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Introduction. The a-regular classes of any finite group G are important since they are
those classes on which the projective characters of G with factor set a take non-zero value,
and thus a knowledge of the a-regular classes gives the number of irreducible projective
representations of G with factor set a (see [4]). Here we look at the particular case of the
generalized symmetric group Cm wr S,. The analogous problem of constructing the irreducible
projective representations of Cm wr St has been dealt with in [6] by generalizing Clifford's
theory of inducing from normal subgroups, but unfortunately, it is not in general possible to
determine the irreducible projective characters (and hence the a-regular classes) by this method.

Necessary definitions of factor sets and properties of a-regular elements are given in §1,
but a knowledge of the theory of projective representations of finite groups is assumed (see
[4], [2]). In §2, we give a brief description of the group Cm wr S, as well as the most important
results of [1]. The a-regular classes of Cm wr 5, with respect to ( - 1 , 1, 1), ( - 1 , - 1 , - 1 ) ,
(1, - 1 , 1) are determined in §3 and §4, and we tabulate these results, together with the
a-regular classes of the remaining factor sets in Theorem 5.2.

In all that follows, G is a finite group, C the complex field, and C* the group of non-zero
elements of C.

1. Factor sets.

DEFINITION 1.1. A mapping a: G x G -»C* is called a factor set of G if

a(x, y)a(xy, z) = a(x, yz)a(y, z) for all x,y,ze G, and

«(lc, lo) = 1.

where l c is the identity of G.

DEFINITION 1.2. Let a be a factor set of G. We define a ' : C x G - » C * b y

a'(*> y) = a(*» jOa(j> x) ~1 for all x, y e G.

DEFINITION 1.3. An element aeG is a-regular if a!{a, x) = 1 for all xeCc(a), the
centralizer of a in G.

LEMMA 1.4. IfaeG is a-regular, so is every conjugate of a in G. Thus the property of
being a-regular is a class function on G.

Proof. See [4].

LEMMA 1.5. Let T be a projective representation of G with factor set a, and let XT be the
character of T. IfiT{a) ¥= 0, then a is a-regular.

https://doi.org/10.1017/S0017089500002871 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500002871


THE GENERALIZED SYMMETRIC GROUP 145

Proof. Let xeCG(q). Then T(x)T(a) = a\a, x)T(a)T(x), and so zr(a)(l - a.'(a, x)) = 0,
which gives the result.

LEMMA 1.6. Let a,b,ceG be such that b, ceCG(a). Then a!(a, be) = a!{a, b)u'(a, c).

Proof. By repeated applications of 1.1 we have

a!(a, be) = a(a, bc)u(bc, a )" 1 = a(a, bc)cc(b, c)u(b, c)~1a(bc, a)~l

= <x(a, b)a(ab, c)a(b, ca)~la.{c, a )" 1 = a(a, b)a(a, c)<x(b, a)~l<x(c, a ) " 1

DEFINITION 1.7. Let a be a factor set of G, and assume there exists some integer n such
that a(x,yf = 1 for all x,yeG. The smallest value of n such that this holds is called the
order of a. If no such n exists, a is said to be of infinite order.

LEMMA 1.8. Let cc be a factor set of G of finite order n and let s be any integer such that
(n,s)=l. IfaeGis such that 0s is ct-regular, then a is also a-regular.

Proof. Let xe CG(a). Then xeCG(a*) and hence a.'(a, x)s = a'(cf, x) = 1 by Lemma 1.6.
However, as a is of order n, we must have a.'(a, x)" = 1, and hence a'(a, x) = 1.

2. The generalized symmetric group. Cm wr 5, is the wreath product of the cyclic group
Cm of order m with the symmetric group 5, on / symbols (see e.g. [3]). Here, however, it is
more convenient to think of the group in other terms. It has a presentation

CmwrS, = <r , ( /= 1, . . . , / -1) , Wj(j= I,..., T)\rf = ( /y i + 1)3 = (/y,.)2 = 1, (\j-i\^2),

w"/ = 1, w{wj = WjWi, r-Wt = wi+1rh r,w; = w/, , j / /,

(see [6]). It is called the generalized symmetric group because we may think of rt as the
transposition (/, i+l) and Wj as the mapping /-»£/, where £ is some primitive with root of 1.
Thus Cm wr S, permutes the letters {1,. . . , /} as well as multiplying any number of them by
some power of t,.

Let
/ 1 2 l\

eCmwrS,,

where {bu..., 6,} =s {1 , . . . , /} , and the k{ are positive integers. We define <b: Cm wr 5, -> S, by

I 2

Then O is a homomorphism.

DEFINITION 2.1. <re Cm wr S, is even if $(<r) is an even element of St and odd otherwise.
In terms of the generators {rt, Wj} given above, a is even if and only if the number of ri

appearing in any expression for a is even,
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Any element oeCm wr S, may be written down uniquely (up to reordering) as a product
of disjoint cycles a = 0j ... fl, for some /, where

l,...,t. (1)

DEFINITION 2.2. Let 0t be any cycle of the above form. We define

We note that diag 8t is always an even element of Cm wr S,.

DEFINITION 2.3. Let <x = 6l ... 9, e Cm wr S,, where {0, | i = 1,...,/} are the disjoint cycles

of a. For any such Q{ we define/(0() = Y fc,- (as in (1)).

Let ap? be the number of cycles 0f of a of length 9 such that /(0j) = /? (mod tri), for
1 ^ / 7 ^ / 7 1 , 1 ^ ^ ^ / . The m x / matrix (apq) is called the type Ty(«r) of cr.

THEOREM 2.4. c, Ci e Cm wr 5, are conjugate if and only ifly(o) = Ty(oi).

Proof. See [3].

In [1], the following results are proved.

THEOREM 2.5. Each projective representation T of Cm wr 5, may be generated (in the sense
of [6]) by a set of matrices {Ru ..., Rt.u Vu ..., V,}, where Rt = T(rt), and Vj = T(wj), in
which case the corresponding factor set <x of T is of order 2 or 1. Furthermore the matrices
{RhVj} satisfy the following relations: Rf = I, ( i?,«i + 1)3 = /, (J?,/?_,)2 = y/, | i - y | ^ 2 ,
VT = /, V,Vj = nVjVh j * i, RtV, = Vi+ M, R^ = XVjRb j * i, i+1, where

y2 = 2 ( 2 > m ) = u(2-m) = 1

The Schur Multiplier of Cm wr St is then given by

i/2(Cmwr5,,C*) =

C2 = {(?)} ifmis odd, 1^4,
{1} if m is odd, I < 4,
C\ = {(y, A, n)}, ifm is even, I ^ 4,
C\ = {(A, n)} ifm is even, 1 = 3,
C2 = {(p)} ifm w even, 1 = 2,

.{1} if mis even, 1=1.

For simplicity of notation, we will always use {(y, A, n)} to denote the multiplier, with
the convention that y, X, or /1 = 1 for certain values of m, I (given by the above result).

The relations between the {Rh Vj} given in 2.5 imply the following result which is
expressed in terms of the factor set a of the projective representation T of Cm wr St generated
by {*„ Vj}.
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LEMMA 2.6. (i) <x'(rh r,) = 7, | i-j\ ^ 2
(ii) a'fo, w}) = A, j # 1, i+1

(iii) a'(Wj, vv,) = \i, j ^ ,\

The proof is easy and is omitted.
Before proceeding to determine the a regular classes of Cm wr St for all (y, A, /1), we

describe a class of matrices which will be used to construct matrices {Rh Vj} satisfying 2.5.

LEMMA 2.7. Let k be any positive integer. There exist matrices {Nu..., N2k+i} of
degree 2k satisfying

J
(ii) NjNh=-NhNj jfth,

(iii) N,N2 ...N2k+l= (ifI, (1 = 7 - 1 ) ,
(iv) No other product of distinct matrices NJt ... NJt = £1, for any £eC* (apart from a

reordering of (iii)).
(v) NJi ... NJt has non-zero trace if and only ifNJl ... NJt = U,for some £eC*.

Proof. Let Mu..., M2k+l be defined as in [7, p. 198]. Put Nj = Af2fc+2_J- if; is odd,
and Nj = (i)M2)t+2-J- if 7 is even.

3. In the case (y, A, n) = (1, 1, 1), the projective representations of Cm wr 5, are linear
(ordinary) representations, and hence all classes are oc-regular. Next we consider the a-regular
classes of Cm wr S,, when a is the factor set of the projective representation T generated by
matrices {Rt, K;} for (y, A, p) = ( - 1 , 1, 1). (Henceforth, we will write oce( - l , 1, 1)). Let
{Nu..., N2k+l} be the matrices defined in Lemma 2.7, where k = [\l] (integer part). Putting
K i - O / V ^ M - ^ i + i ) . i"= 1 . . . . . / - 1 , »0 = /, y = 1, . . . , / , we see that {Rh Vj} satisfy the
conditions of 2.5 for (—1, 1, 1).

(i) Let o- = 0i ... 6, be even, where {0, | / = 1,..., /} are the disjoint cycles of a. Assume
further that all 6( are even cycles. Thus, there exists an odd integer p such that

ap = w-.,... wf', ( a , , e Z J

If Tis the projective representation of Cm wr S, generated by the above matrices, (see (6)), then

T(a") = /, and hence ap is a-regular by 1.5.

Thus a is a-regular by Lemma 1.8. If 0, is an odd cycle,

a'(0,, a) = a'(0,, 0,)a'(0,, B2,..., 0.) (by Lemma 1.6)

= — 1 (by Lemma 2.6)

and as 0, eCCmWrS|(ff), a is not a-regular.
(ii) Now assume a = 9t ... 0, is odd, and let Ty(0t) = Ty(02). By Lemma 1.4, we may

assume, without loss of generality that

and 0 = (*/ -
a2

 pJ
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where {a,, bj} c {1 /}. Define
fax bt a2 ... aq

a2 b2

Then 9] = ete2, and thus 0t e CCm wrSt(a). Further,

a'(0t, a) = a'(0t, 9i92)oLl{9v 03 . . . , 0,) (by Lemma 1.6)

= — 1 (by Lemma 2.6)

and hence a is not a-regular. If all 0; are of different type, CCm wr Sl(a) consists of elements of
the form

t

r j (0,)"'(diagOj)"', where u,,vleZ+

However, diag0f is a-regular by (i), and thus a'(diag 0,, a) = 1. Finally a'(6ha)= 1 by
Lemmas 1.6 and 2.6 (henceforth these references will be omitted), and thus cr is a-regular.

4. We now consider the remaining factor sets. By Theorem 2.5, m = 0 (mod 2), and in
this case, we can make the following definition.

DEFINITION 4.1. aeCmwrS, of type (apq) is positive if £ £ apiJ 2= 0 (mod 2), and
negative otherwise. q podd

In terms of the generators of Cm wr S, given in §2, we see that a is positive if and only if
the number of Wj appearing in any expression for a is even.

In the following, vt will always denote a positive cycle, and T,- a negative cycle.

4.2. a e ( - l , —1, - 1 ) . This case is only briefly sketched, since it is a straightforward
generalization of the particular case m = 2 given in [5]. If k = [#], we define {Ni..., N2k+1}
as in Lemma 2.7, and put

W1+1) i = 1, . . . , / - l , and K, = (-1>W;, j= 1,..., /.

Then {Rh Vj} generate a projective representation T of Cm wr Sh whose factor set
ae(— 1, — 1, — 1). By using an argument similar to that used by Schur in [7], it is easy to
show that xt(o-) ^ 0 if and only if either

(i) a = vx ... vrix ... TS, where all vt are even and all T,- are odd, or (only when / is odd)
(i i)a = T1...TI

(see [5]). All a of the above form are a-regular by Lemma 1.5. We can however, by
using the argument given in [5], prove that these are the only a-regular elements (details
omitted).

1\ „ / 0
4 .3 .06(1 , -1 ,1 ) . Leti4 = l 1, B = (_ J . J , and put * y = 4 . /= 1, . . . , / - l

Vj = (— 1)JB, j = 1,..., /. The projective representation Tgenerated by {Rb Vj] has factor
set ae ( l , - 1 , 1) (see Theorem 2.5).

(i) Let a = vx ... vril ... T,, where a is even, and s is even. T(a) = + / , and thus all
elements of this form are a-regular by 1.5,
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(ii) Assume a = Vj ... vrxt ...xs(a even, s odd) is a-regular. Then T(p) = ±B (see [6]).
If Vj is odd, a'(v!, a) = — 1, and similarly if xt is odd, a!(xu a) = — 1. Thus all cycles must
be even. If Ty(vj) = Ty(v2), we define vt as in §3(ii), and a'(vt, <r) = —1. Similarly if
TyCO = Ty(r2), a!(xv a) = —I, and thus all cycles must be of different type. However, in
this case, CCmWrSl(<7) consists of elements <£ of the form

i 7=1

(see [3]), and as all v,, x} are even cycles, T(<f>) = + / or ±B. Thus a'(0, a) = 1.
(iii) Assume a = v1 ... vrx1 ... TS (IT odd, s even) is a-regular. If Vj is even, vt is

a-regular by (i) and thus <x'(diag vu v j = 1. a'(diag v1; v2 ... vrr, ... TS) = —1, and hence
a'(diag v1,a)=—l. If T1 exists, even or odd, then a'(xu a) = —1, and thus we must have
a = Vj ... vr, all v,. odd. CCmWr S,(0O consists of elements $ of the form

where 6 is conjugate to an element permuting the sets of symbols in cycles with similar type
as they stand (see [3]), and as each cycle is of even length, 9 is itself an even, positive element
of Cm wr S,. Thus T(</>) = ±A or + / , and as T(c) = ±A, a!{a, $) = \.

(iv) Assume a = Vj ... \rix ...ts(a odd, sodd) is a-regular. By a similar argument to (iii),
we can show that a must be of the form a = xi ...xs, with all T, odd. As above, CCm wr Sl(o)
consists of elements <f> of the form

where 9 is again even and positive. Thus T(<j)) = ± 7 or +BA, according to whether £ a,-
is even or odd. However, T(p) = ±.&4, and thus, a'(<£, c) = 1. 1=1

5. The a-regular classes. We now tabulate the a-regular classes of Cm wr 5, for all factor
sets (y, X, n), the results in the cases (—1, 1, - 1 ) , (—1, — 1, 1), (1, 1, - 1 ) , (1, - 1 , —1) being
given without proof. The techniques used in these cases are, however, the same as those used
in §3 and §4. In the actual computations, the following result was used repeatedly.

LEMMA 5.1. If asCm wr St is (y, k, \i)-regular then it is (yu Xu n^-regular if and only if
it is (>>)>!, Uu n

THEOREM 5.2. The a-regular elements o o /C m wrS ( are the following.

(a) a e (1,1,1). All classes are a-regular.

(b) ae(— 1,1,1). a = 0 , . . . 9t, where the 0f are the disjoint cycles of a, and either
(i) a is even and all 9t are even, or
(ii) a is odd and all 9t are of different type.

Henceforth m is even, and a = v t . . . v / r , . . . TS, where {vj are the disjoint positive cycles, and
{T(} are the disjoint negative cycles of a.
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(c) « e ( - 1 , - 1 , - 1 ) . Either
(i) all Vj are even and all T,- are odd, or

(ii) a = t j . . . TS (only when I is odd).

(d) oe (1 , -1 ,1) . Either
(i) a is even and s is even, or
(ii) a is even, s is odd and all cycles are even and of different type, or

(iii) a is odd and all cycles are odd and positive, or
(iv) a is odd and all cycles odd and negative.

(e) a e ( - 1 , 1 , - 1 ) . Either
(i) a is even, s is even, all V; are even and all jj odd, or

(ii) a is even, s is odd and all cycles are even, negative and of different type, or
(iii) a is odd, s is odd and all cycles are negative.

(f) a e ( - 1 , - 1 , 1 ) . Either
(i) a is even, s is even and all cycles are even, or

(ii) a is even, s is odd and all cycles of different type, or
(iii) a is odd and all cycles are odd, positive and of different type, or
(iv) a is odd, s is odd and all cycles are odd, negative and of different type.

(g) a e (1 ,1 , -1 ) . Either
(i) a = x1 ... TS, s is odd and all T( are of different type, or

(ii) (7 = vx . . . vP and all v, are even.

(h) a e(l , - 1 , - 1 ) . Either
(i) a is even and all cycles are even and positive, or

(ii) a is even, s is odd and all cycles are even and negative, or
(iii) a is odd, s is even and all cycles are negative and of different type, or
(iv) a is odd, s is odd, all vf are even, all Xj are odd and all cycles are of different type.
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