \\
w(x)=0}}|c|\left|v_{n}\right|^{1-\beta}+\int_{\substack{0<\left|u_{n}(x)\right| \leqslant r_{0} \\
w(x)=0}} \frac{a r_{0}^{\alpha}+b}{\left\|u_{n}\right\|^{1-\beta}}\right]
\end{aligned}
$$

$$
<\infty
$$

which contradicts the condition (2.11), and the proof is complete.
If the null space of L enjoys the unique continuation property, then the assumption of $\beta<1$ in Theorem 2.2 is superfluous, and the following theorem can be proved.

Theorem 2.4. Under assumptions of Theorem 2.3, the problem (1.1) is solvable for each $h \in N^{\perp}(L)$, provided that $N(L)$ has the unique continuation property and both (2.9) and (G_{3}) hold.

$$
\begin{align*}
& \leqslant \frac{1}{\left\|u_{n}\right\|^{1-\beta}} \int_{\left|u_{n}(x)\right| \leqslant r_{0}}\left|g\left(x, u_{n}\right) Q u_{n}\right|+\int_{\substack{\left|u_{n}(x)\right|>r_{0} \\
w(x) \neq 0}}\left[\frac{\left|g\left(x, u_{n}\right)\right|}{\left|u_{n}\right|^{\alpha}}\left|v_{n}\right|^{\alpha} \frac{\left|Q u_{n}\right|}{\left\|u_{n}\right\|^{\alpha}}\right] \\
& +\int_{\substack{\left|u_{n}(x)\right|>r_{0} \\
w(x)=0}} \frac{\left|g\left(x, u_{n}\right)\right|}{\left|u_{n}\right|^{\alpha}}\left[\left|v_{n}\right|^{\alpha} \frac{\left|Q u_{n}\right|}{\left\|u_{n}\right\|^{1-\alpha-\beta}}\right] \\
& \leqslant \frac{1}{\left\|u_{n}\right\|^{1-\beta}}\left\|a_{r_{0}}\right\|\left\|Q u_{n}\right\|+\int_{\substack{\left|u_{n}(x)\right|>r_{0} \\
w(x) \neq 0}}\left[\frac{\left|g\left(x, u_{n}\right)\right|}{\left|u_{n}\right|^{\alpha}}\left|v_{n}\right|^{\alpha}\right] \frac{\left|Q u_{n}\right|}{\left\|u_{n}\right\|^{\alpha}} \\
& +\int_{\substack{\left|u_{n}(x)\right|>r_{0} \\
w(x)=0}} \frac{\left|g\left(x, u_{n}\right)\right|}{\left|u_{n}\right|^{\alpha}}\left[\left|v_{n}\right|^{\alpha} \frac{\left|Q u_{n}\right|}{\left\|u_{n}\right\|^{1-\alpha-\beta}}\right] \\
& \rightarrow 0 \text { as } n \rightarrow \infty \text {. } \tag{2.10}
\end{align*}
$$

Proof. It suffices to prove that the theorem is true when $\beta=1$ and $\alpha=0$, and it needs only to be shown that

$$
\begin{equation*}
\int g\left(x, u_{n}\right) Q u_{n} \rightarrow 0, \quad \text { as } n \rightarrow \infty \tag{2.12}
\end{equation*}
$$

Indeed, the unique continuation property of $N(L)$ implies that, for a.e. $x \in \Omega,\left|u_{n}(x)\right| \rightarrow$ ∞ as $n \rightarrow \infty$. It follows from this, (2.9) and the boundedness of $\left\{Q u_{n}\right\}$ in H that (2.12) is satisfied. Hence the proof is complete.

If $h=0$ in $L^{2}(\Omega)$ and $(L u, u)_{H} \geqslant 0$ for all $u \in D(L)$, then the condition (2.9) in Theorem 2.4 is superfluous, and the following theorem can be obtained.

Theorem 2.5. Under the assumptions of Theorem 2.3. Assume that $(L u, u)_{H} \geqslant 0$ for all $u \in D(L)$, then the problem (1.1) is solvable, provided that $h=0$ in $L^{2}(\Omega), N(L)$ has the unique continuation property and $\left(G_{3}\right)$ is satisfied.

Proof. Taking the inner product of (2.1) in H when $u=u_{n}$ and $t=t_{n}$ with u_{n}, we have

$$
\begin{aligned}
t_{n} \int g\left(x, u_{n}\right) u_{n} & \leqslant\left(L u_{n}, u_{n}\right)_{H}+\left(1-t_{n}\right) \int f\left(P u_{n}\right) P u_{n}+t_{n} \int g\left(x, u_{n}\right) u_{n} \\
& =t_{n} \int h u_{n}=0
\end{aligned}
$$

Combining this with $\left(G_{3}\right)$, we obtain

$$
\begin{aligned}
0 & <\int_{w(x)>0} g_{\beta}^{+}(x)|w(x)|^{1-\beta} \mathrm{d} x+\int_{w(x)<0} g_{\beta}^{-}(x)|w(x)|^{1-\beta} \mathrm{d} x \\
& \leqslant \liminf _{n \rightarrow \infty} \frac{1}{\left\|u_{n}\right\|^{1-\beta}} \int g\left(x, u_{n}\right) u_{n} \\
& \leqslant 0
\end{aligned}
$$

which is a contradiction.
If $\alpha=0, \beta=1$ and $\operatorname{dim} N(L)=1$, then the unique continuation property for $N(L)$ in Theorem 2.4 can be omitted, and the following theorem can be proved.
Theorem 2.6. Let $g: \Omega \times \mathbb{R} \rightarrow \mathbb{R}$ be a Caratheodory function satisfying (G_{1}), (G_{2}) with $\alpha=0$ and $\beta=1$. Assume that $\operatorname{dim} N(L)=1$, then, for each $h \in N^{\perp}(L)$, the problem (1.1) is solvable, provided that both $\left(G_{3}\right)$ and (2.9) hold.

Proof. Let $w \in N(L) \backslash\{0\}$ be obtained as in the proof of Theorem 2.1, and let $\Omega_{w}=\{x \mid w(x) \neq 0\}$. Then

$$
\int_{\Omega_{w}} g\left(x, u_{n}\right) P u_{n}=\int g\left(x, u_{n}\right) P u_{n} \leqslant \int h P u_{n}=0 .
$$

Therefore, if integrals in (2.4) and (2.5) are taken over Ω_{w} with $\alpha=0$ and $\beta=1$, then we have, analogously,

$$
\begin{align*}
0 & <\int_{w(x)>0} g_{1}^{+}(x) \mathrm{d} x+\int_{w(x)<0} g_{1}^{-}(x) \mathrm{d} x \\
& \leqslant \liminf _{n \rightarrow \infty} \int_{\Omega_{w}} g\left(x, u_{n}\right) u_{n} \\
& \leqslant \liminf _{n \rightarrow \infty} \int_{\Omega_{w}} g\left(x, u_{n}\right) Q u_{n} \\
& =0 \tag{2.13}
\end{align*}
$$

which has arrived at a contradiction. Hence the proof is complete.
Remark 2.7. Under the special case $\alpha=0, \beta=1$ and $c(x) \geqslant c_{0}>0$ for a.e. $x \in \Omega$ and a fixed positive number c_{0}. Conclusions of Theorems 2.4 and 2.6 have been obtained by $\mathrm{Ha}[9]$ and Robinson and Landesman [18].

Remark 2.8. By slightly modifying the proofs of Theorems 2.1-2.6. The condition $h \in N^{\perp}(L)$ can be replaced by either (1.2) if $\beta=0$; or $h \in L^{2}(\Omega)$ is arbitrary and (G_{3}) is satisfied if $-\alpha \leqslant \beta<0$.

Finally, we give an example to show that problems (1.3)-(1.5) are solvable when the nonlinearity $g(x, u)$ has sublinear growth in u as $|u| \rightarrow \infty$ and (1.2) may be excluded. Let $\alpha, \beta \in \mathbb{R}, 0 \leqslant \beta, \alpha \leqslant 1$ and $2 \alpha+\beta \leqslant 1$, let $c, d \in L^{2}(\Omega)$ and let $a \in L^{\infty}(\Omega), a \geqslant 0$. We define

$$
g_{1}(x, u)=a(x)(\operatorname{sgn} u)|\sin u \| u|^{\alpha}, \quad g_{2}(x, u)= \begin{cases}\frac{c(x) u}{1+|u|^{1+\beta}}, & \text { if } u \geqslant 0 \\ \frac{d(x) u}{1+|u|^{1+\beta}}, & \text { if } u \leqslant 0\end{cases}
$$

and $g(x, u)=g_{1}(x, u)+g_{2}(x, u)$. Then $|g(x, u)| \leqslant\|a\|_{\infty}|u|^{\alpha}+|c(x)|+|d(x)|, g_{\mathcal{\beta}}^{+}(x)=c(x)$, $g_{\beta}^{-}(x)=d(x)$, and $\liminf { }_{u \rightarrow \infty} g(x, u)=\lim \sup _{u \rightarrow-\infty} g(x, u)=0$ for $\beta>0$. Hence one of problems (1.3)-(1.5) is solvable, provided that

$$
\int_{v(x)>0} c(x)|v(x)|^{1-\beta} \mathrm{d} x+\int_{v(x)<0} d(x)|v(x)|^{1-\beta} \mathrm{d} x>\int_{\Omega} h(x) v(x) \mathrm{d} x=0
$$

for all $v \in N(L)-\{0\}$, and either (i) $2 \alpha+\beta<1$; or (ii) (2.9) is satisfied and $2 \alpha+\beta=1$, holds, where $N(L)=N\left(\Delta+\lambda_{n}\right)$.

Acknowledgements. Research supported in part by the National Science Council of the Republic Of China.

References

1. S. Ahmad, Nonselfadjoint resonance problems with unbounded perturbations, Nonlinear Analysis 10 (1986), 147-156.
2. H. Berestycki and D. G. De Figueiredo, Double resonance in semilinear elliptic problems, Commun. PDE 6 (1980), 91-120.
3. H. Brezis and L. Nirenberg, Characterizations of the ranges of some nonlinear operators and applications to boundary value problems, Ann. Scuola Norm. Sup. Pisa 5 (1978), 225-326.
4. P. Drábek, On the resonance problem with nonlinearity which has arbitrary linear growth, J. Math. Analysis Appl. 127 (1987), 435-442.
5. P. Drábek, Landesman-Lazer condition for nonlinear problems with jumping nonlinearities, J. Diff. Eqns 85 (1990), 186-199.
6. P. DRÁBEK AND F. NICOLOSI, Semilinear boundary value problems at resonance with general nonlinearities, Diff. Integ. Eqns 5 (1992), 339-355.
7. D. G. De Figueiredo and W. M. Ni, Perturbations of a second order linear elliptic problem by nonlinearities without Landesman-Lazer condition, Nonlinear Analysis 3 (1979), 629-634.
8. C. P. Gupta, Perturbations of second order linear elliptic problems by unbounded nonlinearities, Nonlinear Analysis 6 (1982), 919-933.
9. C.-W. HA, On the solvability of an operator equation without Landesman-Lazer condition, J. Math. Analysis Appl. 178 (1993), 547-552.
10. P. Hess, A remark on the preceding paper of Fucik and Krbec, Math. Z. 155 (1977), 139-141.
11. R. Iannacci and M. N. Nkashama, Nonlinear two point boundary value problems at resonance without Landesman-Lazer condition, Proc. Am. Math. Soc. 311 (1989), 711726.
12. R. Iannacci and M. N. Nkashama, Nonlinear elliptic partial differential equations at resonance: higher eigenvalues, Nonlinear Analysis 25 (1995), 455-471.
13. R. Iannacci, M. N. Nkashama and J. R. Ward Jr, Nonlinear second order elliptic partial differential equations at resonance, Trans. Am. Math. Soc. 311 (1989), 711-726.
14. C.-C. Kuo, On the solvability of nonselfadjoint resonance problems, Nonlinear Analysis 26 (1996), 887-891.
15. C.-C. Kuo, Solvability of a nonlinear two point boundary value problem at resonance, J. Diff. Eqns 140 (1997), 1-9.
16. E. M. LANDESMAN AND A. C. LAZER, Nonlinear perturbations of linear elliptic boundary problems at resonance, J. Math. Mech. 19 (1970), 609-623.
17. N. G. Lloyd, Degree theory (Cambridge University Press, 1978).
18. S. B. ROBINSON and E. M. LANDESMAN, A general approach to solvability conditions for semilinear elliptic boundary value problems at resonance, Diff. Integ. Eqns 8 (1995), 1555-1569.
