THE α-REGULAR CLASSES OF THE GENERALIZED SYMMETRIC GROUP

by E. W. READ

(Received 2 April, 1975)
Introduction. The α-regular classes of any finite group G are important since they are those classes on which the projective characters of G with factor set α take non-zero value, and thus a knowledge of the α-regular classes gives the number of irreducible projective representations of G with factor set α (see [4]). Here we look at the particular case of the generalized symmetric group C_{m} wr S_{l}. The analogous problem of constructing the irreducible projective representations of C_{m} wr S_{l} has been dealt with in [6] by generalizing Clifford's. theory of inducing from normal subgroups, but unfortunately, it is not in general possible to determine the irreducible projective characters (and hence the α-regular classes) by this method.

Necessary definitions of factor sets and properties of α-regular elements are given in §1, but a knowledge of the theory of projective representations of finite groups is assumed (see [4], [2]). In §2, we give a brief description of the group C_{m} wr S_{1} as well as the most important results of [1]. The α-regular classes of C_{m} wr S_{l} with respect to $(-1,1,1),(-1,-1,-1)$, $(1,-1,1)$ are determined in $\S 3$ and $\S 4$, and we tabulate these results, together with the α-regular classes of the remaining factor sets in Theorem 5.2.

In all that follows, G is a finite group, \mathbf{C} the complex field, and \mathbf{C}^{*} the group of non-zero elements of C.

1. Factor sets.

Definition 1.1. A mapping $\alpha: G \times G \rightarrow \mathbf{C}^{*}$ is called a factor set of G if

$$
\begin{aligned}
\alpha(x, y) \alpha(x y, z) & =\alpha(x, y z) \alpha(y, z) \text { for all } x, y, z \in G, \text { and } \\
\alpha\left(1_{G}, 1_{G}\right) & =1,
\end{aligned}
$$

where 1_{G} is the identity of G.
Definition 1.2. Let α be a factor set of G. We define $\alpha^{\prime}: G \times G \rightarrow \mathbf{C}^{*}$ by

$$
\alpha^{\prime}(x, y)=\alpha(x, y) \alpha(y, x)^{-1} \quad \text { for all } x, y \in G .
$$

Definition 1.3. An element $a \in G$ is α-regular if $\alpha^{\prime}(a, x)=1$ for all $x \in C_{G}(a)$, the centralizer of a in G.

Lemma 1.4. If $a \in G$ is α-regular, so is every conjugate of a in G. Thus the property of being α-regular is a class function on G.

Proof. See [4].
Lemma 1.5. Let T be a projective representation of G with factor set α, and let χ_{T} be the character of T. If $\chi_{T}(a) \neq 0$, then a is α-regular.

Proof. Let $x \in C_{G}(a)$. Then $T(x) T(a)=\alpha^{\prime}(a, x) T(a) T(x)$, and so $\chi_{T}(a)\left(1-\alpha^{\prime}(a, x)\right)=0$, which gives the result.

Lemma 1.6. Let $a, b, c \in G$ be such that $b, c \in C_{G}(a)$. Then $\alpha^{\prime}(a, b c)=\alpha^{\prime}(a, b) \alpha^{\prime}(a, c)$.
Proof. By repeated applications of 1.1 we have

$$
\begin{aligned}
\alpha^{\prime}(a, b c) & =\alpha(a, b c) \alpha(b c, a)^{-1}=\alpha(a, b c) \alpha(b, c) \alpha(b, c)^{-1} \alpha(b c, a)^{-1} \\
& =\alpha(a, b) \alpha(a b, c) \alpha(b, c a)^{-1} \alpha(c, a)^{-1}=\alpha(a, b) \alpha(a, c) \alpha(b, a)^{-1} \alpha(c, a)^{-1}
\end{aligned}
$$

Definition 1.7. Let α be a factor set of G, and assume there exists some integer n such that $\alpha(x, y)^{n}=1$ for all $x, y \in G$. The smallest value of n such that this holds is called the order of α. If no such n exists, α is said to be of infinite order.

Lemma 1.8. Let α be a factor set of G of finite order n and let s be any integer such that $(n, s)=1$. If $a \in G$ is such that a^{s} is α-regular, then a is also α-regular.

Proof. Let $x \in C_{G}(a)$. Then $x \in C_{G}\left(a^{s}\right)$ and hence $\alpha^{\prime}(a, x)^{s}=\alpha^{\prime}\left(a^{s}, x\right)=1$ by Lemma 1.6. However, as α is of order n, we must have $\alpha^{\prime}(a, x)^{n}=1$, and hence $\alpha^{\prime}(a, x)=1$.
2. The generalized symmetric group. C_{m} wr S_{l} is the wreath product of the cyclic group C_{m} of order m with the symmetric group S_{l} on l symbols (see e.g. [3]). Here, however, it is more convenient to think of the group in other terms. It has a presentation

$$
\begin{gathered}
C_{m} \mathrm{wr} S_{l}=\left\langle r_{i}(i=1, \ldots, l-1), w_{j}(j=1, \ldots, l)\right| r_{i}^{2}=\left(r_{i} r_{i+1}\right)^{3}=\left(r_{i} r_{j}\right)^{2}=1, \quad(|j-i| \geqq 2), \\
\left.w_{j}^{m}=1, w_{i} w_{j}=w_{j} w_{i}, r_{i} w_{i}=w_{i+1} r_{i}, r_{i} w_{j}=w_{j} r_{i}, \quad j \neq i, i+1\right\rangle
\end{gathered}
$$

(see [6]). It is called the generalized symmetric group because we may think of r_{i} as the transposition $(i, i+1)$ and w_{j} as the mapping $j \rightarrow \xi \dot{j}$, where ξ is some primitive m th root of 1 . Thus C_{m} wr S_{l} permutes the letters $\{1, \ldots, l\}$ as well as multiplying any number of them by some power of ξ.

Let

$$
\sigma=\left(\begin{array}{cccc}
1 & 2 & & l \\
& & \cdots & \\
\xi^{k_{1}} b_{1} & \xi^{k_{2}} b_{2} & & \xi^{k} b_{l}
\end{array}\right) \in C_{m} \mathrm{wr} S_{l},
$$

where $\left\{b_{1}, \ldots, b_{l}\right\}=\{1, \ldots, l\}$, and the k_{i} are positive integers. We define $\Phi: C_{m}$ wr $S_{l} \rightarrow S_{l}$ by

$$
\Phi(\sigma)=\left(\begin{array}{cccc}
1 & 2 & & l \\
b_{1} & b_{2} & \cdots & b_{l}
\end{array}\right)
$$

Then Φ is a homomorphism.
Definition 2.1. $\sigma \in C_{m}$ wr S_{l} is even if $\Phi(\sigma)$ is an even element of S_{l} and odd otherwise. In terms of the generators $\left\{r_{i}, w_{j}\right\}$ given above, σ is even if and only if the number of r_{i} appearing in any expression for σ is even.

Any element $\sigma \in C_{m}$ wr S_{l} may be written down uniquely (up to reordering) as a product of disjoint cycles $\sigma=\theta_{1} \ldots \theta_{t}$ for some t, where

$$
0_{l}=\left(\begin{array}{cccc}
b_{i_{1}} & b_{i_{2}} & & b_{i_{i_{1}}} \tag{1}\\
\xi^{k_{i_{1}}} b_{i_{1}} & \zeta^{k_{i}} b_{i_{2}} & \cdots & \xi^{k_{i_{1}} b_{i_{i}}}
\end{array}\right), i=1, \ldots, t .
$$

Definition 2.2. Let θ_{i} be any cycle of the above form. We define

$$
\operatorname{diag} \theta_{i}=\binom{b_{i_{1}}}{\xi b_{i_{1}}}\binom{b_{i_{2}}}{\xi b_{i_{2}}} \ldots\binom{b_{i_{i_{i}}}}{\xi b_{i_{i_{i}}}}=w_{b_{i_{1}}} w_{b_{l_{2}}} \ldots w_{b_{i_{i_{1}}}}
$$

We note that $\operatorname{diag} \theta_{i}$ is always an even element of C_{m} wr S_{l}.
Definition 2.3. Let $\sigma=\theta_{1} \ldots \theta_{i} \in C_{m}$ wr S_{l}, where $\left\{\theta_{i} \mid i=1, \ldots, t\right\}$ are the disjoint cycles of σ. For any such θ_{i} we define $f\left(\theta_{i}\right)=\sum_{j=1}^{l_{1}} k_{i j}$ (as in (1)).

Let $a_{p q}$ be the number of cycles θ_{i} of σ of length q such that $f\left(\theta_{i}\right) \equiv p(\bmod m)$, for $1 \leqq p \leqq m, 1 \leqq q \leqq l$. The $m \times l$ matrix $\left(a_{p q}\right)$ is called the type $\operatorname{Ty}(\sigma)$ of σ.

Theorem 2.4. $\sigma, \sigma_{1} \in C_{m} \mathrm{wr} S_{l}$ are conjugate if and only if $\operatorname{Ty}(\sigma)=\operatorname{Ty}\left(\sigma_{1}\right)$.
Proof. See [3].
In [1], the following results are proved.
Theorem 2.5. Each projective representation T of C_{m} wr S_{1} may be generated (in the sense of [6]) by a set of matrices $\left\{R_{1}, \ldots, R_{l-1}, V_{1}, \ldots, V_{i}\right\}$, where $R_{i}=T\left(r_{i}\right)$, and $V_{j}=T\left(w_{j}\right)$, in which case the corresponding factor set α of T is of order 2 or 1. Furthermore the matrices $\left\{R_{i}, V_{j}\right\}$ satisfy the following relations: $R_{i}^{2}=I,\left(R_{i} R_{i+1}\right)^{3}=I,\left(R_{i} R_{j}\right)^{2}=\gamma I,|i-j| \geqq 2$, $V_{i}^{m}=I, V_{i} V_{j}=\mu V_{j} V_{i}, j \neq i, R_{i} V_{i}=V_{i+1} R_{i}, R_{i} V_{j}=\lambda V_{j} R_{i}, j \neq i, i+1$, where

$$
\gamma^{2}=\lambda^{(2, m)}=\mu^{(2, m)}=1
$$

The Schur Multiplier of $C_{m} \mathrm{wr} S_{l}$ is then given by

$$
H^{2}\left(C_{m} \text { wr } S_{l}, \mathbf{C}^{*}\right)= \begin{cases}C_{2}=\{(\gamma)\} & \text { if } m \text { is odd, } l \geqq 4, \\ \{1\} & \text { if } m \text { is odd, } l<4, \\ C_{2}^{3}=\{(\gamma, \lambda, \mu)\}, & \text { if } m \text { is even, } l \geqq 4, \\ C_{2}^{2}=\{(\lambda, \mu)\} & \text { if } m \text { is even, } l=3, \\ C_{2}=\{(\mu)\} & \text { if } m \text { is even, } l=2, \\ \{1\} & \text { if } m \text { is even, } l=1 .\end{cases}
$$

For simplicity of notation, we will always use $\{(\gamma, \lambda, \mu)\}$ to denote the multiplier, with the convention that γ, λ, or $\mu=1$ for certain values of m, l (given by the above result).

The relations between the $\left\{R_{i}, V_{j}\right\}$ given in 2.5 imply the following result which is expressed in terms of the factor set α of the projective representation T of C_{m} wr S_{l} generated by $\left\{R_{i}, V_{j}\right\}$.

Lemma 2.6. (i) $\alpha^{\prime}\left(r_{i}, r_{j}\right)=\gamma, \quad|i-j| \geqq 2$
(ii) $\alpha^{\prime}\left(r_{i}, w_{j}\right)=\lambda, \quad j \neq i, i+1$
(iii) $\alpha^{\prime}\left(w_{i}, w_{j}\right)=\mu, \quad j \neq i$.

The proof is easy and is omitted.
Before proceeding to determine the α regular classes of C_{m} wr S_{l} for all (γ, λ, μ), we describe a class of matrices which will be used to construct matrices $\left\{R_{i}, V_{j}\right\}$ satisfying 2.5.

Lemma 2.7. Let k be any positive integer. There exist matrices $\left\{N_{1}, \ldots, N_{2 k+1}\right\}$ of degree 2^{k} satisfying
(i) $N_{j}^{2}=I, j=1, \ldots, 2 k+1$,
(ii) $N_{j} N_{h}=-N_{h} N_{j} \quad j \neq h$,
(iii) $N_{1} N_{2} \ldots N_{2 k+1}=(i)^{k} I, \quad(i=\sqrt{ }-1)$,
(iv) No other product of distinct matrices $N_{j_{1}} \ldots N_{j_{t}}=\zeta I$, for any $\zeta \in \mathbf{C}^{*}$ (apart from a reordering of (iii)).
(v) $N_{j_{1}} \ldots N_{j_{t}}$ has non-zero trace if and only if $N_{j_{1}} \ldots N_{j_{t}}=\zeta I$, for some $\zeta \in \mathbf{C}^{*}$.

Proof. Let $M_{1}, \ldots, M_{2 k+1}$ be defined as in [7, p. 198]. Put $N_{j}=M_{2 k+2-j}$ if j is odd, and $N_{j}=(i) M_{2 k+2-j}$ if j is even.
3. In the case $(\gamma, \lambda, \mu)=(1,1,1)$, the projective representations of C_{m} wr S_{l} are linear (ordinary) representations, and hence all classes are α-regular. Next we consider the α-regular classes of C_{m} wr S_{l}, when α is the factor set of the projective representation T generated by matrices $\left\{R_{i}, V_{j}\right\}$ for $(\gamma, \lambda, \mu)=(-1,1,1)$. (Henceforth, we will write $\alpha \in(-1,1,1)$). Let $\left\{N_{1}, \ldots, N_{2 k+1}\right\}$ be the matrices defined in Lemma 2.7, where $k=\left[\frac{1}{2} l\right]$ (integer part). Putting $R_{i}=(1 / \sqrt{ } 2)\left(N_{i}-N_{i+1}\right), i=1, \ldots, l-1, V_{j}=I, j=1, \ldots, l$, we see that $\left\{R_{i}, V_{j}\right\}$ satisfy the conditions of 2.5 for ($-1,1,1$).
(i) Let $\sigma=\theta_{1} \ldots \theta_{\mathrm{r}}$ be even, where $\left\{\theta_{i} \mid i=1, \ldots, t\right\}$ are the disjoint cycles of σ. Assume further that all θ_{i} are even cycles. Thus, there exists an odd integer p such that

$$
\sigma^{p}=w_{i_{1}}^{a_{1}} \ldots w_{i_{r},}^{a_{i_{r}}} \quad\left(a_{i,} \in \mathbf{Z}_{+}\right)
$$

If T is the projective representation of $C_{m} \mathrm{wr} S_{l}$ generated by the above matrices, (see (6)), then

$$
T\left(\sigma^{p}\right)=I \text {, and hence } \sigma^{p} \text { is } \alpha \text {-regular by 1.5. }
$$

Thus σ is α-regular by Lemma 1.8. If θ_{1} is an odd cycle,

$$
\begin{aligned}
\alpha^{\prime}\left(\theta_{1}, \sigma\right) & =\alpha^{\prime}\left(\theta_{1}, \theta_{1}\right) \alpha^{\prime}\left(\theta_{1}, \theta_{2}, \ldots, \theta_{t}\right)(\text { by Lemma } 1.6) \\
& =-1(\text { by Lemma } 2.6)
\end{aligned}
$$

and as $\theta_{1} \in C_{C_{m} w r s_{t}}(\sigma), \sigma$ is not α-regular.
(ii) Now assume $\sigma=\theta_{1} \ldots \theta_{t}$ is odd, and let $\operatorname{Ty}\left(\theta_{1}\right)=\operatorname{Ty}\left(\theta_{2}\right)$. By Lemma 1.4, we may assume, without loss of generality that

$$
\theta_{1}=\left(\begin{array}{ccc}
a_{1} & \ldots & a_{q} \\
a_{2} & \ldots & \zeta^{p} a_{1}
\end{array}\right) \text { and } \theta_{2}=\left(\begin{array}{ccc}
b_{1} & \ldots & b_{q} \\
b_{2} & \ldots & \varsigma^{p} b_{1}
\end{array}\right) \text {, }
$$

where $\left\{a_{i}, b_{j}\right\} \subseteq\{1, \ldots, l\}$. Define

$$
\theta_{\dagger}=\left(\begin{array}{cccccc}
a_{1} & b_{1} & a_{2} & \ldots & a_{q} & b_{q} \\
b_{1} & a_{2} & b_{2} & \ldots & b_{q} & \zeta^{p} a_{1}
\end{array}\right)
$$

Then $\theta_{\dagger}^{2}=\theta_{1} \theta_{2}$, and thus $\theta_{\dagger} \in C_{C_{m} w S_{l}}(\sigma)$. Further,

$$
\begin{aligned}
\alpha^{\prime}\left(\theta_{\dagger}, \sigma\right) & =\alpha^{\prime}\left(\theta_{\dagger}, \theta_{1} \theta_{2}\right) \alpha^{\prime}\left(\theta_{\dagger}, \theta_{3} \ldots, \theta_{t}\right)(\text { by Lemma 1.6 }) \\
& =-1(\text { by Lemma 2.6 })
\end{aligned}
$$

and hence σ is not α-regular. If all θ_{i} are of different type, $C_{C_{m}{ }^{\boldsymbol{w}} \boldsymbol{S}_{l}}(\sigma)$ consists of elements of the form

$$
\prod_{i=1}^{t}\left(\theta_{i}\right)^{u_{i}}\left(\operatorname{diag} \theta_{i}\right)^{v_{i}}, \quad \text { where } \quad u_{i}, v_{i} \in \mathbf{Z}_{+}
$$

However, $\operatorname{diag} \theta_{i}$ is α-regular by (i), and thus $\alpha^{\prime}\left(\operatorname{diag} \theta_{i}, \sigma\right)=1$. Finally $\alpha^{\prime}\left(\theta_{i}, \sigma\right)=1$ by Lemmas 1.6 and 2.6 (henceforth these references will be omitted), and thus σ is α-regular.
4. We now consider the remaining factor sets. By Theorem $2.5, m \equiv 0(\bmod 2)$, and in this case, we can make the following definition.

Defintion 4.1. $\quad \sigma \in C_{m}$ wr S_{l} of type $\left(a_{p q}\right)$ is positive if $\sum_{q} \sum_{p \text { odd }} a_{p q} \equiv 0(\bmod 2)$, and negative otherwise.

In terms of the generators of C_{m} wr S_{l} given in $\S 2$, we see that σ is positive if and only if the number of w_{j} appearing in any expression for σ is even.

In the following, v_{i} will always denote a positive cycle, and τ_{j} a negative cycle.
4.2. $\alpha \in(-1,-1,-1)$. This case is only briefly sketched, since it is a straightforward generalization of the particular case $m=2$ given in [5]. If $k=\left[\frac{1}{2} l\right]$, we define $\left\{N_{1} \ldots, N_{2 k+1}\right\}$ as in Lemma 2.7, and put

$$
R_{i}=(1 / \sqrt{ } 2)\left(N_{i}-N_{i+1}\right) i=1, \ldots, l-1, \quad \text { and } \quad V_{j}=(-1)^{j} N_{j}, j=1, \ldots, l
$$

Then $\left\{R_{i}, V_{j}\right\}$ generate a projective representation T of C_{m} wr S_{i}, whose factor set $\alpha \in(-1,-1,-1)$. By using an argument similar to that used by Schur in [7], it is easy to show that $\chi_{\tau}(\sigma) \neq 0$ if and only if either
(i) $\sigma=v_{1} \ldots v_{r} \tau_{1} \ldots \tau_{s}$, where all v_{i} are even and all τ_{j} are odd, or (only when l is odd)
(ii) $\sigma=\tau_{1} \ldots \tau_{s}$
(see [5]). All σ of the above form are α-regular by Lemma 1.5. We can however, by using the argument given in [5], prove that these are the only α-regular elements (details omitted).
4.3. $\alpha \in(1,-1,1)$. Let $A=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \quad B=\left(\begin{array}{rr}0 & i \\ -i & 0\end{array}\right)$, and put $R_{j}=A, j=1, \ldots, l-1$ $V_{j}=(-1)^{j} B, j=1, \ldots, l$. The projective representation T generated by $\left\{R_{i}, V_{j}\right\}$ has factor set $\alpha \in(1,-1,1)$ (see Theorem 2.5).
(i) Let $\sigma=v_{1} \ldots v_{r} \tau_{1} \ldots \tau_{s}$, where σ is even, and s is even. $T(\sigma)= \pm I$, and thus all elements of this form are α-regular by 1.5 .
(ii) Assume $\sigma=v_{1} \ldots v_{r} \tau_{1} \ldots \tau_{s}$ (σ even, s odd) is α-regular. Then $T(\sigma)= \pm B$ (see [6]). If v_{1} is odd, $\alpha^{\prime}\left(v_{1}, \sigma\right)=-1$, and similarly if τ_{1} is odd, $\alpha^{\prime}\left(\tau_{1}, \sigma\right)=-1$. Thus all cycles must be even. If $\operatorname{Ty}\left(v_{1}\right)=\operatorname{Ty}\left(v_{2}\right)$, we define v_{\dagger} as in $\S 3(\mathrm{ii})$, and $\alpha^{\prime}\left(v_{\dagger}, \sigma\right)=-1$. Similarly if $\operatorname{Ty}\left(\tau_{1}\right)=\mathrm{Ty}\left(\tau_{2}\right), \alpha^{\prime}\left(\tau_{\dagger}, \sigma\right)=-1$, and thus all cycles must be of different type. However, in this case, $C_{C_{m} w r} S_{1}(\sigma)$ consists of elements ϕ of the form

$$
\phi=\prod_{i}^{r}\left(\operatorname{diag} v_{i}\right)^{a_{i}}\left(v_{i}\right)^{b_{i}} \prod_{j=1}^{s}\left(\operatorname{diag} \tau_{j}\right)^{c_{j}}\left(\tau_{j}\right)^{d_{j}}
$$

(see [3]), and as all v_{i}, τ, are even cycles, $T(\phi)= \pm I$ or $\pm B$. Thus $\alpha^{\prime}(\phi, \sigma)=1$.
(iii) Assume $\sigma=v_{1} \ldots v_{r} \tau_{1} \ldots \tau_{s}$ (σ odd, s even) is α-regular. If v_{1} is even, v_{1} is α-regular by (i) and thus $\alpha^{\prime}\left(\operatorname{diag} v_{1}, v_{1}\right)=1$. $\alpha^{\prime}\left(\operatorname{diag} v_{1}, v_{2} \ldots v_{r} \tau_{1} \ldots \tau_{s}\right)=-1$, and hence $\alpha^{\prime}\left(\operatorname{diag} v_{1}, \sigma\right)=-1$. If τ_{1} exists, even or odd, then $\alpha^{\prime}\left(\tau_{1}, \sigma\right)=-1$, and thus we must have $\sigma=v_{1} \ldots v_{r}$, all v_{i} odd. $C_{C_{m} \text { wr } S_{1}}(\sigma)$ consists of elements ϕ of the form

$$
\phi=\prod_{i=1}^{r} v_{i}^{a_{i}\left(\operatorname{diag} v_{i}\right)^{b_{i}} \theta, .,{ }^{2},}
$$

where θ is conjugate to an element permuting the sets of symbols in cycles with similar type as they stand (see [3]), and as each cycle is of even length, θ is itself an even, positive element of C_{m} wr S_{l}. Thus $T(\phi)= \pm A$ or $\pm I$, and as $T(\sigma)= \pm A, \alpha^{\prime}(\sigma, \phi)=1$.
(iv) Assume $\sigma=v_{1} \ldots v_{r} \tau_{1} \ldots \tau_{s}$ (σ odd, s odd) is α-regular. By a similar argument to (iii), we can show that σ must be of the form $\sigma=\tau_{1} \ldots \tau_{s}$, with all τ_{i} odd. As above, $C_{C_{m} w r}(\sigma)$ consists of elements ϕ of the form

$$
\phi=\prod_{i=1}^{s}\left(\tau_{i}\right)^{a_{1}}\left(\operatorname{diag} \tau_{i}\right)^{b i} \theta
$$

where θ is again even and positive. Thus $T(\phi)= \pm I$ or $\pm B A$, according to whether $\sum_{i=1}^{1} a_{i}$ is even or odd. However, $T(\sigma)= \pm B A$, and thus, $\alpha^{\prime}(\phi, \sigma)=1$.
5. The α-regular classes. We now tabulate the α-regular classes of $C_{m} \mathrm{wr} S_{1}$ for all factor sets (γ, λ, μ), the results in the cases $(-1,1,-1),(-1,-1,1),(1,1,-1),(1,-1,-1)$ being given without proof. The techniques used in these cases are, however, the same as those used in $\S 3$ and $\S 4$. In the actual computations, the following result was used repeatedly.

Lemma 5.1. If $\sigma \in C_{m}$ wr S_{l} is (γ, λ, μ)-regular then it is $\left(\gamma_{1}, \lambda_{1}, \mu_{1}\right)$-regular if and only if it is $\left(\gamma \gamma_{1}, \lambda \lambda_{1}, \mu \mu_{1}\right)$-regular.

Theorem 5.2. The α-regular elements σ of $C_{m} \mathrm{wr} S_{1}$ are the following.
(a) $\alpha \in(1,1,1)$. All classes are α-regular.
(b) $\alpha \in(-1,1,1) . \sigma=\theta_{l} \ldots \theta_{t}$, where the θ_{i} are the disjoint cycles of σ, and either
(i) σ is even and all θ_{i} are even, or
(ii) σ is odd and all θ_{i} are of different type.

Henceforth m is even, and $\sigma=v_{1} \ldots v_{r} \tau_{1} \ldots \tau_{s}$, where $\left\{v_{i}\right\}$ are the disjoint positive cycles, and $\left\{\tau_{i}\right\}$ are the disjoint negative cycles of σ.
(c) $\alpha \in(-1,-1,-1)$. Either
(i) all v_{i} are even and all τ_{j} are odd, or
(ii) $\sigma=\tau_{1} \ldots \tau_{s}$ (only when l is odd).
(d) $\alpha \in(1,-1,1)$. Either
(i) σ is even and s is even, or
(ii) σ is even, s is odd and all cycles are even and of different type, or
(iii) σ is odd and all cycles are odd and positive, or
(iv) σ is odd and all cycles odd and negative.
(e) $\alpha \in(-1,1,-1)$. Either
(i) σ is even, s is even, all v_{i} are even and all τ_{j} odd, or
(ii) σ is even, s is odd and all cycles are even, negative and of different type, or
(iii) σ is odd, s is odd and all cycles are negative.
(f) $\alpha \in(-1,-1,1)$. Either
(i) σ is even, s is even and all cycles are even, or
(ii) σ is even, s is odd and all cycles of different type, or
(iii) σ is odd and all cycles are odd, positive and of different type, or
(iv) σ is odd, s is odd and all cycles are odd, negative and of different type.
(g) $\alpha \in(1,1,-1)$. Either
(i) $\sigma=\tau_{1} \ldots \tau_{s}$, s is odd and all τ_{i} are of different type, or
(ii) $\sigma=v_{1} \ldots v_{r}$ and all v_{i} are even.
(h) $\alpha \in(1,-1,-1)$. Either
(i) σ is even and all cycles are even and positive, or
(ii) σ is even, s is odd and all cycles are even and negative, or
(iii) σ is odd, s is even and all cycles are negative and of different type, or
(iv) σ is odd, s is odd, all v_{i} are even, all τ_{j} are odd and all cycles are of different type.

REFERENCES

1. J. W. Davies and A. O. Morris, The Schur multiplier of the generalized symmetric group, J. London Math. Soc. (2), 8 (1974), 615-620.
2. B. Huppert, Endiche Gruppen (Springer-Verlag, 1967).
3. A. Kerber, Representations of permutation groups, Lecture notes in Mathematics No. 240 (Springer-Verlag, 1971).
4. A. O. Morris, Projective representations of finite groups, Proceedings of the conference on Clifford Algebras, Matscience, Madras 1971 (1972), 43-86.
5. E. W. Read, On projective representations of the finite reflection groups of type B_{l} and D_{l}, J. London Math. Soc. (2) 10 (1975), 129-142.
6. E. W. Read, The projective representations of the generalized symmetric group; to appear.
7. I. Schur, Über die Darstellungen der symmetrischen und der alternierden Gruppe durch gebrochene lineare Substitutionen, J. Reine Angew. Math. 139 (1911), 155-250.

Pure Mathematics Department
The University College of Wales
Aberystwyth

