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Abstract. Let G be acomplex reductive linear algebraic group and Go C G areal form. Suppose P
isa parabolic subgroup of G and assume that P has a Levi factor L such that Go N L = Lo isared
form of L. Using the minimal globalization Viin of afinite length admissible representation for Lo,
one can define a homogeneous analytic vector bundle on the Go orbit S of P in the generalized flag
manifold Y = G/P. Let A(P, Viin) denote the corresponding sheaf of polarized sections. In this
article we analyze the Gy representations obtained on the compactly supported sheaf cohomology
groups H2(S, A(P, Vinin)).
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1. Introduction

By the mid-1970s there had emerged two important geometric constructions for
producing irreducible representations of real reductive Lie groups. On the one
hand some irreducible representations could be realized as the global sections of
certain real analytic vector bundles defined over various compact homogeneous
spaces (this is the real parabolic induction) [28—-30]. A second method obtained
some other irreducible representations as actions on the sheaf cohnomology groups
of holomorphic vector bundles defined over complex homogeneous spaces [4, 10,
21].

By now it is becoming better understood how these constructions fit into the
larger scheme of equivariant sheaves defined on orbits in complex flag manifolds
[13] [16] [23]. Still, there are few results of a general nature about the topolog-
ical representations obtained from these sorts of constructions in the setting of a
generalized flag manifold [31]. Indeed, the two historically significant modelsmen-
tioned above have yet to be analyzed under one conceptua heading. In this paper
we do just that: beginning with polarized homogeneous vector bundles defined
over alarge class of orbitsin a generalized flag manifold, we then characterize the
representations obtained on the sheaf cohomology groups. Moreover, our methods
make it possible to analyze representations originating from vector bundles with
infinite dimensional geometric fibers. According to Chang's amplification [8] of a
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result by Hecht, Milici¢, Schmid and Wolf [15], duality relates the representations
realized in this paper to those studied in Vogan's book [28, Definition 6.3.1]. In
some casesthis duality can be made geometrically explicit (essentialy becausewe
can apply Serre duality [24]). This allows usto treat a certain conjecture about the
geometric realization of Zuckerman modules[28, 29, Conjecture 6.11]. In case of
finite dimensional geometric fibers, we obtain a new proof of aresult due to Wong
[31].

In order to make a precise statement of the main result we now specify the
basic context for al that follows. Throughout this paper G' will denote a connected
reductive complex linear algebraic group with Lie algebra g. A real form of G
means a closed subgroup whose Lie algebraisareal form for g. Suppose Go C G
isareal form and assume aswell that G hasfinitely many connected components.
The purpose of this paper is the geometric realization of some representations for
Go.

A parabolic subgroup of G is defined to be any algebraic subgroup P C
G such that the corresponding quotient variety G/ P is complete. On the other
hand, a generalized complex flag manifold on which G actsis simply a complete
homogeneous space for G. Suppose that P C G is a parabolic subgroup and
consider the generalized flag manifold G/P. A Levi factor of P refers to any
maximal reductive algebraic subgroup L C P. We say that the G orbit S of P in
G/ P isaLevi orbit provided P has a Levi factor L such that Lo = Gon L isa
real form of L. Supposethat S isalLevi orbit and fix amaximal compact subgroup
Ko C Gp. By movingto anew point of S, if need be, we may assume Ko N Lo isa
maximal compact subgroup in L. Assume K C G is the complexification of Ko
and let () denotethe K orbit of P in G/P.

When a finite length, admissible representation for Lo has an infinitesimal
character then it will determine two geometrically defined objects as follows. On
the one hand the underlying Harish—Chandramodule V' of the representation carries
analgebraicactionof KN L. Allowingtheunipotent radical of KNP toacttrivialy,
we can thus obtain a K equivariant algebraic vector bundle with fiber V' defined
over the K orbit Q. Since V' hasinfinitesimal character we can next apply acertain
direct image construction, analogous to the direct image for D modules, to the
sections of the bundle. The resulting object Z(P, V') isa K equivariant sheaf of g
modules defined on all of Y.

Onthe other hand the minimal globalization Vi, of V' givesaglobal topological
representation for the group Lo [16] [22]. Similar to the above, we view Go N P
as acting on Viyin by alowing the unipotent radical to act trivially. Since this
continuous representation consists entirely of real analytic vectors, it determines
a G equivariant real analytic vector bundle with fiber Vi defined over the Gy
orbit S. The Lie algebra p of P determines an equivariant polarization for the
homogeneousvector bundle. Let A (P, Vmin) denote the subsheaf of sections of the
bundle which are annihilated by this polarization. The main result established in
this paper is the following
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THEOREM. Let g denote the codimensionof Q inY".

(8) The compactly supported sheaf conomology groups H? (S, A(P, Vmin)) have
naturally defined dual nuclear Fréchet topologies and continuous G actions. The
resulting representations are admissible and have finite length.

(b) If the Harish—Chandra module V' has an infinitessmal character which is
antidominant for Y [Section 3] then the compactly supported sheaf cohomol ogy
groups H?(S, A(P, Vmin)) vanish unless p = ¢, in which case the Go module
HI(S, A(P, Vmin)) is naturally and topologically isomorphic to the minimal glob-
alizationof I'(Y, Z(P,V)).

(¢) In any case the sheaf cohomology group H?~4(Y,Z(P,V)) is a Harish—
Chandra module for (g, K') whose minimal globalization is naturally isomorphic
to the topological Go module H? (S, A(P, Viin)) for all p.

If the G orbit S isopenand if theinducing representation V' isfinite dimension-
al, then A(P,V) is the sheaf of sections for a homogeneous holomorphic bundle
with fiber V. Hence, duality coupled with our main theorem allows us to give a
new proof of a conjecture by Vogan about Zuckerman modules, as mentioned in
the end of the second paragraph.

Our main difficulty in seeing that this duality should be geometric when Viyin
is infinite dimensional occurs because the standard methods cannot show that
A(P, Vmin) is something like the sections of a holomorphic vector bundle. Appar-
ently this difficulty was not anticipated in [28, 29], therefore we conclude the paper
with a brief consideration of the problem.

This paper is divided into ten sections and is structured according to the follow-
ing outline.

Thefirst sectionistheintroduction. In the following three sectionswe introduce
the basic geometric setting and the essential functorality used for establishing
the main result. Some of the relevant facts pertaining to analytic localization are
reviewed and the theory is expanded somewhat to the setting of a generalized
flag manifold. In addition we briefly recall some pointsin the agebraic theory for
sheaves of twisted differential operators as well as develop a few analogs for the
generalized counterpart. Thefifth sectionintroducesthe Levi orbitsand their duals,
which provides a geometric setting where the current technology readily facilitates
an understanding of the analytic sheaf.

In the sixth section we begin to consider the induced sheaves. Subsequently, we
consider how an analytic group action effects the structure of the localization. It
turns out that the analytic localization of the minimal globalization of a Harish—
Chandra module provides a certain (weak) equivariant complex of sheaves whose
hypercohomology is known. The aim of the forthcoming argument is to show (at
least in some cases) that the hypercohomology of this complex of sheavesin fact
computes the sheaf cohomology groupsfor the induced sheaf. A fundamental tool
used for establishing this fact is a comparison theorem for geometric fibers which
we prove in the seventh section.
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In the case of regular antidominant infinitesimal character, it is now a simple
matter to establish the main result, which we do in Section 8. Using tensoring argu-
ments, the complete result is obtained in Section9. Finally, Section 10 examines
the special case of an open orbit, as mentioned previously.

Before beginning the main body of the paper, we would like to establish the
following conventions and notations. A smooth algebraic variety X will at times
be viewed as a complex manifold. Typically we let O x denote the sheaf of holo-
morphic functions on X, we let Dx denote the sheaf of differential operators
with holomorphic coefficients and so on. The sheaf of regular functions on X is
denoted (’)?'(g, the sheaf of differential operators with regular coefficientsis labeled

D?'(g and so on. Given a morphism p: X — Y of topological spaces we let ¢,
denote the direct image in the category of sheaves, we let ¢, denote direct image
with proper supports and we let ! denote the inverse image in the category of
sheaves. A morphism ¢: (X, Ox) — (Y, Oy) of ringed spaces has inverse image
©* inthe category of O modules. We refer the reader to Section 4 of this paper for
adiscussion of the functor ¢ .

2. Localizing to aflag manifold

In this section we briefly review some relevant points about localizing to a flag
manifold.

Geometrically defined, a complex generalized flag manifold is any complete
algebraic variety which carries a transitive action by a connected, complex affine
algebraic group. Theseare precisely the spaceswhich can berealized asthe quotient
of a connected algebraic reductive group modulo a parabolic subgroup. On the
other hand a Borel subgroup of a connected, linear algebraic group is a maximal
solvable connected subgroup. The theory of affine algebraic groups reveals that
the Borel subgroups are al conjugate, that the parabolic subgroups equal their
own normalizers and that a subgroup is parabolic if and only if it contains a Borel
subgroup.

Weusethenotation Y = G/ P where P C G isaparabolic subgroup to denote
a member of the family of generalized flag manifolds on which G acts. In case
the stabilizer of a point in the complete homogeneous space is a Borel subgroup
B C G weusethenotation X = G/B and call X thefull flag manifold. For each
point y € Y let p, be the Lie algebra of the stabilizer P, of y. Since parabolic
subgroupsequal their own normalizers, it followsthat Y can be naturally identified
with the G' conjugates of p,. In particular, X can be identified as the variety of
maximal solvable subalgebras of g.

Letz € X and let n, = [b,, b,;] bethe nilradical of b,. The adjoint actions of
B, on b, and n, determine homogeneous holomorphic vector bundles on X', with
corresponding sheaves of sectionsb™ and n’". Since B, actstrivialy on b, /n,, the
sheaf h" = b’ /n" isafree Ox module and the global sectionsh = I'( X, ") form
what we call the universal Cartan subalgebra. For any point zz € X, if cisaCartan
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subalgebra of g contained in b, then the linear isomorphisms: h — b, /n; < ¢
determine an identification of h with ¢, called a specialization of  to ¢ a z. The
specialization maps allow one to define a universal root system ¥ C h* and a set
of universal positiveroots =1 c 3; we adopt the following positivity convention:
if ¢ is a Cartan subalgebrain some Borel subalgebra b, then the positive roots at
2 € X areidentified with the roots of ¢ in b,.

A choiceof A € h* determinesatwisted sheaf of differential operators Dy, on X
[SeeProp. 3.1]. Thissheaf hasacertain topol ogical structureinherited from thefact
thatitislocally freeasan O x module. In particular, sectionsover compact setscarry
dnF(= dual nuclear Fréchet) topologies which give the structures for topological
algebras. The restriction morphisms for nested compact sets provide continuous
maps for these topologies. We are led to consider the category Mgne(Dy) of dnF
D, modules. The abjects here are some sheaves of D, modules which carry a
reasonabl e dnF topology over the compact setsin X. A D, morphism p: M — 0N
of two dnF D, modules is a morphism in Mgne(D,) precisely when the induced
map ¢,: M, — N, on stalks is continuous, at each z € X. An argument then
showsthat theimage and cokernel of acontinuous morphism belong to Mgne(D, ),
if the induced maps on stalks have closed ranges. One interesting point is that the
category Mgnr(D)) has enough acyclic objects for the functor of global sections:
each object hasal'x acyclic resolution constructed from within the category [13].

It is known that D, is acyclic for I'x [19]. Let Uy = I'(X, D,). Since X is
compact, Uy isadnF agebra: infact it isan inductive limit of itsfinite dimensional
subspaces. Because of this fact, Uy ® M is complete in the projective topology,
when M is dnF, and hence it is a dnF space. Analogous to the sheaf side, we
consider the category Mgne(U,), of dnF U, modules. A U, module belongs to
this category precisely when it carries a dnF topology which alows U, to act by
continuous operators. We observethat whenever M isan object in Mgne(U, ), then
the free left U, module U, ® M is also a dnF module and there is a continuous
surjection Uy ® M — M. Hence for each object in Mg.e(U,) we can construct a
free resolution of U, modules within the dnF category.

Let ® denote the completed projective tensor product. In order to relate the
categories Mynr(Uy) and Mgne(D, ), wefirst consider the object:

Ax (M) = D\&y, M.

Since Ax (M) is the cokernel of a morphism in My.e(D, ), it need not be an
object in this category. A moreimportant consideration isthis: for many interesting
objects M in Mgne(U,y ), examples show that Ax (M) = 0.

It turns out that the program of analytic localization makes sense in the con-
text of derived categories. In particular, it is possible to define derived categories
D(Manr(Uy)) and D(Mane(Dy)), of dnF Uy modules and dnF D, modules. Both
categories are triangulated in the usual way and Ax induces an exact functor
LA x:D(Mane(Uy)) — D(Mane(Dy)) of triangulated categories. We will make
asubtle use of the following fundamental result [13].
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THEOREM 2.1 [Hecht and Taylor]. If X isregular, then LAx: D(Mgne(Uy)) —
D(Mar(Dy)) is an equivalence of categories, with inverse RI'y:
D(Man(D)\)) — D(Man(U/\)).

At this point we briefly recall the structure of U). Let Z(g) denote the center
of the universal enveloping algebraU(g). At apoint x € X, anelement z € Z(g)
agrees, mod theright ideal in U (g) generated by n,,, with auniqueelement ¢, (z) €
U(bg/ng). The resulting element in U(h) determined by this scheme, remains
unchanged for any choice of point z. In thisway we obtain an unnormalized Harish

Chandramap: Z(g) — U(h). Let W bethe Weyl group of X, put p = one half the

sum of the positive roots and let x, denote the composite: Z(g) N U(h) e

Then x,n = x), for each w € W. Put Jy = ker x,. It is known that U, is
isomorphicto U(g)/JyU (g), asan algebra[2] [19]. In spite of this, it is convenient
to keep the dependence on \ specific.

Before treating the case of a generalized flag manifold, a few remarks relating
algebraic localization and analytic localization are in order. For A € h*, Beilinson
and Bernstein introduced a twisted sheaf of differential operators DAY with reg-
ular coefficients, on X. Let M(U),) denote the category of U, modules and let
M (D29 be the category of quasicoherent D29 modules. If M is an object in
M(U,), define

a a
AP (M) =D oy, M.

Recall that A € h* is called antidominant if () is not a positive integer, for each
o € 1. In[2] thefollowing celebrated theorem is established.

THEOREM 2.2 [Beilinson and Bernstein]. If X is regular and antidominant,
then A‘}"(g:/\;ll(UA) — M,.(DJ9) is an equivalence of categories, with inverse
I x: My (DRP) = M(U,).

In the context of representation theory for real reductive groups, the functor
A?'(g yields very interesting results, for certain finitely generated U, modules. This
information is retained by the functor of analytic localization via the following
scheme. A finitely generated U, module M is a dnF module, when it comes
equipped with the inductive limit topology of its finite dimensional subspaces. By
thevery natureof its construction, D\®M ~ D, ® M for thiscase. TheHochschild
resolution of M isthe free resolution F.(M) given by

F,(M) = e"™U, @ M.

Observethat A x (Fo(M)) ~ D)@ M andthat A x (F,(M)) ~ D\® (®PU\) @ M
if p > 1. For aquasicoherent O3 module F, let 7 —» F*" denote the application
of Serre’'s GAGA functor [9] [25]. Since (Di"g)“” ~ D, as aleft Dy module
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and using the fact that GAGA is an exact functor, it follows that L,Ax (M) ~
(L,A%9(M))e" asaD, module, for each p.

3. Analytic localization on a gener alized flag manifold

In this section we briefly treat the analytic localization to a generalized flag mani-
fold. Some functorality is developed as needed for the proof of the main result.

Let Y beageneralized flag manifold onwhich G acts. If b, isaBorel subalgebra
of g, thereisaunique point y € Y with b, C p,. Hence, thereis a G equivariant
projection: X — Y. Sincew isaproper morphism, the sheaf =, D, isadnF sheaf
of algebras. Note that I' (Y, 7. Dy ) = U,.

We first review some key structural details about the sheaf . D). Let u, bethe
nilradical of p,. The adjoint actions of P, on v, and p, determine homogeneous
holomorphic vector bundles on Y, with corresponding sheaves of sectionsu” and
p". Inthis case P, need not act trivially on the quotient [, = p, /u,. Nevertheless,
" = p’/u’ determines a sheaf of enveloping algebras U(1"). Note that U(I") is
the locally free G equivariant sheaf determined by the P, action on U (1), with
algebrastructure given by pointwise multiplication. Hence, if Z(I") = the center of
U(r),then Z(1') isafreesheaf on Y. Put Z(1) = I'(Y, Z(r")), the universal center
for the enveloping algebra of the Levi factor. For any Levi factor | C p, there
are morphisms of algebras U (1) — U(ly) < I['(Y,U(I')). Letting Z(I) denote the
center of U(I), we thus obtain the specialization isomorphism Z(1) — Z(1,) —
Z(1).

Similar to the case of aflag manifold, we have an unnormalized Harish Chandra
map Z(I) — U(h), obtained as follows. The preimage of a point X, = 7~ (y)
is the flag manifold for the reductive Lie algebra [,. An element of the universal
Cartan for [, is identified with a section of h along X,,. Hence, via the Harish
Chandra map previously defined, an element of Z(1,) determines an element of
U (h). The desired map is obtained by evaluating an element from Z(1), at y. The
result of this map is the same for any choice of the point y. This identification
of h with the universal Cartan of [, allows one to define the universal roots of

in the Levi factor X(I) C %, a corresponding set of positive roots (1)t ¢ £F

and a Wey! group W, C W. Let x, denote the composite: Z(1) — U(bh) ¢,
Then x) = xuw) for al w € Wy. In order to compensate for the ambiguity in this
parametrization of characters for Z(1), the following definition is convenient. We
call A € p* antidominant for Y if there is an element in the orbit W, - A which
is antidominant. An equivalent condition is that c¢(\) not be a positive integer for
each o € 7 — (1) T. On the other hand we say X is antidominant for [ if c())
isnot a positiveinteger for each o € X (1) . A basic fact isthat each element in p*
is conjugate under T to an element that is antidominant for I.

The left action of g on Oy, denoted by f — & f, for ¢ € g and f aloca
holomorphic function, is utilized in defining an agebra structure on the sheaf

https://doi.org/10.1023/A:1000126010326 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000126010326

290 TIM BRATTEN

U'(g) = Oy ®U (g) asfollows. Tobeginwith, werequirethat Oy ® 1, and 1@ U (g)
be subalgebrasof U (g) under the usual operations. Thisfirst requirement, together
with the commutator relation: [1® ¢, f ® 1] = §f @ 1, for f € Oy and € € g,
determines the desired algebra structure. Note that u” C U’ (g) is a sheaf of Lie
subalgebras, under the operation of pointwise bracket. It turns out that u U (g) is
asheaf of two sided idealsin U (g). Define:

_ U9
wU(g)

Dy

There are natural inclusions of sheaves of algebras: Z(1) — U(I') — D,. One
checksthat Z(1) isthe center of D,. Thefollowing is established in [7, 13].

PROPQOSITION 3.1 (Chang, Hecht and Taylor). For each A € p*

(@ D, isacyclic for =,
(b) 7Dy ~ D ® z(1) Cry,, as asheaf of algebras.

There is a category Mgne(m. D)) of dnF 7, D, modules and a corresponding
derived category D (M gne(m. Dy )). Using the same sort of topological Czech reso-
lutions as employed on the flag manifold [ 13] we define aderived functor of global
sections RLy: D(Mgng(mDy)) — D(Manp(Uy)).

For M an object in Mgnr(U)) consider the sheaf

Ay(M) = W*D/\®U)\M.

This definition determines a right exact functor Ay into the category of sheaves
of m, D, modules. The functor carries continuous morphisms of dnF U, mod-
ules to morphisms of =,D, modules, which are continuous for the quotient
topologies induced on stalks. Using the same sort of construction previously
employed on theflag manifold we obtain aderived functor LAy: D(Mgne(Uy)) —
D(Manr(m:Dy)).

PROPOSITION 3.2. (a) Thefunctor RI'y o LAy isisomorphic to the identity.
(b) LAy ~ Rm, o LAx asfunctors D(Mgne(Uy)) = D(Mane(m:Dy)).
Proof. With the help of Proposition 3.1, the argument for (a) becomesidentical

to the case of aflag manifold [13, Prop. 5.2].

To establish (b) supposethat M isadnF U, module. Using thefact that 7: X —

Y is proper we can see that the map: m.DA\@M =~ 7,(Dy\@M) — 7,(Dr®y, M)

determines a natura transformation of functors Ay — m, o Ax, which is an

isomorphism on free objects from Mg (U ). Since free dnF D, modules are 7,

acyclic and since r, hasfinite cohomological dimension, asimpleformal argument

allows usto conclude the desired result O

https://doi.org/10.1023/A:1000126010326 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000126010326

REALIZING REPRESENTATIONS ON GENERALIZED FLAG MANIFOLDS 291

Thenext task isto develop asimple but crucial functorial relationship whichwe call
the analytic base change. Theresult we need can be easily and elegantly expressed
in the language of derived categories.

Lety € Y put X, = 7 (y) and consider the following diagram

X, ——— X

Y

{y}

Let [ be a Levi factor for p,. When F isa D, module, then i*F is a sheaf of
[ modules via atensor product action. This [ action induces an action of the sheaf
of algebras U"(I) = Ox, ® U(1). In turn, this action factors through a sheaf of
ideals, so that the quotient D, is a twisted sheaf of differential operators for the
flag manifold X, acting on ¢* F. In particular, I'(X,,* F) is a sheaf of modules
for

Ux(1) = U(1) ®z(9) Cagp = (X, DY),

where Z(I) acts through the Harish—Chandra map: Z(1) — Z(1,) — U(h). On
the other hand if F is a sheaf of =, D, modules then the morphism of algebras
U(1) = I'(Y, . D)) determines an action of U, (1) on the geometric fiber 7;, F. Let
D(Mane(Ux (1)) and D(Mgne (DY) denotethe derived categories of appropriately
defined dnF modules.

PROPOSITION 3.3. (a) The functors:* and T}, determine derived functors: Li*:
f)(/\(/l)d),SF(DA)) — D(Magr(Dy)) and LT,: D(Mgnr(me Dy)) — D(Manr
Ux(1)).

(b) LT,oLAy ~ RI'x, oLi*oLAx asfunctors D(Manr(Uy)) — D (Manr(Un
(1)))-

Proof. Let z € X,. Since the stalk Oy, , is a finitely generated module for
O,z the natural map: Oy, » ®o,, M — Ox, @0, , M isabijection, when-
ever M isadnF module for Ox .. In fact, resolving O, . by finitely generated
free Ox, modules and applying the natural transformation: (---) ®o, , M —
(- -)®0X,ZM shows at once that free dnF O x , modules are acyclic for the func-
tor: Ox, .« ®ox, (-+-). Hence, free dnF Dy modules are acylic for ¢* and there
is an isomorphism of sheaves: i* (D \&M) ~ (i*Dy)®@M, where i*D, is a dnF
sheaf on X, in anatural fashion and M is any dnF space. In more generality, if
D)\®F isaquasifree object from Manr(D,) [13] then its stalk at = isisomorphic
to DA,:B@]-}. It follows that quasifree objects are acyclic for +* and there is an
isomorphism of sheaves: i*(D\®F) ~ (i*D,)®i~1(F). Since the functor i* has

https://doi.org/10.1023/A:1000126010326 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000126010326

292 TIM BRATTEN

finite cohomological dimensionwe can now seethereisanaturally induced derived
functor Li*: D(Mgnr(D))) — D(Man(Df\))

Using the fact that 7, D, isalocally free Oy module, nearly identical consid-
erations show that quasifree dnF 7. D, modules are acyclic for 7}, and there is an
isomorphism 7, (m.DA®F) =~ (1,7 D,)®F,. In particular, we obtain a derived
functor LT,: D(Manr(m. D)) — D(Mane(UL(1))).

To establish (b) assume M is a dnF U, module. Then the morphisms
(TymDA)®M =~ I'(Xy,i*Dy)®M =~ T'x, 0 i*(DA\®M) — T'x, 0 i* o Ax (M)
determine a natural transformation: 7, o Ay — I'x, o i* o Ay, whichisan iso-
morphism on free dnF U, modules. Indeed, becauseI' (X, *D)) ~ T, m, D, isa
direct limit of its finite dimensional subpaces, it follows that I'( X, i* D)@ M =~
['(X,,i*Dy) ® M. Recaling that i* D, isacyclicfor I'x, [13], it now follows that
i*(DA®M) isacyclicfor I'x, aswell. O

4. The category My(r, D39)

Inthis section we recall afew facts about the algebraic localization to ageneralized
flag manifold. We aso consider the generalized direct image functor, which is a
natural analog of the direct image for D modules in the setting of a generalized
flag manifold.

If wethink of X andY asalgebraic varietiesthen 7: X — Y isamorphism. Let
. D39 denote the sheaf of algebras . (D39) and let M, (. D39) bethe category
of quasicoherent W*Dilg modules.

If M is a U, module then the algebraic localization to the generalized flag
manifold is the quasicoherent sheaf of W*D?\Ig modules defined as follows

A2(M) = 7, DV @y, M.

LEMMA 4.1. If ) is antidominant, then the following hold

@) i Mye(D39) = Myo(m, DI9) is exact.
a a
(b) A ~ 7, 0 AT,
(© Ty 0 A% ~ jd.
Proof. Thefirst claimisshownin[7, Theorem 4.16]. To establish (b), observe
thereis an exact sequence Uy, ® K — Uy ® M — M — 0, for M from M(U,).

Now use the natural transformation A%9 — 7., o A39 and apply part (a). Part (c) is
aformal consequence of Part (b) and the identity I'y o 7, ~ I'x. O

We will make use of the following analog of Theorem 2.2, which was observed by
Changin histhesis[7].
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THEOREM 4.2[Chang]. If A isregular and antidominant for Y, then A%%: M (U)
— M (7. D39 isan equivalencewith inverse Ty .

We make note here that the remarks following Theorem 2.2 hold in the context
of the generalized flag manifold as well. In particular, if F is a quasicoherent
Oi",g module and if F — F%" denotes the application of Serre’'s GAGA functor
then the canonical morphism H? (Y, F) — HP(Y,F*") is an isomorphism [9].
Observe that the natural map (W*Di'g)“” — m.D, induces an isomorphism on
geometric fibers. Since both sheavesarelocally free, the map is an isomorphism of
left . D) modules. Let M beafinitely generated U, moduleand let F.(M) denote
its Hochschild resolution. As before, when M is regarded as limit of its finite
dimensional subspaces, thereis an isomorphism Ay (F.(M)) ~ (A";"/g(F.(M )))en
of complexes of 7, D, modules.

We now briefly consider a certain direct image functor for some sheaves on the
generalized flag manifold which gives the analog for the direct image of algebraic
D modules [3]. We alter the notations momentarily to streamline the exposition. In
particular, let Ay = W*Dilg and assumethat all objectsare defined in the algebraic
category for the remainder of this section.

Supposethat @ C Y isasmooth subvariety with inclusion morphism @ Ly,
Let A} be the sheaf of differential endomorphismsof the O module j*.A, which
commutewith theright j 1.4, action. Let ¢ and 2y bethe canonical bundlesfor
QandY . Put QQ|Y =Qg ®0q j*Q_ and (AA)Y(_Q = QQ|Y ®(9Qj A_», where
A_, isthe sheef of algebrasoppositeto Ay. Then (Ay)y. ¢ isaleft j~1A,, right
A bimodule. If V isamodule for .4}, we define

3+ (V) = 5:((AN)ye@ ® 4 V)

In dlightly more generality, assume we have nested inclusions of smooth subva-
rieties Q1 2 Q2 % Y and let j = j o j1. In the manner preceding, it is
possibleto define a sheaf of algebras.A%* which actson j; (A%?) and adirect image

jip: M(AZ) — M(AP). The following extensions of the usual D module case
appearin[7, 8].

THEOREM 4.3 [Chang]. (d) The above definitions give left exact functors
J1y: ch(AA) — ch(A”) and j2 ch(A”) = Mgc(An).

(b) AL =~ A and ji, =~ jo, o j1, asfunctors My.(AL) — Mye(Ay)-

(c) When Ql isopenin ()2 then j1+ can be naturally identified with the direct
image in the category of sheaves.

(d) If Q1 is closed in @2 then Kashiwara’'s equivalence of categories holds
[3, Thm. 7.11]. In particular, j1., gives an equivalence of M. (A%') with the full

subcategory of sheavesin M. (.A%?) supportedin Q1.

https://doi.org/10.1023/A:1000126010326 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000126010326

294 TIM BRATTEN

A relatively smple and formal consequence of Kashiwara stheoremisacertain
algebraic base change which will play a crucia role in the main argument. In
particular, suppose y is a point in ¢ and let TyQ denote the geometric fiber at y
relative to the smooth subvariety . 73, will denote the geometric fiber at y relative
to the global space Y. We consider the following diagram:

{y}

Q . Y

J

If V isan A% module then Uy (1,) acts on the geometric fiber T2V. Similarly,
if 20 is a module for A, then 7,20 is also a module for U,(l,). The functors
79 and T, determine derived functors: LT?: D(Me(A})) — D(M(Ux (1))
and LT,: D(My.(Ay)) — D(M(Ux(1,)))- By first applying j, and following
this with the fully faithful embedding Mg.(Ax) — D(My.(Ax)) we obtain a
functor LT, 07 ch(Ai) — D(M(Ux(1y))). Onthe other hand let ¢ denotethe
codimension of @ in'Y and let [¢] denote ¢ applications of the translation functor
on D(ch(AJA')). By first utilizing the fully faithful embedding ch(Ai) —
D(Me(A})) we obtain the functor LTS o [q]: Mge(A}) — D(M(U(1y))).

PROPOSITION 4.4. (a) For eachy € Q, LT, o j; ~ LT o [q].

(b) IfyisnotinQ andif @ isaffinely embeddediny” then LT} o j, isisomorphic
to zero.

Proof. Theresult can bededuced from Kashiwara stheoremin exactly the same
manner as the base change for algebraic D modules[3, Theorem 8.4 and Corollary
8.5]. O

5. Special points, Levi orbitsand dual Levi orbits

Let Go C G bearea form and assume that G has finitely many components. In
this section we consider some simple geometry that relatesthe action (on Y') of the
real form to the action of acertain linear algebraic group K C G.

The Lie algebra go C g of Gp uniquely determines a complex conjugation
T:g — g whose fixed point set is go. Fix a maximal compact subgroup Ko C Go
andlet K C G bethecomplexificationof Ko. Let6: go — go beaCartaninvolution
given by the maximal compact subgroup Ko [11, Sect. 3] and extend # to acomplex
linear involution on g.

A point y in the generalized flag manifold Y is called special if the parabolic
subalgebrap, hasal evi factor [ whichis stable under both 7 and §. Observethat the

https://doi.org/10.1023/A:1000126010326 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000126010326

REALIZING REPRESENTATIONS ON GENERALIZED FLAG MANIFOLDS 295

Lie algebrarfp, N p, isreductivein p, since the corresponding integral subgroup
intheadjoint group Ad(G) isthe complexification of acompact subgroup. Because
[ C 78p, N py is asubalgebra which is maximal with respect to the property of
being reductiveinp, it followsthereisexactly onef, T stable L evi factor associated
to aspecia point. This 8, r stable Levi factor will be refered to as the stable Levi
factor.

In the ensuing discussion we fix aspecial pointy € Y. Let P, C G denotethe
corresponding subgroup and let [ be the stable Levi factor. Put L = the normalizer
of [in P,. Then L is a connected reductive complex linear algebraic group: it is
the connected subgroup in G with Lie algebra (. Furthermore P, is a semidirect
product P, = L - U,, where U, = exp(u,) is the unipotent radical for P,. Let
Goy = P,NGodenotethestabilizer of y for the Go actiononY andlet Lo = LNGo
be the normalizer of 1in Go,. Then Lo is areal form for L having finitely many
components. In fact, Lo has maximal compact subgroup Ko N Lo [28, Lemma
3.2.14].

Thefiber X, = 7~ 1(y) isnaturally identified with the flag manifold for [ (Borel
subalgebras of g contained in p, intersect with [ to give the Borel subalgebrasof 1).
Observe that when a G orbit Sx on X has nontrivial intersection with the fiber
X, then Lo acts transitively on the intersection X, N Sx. In particular, G orbits
having nonempty intersection with X, correspond to Lo orbits on the fiber.

On the other hand, consider the stablizer K, = P, N K of y for the K actionon
Y. Then the normalizer L N K of 1 in K, is the complexification of the compact
group Ko N Lo (the argument is formally the same as the argument that Lo has
maximal compact subgroup KoM Lg). Similar to the above considerations, if Q) x is
aK orbit on X that intersectsthefiber X, nontrivially then L N K actstransitively
on theintersection X, N Qx.

The following fundamental result is the special case of a more general result
established by Matsuki and is often refered to as Matsuki duality. We state the
following lemma[17, Sect. 1] for the purpose of establishing Proposition 5.3.

LEMMA 5.1 [Matsuki]. (a) Each Borel subalgebra contains a ¢ stable (also a 7
stable) Cartan subalgebra.
(b) Each ¢ stable (or each 7 stable) Cartan subalgebra is conjugate under an
element of the identity component of K (or Go) to a6, T stable Cartan subalgebra.
(c) If two special pointsin the flag manifold are conjugate under K (or under
Go) then they are conjugate under Kp.

The duality theorem is now an immediate corollary of thelemma. Let I/ denote
the set of special pointsin the flag manifold X .

THEOREM 5.2 [Matsuki]. Theinclusion/ — X defines a one to one correspon-
dence between the following:

(i) The Kq orbitson ¢/ and the K orbitson X
(ii) The Kg orbitson ¢/ and the G orbitson X .
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In particular, for a special point y € Y the Matsuki duality applied to X,
determines a one to one correspondence between the Lg and the L. N K orbits on
X,. Thisin turn defines a correspondence between some Go and some K orbits on
Y (the general case has also been solved by Matsuki [18]). In order to make this
correspondence explicit we have the following definitions. A Gg orbit S C Y is
called aLevi orhit if it contains a parabolic subalgebrawith a 7 stable Levi factor.
A K orbit @ C Y iscalled adual Levi orbit if it contains a parabolic subalgebra
that hasa # stable Levi factor. The G orbit S issaid to be dual to the K orbit @ if
S N @ contains a special point.

PROPQOSITION 5.3. The following conditions hold on Y

(a) Each Levi orbit (also each dual Levi orbit) contains a special point.

(b) If S'isaLevi orbit (or if Q isadual Levi orbit) then the compact subgroup Ko
actstransitively on the special pointsin S (or in Q)

(c) The relationship of duality establishes a one to one correspondence between
the Levi orbits and the dual Levi orbits

Proof. To establish (a) let Q be adual Levi orbit. Then for somey € () there
is a parabolic subalgebra p, which has a # stable Levi factor [. In turn, thereis a
Cartan subalgebrac C [whichisf stable[Lemmab5.1]. For somek € K the Cartan
subalgebraAd(k)c is stable under 7 and  [Lemma5.1]. Thisimpliesthat the Levi
factor Ad(k)! is stable under the product 67 (because aroot vector for Ad(k)c in
Ad(k)rissent by 87 to aroot vector for the negativeroot). Since Ad(k)(is@ stable
we have the desired result.

To establish (b) let y; and y» be two special pointsin adual Levi orbit (). By
applying Lemmab.1 to thefiber X, we obtain aspecial point z; € X,,. For some
k € K thepoint k - =1 isin the fiber X,,. Now applying Lemma 5.1 to the fiber
X,, we obtain some k' € K N Py, suchthat £’k - =1 is special. Thisimplies that
the points z; and 'k - z1 arein the same K orbit O

6. Induction and analytic localization of group representations

Theunderlying set of K finite vectorsin an admissible, finitelength representation
for G yieldsacertain algebrai c object whoseformal propertiesdefinewhatiscalled
a Harish—Chandra module. The study of these objects has greatly facilitated the
understanding of topological representations for G. In turn, it is known that each
Harish—Chandramodule arises as the K| finite vectorsin some global, topological
representation for G [5]. In this sectionwe begin by briefly recalling afew relevant
points about Harish—Chandra modules and their globalizations.

Suppose that M is a complex vector space that comes equipped with actions
of K and g. Then we call M a Harish—Chandra module for (g, K') provided the
following conditions hold
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(@) M isaunion of finite dimensional algebraic K modules.

(b) Thedifferential of the K action agrees with the g action.

(c) Theactionmap U(g) ® M — M is K equivariant.
Here K is acting on U(g) ® M viathe tensor product of the adjoint action
with the action on M.

(d) M hasafinite composition series.

On the other hand, suppose we have a continuous representation: Go x M, —
M, givenby (g, m) — w(g)m where M, issomecompletelocally convex space. A
vectorm € M, iscaledanalyticif thefunction Go — M, definedby g — w(g)m
isgiven locally by a convergent power series. When each vector in M, is analytic
thenthe Liealgebrag actson M, by complexifying the derivative of the G action.
Because Go C G is area form it turns out that M, is an analytic dnF (g, Go)
module [13] precisely when M, is a dnF space consisting of analytic vectors such
that the operators w(¢) for ¢ € g are continuous. If in addition, the center of the
enveloping algebra acts by the infinitesimal character A € p* then we call M, an
analytic (Uy, Go) module.

The Ky finite vectors in any analytic (g, Go) module M, will form a (g, K)
module M satisfying (&) through (c) of the above definition. In case M also
satisfies (d) then M, issaid to globalize (or complete) the Harish—-Chandramodule
M and werefer to M, asan analytic globalization (or analytic completion) of the
Harish—Chandramodule M .

It follows from work of Casselman and Wallach [6] that each Harish—Chandra
module has a canonical and functorial analytic globalization (which carries the
topology of adnF space [13]). In fact, Schmid has shown that this canonical ana-
lytic completion coincides with the minimal globalization of the Harish—Chandra
module [16, 22].

The induced sheaves

Suppose that y € Y is a specia point and adopt the notations of the previous
section. In particular, let S be the G orbit of y and let »: Go — S denote the
projection ¢(g) = ¢ - y. Assume V' is a Harish—Chandra module for (1, K N L)
where I isthe stable Levi factor and let V,, denote the minimal globalization of V.
We now introduce the notion of the corresponding standard analytic (or analytic
induced) sheaf A(y, V,,).

The action of Ly on V,, extends to the full stabilizer G, by allowing the
unipotent radical to act trivially. Since V,, isan analytic module, this representation
in fact determines a homogeneous real analytic vector bundle defined over the Gy
orbit S. The sections of this vector bundle over an openset U C S are precisely
the real analytic functions F: ¢p~(U) — V,, which satisfy:

F(gb) = w(b ")F(g)
forg € v 1(U) andb € Go,.
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The Lie algebra p, defines what is sometimes refered to as an equivariant
polarization for the homogeneous bundle determined by V,,. We describe this as
follows. Extend the action of 1 on V, to all of p,, by allowing the unipotent radical to
act trivially. Then the locally free equivariant sheaf p* [Sect. 3] acts on the sections
of the vector bundle via two actions. Differentiating the left translation of real
analytic functions determines a g action and hence one corresponding action for
p". On the other hand, the action of p, on V,, determines a pointwise action for p’
on the sections. Then the induced analytic sheaf (on S) is nothing but the subsheaf
of sectionsfor the homogeneous bundle which are annihilated by the difference of
thesetwo p" actions.

In other words, the induced analytic sheaf As(y,V,,) can be defined (on S)
as follows. For an element £ € ¢ let &, denote the operator obtained by differ-
entiating the right trandation of real analytic functions. If U C S is open, then
[(U, As(y, V.,)) =theset of real analytic functions F: 1y~ 1(U) — V,, which satisfy

(@) F(gb) = w(b™")F(g), for gey~'(U) and be Lo,
(b) &, F =0, for ¢ € uy.

The left trandation of real analytic functions definesa G action on Ag(y, V,,).
Let i: S — Y denote the inclusion. Extension by zero provides a global sheaf
Ay, V) = 91 As(y, V,,) defined on al of Y. Differentiating the G action and
complexifying definesa g action and in fact A(y, V,,) is asheaf of D; modules.

Lety:U C Y — G beaholomorphic cross section for the fibrationg — ¢ - y
with y(y) = e (the identity element of G). The following result is discussed in
[13].

LEMMA 6.1 [Hecht and Taylor]. (a) A(y, V.,) isadnF sheaf of (D, Go) modules.
In particular, when V,, is an analytic (U (f), Go) module, then A(y, V,,) isa dnF
sheaf of (7, Dy, Go) modules.

(b) The section + deter mines an isomor phism of dnF Oy, modul es between the
stalk of the induced sheaf at y and Oy, ®V.,.

Since the complexification K of the maximal compact subgroup Ko C Gg isa
linear algebraic subgroup of ¢, the K orbitson Y aresmooth algebraic subvarieties.
In particular this is true for the K orbit @) of the specia point y. Similar to the
above construction, we extend the Harish—Chandra module V' to a module for
the stabilizer K, by allowing the unipotent radical to act trivially. In this way V'
determines a K homogeneous algebraic vector bundle defined over the K orbit Q.
Let V denote the corresponding sheaf of sections. More precisely: let ¢p: K — Q
betheprojection ¢(k) = k-yandletU C @ beanopenset. ThenT'(U, V) consists
of all finite rank regular functions F: ¢~1(U) — V which satisfy

F(kb) = w(b ) F(k),
fork € ¢~ 1(U) andb € K.
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We assume that V' has infinitessimal character A € p*. Let ¢ denote the Lie
algebra of K. The group K acts on V through the left translations. This in turn
determinesan action for the sheaf of algebrasU " (£)39 [Sect. 3]. On the other hand,
the adjoint action of K, on [, = p,/u, determines a locally free K equivariant

sheaf U (1°)% with fiber U (1) [Sect. 3]. Viathe I action on V the sheaf V isa

module for U (1 )29,

Let 5:Q — Y betheinclusion and recall the notations of Section 4. The fol-
lowing extensionsfrom the setting of aflag manifold to the setting of a generalized
flag manifold are treated in [7, 8].

LEMMA 6.2 [MiliCic, Chang]. (a) The orbit @ is affinely embedded in Y.
(b) The actions of U/ * ()39 and U, (1 ‘)22'9 on V determine an action of A3 .

(c) 7+ V isacoherent sheaf of modulesfor (W*Di"g, K).Inparticular,I'(Y, 54+ V)
isa Harish—Chandra module for (U, K).

We usethe notation Z(y, V') to denote the sheaf j,V andwerefertoZ(y, V') as
the standard Harish—Chandra (or algebraic induced) sheaf correspondingto V.

Analytic localization of group representations

Supposethat M isaHarish—Chandramodulefor (U, K) andthat M, isananalytic
completion on which G acts. At first glance it may not seem so clear how this
information could possibly effect the structure of the analytic localization. For
regular A the Koszul complex can be used to facilitate a description of the analytic
localizationsto aflag manifold [13]. For our purposes, it seems more advantageous
to utilize a certain canonical free resolution. When these resolutions (for M and
M, respectively) are localized then the respective groups K and G will act on
the resulting complexes of sheaves. These actions provide complexes of (D), K)
(respectively (D, Gp)) moduleswhich carry acertain structure sometimes refered
to as weak [1, Defn. 1.3.1]. The point is that the derivative of the group action
and the algebra action do not agree at the level of the complex. Neverthelessthese
two actions are homotopic [12]. Because the module M, is analytic, it turns out
we can understand the basic structure of the localizations (i.e. the homologies of
the derived localization) on a G orbit if only we know the geometric fibers (as
topological representations for the stabilizer) at a point in that orbit.
In particular, we recall the Hochschild resolution F.(M,,) given by

FP(Mw) = ®p+1U)\ ® M,.
The analytic localization of M, is realized as the complex Ay (F.(M,)). The
group G acts on this complex of sheaves Ay (F.(M,,)) via: theactionon m, Dy ®

the adjoint action on U, ® the action on M,,. Coupling this G action with the lft
action of 7, D, one obtains the weak equivariant complex refered to above.
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Choose y € Y and let Ay (F.(MM,,)), denote the induced complex on stalks.
Choose a holomorphic cross sectiony: U C Y — G for the projectiong — ¢ - y
withy(y) = e. If F isasheaf of Oy moduleslet T, (F) denote the geometric fiber
of F at y. Put Go, = the stabilizer of y in Go. The existence of the previously
mentioned homotopies establishes that the pth homology A, (T, o Ay (F.(M,)))
will bean analytic (p,, Go,) module providedit is Hausdorff. Let .S bethe G orbit
of y. The following lemma can be established in a similar manner as the case for
the flag manifold [13, Prop. 8.3 and Prop. 8.7].

LEMMA 6.3. Assume M, isan analytic (U, Go) module.

(8) The section  and the action of Gy deter mines an isomor phism of complexes
of dnF Oy, modules Ay (F.(M,,)), =~ Oy, ®T, o Ay (F.(M,)).

(0) If by (Ty o Ay (F.(M,,))) isHausdorff for eachp then L, Ay (M,,) restricted
to S isisomorphic, asa (7. Dy |s, Go) module, to the sheaf analytically induced
fromh, (T, o Ay (F.(M,))).

7. The comparison theorem

When M isaHarish Chandramodule for (g, K) with minimal globalization Mmin
there is a natural equivariant inclusion M — Mmin onto the Ky finite vectors.
Suppose M has infinitesimal character A € h* and consider the inclusion M —
Mmin as amorphism between objectsin D(Mgnr(U))) viathe usua fully faithful
embedding. On the sheaf side, the relation between a Harish Chandra module and
its minimal globalization is captured as a morphism LAy (M) — LAy (Mmin)
in D(Mane(m.Dy)). Examples show that the induced morphisms on homologies
L,Ay (M) — L,Ay(Mmin) are often all zero. So the question is raised: what is
the geometric content to this relation between a Harish—Chandra module and its
minimal globalization onthe sheaf side?Itistheaim of theforthcoming comparison
theorem to answer exactly this question.

In the setting of a full flag manifold X, Hecht and Taylor have established
the following result [14], which turns out to be the key technical point in the
development of our argument. In particular, suppose z € X isaspecia point and
let ¢ C b, be the stable Cartan subalgebra. Assume T, denotes the functor for
the geometric fiber at z. Then there is a derived functor LT},: D(Mgnr(Dy)) —
D(Mane(Ux(c))) [Sect. 3]. Hence we obtain a morphism LT, o LAx(M)) —
LT, o LA x(Mmin) in the derived category D (Mgnr(Ux(c))). The comparison
theorem for a flag manifold says the following

THEOREM 7.1 [Hecht and Taylor]. Assumethat A € h* isregular and that M isa
Harish—Chandramodulefor (Uy, K). Let M — Mmin bean equivariant inclusion
onto the K finite vectors. Then the correspondingmorphism LT, o LA x (M)) —
LT, o LA x (Mpin) in D(Manr(Ux(c))) isan isomorphism.
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In particular, let F.(M) and F.(Mpin) denote the respective Hochschild reso-
lutions. Then the inclusion M — M determines a morphism of the complexes
Ax(F.(M)) — Ax(F.(Mmin) which is equivariant for the K actions [Sect. 6].
Thm. 7.1 implies that this morphism of complexesis in fact a quasi-isomorphism.
Hencetheinduced morphismsonthehomologiesh, (T 0o A x (F.(M))) — hy(Ty0
Ax (F.(Mmin))) are equivariant isomorphisms for the associated (¢, Cp) actions.

Therest of this section is concerned with proving the following extension of the
comparison theorem to a generalized flag manifold.

THEOREM 7.2. Comparison theorem. Assume X isregular and antidominant for
Y. Let M be a Harish Chandra module for (U, Ko) with minimal globalization
Min. Supposey € Y isspecial. Then h, (T, o Ay (F.(M))) isaHarish—Chandra
modulefor (I, KoN Lo) whose minimal globalization is naturally isomorphicto the
toplogical Lo module hy, (T, o Ay (F.(Mmin))). In particular, let M — Muyin be
an equivariant inclusion onto the K finite vectors. Then corresponding mor phism
hy(Ty o Ay (F.(M))) — hyp(T,, o Ay (F.(Mmin))) is an an equivariant inclusion
onto the Ky N Ly finite vectors.

Proof. Without loss of generality assume ) is regular and antidominant. Let
S be the G orbit of y and let Q = K - y be the corresponding K orbit. Put
g = dimX—dim@. Assume z € X isaspecia point, c C b, isthe stable Cartan
subalgebraand Cy C G isthe corresponding Cartan subgroup. A Harish—Chandra
module M iscalled a Beilinson Bernstein standard moduleif M = I'( X, Z(x, V)
where V' is an irreducible module for Ko N Cop, c actsonV by A+ pand Z(x, V')
is the corresponding standard Harish—Chandra sheaf originating from the K orbit
QRx = K-x. Put gy =dmX—-dim Qx and let Sx be the Gy orbit of z. The
module V' is (¢, Cp) module (that is: V' = Viyin), SO we obtain an induced analytic
sheaf A(z, V') originating from Sx. We first check that the theorem holds when
M isaBeilinson Bernstein standard module.

LEMMA 7.3. Assume M = I'(X,Z(z,V)) is a Beilinson Bernstein standard
module with A regular and antidominant. Then the following hold.

(8 LAx(Mpin) ~ Az, V)[gx] iINnD(Mane(Dy)).
(b) If = does not belong to = 1(Q N S) then LT, o LAy(M) =~
LTy o LAy(Mmin) ~0in D(Man(W*D)\)).

Proof. Observethat (a) isadight generalization of [13, Prop. 10.8]. We usethe
comparison theorem on X [Thm. 7.1] and the description of LA x (Mmin) [Lemma
6.3] to derive our result. This illustrates the key idea for establishing the main
theoreminthenext section. Let F.(M ) and F.(Mmin) betheHochschild resolutions.
Theinclusion M — Mmin inducesamorphism of complexes: F.(M) — F.(Mmin).
Since A is regular and antidominant, it follows that £, A39(M) = O unlessp = 0
in which caseAi"(g(M) ~ Z(z,V). Let 2’ beaspecial point notin Qx N Sx and
let T}, be the geometric fiber functor at z'. Observe z’ isnot in Q@ x [Thm. 5.2].
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Sincethe complex T,» o A x (F.(M)) computesthe geometric fibersof Z(z, V') at
2’ it follows that this complex has vanishing homology [Prop. 4.4] (this uses the
fact that Q) x is affinely embedded in X [15]). Hence, the comparison theorem on
X implies that the complex T o A x (F.(Mpin))) has vanishing homology. Now
one concludesthat the restriction of LA x (Mpmin) to the complement of Sy iszero
[Lemma6.3]. For the special point « we seethat hy, (T, o Ax (F.(M))) = Ounless
p = qx Wherehy, (TyoAx(F.(M))) ~ V [Prop. 4.4]. Hence, another application
of the comparison theorem showsthat A, (7, 0 A x (F.(Mmin))) = Ounlessp = gx,
inwhich casethemap: hg, (T 0 Ax (F.(M))) = hgy (Ty o Ax (F.(Mmin))) isan
isomorphism. Since this map is evidently equivariant for the (¢, Ko N Cp) actions,
the desired result follows.

To establish (b) observe when x does not belong to 7—1(Q N S) then the orbits
Sx and Q x cannotintersect thefiber X, = m~1(y), sincex and y are special [Sect.
5]. Leti: X, — X betheinclusion. Then the homology of LT} o LAy (Mpin) is
isomorphic to the hypercohomology (on X)) of i*A(z, V')[gx] [Prop. 3.3]. Thus
LT, o LAy (Mmin) = 0. The analogous statement holds for M/ once we see that
Li*(Z(z,V)) has vanishing homologies. To establish this last fact it suffices to
apply the base change for twisted sheaves of differential operators[3, Thm. 8.4] to

the diagram
QX N Xy QX
X, Z, X

Since Qx N X, is empty and since Qx is affinely embedded in X we have the
desired result [3, Cor. 8.5]. O

We now consider the case where w(z) € @ N S. Since Ko acts transitively on
Qx N Sx, we may assume 7(z) = y. Adopting the earlier notations, recall the
twisted sheaf of differential operators D which acts on i*D), [Sect. 3], the real
stable Levi factor Lo C P, and the complexification K N L of Ko N Lo. Since
Co C Lo, the module V' determines a standard Harish—Chandra sheaf Zfiper (2, V')
on X, originating from the K N L orbit Q@ x N X,,. Then I'( X, Ziper (z, V')) iS@
Harish—Chandramodule for (U, (1), K N L).

LEMMA 7.4. Maintain the assumptions on A and M as specified in Lemma 7.3.
Assume () = y. Then the following hold.

(@ LTy o LAx (M) ~ I'(Xy, Ziper (2, V) [g] In D(Manr(Ux(1)))-
(b) LT, o LA x (Mmin) =~ T'(Xy, Ztiber (., V) )min[g] in D(Manr(Ux(1))).
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Proof. Toestablish (a) notethat the Harish—ChandramoduleI' (X y, Zfiper (z, V'))
determines a standard Harish—Chandra sheaf
I(y, I'(Xy, Tiiver (z, V'))) originating from the K orbit @) on Y. Using the ‘induc-
tionin stages' for the standard Harish—-Chandrasheaves[7, Thm. 4.14 and 5.4] one
knowsthat m,Z(x, V') ~ Z(y,I'(Xy, Zsiber(x, V'))) asasheaf of (W*Dilg, K) mod-
ules. Since A is regular and antidominant, it follows that A2%(M) ~ Z(y, I'(X,,
Tiiber(z, V'))) [Lemma4.1and Thm. 4.2]. Inaddition, L,Ay (M) = Ofor p different
from zero. Hence, the homol ogy of the complex 7,0 Ay (F.(M)) computesthe geo-
metricfibersof Z(y, I'( Xy, Ztiver (2, V))). It followsthat i, (T o Ay (F.(M))) =0
unless p = ¢ in which case hy(Ty o Ay (F.(M))) ~ I'(Xy, Ziver(z,V)) as a
Harish—Chandramodule for (1, K N L) [Prop. 4.4]. This establishes part (a).

On the anaytic side, the module V' determines a standard analytic sheaf
Afiber(z, V) ~ i A(z,V) on X,. Since LAx(M) ~ A(z,V)[gx] and since
A(z, V) isacyclic for i* it follows that Li* o LA x (Mmin) =~ Asiber(z, V) [gx] IN
D(Mane(DY)). Since the parameter for the sheaf DY is antidominant and regular
with respect to the Levi factor [ we see that LA, (I'( Xy, Zfiver (%, V') )minlg]) =~
Afiver(z, V) [gx] [Lemma7.3]. Thus, R, o Li* o LA x (Mmin) ~ I'( Xy, Ziver (2,
V'))minlg] [Prop. 3.2]. The desired result follows by Proposition 3.3 O

We need to check that themorphism (T, oAy (F.(M))) — hq(TyoAy (F.(Mmin))
induced from theinclusion M — My, isanisomorphism onto the Ko N Ly finite
vectors. Put W = I'(Xy, Zfiner (z, V')) and observe that the morphism in ques-
tion belongs to Homy, (1), kon o) (W> Wiin). The following lemma shows that it's
enough to check that this morphism is nonzero

LEMMA 7.5. Homy, (1), konro) (Ws Wnin) = Hom(, gy (V, V) =~ C.
Proof. The (¢, K N'C’) module V' determines an induced sheaf V onthe K N L
orbit Qx N X,. Let j:Qx N X, — X, be the inclusion. Then V is a sheaf

of modules for twisted sheaf of algebraic differential operators D" **/ and our
defintion of Zfipe(x, V') is given by Zgper(z, V) = 74 V. Since an element of
Homy, (1), kone) (W; Win) has range inside the (Ko N Lo) finite vectors, we see
that

Hom v/, (1), konzo) (W Winin) =~ HOM(1, (1), reoriro) (W, W)
~ Hom(UA([)yKﬂm(W? W) ~ Hom(Dilg’ i,KﬂL) (]+V7]+V)
~ Hom(Dglg, ioj,KﬂL) (V, V) ~ Hom(!KﬂC) (V7 V)7

from which the desired result follows O
Let o: M — Mpmin denote the inclusion. Via the fully faithful embedding

Manr(Ux(1)) = D(Manr(Ux(1))) weobtaintheisomorphismHomy;, () (W, Wiin)
~ HOMp( age (0 (1)) (Ws Winin). Hence if the morphism h (T, o Ay (F.(M))) —
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hq(Ty o Ay (F.(Mmin)) induced from ¢ is zero, then the morphism LT}, o LAy (¢)
is zero in D(Mane(Ux(1))) [Lemma 7.4]. It follows from this that the morphism
RU'x, o Li* o LA (¢) iszero [Prop. 3.3]. Thisin turn implies that the morphism
Li* o LA x (¢) is zero, by the equivalence of derived categorieson X, [Thm. 2.1].
Let 75" denote the geometric fiber functor at the special point = in relation to
Ox,. Thenwe see that LT3 o Li* o LAx(¢) ~ LT, o LAx(¢) iszero aswell.
Sincethis contradi cts the comparison theorem on X, we have the desired result for
Beilinson-Bernstein standard modules.

To establish the general case, let M be a Harish—Chandramodule for (U, Ko)
and adopt the notation A, (y, M) to denote the (U, (1), Ko N Lo) module h, (T} o
Ay (F.(M))). Thestandard sort of considerationsshow that &, (y, M) isaHarish—
Chandra module for (U, (1), Ko N Lo). Changing notations briefly let M be the
minimal globalization of M and put hy(y, M) = hy(T, o Ay (F.(M))). Since
hp(y, M) ~ hy(Lx, o i* o Ax(F.(M))) asamodule for (Uy(r), Lo) it follows,
using [13, Lemma 10.11] applied to the flag manifold X, that hp(y,l\//f) isa
minimal globalization for Lo. The following lemmais only a slight modification
of [14, Lemma 3.1].

LEMMA 76.Let0 - M' — M — M" — 0 be a short exact sequence of
Harish—Chandramodulesfor (U, Ko) and assumethat Theorem7.2 holds for any
two of the modules. Then it also holds for the third.

Proof. Using thefact that minimal globalization is an exact functor [16, 22] we
have a commutative diagram with exact rows

: _)hp+1(y7 M”)_>hp(y7 M,)_) hP(y7 M) _)hp(y7 M”)_>h1’—1(y7 M,)_>

L

- hpa(y, M) =Ry (y, M) — hy (y, M) —>hp(y, M) —hp—1(y, M) —>

Since the functor of minimal globalization is exact, we can apply it to the top
row and then use the five lemma together with the open mapping theorem for the
desired result |

To complete the proof of the comparison theorem, one can now argue exactly
asin[14, Prop. 3.2 O

8. Realizing representationsfrom the Levi orbits:
The case of regular antidominant infinitesimal character

Lety € Y beaspecial pointandlet V beaHarish—Chandramodulefor (U, ([), KoN
Lo).Putg =dim Y —dim @, where@ = K -y isthe K orbit of y. Wewill utilize
the following terminology. If F * is acomplex of sheaveson Y andif S C Y is
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alocaly closed subset then we say F * is supported in S provided the stalks for
each of the cohomology sheaves h?(F *) vanish at all points outside of S.
This section is devoted to establishing the following result.

THEOREM 8.1. Assume X\ is regular and antidominant for Y. Then
HP(Y, A(y, Vimin)) vanishesfor p different fromq inwhich case H4(Y, A(y, Viin))
is the minimal globalization of I'(Y,Z(y,V')). More specifically, there is a natu-
rally defined dnF topology aswell asa continuous G actionon H4(Y, A(y, Vmin))
such that the resulting functor V- — HY(Y, A(y, Vmin)) from Harish—Chandra
modules for (U,(1), Ko N Lo) to topological G modules is isomorphic to the
functor V- — I'(Y, Z(y, V') ) min-

Proof. Choose an element A € h*, representing the infinitesimal character of
V', which is both regular and antidominant. Let M/ = I'(Y,Z(y, V')). Think of M
and Mpmin as objects in D(Mgne(Uy)). The point of the argument is to see there
isan isomorphism LAy (Mmin) =~ A(y, Vimin)[g] in D(Manr(7.Dy)). The desired
result then follows since RI'y o LAy isisomorphic to the identity [Prop. 3.2]. We
consider the naturality (which will be crucial later on) at the end of the proof.

The argument proceeds in a similar fashion as the proof of Lemma 7.3. Let
S = Go -y bethe G orbit of y and let F.(M) be the Hochschild resolution of M.
Applying the equivalence of categories [Thm. 4.2] as well as the algebraic base
change [Prop. 4.4] we see that the homologies of the complex T, o Ay (F.(M))
vanish except in degree ¢ where we obtain the (Uy (1), Ko N Lo) module V. Now
applying the Comparison Theorem [Thm. 7.2] in conjunction with Lemma 6.3 it
follows that L, Ay (Mmin) |s= 0 unlessp = ¢ in which case LAy (Mmin) |5~
A(y, Vinin) |s. Henceto complete the argument it sufficesto show that LAy (Mpin)
issupportedin S.

Because 7: X — Y isaproper morphism it follows that R, sendsacomplex
of sheaves supported in 7—(.S) to acomplex of sheavessupportedin S. Using the
identity [Prop. 3.2]

LAY ~ RW*LA)(,

we can thus establish the desired result provided we show that LA x (Mmin) is
supportedin 7—1(.9).

Let z € X be aspecia point and assume 7(x) isnotin S. Let 7, denote the
functor of geometric fiber at «. In order to check that LA x (Mmin) is supported in
71(S) it is enough to see that T, o L, A x (Mmin) = O for each p. Applying the
Comparison Theorem on X we only need to check that h, (LT, (Ax (M))) = Ofor
eachp. Toestablishthislast pointlet Q = K -y bethe K orbit of y and observethat
the discussion in Section 5 impliesthat ¢ = 7(x) does not belong to Q. Suppose

that X, 2 X isthe inclusion of the fiber over y' into the flag manifold. To see
that h, (LT, (Ax(M))) = 0 for each p it is enough to check that Li* o LA x (M)
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is isomorphic to zero in D(Mgne(DY)). Since ) is regular and antidominant an
application of Theorem 2.1 shows that it is enough to check that

Rl'x , o Li* o LAx (M) ~ 0.

By the analytic base change[Prop. 3.3] weonly needto seethat LTy o LAy (M) ~
0. Usingthefact that () isaffinely embeddedin Y, thisresult followsfrom algebraic
base change formula[Prop. 4.4].

The proof that our construction is natural parallels the above considerations. In
particular supposethat V and W are Harish—Chandramodulesfor (U (1), KoN Lo).
Let M and N bethe corresponding Harish—Chandramodulesfor (U, Ko) obtained
by taking global sections of the induced algebraic sheaves Z(y, V') and Z(y, W).
Assume we have a morphism M — N obtained functorially from a morphism of
the Harish—Chandramodules V' — W . Then we have the following communative

diagram
M N
Mmin Nmin

where the vertical arrows are equivariant inclusions onto the K finite vectors and
the bottom morphism isthe completion of the top morphism. Applying the functors
of analytic localization and geometric fiber to the respective Hochschild resol utions
providesacommutative diagram of complexes. Taking the gth homol gy we recover
the original morphism V' — W of Harish—Chandramodules for (U,(1), Ko N Lo)
[Thm. 4.2 and Prop. 4.4]. Thus the comparison theorem [Thm. 7.2] together with
the above description of the localizations LAy (Mmin) and LAy (Nmin) implies
that the bottom row Mmin — Nmin in the diagram above localizes to the morphism
A(y, Vimin) — A(y, Wmin) obtained via the completion of the original morphism
V' — W. Hence we recover the morphism Mpin — Nmin by applying RT'y to
A(yv Vmin) - A(yv Wmin) [Prop 32] o

9. Thetensoring argument

We divide the argument into two parts. The first part establishes the main theorem
when the infinitesimal character for the stable Levi factor is antidominant for Y.
In turn, this result for the antidominant case then becomes the initial step in an
induction argument based on the length of an infinitesmal character. We supply
details for this induction argument in the second part of the section.
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Tensoring to the walls

In this part we argue that, for our purposes, the case of antidominant infinitesi-
mal character reduces to the case of regular antidominant infinitesimal character.
Under certain conditions tensoring on the geometric fibers commutes with both the
analytic and the algebraic inductions. This fact can be utilized to understand the
antidominant case once we see that the stable Levi factor has enough moduleswith
regular antidominant infinitesimal character. In order to establish thislast point we
begin with a geometric description of the trandation functor on the fiber.

Lety € Y, let L C P, beaLevi factor and suppose that C' C L is a Cartan
subgroup. Via specialization to a point z € X, the differential of a holomorphic
character for C determinesaweight ;. € h*. Induction at the point 2 determinesthe
sheaf of sections O(u) for an L homogeneous algebraic line bundle on X,,. More
generally, we refer to an element 1 € h* asan integral weight provided é(\) isan
integer for each o € Y. One basic fact is that each integral weight ;. determines a
unique irreducible finite dimensional g module F* with extremal weight 1. [28].

Leti: X, — X betheinclusion. Suppose A € h* and let D} 397 pe the corre-
sponding sheaf of twisted differential operatorson X,,. If V is asheaf of modules

for Da'g’i and if x4 isanintegral weight corresponding to the differential of aholo-
morphic character for C' C G then Da"g’ actsonV(—pu) =V® ot O(—p).Onthe

other hand, if F* isthefinitedi mensonal G moduIeW|th extremal weight 1 then
V(—p) ® F* isasheaf of modulesfor U (p,)39 = 039 L @U(py) [Sect. 3]. Givena
sheaf M of modulesfor U (1) let M, denote the generalized Z (1) eigensheaf and
let M, denote the Z (1) eigensheaf, both corresponding to the parameter A € h*.
Anelementin h* iscalled dominant if the negative of that element is antidominant.
Thefollowing result from [19] isin fact aversion of the ‘key lemma in [2].

LEMMA 9.1 [MiliCi€]. Let A € p* and suppose that ;. corresponds to the differ-
ential of a holomorphic character for a Cartan subgroup C' C L. Suppose there
isaw € W suchthat wA is antidominant and wy is dominant. Then we have the
following.

(a) For eachweight v of F* and for eachs € W if sA =X — pu + v thensA = A
and = v.

() Ifvisa Di"g’ " module then (V(—p) ® F*),) is a D" module naturally
isomorphicto V.

We now apply this result to show that, for our purposes, there are enough [
modules with regular antidominant infinitesimal character.
Assumel isthe stable Levi factor associated to aspecial pointy € Y.

LEMMA 9.2. Let V beaHarish—Chandramodulefor (U, (1), K N L) and suppose
that A\ isantidominant. Let 1, beanintegral weight correspondingto the differential
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of a holomorphic character for C C L. Assume that 4 is so very dominant that
A — p isantidominant and regular. Then there exists a Harish—Chandra module M
for (1, KN L) withinfinitesimal character A — . suchthat V' isnaturally isomor phic
to (M ® F'u)()\)

Proof. Let A9 denote the localization functor from U, (1) to D$ " and
let M be the sheaf of (D‘;lj’j,K N L) defined by M = A‘;"g(V)(—u). Then
AF(V) = (M@F*H) ) [Lemma9.1]. Put M = I'(X,, M). Then (M @ F*) ) =
D(Xy, (M ® Fr) ) = T(X,, AJ9(V) ~ V [Lemma4.1] O

For the moment assume M is an arbitrary Harish—Chandramodule for (I, L N K)
and suppose that F' is a finite dimensional G module. Using Schmid's results
on minimal globalizations [16, 22] one can see that Mpin ® F' is the minimal
globalization of M ® F and that the eigenspace space (Mmin ® F')y (Whichisa
closed subspace of Mmin ® F) isin fact the minimal globalization of (M ® F)jy;.
Since M ® F splitsinto afinitedirect sum of generalized Z([) eigenspaces[28] one
can deduce in a similar fashion that the minimal globalization of the generalized
eigenspace (M ® F')(y) isnaturally isomorphic with (Mmin ® F)(y)

LEMMA 9.3. Make the same assumptionson X and i and w asin Lemma 9.2 and
let M bea Harish—Chandra module for (Uy_,(f), K N L).

(@) Let (A(y, Mmin) ® F'*) () denotethe generalized Z(g) eigensheafon Y corre-
sponding to the infinitesimal character A € ™. Then (A(y, Mmin) ® F*)(y) is
a dnF sheaf of (7, Dy, Go) modules naturally isomorphic with A(y, (Mmin ®
FH)y)-

(b) Let (Z(y, M) ® F*)(\) be the generalized Z(g) eigensheaf corresponding
to A. Then (Z(y, M) ® F*),) is a sheaf of (W*Dilg,K) modules naturally
isomorphicto Z(y, (M ® F*)(y)

Proof. At this point we briely modify the general setup established in Sect. 6.
In particular, we view Mmin ® F'* as a module for (p,,Go,) Where the respec-
tive nilradical and unipotent radical act via the tensor product action [28, Defn.
4.1.11(b)]. Then Mmin ® F* isananalytic (p,, Go,) moduleand A(y, Mmin @ F*)
is adnF sheaf of analytic modulesfor (U’ (g), Go) [13]. Indeed, there is a natural
isomorphism A(y, Mmin) ® F* ~ A(y, Mmin ® F*) [28, Lemma4.5.2].

To see that the generalized Z (1) eigenspace in Mpin ® F'* corresponding to A
coincideswith the eigenspace (Mmin ® F'*) ) €t t be an element of the Wey! group
W, of [ such that ¢(A — p) is antidominant for [ [Sect. 3]. Consider the algebraic

localization AR ) (Muin) Of Miin to X, and let V' denote the sheaf of DY *
ag

modules defined by the equation V = A/Y (Mmin) ®ox, O(tu). Now apply
Lemma 9.1 using the parameters ¢\ and ¢u.

To complete the argument, filter F* asin [28, Lemma7.2.3(b)]. Using Lemma
9.1, we can argue asin [28, Prop. 7.4.1] to obtain the desired result.
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Theproof for Part (b) issimilar, but with aslight twist. Thenaturality dependson
the naturality of Kashiwara' stheorem. View Z (y, M) ® F'* asasheaf of modulesfor
(U (9)39, K) viathe tensor product action and argue, using the obvious filtration
coupled with Lemma.1, that (Z(y, M) ® F*)y) isin fact asheaf of (W*Dilg, K)
modules on which Z(g) acts via the Harish—Chandra morphism Z(g) — Z(I)
[Sect. 3]. To complete the argument, fix aresolution R~ — Z(y, M) of Z(y, M)
by flat, quasicoherent W*Di"g modules. Thenwe can apply the above sort of filtration
argumentsto the complex of Z(I) finite sheavesof modulesi*(R *® F*). Thefina
result follows via some applications of Kashiwarastheorem [7, Thm. 7.11]. O

We are now prepared to conclude Part (b) of the main theorem described in the
introduction. It turns out that for our proof of the general case (in the next section)
we need (and can obtain) a dightly stronger naturality than alluded to in the
introduction.

THEOREM 9.4. Assume y is special and let ¢ = dim Y — dim @ be the codi-
mension of the K orbit Q = K - y. Suppose V' is a Harish—Chandra module for
(1, Ko N Lg) with an infinitesimal character that is antidominant for Y. Then the
sheaf cohomology groups H? (Y, A(y, Vimin)) Vanish unless p = ¢ in which case
HY(Y, A(y, Vmin)) is a topological G module naturally isomorphic to the mini-
mal globalization of I'(Y, Z(y, V')). More specifically: let Z(y, V')) — Z(y, V))*"
denote the application of Serre’'s GAGA functor [Sect. 2 and Sect. 4]. Then there
isanatural morphismZ(y, V'))*"* — A(y, Vmin)[g] iIn D(M (7, D)) such that the
resulting morphism hO(RTy (Z(y, V)*")) — h°(RTy (A(y, Vmin)[q])) gives the
desired isomor phism of functors.

Proof. Let \ be an antidominant element of h* representing the infinitesimal
character of V. There exists a p corresponding to the differential of a holomor-
phic character for C' C L and which is so dominant that A — 4 is antidominant
and regular. According to Lemma 9.2 there is a finite dimensional G module F'*
of highest weight 1 and there is a Harish—Chandra module M with infinitesimal
character A — p such that V' is naturally isomorphic to (M ® F*),). Hence we
seethat H (Y, A(y, Vinin)) = HP(Y, (A(y, Mmin) ® F*)»)) [Lemma9.3]. A stan-
dard argument for sheaf cohomology showsthat H” (Y, (A(y, Mmin) ® F'*)(y)) =
(HP(Y, A(y, Mmin)) ® F*)(5). Thus an application of Theorem 8.1 makes van-
ishing clear and shows that H4(Y, A(y, Vmin)) is the minimal globalization of
(I(Y,Z(y, M)) ® F*)(5). The desired result is obtained by another application of
Lemma9.3.

To obtain the morphism Z(y,V))** — A(y, Vmin)[¢] in the case of reg-
ular antidominant A simply localize the equivariant inclusion I'(Y, Z(y, V) —
HY(Y, A(y, Vimin)). Use the tensoring [Lemma 9.3] for the general case. The natu-
rality of the construction is apparent from Theorem 8.1 and Lemma 9.3. O
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Tensoring down the length

Our first task is to define anotion of length for an infinitesimal character of a Levi
factor. Supposey € Y andlet [ C p, be aLevi factor. Let ()T ¢ 7 bethe set
of positive roots for h in [ and let ©(u) = £ — £(1)* denote the roots of § in
the nilradical. Assume y isacharacter for Z(I) and suppose A € h* isa parameter
representing x. We consider the nonnegative integer n(x) = the number of roots
a € X(u) such that & () is a positive integer. Since the Weyl group W, for [ is
contained in the set of w € W which map >(u) to itself, we see that the number
n(x) isindependent of the choice of parameter A representing x. We refer to this
nonnegative integer n(x) asthelength of x.

In order to apply a certain result of Milici¢ [19] we also introduce a notion
of length for elements of h* that is closely related to the previous definition.
Specifically, for X € h* definen()\) = the number of rootsa € £ such that ()
isapositive integer. Observethat if y, isthe character corresponding to A then we
have the inequality

n(xa) < nA).

For any root « let s, denote the corresponding reflection on h*.

LEMMA 9.5 [MiliCi€]. Let A € h* and suppose that n()) is positive. Then there
existsan integral weight 4 and an « € £ such that

(i) &(X) = a(u) ispositive
(i) n(A — p) and n(s, ) are both less than n ()
(iii) If v is any weight of F'* and if s € W then the equation A — px + v = sA
is satisfied if and only if either s\ = A and v = p or elseif sA = s, A and
V = Sqlt.

The next lemma simply points out that the result by Milicic is sufficient for an
induction on the length of infinitesimal charactersfor aLevi factor.

LEMMA 9.6. Supposethat A € h* isantidominant for [ and that n()) is positive.
Suppose we have an integral weight 4 and an « € X1 satisfying the properties
spelled out in the previous lemma. Then n(xx—,) and n(x,,») are both less than
n(xx). Inparticular a € X(u).

Proof. Since X is antidominant for [ it follows that n(x)) = (). Hence the
claimsfollow from the above inequality. O

Thereis a slight complication that occurs in our argument because it may be the
case that the 1, we need from Lemma 9.5 does not correspond to the differential of
a holomorphic character for a Cartan subgroup of G. For that reason we introduce
acertain covering group defined in [28, Lemma 7.3.5].
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LEMMA 9.7 [Vogan]. There s a finite covering group G — G with the property
that for eachweight 1. € h* thereexits i € h* which correspondsto the differential
of a holomorphic character for a Cartan subgroup C' C G and which satisfies:
() = a(p) for all a € X. In particular, we may replace 4 by iz in Lemma 9.5
and retain the stated properties.

Thefollowing result istheanalog to Lemma9.2 and showsthat, for our purposes
there are enough Harish—Chandra modules with shorter infinitesimal characters.

Assume that [ is the stable Levi factor associated to a special point y € Y and
let KNL bethe preimageof K N LinG.

LEMMA 9.8. Supposethat V' is a Harish—Chandra module for (1, K N L) with a
giveninfinitesimal character of positivelength. Let A be a parameter for thisinfini-
tesimal character that isantidominant for [. Fix anintegral weight . corresponding
to the differential of a holomorphic character for C' C G and a root « having the
properties spelled out in Lemma 9.5. Then there exists a Harish—Chandra module
M for (1, KNL) with infinitesimal character A — x and a natural isomorphism
V = (M ® F")y of (I, KNL) moduleswhere (M ® F*), denotesthe general-
ized Z (1) eigenspace. In addition the KNL action on (M ® F*),_ ) factorstoan
actionof K N L.

Proof. Let M be the sheaf of (D‘;lj’;f,K NL) modules defined by M =
Ai"g(V)(—u) and let M = I'(Xy, M). An argument as in the proof of Lem-
ma 9.2 via an application of Lemma 9.5 shows that Ai'g(V) ~ (M@ FF)y.
Hence we recover thefirst claim by taking global sections [Lemma4.1].

Another application of Lemma 9.5 to the (by now) standard filtration argu-
ment establishes an isomorphism of (Dilj’bi, KAL) modules: (M ® F*)(, ) =~
Ai'g(V) (—c(p)ar). Sincethe KN L action on O(—c(p)«) factorsthroughto KN L
we recover the second claim by taking global sections O

LEMMA 9.9. Let V' be a Harish—Chandra module for (U, (1), K N L). Suppose
that A\ has positive length and is antidominant for I. Fix u, « and M as in the
previous lemma.

(@ Let (Z(y, M) ® F*)(y) denote the generalized Z(g) eigensheaf on Y corre-
sponding to the infinitesimal character A € h*. Then there is the following
short exact sequence of (U (g)39, K') modules:

0—1(y,V) = (Z(y, M) © F*)(x) = L(y, (M ® F")5,5) = 0

(b) Let (A(y, Mmin) ® F*)(5) be the generalized Z(g) eigensheaf on Y corre-
sponding to the infinitesimal character A. Then there is the following short
exact sequence of dnF (U (g), Go) modules.

0 = Ay, Vmin) = (A(y, Mmin) ® F¥) ()
— A(y, (Mmin ® F*)5.5) — 0.
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Proof. To establish part (b) use Lemma 9.5 and argue asin [28, Prop. 7.4.3].
Lemma 9.8 shows that the generalized Z (1) eigenspace (Mmin ® F*),, ) agrees
with the the eigenspace (Mmin ® F*),, ). These considerations show we obtain

an exact sequence of sheaves of dnF (U (g), Go) modules where Gy C @ is the
preimage of G in G. Another application of Lemma9.8 showsthat (A(y, Mmin) @
F*) () isanextension of two GGo modules. Hencethe action of Goon (A(y, Mpin)®
F*) ) factors through to Go.

The above considerations coupled with the techniques utilized in the proof of
Lemma 9.3 make the proof of part (a) straightforward. O

Themain result in the paper is the following theorem. As mentioned earlier it turns
out we need (and can obtain) a dlightly stronger version of naturality than alluded
to in the introduction.

THEOREM 9.10. Let y € Y be a special point and let V' be a Harish—-Chandra
modulefor ([, K N L) withinfinitesimal character. Let ¢ denote the codimension for
the K orbit of y. Then thereis a naturally defined dnF topology and a continuous
G action defined on the sheaf cohomolgy group H? (Y, A(y, Vmin)) such that for
each p the resulting Go module is naturally and topologically isomorphic to the
minimal globalization of H?~%(Y,Z(y,V')). More specifically there is a natural
morphism Z(y, V)*" — A(y, Vmin)[g] in D(M(7.Dy)) such that the resulting
mor phisms:

WP (RLy (Z(y, V)*™)) = BP~9(RTy (Aly, Viin)[q]))

provide the desired isomor phisms of functors.

Proof. We induct on the length of the infinitesimal character x of V. When x
has length zero then the result reduces to Theorem 9.4. So assume x has positive
length and suppose the theorem holdsfor all Harish—Chandramodul eswith shorter
infinitesimal characters. Suppose \ isan [ antidominant element of h* representing
the infinitesimal character . Fix u, « and M asin the previous lemma. Using the
inductive hypothesis as well as Lemma 9.9 we abtain the following diagram:

0 — I(y,V) — @Zy,M)®F")n — I(y,(M®F"),n) — 0

| |

0 — Ay, Vmin)lg] — (Ay, Mmin) ® F*)nylg) — Aly, (Mmin ® F*)goa)lg] — O

Because of the naturality the vertical morphisms coming fromtheinductiveassump-
tion are such that the square commutes in D (M (7, Dy)). Thus we obtain a mor-
phism Z(y, V) — A(y, Vmin)lg] in D(M (7, Dy)) such that the above diagram
completes to a morphism of distinguished triangles. To see that the morphism
Z(y,V) — Ay, Vmin) [q] satisfies the necessary naturality simply argue using the
functorality of the short exact sequencesin Lemma9.9.
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We change notations briefly. Let H?~49(V') denote the sheaf cohomology group
HP~UY,Z(y,V)) , let HP~9(W) stand for (H? (Y, Z(y, M)) ® F*),) and put
HP~U(Q) = HP7U(Y,Z(y, (M ® F*")|5,))- Similarly for the analytic sheaves|et
HP(Viin) denote HP (Y, A(y, Vimin)) and likewisefor therest. Applying the derived
functor of global sections to the above morphism of distinguished triangles gives
the resulting morphism of long exact sequencesin sheaf cohomology

- — HP77UQ) — HP™U(V) — HP™Y(W) — HP™9(Q) — H"TI(V) —

| | | | !

[ d Hpil(Qmin) — Hp(Vmin) — Hp(Wmin) — Hp(Qmin) — Hp+1(Vmin) —

The bottom row is a long exact of sequence of topological U(g) modules and
continuous morphisms. Using the inductive assumption and a standard argument
[13, Lemma 9.1 and Corollary A.11] we see that this bottom row isin fact along
exact sequence of dnF U (g) modules. Because the relevant categories we consider
are not closed under extensions by U(g) modules, we refer to the formalism of
group actions on sheaf cohomology in order to complete the argument [8, 13].

LEMMA 9.11 [Chang, Hecht and Taylor]. (a) The U modules HP~4(Y,Z(y,V))
have naturally defined compatible algebraic K actions.

(b) The dnF U, modules H? (Y, A(y, Vmin)) have naturally defined compatible
analytic G actions.

Observethat the K and G actionsare each uniquely determined for theidentity
components by the g action.

Using Lemma 9.9 together with the inductive hypothesis it follows that the
top row is a long exact sequence of Harish—Chandra modules while the bot-
tom row is long exact sequence of minimal globalizations [13, Lemma 10.11]
such that the vertical morphisms are (g, Ko) equivariant. In particular the mor-
phisms HP~9(V) — HP(Vmin) lift to continuous G equivariant morphisms
(HP=9(V))min — HP(Vmin). Hence we can apply the functor of minimal glob-
alization to the top row and use the five lemmato obtain the desired result. O

10. An open orbit and duality

If z € X isaspecial point in the flag manifold then the G orbit of z is open if
and only if the corresponding Borel subalgebra b, is # stable. On the generalized
flag manifold, examples show that an open G orbit need not contain a 6 stable
parabolic subalgebra. Neverthelessif y € Y isspecial thenthe G orbit S = Go -y
isopenif and only if p, is@ stable. Inturn this happensif andonly if GoN P, = Lo
is the real stable Levi factor associated to y. For the remainder of the section we
fix a specia point y and we assume p,, is 6 stable. Let () be the K orbit of y and
put ¢ = dimY —dimQ. Sincethe preéimage 7—1(Q) C X containsaclosed K orbit
[17] it followsthat Q) isclosedinY'.
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For the moment assume A is antidominant for Y. Then we can apply the
following argument exactly asin the case of aflag manifold. In particular, 'y o A";"/g
isnaturally isomorphicto theidentity [Lemma4.1]. Using thesefactswecaninturn
concludethat whenever V isanirreducible, coherent sheaf of (W*Dilg, K) modules
then I'(Y, V) is an irreducible Harish—-Chandra module provided it is nonzero.
On the other hand, suppose that V' is an irreducible Harish—Chandra module for
(1, Ko N Lo). Since Q is closed, with the help of Kashiwara's theorem we conclude
that Z(y, V') is an irreducible, coherent sheaf of (W*Dilg7 K) modules. Thus we
have the following

COROLLARY 10.1. Suppose that y is a ¢ stable special point and that Viyin isa
topologically irreducible minimal globalization for Ly whoseinfinitesimal charac-
ter is antidominant for Y. Then H%(Y, A(y, Vinin)) is a topologically irreducible
representation for Go whenever it isnonzero. If theinfinitesimal character for Viin
isregular aswell as antidominant for Y then H4(Y, A(y, Vimin)) iS not zero.

Our final task inthis paper isto briefly consider an application of the main results
to a certain conjecture about the geometric realization of Zuckerman modules[28,
29, Conj. 6.11]. In particular, using a derived functor construction (which depends
on the parabolic subalgebrap,), each Harish—Chandramodule V' for (1, Lo N Kp)
determines a family of Harish—Chandra modules: R?(y,V),p = 0,1,2,..., for
(g, Ko) called Zuckerman modules [15, 28]. The conjecture we refer to proceeds
asfollows. Using a smooth globalization of V' and the polarization p, definea Go
equivariant holomorphic vector bundle over the complex manifold S = Go - y. Let
V denote the corresponding sheaf of sections. Then the sheaf cohomolgy groups
HP(S,V) areconjectured to be globalizations of the Zuckerman modules RP(y, V').

To approach this problem we use aduality theorem relating the Harish—Chandra
modules we have considered here to the Zuckerman modules, as follows. When
M is aHarish—Chandramodule for (g, Ko) then the Ky finite dual M"Y isagaina
Harish—Chandramodule. Indeed, the continuous dual Mr'nin of the minimal global-
ization of M isamaximal globalization of MY [22]. Put s = dim Q. Let T}, (2) be
the geometric fiber of the canonical bundle at . Asan Lo module T3, () ~ A" u,
where n is the dimension of Y and v, is the nilradical of p,. Using precisely
the methods developed by Hecht, Milicic, Schmid and Wolf in [15], Chang has
established the following result [8].

THEOREM 10.2 [Hecht, Milici€, Schmid and Wolf; Chang]. If V is a Harish—
Chandramodulefor (U, (1), KoN Lo) then for eachinteger p thereisa natural iso-
morphismof Harish—-Chandramodules H? (Y, Z(y, V'))¥ ~ R* P(y, V¥ ®T,(Q)).

COROLLARY 10.3. If theHarish—Chandramodule V' hasan infinitesimal charac-

ter then H? (Y, A(y, Vmin))' isthe maximal globalization of R" 7 (y, VY ® T, (2))
for each p.

https://doi.org/10.1023/A:1000126010326 Published online by Cambridge University Press


https://doi.org/10.1023/A:1000126010326

REALIZING REPRESENTATIONS ON GENERALIZED FLAG MANIFOLDS 315

If V' is afinite dimensional representation for Lo and if A(y, V') denotes the
corresponding induced analytic sheaf then A(y, V')|s is the sheaf of sections for
a homogeneous holomorphic vector bundle defined over S. In al cases the sheaf
cohomology groups H?(Y, A(y,V')) are naturally identified with the compactly
supported sheaf cohomology groups H?(S, A(y,V')|s). Nevertheless, even here
theapplication of Serreduality [24] isnot completely trivial, sincewe havenot used
the Dolbeault resol ution to definetopol ogies for the sheaf cohomol ogy groups. Our
approach for dealing with the topological duality utilizes some ideas developed by
Hecht, Mili¢i¢ and Taylor.

Assume now that V' is a Harish—Chandra module for (1, Ko N Lo). To simpli-
fy notation let A denote the sheaf A(y, Vimin) and let C "(A) denote the Czech

resolution of A. Consider the complex D? (A4)(Y) = T'(Y, C”*P(A))' obtained
by shifting the global sections of the Czech complex and applying the functor of
continuous dual. In particular D "(.A)(Y") is acomplex of nF (= nuclear Fréchet)
modules for U(g). Since the cohomologies for the global sections of the Czech
complex are Hausdorff, it follows that the cohomologies 2P (D" (A)(Y')) provide
the maximal globalizationsrefered to in Corollary 10.3. The question we are inter-
ested in is this: does the complex D "(.A)(Y') compute the sheaf cohomology (on
S) of areasonably defined induced sheaf?

Onething is certain: the complex D "(\A)(Y") does compute the hypercohomol-
ogy of a certain complex of sheaveson Y. In particular, we can see that when F
is a dnF sheaf on Y then the compactly supported sections of F in an open set
U C Y areidentified with a closed subspace of the global sections, since we have
the short exact sequence:

0—-T.(U,F) - T(Y,F) = T(Y - U,F).

Hence, I'.(U, F) is a dnF space. If F is a dnF sheaf of 7, D, modules then

I'(U, 7, D_)) actson the continuousdual I'.(U, ]—“)'. Suppose F is adnF sheaf and
let 7 *(F) denote the Czech resolution of F. For each p consider the presheaf
defined by: DP(F)(U) = FC(U,]-“”—P(]-"))'. Using the fact that the sheaves
F"~P(F) arefine, one checksthat the presheaf DP (F) isin fact a sheaf, which is
flabby since I'. (U, F"~P(F)) injects onto a closed subspace of I'( X, F" P (F)).
Theresulting complex of sheavesD' (F) will berefered to asthe dual complex. We
summarize the above remarks in the following proposition.

PROPOSITION 10.4. To each dnF sheaf F on Y we can functorially assign a
complex of flabby nF' sheaves denoted D" (F) and called the dual complex for F.
When F isanobjectin Myne(m,. D)) then D" (F) isacomplexof . D, modules. If
HP(Y, F) is Hausdorff for each p, then the dual complex has hypercohomologies:

B (Y, (F)) = k(D (F)(Y)) = H™P(Y, F) .

Let V' beafinite dimensional modulefor Lo. Asabovelet A = A(y, V) denote
the corresponding induced analytic sheaf. Since A|s is the sheaf of sections of a
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holomorphic vector bundle on S we can aso consider the sheaf of sections . A* for
the dual bundle (on S) extended by zeroto al of Y. In particular, A* ~ A(y, V*)
where Lo actson V* in the standard fashion. Since A* @ o 2 isalU " (g) module the
sheaf cohomologies H? (S, A* ®»§2) are U (g) modules. Thefollowing proposition
assures us that Serre duality holdsin this case.

PROPOSITION 10.5. (3) h?(D'(A))|s = O unless p = 0, in which case
RO(D" (A))]s =~ (A* ®0 Q)]s asU (g)|s modules.

(b) For eachp, h?(D'(A)(Y)) ~ HP(S, A* ®0 ) asa U(g) module.

Proof. Toestablish (a),let U C S bean open set. For eachp, let H? (U, A)czech
denote the pth compactly supported sheaf cohomology on U computed as a
topological vector space using the Czech resolution and let H? (U, A)polbeaut
denote the same sort of object constructed using the Dolbeault resolution with
distribution coefficients. Then Taylor has shown [26] there is a continuous iso-
morphism H?(U, A)czechn — HP(U, A)polbeaurt Which is topological whenever
HP(U, A)polbeaut is Hausdorff. In particular, if U C S is a Stein open set, then
H?(U, A) vanishesunlessp = ninwhichcase H' (U, .A) polbeaut 1S Hausdorff with
continuous dual (isomorphic to) I'(U, A* ®@p ) [24]. Hence h? (D" (A))|s = O
unless p = 0. Indeed, the two isomorphisms mentioned above determine an iso-
morphism of presheaves (A* @ Q)]s — hO(' (A))|s defined on abasis of Stein
open sets.

To establish (b), note that part (a) together with the fact that the dual complex
consists of flabby U~ (g) modules implies h? (D" (A)(S)) = HP(S, A* ®0 Q)) as
aU(g) module. Now consider the inclusion of complexes of DNF U(g) modules:
.(S,F (A)) — I'(Y,F (A)). By the very nature of the constructions involved
this inclusion is a quasi-isomorphism. Since the cohomologies ., (I'(Y, F(.A)))
are Hausdorff, one sees that the morphism of complexes D' (A)(Y) — D' (A)(S)
is aso a quasi-isomorphism O

In particular, if V is the sheaf of sections of a holomorphic vector bundle
defined onan open set S C Y then the previous argument shows that Serre duality
holdswhenever the Czech resolution yields Hausdorff topol ogiesfor the compactly
supported sheaf cohomology groups.

The following result was established in [13] using different methods.

COROLLARY 10.6. Let y € Y be a 6 stable special point and let V' be a finite
dimensional Lo module. Assume V is the sheaf of sections of the corresponding
homogeneousholomor phic vector bundleon S = G- y. Then, for each p, the sheaf
cohomologies H?(S,V) are maximal globalizations of the Zuckerman modules
RP(y, V).

We conclude with a brief consideration of the difficulties involved in gener-
alizing this result to the case where V' is an infinite dimensional Harish—Chandra
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modulefor (I, LoN Kop). AssumeV hasaninfinitesimal character whichisantidom-
inant for Y. Let (g,v) — w(g)v denote the action of Ly on Viyin and as before, let
A denote the sheaf A(y, Vimin). Observe that Proposition 10.4 and Corollary 10.3
imply that the dual complex D" (.A) has hypercohomologies HP (Y, D" (A)) = 0
unlessp = s inwhich case H* (Y, D" (.A)) is amaximal globalization of the Zuck-
erman module R* (y, VY ® T,(Q)). The difficulty isin seeing that something like
Proposition 10.5(a) should hold. In particular, we would like to know that for some
opensetsU C Y forming abasis of the topology on Y that the compactly support-
ed sheaf cohomologies H? (U, .A) vanish unlessp = n in which case H (U, A) is
Hausdorff. Thiswould allow usto conclude that the hypercohomology of the dual
complex computes the cohomology of asheaf on S. A sufficient reason this holds
when V isfinite dimensional is the following: the action of Ly on Vinin extendsto
aloca holomorphic action of the complex group L. Thisin turn is equivalent to
condition that each of the real analytic functions g — w(g)v for v € Viin extends
to a holomorphic function on some (small) fixed open set in the complex group L
(where this open set is not dependent on the choice of v). Hence, one is able to
deducethat the sheaf A islocally freeasan O moduleon S. Our final result shows
that this line of argument works only if Viyin isfinite dimensional.

We establish the following terminology. A local action of the complex group L
on Vpmin consists of an open set U C L and acontinuous map ¢: U X Vinin — Vimin
that satisfies

(@ v — ¢(g)visalinear map Vimin — Vimin for eachg € U.
(b) ¢(g)p(h)v = p(gh)v if g, h and gh al belongto U.

Thislocal actionof L onViy,inissaidtobeholomorphicif thefunctionsU — Viin
by g — ¢(g)v are holomorphic, for each v € Viyin.

PROPOSITION 10.7. Suppose the action of Ly on Viin extends to a local holo-
mor phic action of the complex group L. Then Viyin isfinite dimensional.

Proof. The ingredients of the proof are classical. To begin with, simple length
considerations reduce the argument to the case where Ly is a connected linear
semi-simple group and Viin is topologically irreducible. A slight modification of
the argument given in [20, Section 51] shows that the local holomorphic action
of L determines a global holomorphic action for the simply connected covering
group L of L. Let Uy C L beacompact real form (L is semisimple). Now asimple
modification of the argument given in [27, Thm. 4.11.14] shows that the action of
(70 on Vmin is irreducible. Finally, one knows that the irreducible representations
of a compact group on a complete, locally convex space are finite dimensional
[30, Sect. 4.4.3]. O
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