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Abstract

The object of this paper is to study the sequence of torsion-free ranks of the quotients by the terms of
the lower central series of a finitely generated group. This gives rise to the introduction into the study
of finitely generated, residually torsion-free nilpotent groups of notions relating to the Gelfand-Kirillov
dimension. These notions are explored here. The main result concerning the sequences alluded to is the
proof that there are continuously many such sequences.
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1. Introduction

1.1. Basic objectives The objective of this paper is to transcribe into the study
of the lower central series of a finitely generated group, ideas that have found much
use in work on finitely generated associative algebras, see, for example, [14]. These
ideas are the counterpart, in the case of lie algebras, to the notion of growth that has
attracted a great deal of attention recently in group theory [9,22].

Most of this work is devoted to finitely generated residually torsion-free nilpotent
groups although the methods carry over also to the larger class of finitely generated
residually nilpotent groups.
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290 Gilbert Baumslag [2]

In order to put this work into perspective, I have elected, in this rather leisurely
introduction, to provide the reader with a little background before describing the new
results obtained here.

1.2. Basic notation and definitions Let G be a group and let xx, x2,... be elements
of G. We denote the commutator x^x^XxXj by [*i, x2] and define, for n > 1,

[x\,... , xn+\] = [[xi,... , xn], xn+i].

If H and K are subgroups of G, we define

[H,K] = gp([h,k]\heH,keK).

The lower central series

G = Yl(G) > Yi(G) • • •

of G is defined inductively by setting

Yn+i(G) = [yn(G), G).

As usual, G is nilpotent if yc+i(G) = 1 for some c, with the least such c the c/ass of
G.

Perhaps the most striking result in the theory of finitely generated nilpotent groups
is the following theorem.

THEOREM 1.1. There is an algorithm which decides whether or not any two finitely
generated nilpotent groups are isomorphic.

Theorem 1.1 is due to Grunewald and Segal (see [27]). It is a consequence of
their work on algorithmic problems in rational arithmetic groups, which also contains
a positive solution of the isomorphism problem for finitely generated nilpotent lie
algebras over Q, the field of rational numbers.

Theorem 1.1 allows one to think of finitely generated nilpotent groups as completely
known.

Now the elements of finite order in a nilpotent group H form a normal subgroup
tor(//) , the torsion subgroup of H. So it makes sense to define

It is not too hard to deduce that
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is a torsion-free Abelian group. We define

rt=l

Then

DEFINITION 1. A group G is termed residually torsion-free nilpotent if YW(G) = 1.

It follows that the residually torsion-free nilpotent groups consist of those groups G
such that for each g e G, g ^ 1, there exists a normal subgroup N of G, which may
depend upon g, such that g £ N and G/N is a torsion-free nilpotent group. Residually
nilpotent groups can be defined in much the same way by simply relaxing the condition
that G/N be torsion-free nilpotent to nilpotent, without any extra qualification. Notice,
in particular, that residually torsion-free nilpotent groups can be thought of as groups
that can be approximated to by torsion-free nilpotent groups. It is on the class ^ of
finitely generated residually torsion-free nilpotent groups that I want to concentrate
here.

If G = gp (5), then it turns out that

yn(G)/yn+l(G) = gp([xu... ,xn]yn+i(G) \xt 6 5 ) .

This implies that every subgroup of a finitely generated nilpotent group is finitely
generated. Consequently, if G is finitely generated, then yn(G)/yn+i(G) is a finitely
generated Abelian group and kn(X) is a free Abelian group of finite rank, for every n.

13. Lower central Poincare series and growth functions If G is any finitely
generated group, then as just noted, kn(G) is a free Abelian group of finite rank, say,
r(n) (= r{n, G)). We consider the sequences

and

where
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and we define S(G) by

log(s(n))
S(G) = limsup

log/i

Thus S(G) is either a real number, or infinity, which reflects the rate of growth of the
lower central series of G. We term S(G) the lower central dimension of the group G.
Let O be the class of all non-decreasing functions from the set of positive integers to
the reals, which are ultimately positive-valued. If / , g e $ we define

f <g

if there exists a positive integer m such that

/ (") 5- g^nin) for all but finitely many n.

We define

/ ~ 8 if / ^ g and g < f.

This relation is an equivalence relation on O and we denote the equivalence class of
/ € <t> by & and term & the growth off. We now define the lower central growth of
the group G to be the growth 5? of the function s = s(G) defined above. One then
says that lower central series of G has polynomial growth if 5? = &', where & is
the growth of a polynomial / . The corresponding notions of exponential growth and
sub-exponential growth are defined in the analogous way. Notice that this notion of
growth is different from that introduced by Milnor [22] involving word length.

My main concern is with the sequences s, the lower central dimensions and the
lower central growths of finitely generated, residually torsion-free nilpotent groups,
all of which are invariants reflecting some of the properties of the groups involved.
Let p(t) and o(t), where t is here an indeterminate, be the corresponding generating
functions:

Since

p(t) = (1 - t)o(t),

we lose nothing by restricting our attention to a(t), which we term here the lower
central Poincare series of the group G, which captures much of the nature of s(G).
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1.4. Examples I want now to describe four families of residually torsion-free
nilpotent groups. The first comes from free products where we have the following
theorem.

THEOREM 1.2. The free product of residually torsion-free nilpotent groups is again
residually torsion-free nilpotent.

This theorem is due to Malcev [19]. It follows, for example, that the free product
of torsion-free nilpotent groups is residually torsion-free nilpotent. In particular free
products of infinite cyclic groups, that is, free groups, are residually torsion-free
nilpotent. This result was first proved by Magnus in 1935 [17]. In fact Magnus' basic
idea plays a key role in the proof of Malcev's theorem.

It follows from the residual torsion-free nilpotence of free groups that the class of
residually torsion-free nilpotent groups is not closed under quotients. It is however
closed under subgroups and unrestricted direct products.

The next kind of example comes from the study of varieties of groups. Recall that
a non-empty class y of groups is termed a variety if it is closed under subgroups,
epimorphic images and unrestricted direct products. Typical of such a variety is the
class jVc of all nilpotent groups of class at most c. Now given any pair of varieties
W, Y, one can form the so-called product variety ^tV consisting of all extensions
of groups in <% by groups in "V. This product of varieties is associative. It turns the
class of all varieties of groups into a free monoid (see [23]). Consider now the product
variety

This variety y, following Gruenberg [11] who invented it, is termed the polynilpotent
variety of class row (c\,..., ck). In every variety there are the free groups (see, for
example [24]). The point of these remarks is that Gruenberg [11], allying his work
with that of Hall, proved in 1959 that

THEOREM 1.3. The free groups in the polynilpotent varieties are residually torsion-
free nilpotent.

I come now to a family of examples, due to Lichtman [16]. Suppose that L is a
lie algebra over a commutative field k of characteristic 0. Then Cohn (see [8]) has
proved that the universal enveloping algebra U(L) of L can be embedded in a field
F. Lichtman proved the following theorem.

THEOREM 1.4. The multiplicative group F* of F is the direct product of the multi-
plicative group ofk and a group which is residually torsion-free nilpotent.
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It is worth noting that the universal enveloping algebra U(L) can in general be
embedded in fields that are essentially different from the one that Cohn manufactured.
However if L is nilpotent, then U(L) is what is known as an Ore domain, that is, any
two non-zero elements have a common, non-zero, right multiple. In this case F is
unique—indeed it coincides with the field offractions of U(L). Of course Lichtman's
theorem applies to all such fields of fractions.

Notice that subgroups of ^"-groups are residually torsion-free nilpotent. It follows
that the fundamental groups of closed orientable surfaces belong to the class & by
virtue of the following theorem [3].

THEOREM 1.5. Let G be an amalgamated product of a finitely generated free group
F and a finitely generated free Abelian group A amalgamating a maximal cyclic
subgroup ofF with a maximal cyclic subgroup of A. Then G is residually free (and
hence in S?\

It is clear from these remarks that the class of residually torsion-free nilpotent
groups is a very rich one.

1.5. Recursive properties and problems I am now in a position to describe the
new results that we prove in this paper, starting out with some algorithmic properties.

Notice first that finitely generated nilpotent groups have solvable word, conjugacy
and isomorphism problems.

I mentioned the isomorphism problem at the outset. The positive solution of the
word problem is probably due to Hirsch (see for example [15]), while the conjugacy
problem was settled by Blackburn [7].

It follows from the positive solution of the word problem for finitely generated
nilpotent groups and the fact that we can effectively compute the quotients G/yn(G)
of a finitely presented ^"-group G, that finitely presented J7-groups have solvable
word problem as well. It is not hard to also prove the following

THEOREM 1.6. The lower central Poincare series of a finitely presented 3 -group
is recursive, that is, there is a general and effective procedure which computes the
terms of the lower central Poincare series of every £7 -group.

There are, in addition to recursiveness, some other restrictions on the sequence
r = r(G) of a finitely presented ^"-group G. For example

and if r(l) = 1, then r{n) = 0 for every n > 2. If r(n) = 0 for some n, then r(m) = 0
for every m > n. In addition, if F is a free group of rank r (1, G), then it follows from
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the remarks after the formulation of Theorem 1.12 in Section 1.7, that

r{n, G) < r(n, F), for every n.

It appears to be a difficult problem to determine the precise nature of such sequences.
One can deduce, from the very formulation of Theorem 1.6, that the word problem

for finitely presented ^"-groups is, as noted earlier, solvable. Indeed the following
theorem holds.

THEOREM 1.7. A recursively presented ^-group with recursive Poincare series
has a solvable word problem.

The proof of Theorem 1.7, although easy, is just a little more delicate than one
might think at first.

As far as the conjugacy and isomorphism problems are concerned, the correspond-
ing results for nilpotent groups do not carry over. Indeed, by modifying the groups
involved in the fundamental work of Miller [20], we shall prove the following theorem.

THEOREM 1.8. There exists a finitely presented !? -group G with an unsolvable
conjugacy problem.

Since the conjugacy problem is solvable for finitely generated nilpotent groups,
there exists a pair (indeed, infinitely many pairs) of elements of the group G (in
Theorem 1.8) which are conjugate modulo every term of the lower central series of
G, but are not conjugate in G itself.

Theorem 1.8 settles a question raised by Miller [21]. I believe that the isomorphism
problem for finitely related ^-groups is also unsolvable, but the details of the proof
that I have in mind, which is also based on Miller's work [20], are a little too involved
to attempt inclusion at this time.

The recursive power series include the rational functions, that is, the quotients of
two integral polynomials. It is to the rationality of lower central Poincare series of
^-groups that I want to turn next.

1.6. Rationality of lower central Poincare series and dimension There is a
naturally occurring class of ^"-groups which have rational lower central Poincare
series.

THEOREM 1.9. Let the $ -group G be Abelian-by-polycyclic. Then the lower cen-
tral Poincare series of G is a rational function.

As usual a group G is termed Abelian-by-polycyclic if it contains an Abelian normal
subgroup N such that G/N is polycyclic. The polycyclic groups are the groups which
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can be built up from the the trivial group by repeatedly forming extensions by cyclic
groups.

A sketch of the proof of Theorem 1.9 first appeared in [4] in 1990 in the case
of Abelian-by-Abelian groups, that is, metabelian groups. This argument can be
extended to Abelian-by-nilpotent groups and appears in print first in the paper of
Groves and Wilson [10]. In fact the proof of Theorem 1.9 is not difficult. There are
three steps. The first is to reduce the theorem to the case where G is Abelian-by-
torsion-free-nilpotent. The second is to notice, on appealing to a theorem of Jennings
[13], that it suffices to prove an analogous result for graded modules over the group
ring of a finitely generated torsion-free nilpotent group. The proof is then completed
by mimicking an argument due to Hilbert and Serre about graded modules over finitely
generated commutative algebras, as detailed, for example, in Atiyah and Macdonald
[2]. The nilpotence of the group involved comes into play because of an induction
which is fueled by using an element in the center. Since this part of the argument is
contained in the cited work of Groves and Wilson, we will omit most of the details
(see Section 3.2). In the case where G is metabelian one can, with the aid of a theorem
of Magnus (see [24, page 106]), deduce a little more.

COROLLARY 1. Let the &-group G be metabelian. Then the following hold:

(1) For large enough values ofn, s(n) is a polynomial in n.
(2) <5(G) is a non-negative integer, namely the degree of the polynomial in 1.
(3) If G is a free metabelian group of finite rank q > 1, then S(G) = q.

The ideas involved in the proof of Theorem 1.9 can be reworked to prove.

THEOREM 1.10. Let G be a finitely generated Abelian-by-nilpotent group and let

n=\

Then the following hold:

(1) The torsion subgroup ofA(G) is of finite exponent.
(2) For each prime p, if e(n, p) is the order of the Sylow p-subgroup of the group

Yn(G)/yn+\(G), then for large values of n, e(n, p) is a polynomial in n.
(3) If, in addition, G is polycyclic, then yn(G)/yn+i(G) is ultimately of a fixed finite

order.

Notice that it follows from Theorem 1.10 that only finitely many primes can arise
as the orders of elements in the factor groups yn(G)/yn+i(G) (n = 1, 2 , . . . ) , when G
is a finitely generated Abelian-by-nilpotent group. It is easy to see that this is not the
case in general for finitely generated groups. Again there is here some overlap with
the work of Groves and Wilson [10].
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1.7. Lower central dimension and growth Hall in his work on finiteness conditions
for soluble groups [12] has shown that there is a marked difference in the properties of
finitely generated metabelian groups on the one hand, and finitely generated center-by-
metabelian groups on the other. As far as the lower central dimension is concerned,
this difference is not as marked. In fact finitely generated, center-by-metabelian
groups, like finitely generated metabelian groups themselves, have finite lower central
dimension. It turns out this property holds for an even more extensive class of groups.

THEOREM 1.11. The lower central dimension of a finitely generated, metanilpotent
group, that is, nilpotent-by-nilpotent, is finite.

My original proof of the special case of Theorem 1.11 that deals with center-by-
metabelian groups was rather elaborate. The referee was kind enough to point out
that there is a simpler, more direct proof, which takes care of the case of nilpotent-
by-Abelian groups. I have made use of his idea to prove the even more general
Theorem 1.11. I would like to thank the referee for the proof mentioned above and
also for a number of helpful comments and a careful reading of this paper.

Notice that it follows from Corollary 1 (3) of Theorem 1.9 that every non-negative
integer can occur as the dimension of some ^"-group. I do not know what the
possibilities are for the dimensions of ^"-groups as a whole, indeed whether they
are always integers. I will follow up on this question as well as carry out a general
investigation of dimension, in particular of solvable groups, in the forthcoming paper
[6].

It is not hard to deduce, either directly or from Witt's formula for the ranks of the
successive quotients of the lower central series of a free group (see [18]), together
with the remark in Section 1.5 following the formulation of Theorem 1.6, that

THEOREM 1.12. The lower central growth of a non-cyclic free group of finite rank
is exponential and its lower central dimension is infinite.

Notice that if G € S?', then 8(G) = 0 if and only if G is nilpotent. It is easy to see
that if G G & and if N is a normal subgroup of a finitely generated group G, then

s(n, G/N) < s(n, G) (n > 1), 8(G/N) < 8(G).

One of the consequences of this remark, together with Theorem 1.12, is the following

COROLLARY 2. The lower central dimension of the free product of two non-trivial
^-groups is infinite.

It is of interest to remark here that Alperin and Peterson [ 1 ] have used Witt's formula
to prove
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THEOREM 1.13. The lower central Poincare series of a non-cyclic free group of
finite rank, is not a rational function.

Indeed the irrationality of lower central Poincare series is rather common, as we
will see in Section 1.8, below.

1.8. Counting ^"-groups The complexity of the class ^ is reflected by the fol-
lowing

THEOREM 1.14. Let G be a S?-group whose center is not finitely generated and let
£?* be the class of all quotient groups of G, whose centers are not finitely generated
and which lie in 3'. Then the set of lower central Poincare series of groups in !7*
has the cardinality of the real line.

Hall [12] has constructed a 2-generator group G which is center-by-metabelian
and whose center is free Abelian of infinite rank. We shall show in Section 5.3 that
G € &. It follows then from Theorem 1.14 that

COROLLARY 3. The lower central Poincare series of 2-generator, center-by-met-
abelian groups in S? can be put in a one-to-one correspondence with the set of all
real numbers.

Thus there exist continuously many non-isomorphic 2-generator, center-by-met-
abelian ^"-groups, with lower central Poincare series which are not rational.

2. Recursiveness

2.1. Recursive lower central Poincare series We begin with a sketch of the proof
of Theorem 1.6, which should be compared with that of Theorem 1.7.

THEOREM 1.6. The lower central Poincare series of a finitely presented ^ -group
is recursive.

PROOF. The left-normed commutators in a finite set of generators of G, of weight
at most n, constitute, modulo yn+i(G), a finite set of generators of G/yn+i(G). These,
together with a given finite set of defining relators of G and the left-normed commu-
tators of weight n + 1 in the given generators of G, give rise to a finite presentation
of G/yn+i(G). We can thence effectively compute generators of the torsion sub-
group of G/yn +i(G). Consequently we can effectively compute finite presentations
of the groups Xn(G) and then, in turn, effectively compute their ranks. This proves
Theorem 1.6. D
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THEOREM 1.7. A finitely generated, recursively presented^-group with a recursive
Poincare series, has a solvable word problem.

We begin the proof of Theorem 1.7 by first proving a few lemmas involving groups
with recursive presentations.

LEMMA 1. Let G be a group given by a finite set of generators and a recursively
enumerable set of defining relations. Then G/yn(G) has a presentation on the same
set of generators together with a recursively enumerable set of defining relations.

PROOF. The proof of Lemma 1 is immediate. We simply add to the defining relators
of G all left-normed commutators of weight n in all words in the given generators of
G. •

Our primary objective in regard to recording Lemma 1 is the following corollary
to Lemma 1.

COROLLARY 4. Let G be given by a finite set of generators linked by a recursively
enumerable set of defining relations. Then G/yn(G) can be presented in the same
way.

PROOF. The proof is straightforward enough. By Lemma 1 we can present G/ yn (G)
on the given generators of G in such a way that the set R of all the relators involving
these generators is recursively enumerable. Now the set S of all mth powers of
all words in the generators of G, with m here ranging over all positive integers, is
recursively enumerable. It follows that

T = {w | w € S, wm e R for some m > 0}

is also recursively enumerable. But T is a set of defining relators for G/Yn(G). This
proves the corollary. •

We come now to the proof of Theorem 1.7.

PROOF. We first show that we can effectively compute bases for the free Abelian
groups A.n(G). This will be accomplished inductively. Indeed we will concoct, for
each positive integer n, a finite set Sn of elements of G that generate yn(G) modulo
[G, Vn(G)] and use 5n to obtain a basis for Yn(G) modulo 7n + 1(G). We begin by
putting

5, = {*!,... ,xq),

where here [xu ••• , xq} is a finite set of generators of G. We proceed to obtain a basis
for 7,(G) = G modulo Y2(G). We need to compare r ( l ) with q. If r ( l ) = q, then
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modulo y2 (G), x i , . . . , xq is a basis f or A i (G). If r (1) < q then there is a dependence
relation between X\,... ,xq modulo y2(G). Thus as we recursively list the relators
of G we will come across a relation of the form

XT " 'Xq"" = a product of commutators,

where at least one of the m, 7̂  0. Now consider the Abelian group A on xu ... ,xq

subject to the relation

rm' . • • xmi — 1

Then there is a Nielsen transformation T of the absolutely free group on x\,..., xg

such that A can be presented as an Abelian group on the generators

wdx) = T(xi),..., wq(x) = T(xq),

(where the wt are written as non-Abelian group words in the original generators
JCI, . . . , xq) subject to the relation

u £ = 1 in A (eq > 0).

Now if r ( l ) = q — 1 it follows that {w\,... , wq_\) is a basis for G modulo Y2(G).
If r(\) < q — 1 then we can repeat the process applying it now to

instead of to x u ... ,xq. If we now extend this Nielsen transformation to a Nielsen
transformation of

which leaves wq fixed, then this process can be continued, ultimately yielding the
following:

(i) a Nielsen transformation U of the absolutely free group on x,,... ,xq together
with an integer k such that if we set

vi = U ( x i ) , . . . , v q = U(xq),

then Vi,... ,vk constitute a basis for G modulo y2(G);
(ii) each of vk+l,... , vq is of finite order modulo [y\(G), G\.

It is important to note that we are not claiming that we can compute the orders of
the elements vk+l,... , vq modulo \yx, G], but only that they are of finite order. We
now put

S2 = [[Vi,Vj](l < i , j < q ) , v k + u . . . , v q } .
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It follows that S2 generates y2(G) modulo [y2(G), G], which completes the first step
in the proof.

Now suppose that we have obtained a set Sn+i which generates yn+1(G) modulo
[yn+l(G), G]. We now apply the same procedure to 5n + 1 that we applied to Si.
The net result is that we end up with a Nielsen transformation of Sn+1 yielding a
set { > i , . . . ,yf, yf+u . . . , yh], which then generates yn+1(G) modulo [yn+1(G), G],

such that

(i') y i , . . . ,yy constitute a basis for j7B+1 (G) modulo yn+2(G);
(ii') the elements y / + i , . . . , yh are of finite order modulo [yn+l(G), G].

We are left with the choice of Sn+2. We work modulo [yn+2(G), G]. This means
that we may assume that yn+2 (G) is central. It follows from (i') and (ii') that yn+2(G)
is generated by

yf+u... ,yh together with \yn+l(G), G].

Now

Since yn+2(G) is central it follows from the usual commutator identities that

[ y n + l ( G ) , G ] = g p ( [ y h X j ] ( i = l , . . . , h , j = 1 , . . . , q ) ) .

Hence

Yn+iiG) = gp(yf+u... ,yh,[yi,Xj] (i = 1 h,j = 1 , . . . ,q)).

We put

S n + 2 = { y / + i , ••• , y h , [yi,Xj] ( i = 1 , . . . , h , j = 1 , . . . , < ? ) } .

This then completes the first part of the proof of Theorem 1.7.
Our final objective is to show how this solves the word problem for G. To this end

let w be any given word in the generators of G. Then we first begin to enumerate
the (recursively enumerable) set of all relators of G and check to see whether w lies
in this set. Second we enumerate the (recursively enumerable) set of all the relators
of G/y2(G) and check to see if w lies in this set. And thirdly we enumerate the
(recursively enumerable) set of all words of the form ww' where w' ranges over all the
words of the form v'1 • • • ve

k
k, where not all the exponents e, are zero (note [vu ... ,vk]

is a basis for yx (G) modulo )72(G)) and check to see whether any of these words lies
in the set of relators of G/y2(G). If the first eventuality holds, then w = 1 in G; if the
third one holds, then w ^ 1 in G; and finally if the second one holds, then w e y2(G).
If w € y2(G) we repeat the process above replacing y2(G) by y3(G). Since G e J ,
at some stage we find either that w = 1 in G or that w ^ 1 in G, as desired. D
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We noted in the introduction that the word problem is solvable for finitely presented
^-groups. By way of contrast, we demonstrate next that there exist finitely presented
jT-groups with unsolvable conjugacy problems.

THEOREM 1.8. There exists a finitely presented £7 -group with an unsolvable con-
jugacy problem.

The proof of Theorem 1.8 is based on that of an analogous theorem of Miller [20].
Indeed Theorem 1.8 is proved by a tiny modification of Miller's construction, on
invoking the following.

LEMMA 2. Suppose that G is a semi-direct product of B and Y. If B and Y are
residually torsion-free nilpotent and Y acts trivially on B/Y2(B), then G is residually
torsion-free nilpotent.

PROOF. It is enough to prove that if JC e B, x / 1, then we can find a normal
subgroup N of G with torsion-free nilpotent quotient and x <£ N. Now there exists an
integer n such thatx £ ~yn{B). The group ofthose automorphisms of # / / „ ( £ ) that act
trivially modulo y2(B)/yn(B) is a torsion-free nilpotent group of class at most n — \.
It follows that the canonical homomorphism of Y into the group of automorphisms of
B/yn(B) maps Y onto a torsion-free nilpotent group of class at most n — 1. If K is the
kernel of this homomorphism, then K centralises B modulo ~yn{B). Hence Yn{B)K
is a normal subgroup of G, G/Yn{B)K is torsion-free nilpotent and x £ yn(B)K.

a

In order to complete the proof of Theorem 1.8, we consider

U = (s\,... , sn;Ri, ... , Rm),

a finitely presented, torsion-free group with an unsolvable word problem. So we may
assume that the generators s, are all of infinite order. Let F, = (a,-, &,•) be a free group
of rank two (/ = 1 , . . . ,n). Then we successively form the amalgamated products

I/, = { t / * F , ; 5 I = [a,,61]}> . . . . Un = {£/„_, * Fn;sn = [an, bn]}.

Un can be finitely presented on the generators at,b\,... ,an,bn and defined in terms
of these generators by finitely many relators all of which lie in the derived group of
the free group on a{, by,... ,an,bn. Now Miller's argument [20] applied to Un yields
a group G with an unsolvable conjugacy problem. G is actually a semi-direct product
of the form prescribed by Lemma 2. This proves Theorem 1.8. •

I believe that a modification of the work of Miller [20, Theorem 26] together with
Lemma 2, and an adaptation of an argument of Rabin [25], will yield a negative
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answer to the isomorphism problem for finitely related ^"-groups. As I remarked in
the introduction, clarification of the details of the argument that I have in mind will be
left to another time.

3. Rational functions and Abelian-by-polycyclic groups

3.1. Lower central Poincare series of Abelian-by-polycyclic groups Our objec-
tive in this subsection is to sketch the proof of Theorem 1.9 (Section 1.6).

THEOREM 1.9. Let the ^-group X be-Abelian-by poly cyclic. Then the lower cen-
tral Poincare series for X is a rational function.

Theorem 1.9 is closely related to a similar theorem, Theorem 2.2 proved by Groves
and Wilson in [10] (refer to Section 2 of that paper) and we refer to their work as
needed here. A key step in the proof of Theorem 1.9 is the following proposition.

PROPOSITION 1. Let X be residually torsion-free nilpotent and let A be a self-
centralising Abelian normal subgroup ofX. Then X/A is also residually torsion-free
nilpotent

We shall need the following lemma.

LEMMA 3. Let F be a subgroup of the group of automorphisms of the torsion-free
Abelian group A.IfT acts nilpotently on A, then F is torsion-free.

Lemma 3 is well-known and so we omit the proof- a proof can be easily fashioned
after that of Lemma 2.

We come now to the proof of Proposition 1.

PROOF. Suppose that x e X and that x $. A. Then [x, A] ^ 1 since A is self-
centralising. Consequently [x, A] £ Yn{X) for some n. So xyn(X) does not lie
in the centraliser Cn/yn(X) of Ayn(X)/yn(X) in X/yn(X). By Lemma 3, X/Cn

is torsion-free. Moreover X/Cn is a quotient of X/yn(X) and so is nilpotent. This
completes the proof of Proposition 1. •

COROLLARY 5. If X is residually torsion-free nilpotent, if A is a self-centralising
Abelian normal subgroup of X and if XIA is poly cyclic, then H = X/A is torsion-free
nilpotent.

PROOF. Since H is polycyclic there is a bound on the torsion-free ranks of the
quotients H/yn(H). Consequently the series Yn(H) (n = 1,...) must stabilise. But,
by Proposition 1, H is residually torsion-free nilpotent. Therefore Yn(H) = 1 for a
sufficiently large choice of n, that is, H is nilpotent. •
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Next we need to demonstrate the existence of an Abelian normal subgroup of X
which is self centralising.

LEMMA 4. Let the group X e 5 and let A be a maximal, Abelian normal subgroup
ofX with nilpotent quotient X/A = H. Then A is self-centralising and H is torsion-
free.

PROOF. We prove, in the usual way, that A is self-centralising. To this end let C be
the centraliser of A in X. Since C is a normal subgroup of X, if C ^ A then C/A is
a non-trivial normal subgroup of the nilpotent group H. Hence C/A meets the center
of H non-trivially. This means that we can find x € C, x £ A with x A in the center
of H. Then gp(x, A) is an Abelian normal subgroup of X properly containing A,
contradicting the maximality of A.

Next we prove that H is torsion-free. Indeed, since X is residually torsion-free
nilpotent, X is a group in which extraction of nth roots is unique, whenever they exist,
for every positive integer n (see for example [15, volume 2]). Now the centraliser C
of a subset in such a group where nth roots are unique is isolated, that is, if a" € C,
for some n > 0, then a G C (we refer to [15, volume 2] for details concerning the
above and related notions). So A is isolated and therefore H is torsion-free. •

3.2. The proof of Theorem 1.9 Let G be a finitely generated, Abelian-by-polycyclic
^•-group. By Lemma 4 and Corollary 5, we can find an Abelian normal subgroup A
of G which is self-centralising and such that H = G/A is torsion-free nilpotent. Let
R be the rational group algebra of H and let

M = A <g>Q.

Then M can be turned into a right ft-module in the usual way, via conjugation. Let
£1 be the augmentation ideal of R. Notice that there is an integer n0 such that

Put N = yno(G) ® Q. Then N is an /?-submodule of M. If dim(W) denotes the
dimension of a rational vector space W, it is not hard to see that

r(n) = dim(N£"-"<>/N£n-"«+l) (n > n0),

where r(n) is, as before, the rank of kn(G). We form now the graded algebra Gr(R)
of R using the powers J2" of £ in the usual way (see for example [2]):

n=0
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So

G r o ( / ? ) = Q a n d Grn(R) = g n / g n + l (n = 1 , 2 , . . . ) .

This grading of R induces a grading of Gr(N) of N, again in the usual way:

n=0

where

Then Gr(7V) is a graded Gr(/?)-module. The Poincare series of Grn(N) is, by defini-
tion, the series

n=0

Notice that dim(Grn_no(A')) = r(n, G) (n > n0). Now G is finitely generated and
G/A = H is torsion-free nilpotent. The proof of Theorem 1.9 is now a consequence
of the following proposition

PROPOSITION 2. Let H be a finitely generated torsion-free nilpotent group, R the
rational group algebra ofH over Q, £} the augmentation ideal ofR and L = YlT=o Ln

a finitely generated graded Gr (R) -module. Then the Poincare series for L is a rational
function.

PROOF. The proof of Proposition 2 follows exactly along the same lines as the proof
of Theorem 2.2 of [10], with «2 replaced by a field of characteristic p > 0 and so it
will be omitted here (see also [2,4]). We note only that it follows immediately from
the proof of Proposition 2 (see [ 10] or [2]) that if G is a metabelian ^-group, if A is
a maximal, Abelian normal subgroup of G containing the derived group of G, then

^(0=/(0/0-0*.

where h is at most the rank of the free Abelian group G/A and / (f) is an integral
polynomial in t. It follows that s(n) is a polynomial in n when n is sufficiently large.
These remarks establish (1) and (2) of Corollary 1 (see Section 1.6).

In order to prove (3), notice that, for sufficiently large values of n, sin, G) is a
polynomial in n of degree d, say. We need to show that d = q. Observe then that it
suffices by [14, Lemma 1.5 (b)] to prove that for sufficiently large values of n, r(n, G)
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is a polynomial in n of degree q — 1. Now (see for example [24, pages 107, 108])
yn(G) is freely generated, modulo yn+i(G), by the left-normed basic commutators of
weight n. These commutators take the form

[ak, ah ax,..., au a2,..., a2,..., aq,..., aq] (2 < k > j , i, H (- i, = n - 2).

Consider now the basic commutators of weight n + 1 of the form

[a2, a1,a1,...,aua2,...,a2,...,aq,...,al]](ii-\ \-iq = n - 1).

' 1 >2 I ,

The number of such commutators is (see [14, Example 1.6])

/n-l+q-\\

V 9 - 1 ) '

a polynomial in n of degree q — 1. On the other hand, the number of all possible basic
commutators is bounded above by

q-l j '

which is also a polynomial in n of degree q — 1. So r(n, G) is a polynomial in n of
degree d = q — \, which completes the proof. •

3.3. Finitely generated metanilpotent groups We come next to the proof of
Theorem 1.10.

THEOREM 1.10. Let G be a finitely generated Abelian-by-nilpotent group and let

oo

A(G) = 0yn(G)/yn+1(G).
n = l

Then the following hold.

(1) The torsion subgroup ofA(G) is of finite exponent.
(2) For each prime p, if e(n, p) is the order of the Sylow p-subgroup of the group

Yn(G)/yn+i(G), then for large values ofn, e(n, p) is a polynomial in n.
(3) If in addition, G is polycyclic, then yn(G)/yn+\(G) is ultimately of a fixed finite

order.

PROOF. Since G is Abelian-by-nilpotent, there exists an integer n0 such that yno(G)
is Abelian. Following on much of the notation introduced at the beginning of Sec-
tion 3.2, we put A = yno(G), H = G/A, denote the integral group algebra of H by
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R, A, viewed as an R-modu\e, by M and the augmentation ideal of R by £. Notice
that we are here using the integral group algebra of H, not the rational group algebra.
Finally we view

Gr (/?)( = Qta(R)) = 0 &I&

as a graded ring and

=<J / ~J

n=0

n=0

where Mn = M£}n as a graded Gr(/?)-module. Observe next that for each n > n0,
yn{G) = Mn.no.

Now G is finitely generated and Q is a finitely generated nilpotent group. Conse-
quently, R is noetherian (Hall [12]) and Gr(/?) and Gr(Af) are also noetherian (see for
example [2,10]). The first assertion of Theorem 1.10 follows from this observation.

The proof of the second assertion follows that of Theorem 1.9 (see [10]) and its
corollary with only minor changes, using the more general version of the Hilbert-Serre
theorem as described in [2].

We are left only with the proof that if G is a poly cyclic group, then yn (G) / yn+1 (G) is
ultimately of a fixed finite order. Now Robinson [26] has observed that yn (G)/yn+l (G)
is ultimately of finite order. But we have proved that A(G) is of finite exponent. It
follows that yn(G)/yn+i(G) is of bounded exponent, independent of n. Furthermore,
the number of generators of yn (G)/yn+l (G) is bounded by the polycyclic length of G.
This completes the proof of Theorem 1.10. D

4. Lower central dimension and growth

4.1. Growth functions We give here another proof of the assertion in Theorem 1.10
that every non-negative integer can arise as the lower central dimension of a J7-group.

LEMMA 5. Let X = A i T be the standard wreath product of the infinite cyclic
group A by the free Abelian group T of finite rank q. Then

(1) s(n, X) is a polynomial in n of degree q;
(2) 8(X) = q.

Let A be generated by aq+\ and let a\,..., aq be a basis for T. We note that
yn(X) is, modulo yn+i(X) a free Abelian group with basis those left-normed basic
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commutators of weight n in which aq+i appears at the beginning and occurs only once.
It follows that

where £2 is the augmentation ideal of the integral group ring of T. So ([14, Example
1.6])

'n + q-l
q-\

This implies that r(n, X) is a polynomial in n of degree q — 1 and therefore that
s(n, X) is a polynomial in n of degree q (see for example [14, page 10]). Hence
S(X) = q. O

4.2. Finitely generated metanilpotent groups In this section we concern ourselves
with the proof of Theorem 1.11 stated in Section 1.7.

THEOREM 1.11. The lower central dimension of a finitely generated, metanilpotent
group is finite.

PROOF. Let G be a finitely generated group, not necessarily in &, containing a
nilpotent normal subgroup L such that G/L is nilpotent. Then it suffices for the proof
of Theorem 1.11, to show that the torsion-free rank of G/yn(G), that is, s(n, G), is
bounded by a polynomial in n. In fact we will prove that if the torsion-free rank of
G/L is q and if L is nilpotent of class c, then the torsion-free rank s(n) of G/yn(G)
is bounded by a polynomial of degree cq inn.

The proof is by induction on c. If c = 1, G is a finitely generated Abelian-
by-nilpotent group. We may assume without loss of generality that G g ^ . So, as
already noted at the beginning of Section 3.2, we can find an Abelian normal subgroup
A of G such that G/A is torsion-free nilpotent. We adopt now the notation of that
section and observe, as noted there, that

r{n) = dim(7VJ2"~"0/Nj2"~"o+1) (« > no).

Since G is finitely generated and G/yno(G) is nilpotent, the Abelian group yno(G)
is a finitely generated G/A-module. It follows that the right /?-module N is also
finitely generated, say by yu ..., yk. We recall that J? is the augmentation ideal
of the rational group algebra of the torsion-free nilpotent group G/A. Hence, by a
theorem of Jennings [13], £%/£}' is spanned, qua vector space over the field of rational
numbers, by all products of the form

(*, - I)'1 • • • (xq - 1)'« (!, + ••• + L = j - 1),
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where here

1 < gp(xqA) < gp(xqA,x,_iA) < gp(xqA,xq-iA,...,xiA) = G/A

is a central series for G/A with infinite cyclic factors. The number of such products
is bounded by

e ;-
a polynomial of degree q - 1 in j (see the proof of Lemma 5). Since N is generated,
qua R -module, by yx,..., yk it follows that the dimension over Q of

is at most

k x dim(£n-n°/N£"-no+l).

Consequently r(n) is bounded by a polynomial in n of degree q — 1. Therefore (see
the proof of Lemma 5) s(n) is bounded by a polynomial of degree q in n.

Inductively we can assume that the torsion-free rank of

G/yc(L)/yn(G/yc(L))

is bounded by a polynomial in n of degree (c — \)q. Now

Yn(G/yc(L)) = yn(G)yc(L)/yc(L).

Hence

G/yc(L)/yn(G/yc(L)) = G/yn(G)yc(L) = G/yn(G)/yc(Lyn(G)/yn(G)).

So if we put Gn = G/yn(G) and Ln = Lyn(G)/yn(G), then the inductive assumption
amounts to the observation that the torsion-free rank of Gn/yc(Ln) is bounded by a
polynomial in n of degree (c — l)q. It follows that the torsion-free rank of yc_i (Ln) is
bounded, modulo yc(Ln), by a polynomial in n of degree (c — l)g. This implies that
we can find, for each n, a set Xn of O(n(c~1)<?) elements of yc_i(Ln) which generates,
modulo yc(Ln), a subgroup of finite index. Our initial observation about Abelian-
by-nilpotent groups translates, with our current notation, into the assertion that the
torsion-free rank of Gn/[Ln, Ln] is bounded by a polynomial in n of degree q. Hence
the torsion-free rank of Ln/[Ln, Ln] is also bounded by a polynomial in n of degree

https://doi.org/10.1017/S1446788700002032 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700002032


310 Gilbert Baumslag [22]

q. This implies that we can find, for each n, a set Yn of O(nq) elements of Ln which
generates, modulo [Ln, Ln], a subgroup of finite index in Ln. Consequently

Zn = {[x,y]\xeXn,yeYn]

generates, for each n sufficiently large, a subgroup of finite index in Yc(Ln). Now
the number of elements in Zn is O(n(c~1)<?.nq) —O(ncq). So the torsion-free rank of
Gn is bounded by a polynomial of degree ncq, for all sufficiently large values of n, as
desired. •

5. The proof of Theorem 1.14

5.1. Preliminaries The objective of this section is to prepare the ground for the
proof of Theorem 1.14.

THEOREM 1.12. Let G be a 3~ -group whose center is not finitely generated and let
ST* be the class of all quotient groups of G, with infinitely generated centers, which
lie in S~. Then the set of lower central Poincare series of groups in S* has the
cardinality of the real line.

We begin with the proof of the following well-known lemma.

LEMMA 6. Let G e 5 . Then G is a subdirect product of the finitely generated
torsion-free nilpotent groups

Gn = G/yn{G).

Let P = Y[n Gn be the unrestricted direct product of the factor groups Gn. Then the
mapping /x which sends g e G to that element of P whose nth coordinate is gYn(X)
is the required injection of G into P. We adopt until further notice the notation used
above.

The next lemma will be of use in the sequel.

LEMMA 7. The center C of G is free Abelian.

PROOF. C is a subgroup of the unrestricted direct product of the centers Cn of the
groups Gn. Now each Cn is free Abelian of finite rank. Therefore C can be embedded
in the unrestricted direct product of a countable number of copies of the infinite cyclic
group. Since C is countable, it follows from a theorem of Specker [28] that C is free
Abelian. •

This brings me to the following important observation.
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LEMMA 8. Let H be a subgroup of C, the center of G and let Hn be the image of
H under the canonical homomorphism ofG onto Gn. Let In/yn(G) be the isolator of
Hn in G/yn(G). Then

ym(G/H) = IJH

and hence

(G/H)/(yn(G/H)) £ G/In.

PROOF. yn(G/H) = yn(G)H/H. So the torsion subgroup of (G/H)/(yn(G/H))
contains yn (G) H/H and therefore also any element of finite order modulo yn (G) H/H.
This means that the torsion subgroup of (G/H)/(yn(G/H)) contains In/yn(G)H, that
is, by definition yn(G/H) > In/H. On the other hand,

G/H/IJH = G/In

is a torsion-free nilpotent group of class at most n — 1. Hence, In/H > yn(G/H),
which implies that

IJH = yn(G/H).

This completes the proof of the lemma. •

We shall need the following consequence of Lemma 8. We again adopt the notation
introduced previously.

LEMMA 9. Suppose that H — gp(au a2,...) and that there are integers a and /3
such that a.j 6 ya(G) whenever j > 0. Let hn be the torsion-free rank of G/yn(G)
and let h'n be the torsion-free rank of (G/H)j(yn(G/H)). Then

hn — h'n < P for every n < a.

PROOF. It follows immediately from the hypothesis that if n < a then Hn is
generated by the images of au a2 afi in Gn. So Hn is then a free Abelian group
of rank at most p. Consequently its isolator, /„ modulo 7n(G) is free Abelian of rank
at most p. By Lemma 8, /„ = yn(G)H. This completes the proof of the lemma. •

Next we prove the following lemma.

LEMMA 10. Let Cn be the image of C under the canonical homomorphism of G
onto Gn and let pn be the rank of the free Abelian group Cn. Then given any positive
integer n we can find an integer an such

Pm>n whenever m >an.
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PROOF. It suffices to prove that the sequence

P i , P i , •••

does not become constant. Let then n be any given positive integer. Now C maps
onto Cn under the canonical homomorphism /zn of G onto Gn. This gives rise to a
splitting of C into a direct product

C = D x £

where D is the kernel of/xn. Since E = Cn is finitely generated and G e <^*, D ̂  1.
Let d e D,d ^ \. There exists an integer m > n such that d $ y"m(G). This means
that there is a homomorphism of Cm onto Cn with a non-trivial kernel. So pm > pn,
as desired. D

We end this section by proving two results involving the centers of ̂ "-groups. The
first of these is probably well-known.

LEMMA 11. Suppose that the group G is residually torsion-free nilpotent. Then
G/ C is also residually torsion-free nilpotent, where here C is the center of the group
G.

PROOF. G acts by conjugation on itself. This induces a faithful representation of
G/ C on G which stabilises the series

G > fi(G) > y 3 ( G ) >••• .

So Gj C is residually torsion-free nilpotent. •

This brings me to the next lemma.

LEMMA 12. Let G e £f and let H be an isolated cyclic subgroup of the center of
G. Then G/H e3?.

PROOF. Let Hn be the image of H under the canonical homomorphism of G onto
Gn and let /„ be its isolator in Gn. Then /„ is a cyclic subgroup in the center of Gn

and Gn/In is a torsion-free nilpotent group. Let / be the unrestricted direct product
of the groups /„, let P be the unrestricted direct product of the groups Gn and let /x
be the injection of G into P defined in the course of the proof of Lemma 6. We can
view / as a subgroup of P. Then / is in the center of P and P/I is the unrestricted
direct product of the groups Gn/In:

p/i=n Gn/in.
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Consider now J = n~l(I f) /u.(G)). J is a subgroup of the center of G and / contains
H. We claim that J = H. To see this, notice first that J is an isolated subgroup of
G because / n /x(G) is isolated in P. Now if J is cyclic, then J = H because H
is a maximal cyclic subgroup of G. Suppose, if possible, that J is not cyclic. Then
/ is free Abelian, since it is a subgroup of the free Abelian group C. Since H is an
isolated subgroup of J, H is a direct factor of J. So we can find a subgroup L of
J containing H which is free Abelian of rank two. Notice that L projects onto the
cyclic group /„, for every n. If we choose n sufficiently large, say n > n0, then /„
is non-trivial. Now Ino is infinite cyclic. So we can find a basis [a, b] for L so that
the canonical image of a generates /„„ and b e yno+1(G). Since G e Sf, we can find
an integer, say m > n0 + 1, so that b £ Ym(G). But then a and b generate modulo
Ym(G) a free Abelian group of rank two. On the other hand they generate, modulo
Ym(G), a subgroup of the cyclic group Im, which is a contradiction. This implies then
that J — H. Consequently the canonical homomorphism of G into P/I has kernel
H. So we have proved that G/H € &. •

This then yields the following theorem

THEOREM 5.1. Let G e ^ and let H be a finitely generated isolated subgroup of
the center of G. Then G/H e P.

It is perhaps worth noting that it is not possible to relax the condition on H that it
be finitely generated. Indeed suppose that G € !?*. Then the center C of G maps
onto the additive group of rational numbers with kernel K, say. K is then an isolated
subgroup of the center of G, but G/K g 8f because, by Lemma 7, the center of a
group in ^ is always free Abelian.

5.2. The proof of Theorem 1.14 Suppose, if possible, that the set of lower central
Poincare series of ^'-groups is countable. We can then enumerate a sequence of
groups

in !7* whose lower central Poincare series are in one-to-one correspondence with this
set. We will construct a new group X e S'* whose lower central Poincare series is
different from every one of the G(i). Our group X is obtained from G by factoring
out an appropriate subgroup Y of G. The subgroup Y is obtained by first concocting
the union H of a sequence Hu H2,... of subgroups Ht of the center C of G in a
suitable way; Y then is the preimage in G of 7w(G/7/).

We begin by considering the group G(l). If the lower central Poincare series of G
coincides with that of G(l) from some point on, we proceed as follows. We choose,
by Lemma 10, an integer n{ > 1 so that the image Cn, of C in Gn, has rank at
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least two and so that the ni-th coefficient of the lower central Poincare series of G(l)
coincides with the n\-th coefficient of the lower central Poincare series of G. Now
choose an element a{ e Yni(G) D C, a{ £ Fn,+i(G) so that H(\) = gp(ax) is an
isolated subgroup of G. Observe that, by Lemma 12, G/H(l) e &, that the rank
of the canonical image of Cn, in G(l) is at least one and that the n r th coefficient of
the lower central Poincare series of G/H(\) is one less than the n r th coefficient of
the lower central Poincare series of G(l). Hence the lower central Poincare series of
G(l) and that of G/H (1) have different «i-th coefficients. If infinitely many of the
coefficients of the lower central Poincare series of G differ from the corresponding
coefficients of the lower central Poincare series of G(l), put at = 1 and Hi = 1 and
choose try > 1 large enough so that the rank of C, is at least one and the lower central
Poincare series of G(l) and G/H(1) have different ni-th coefficients.

Now suppose that we have chosen a sequence

« , < n2 < • • • < nm

of integers and a corresponding sequence

a\,a2,..., am

of elements of G in such a way that either cij = 1 or else

forj = 1,2, ...,m, that

= gp(aua2,...,aj)

is an isolated subgroup of G for each j = 1,... ,m, that the rank of the canonical
image of Cnj in G/H(J) is at leasts and so that the lower central Poincare series
of G/H(j) differs from that of G(j) in the rij -th coefficient for j = I,... ,m. We
need now to choose nm+i and am+i. If the lower central Poincare series of G/H(m)
ultimately coincides with the lower central Poincare series of G(m + 1), choose
nm+1 > nm large enough to ensure that the rank of Cm+1 is at least 2(m + 1) and so
that we can find

am+x € YnmJG) D C, am+l $ F,,.+1+1(G)

with H(m + 1) = gp(au ..., am+i) an isolated subgroup of G. Then the lower
central Poincare series of G/H(m + 1) has the same coefficients as G/H{m) up to
and including the (nm+1 — l)-th coefficient and the nm+rth coefficient of G/H(m + 1)
is one less than that of the nm+i-th coefficient of G(m + 1). Moreover the rank of
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the canonical image of CKm+l in G/H{m + 1) is at least m + 1. If the lower central
Poincare series of G/H(m) differs from that of G(m + 1) in infinitely many places,
then we choose am+{ = 1, nm+1 > nm large enough to ensure that the rank of Cnn+,
is at least m + 1 and such that the lower central Poincare series of G(m + 1) and
G/H{m) have different nm+i-th coefficients. This then completes the definition of the
sequence nx,n2,... and the elements a,, a2,

We now define H to be the union of the H(i) and define Y by

yJG/H) = Y/H.

Then the lower central Poincare series of G/ Y differs from that of each G(m) as we
have arranged matters in such a way as to ensure that the nm-th coefficient of the lower
central Poincare series of G/ Y is different from the nm-th coefficient of the Poincare
series of G(m). Finally we need only to observe that the canonical projection of C into
G/ Y is not finitely generated. Indeed C maps onto a subgroup of (G/ Y)/~ynm{G/ Y)
which is free Abelian of rank at least m for every m. So G/ Y e &* and this then
completes the proof of Theorem 1.14. •

5.3. A group of Philip Hall Let P = Q[[>"]] be the algebra of power series in
y with coefficients in the field Q of rational numbers and let M = Af (3, P) be the
Q-algebra of all 3 x 3 matrices over P. Consider the elements

of M. Observe that t = 1 + r and a = 1 + a are invertible elements of M. We put

G = gp(t,a).

G is a group that goes back to Hall [12]. Our claim here is that G e &*. In order to
see how this comes about, notice that

(1) a3 = ra2 = a2r = TUT = 0.

Let Ao be the Q-subspace of M spanned by the identity matrix and let An be the
<2-subspace of M spanned by the matrices

(2) Tn,aTn-l,Tn-xa,aTn-2u.

It follows from (1) that the elements in (2) form a basis for An. Let Pn be the ideal
of P consisting of all those power series CQ + c^y + • • • + CjyJ + • • • for which
c0 = Ci = • • • = cn = 0. Consider the canonical homomorphism of M(3, P) into
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M(3, P/Pn). The images of r and a in M(3, P/Pn) generate a nilpotent Q-subalgebra
and hence the image of G in Af (3, P/Pn) is a torsion-free nilpotent group. Since
the Pn intersect in 0, it follows that G e 5 . We leave it to the reader to verify that
the center of G is free Abelian of infinite rank, freely generated by the commutators
[a, rnatn] (n e T) and hence that G e &*.

5.4. A final comment The point of our main theorem, Theorem 1.14, is that there
are a host of groups with different lower central Poincare series. The question arises
as to whether groups with the same lower central Poincare series have anything in
common. In particular it is still unknown whether a group in & with the same lower
central Poincare series as a free group is finitely related. We cite here the paper [5]
for some interesting new examples of this kind.
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