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Abstract. Let G be a complex reductive linear algebraic group and G0 � G a real form. Suppose P
is a parabolic subgroup of G and assume that P has a Levi factor L such that G0 \ L = L0 is a real
form of L. Using the minimal globalization Vmin of a finite length admissible representation for L0,
one can define a homogeneous analytic vector bundle on the G0 orbit S of P in the generalized flag
manifold Y = G=P . Let A(P; Vmin) denote the corresponding sheaf of polarized sections. In this
article we analyze the G0 representations obtained on the compactly supported sheaf cohomology
groups Hp

c (S;A(P; Vmin)).
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1. Introduction

By the mid-1970s there had emerged two important geometric constructions for
producing irreducible representations of real reductive Lie groups. On the one
hand some irreducible representations could be realized as the global sections of
certain real analytic vector bundles defined over various compact homogeneous
spaces (this is the real parabolic induction) [28–30]. A second method obtained
some other irreducible representations as actions on the sheaf cohomology groups
of holomorphic vector bundles defined over complex homogeneous spaces [4, 10,
21].

By now it is becoming better understood how these constructions fit into the
larger scheme of equivariant sheaves defined on orbits in complex flag manifolds
[13] [16] [23]. Still, there are few results of a general nature about the topolog-
ical representations obtained from these sorts of constructions in the setting of a
generalized flag manifold [31]. Indeed, the two historically significant models men-
tioned above have yet to be analyzed under one conceptual heading. In this paper
we do just that: beginning with polarized homogeneous vector bundles defined
over a large class of orbits in a generalized flag manifold, we then characterize the
representations obtained on the sheaf cohomology groups. Moreover, our methods
make it possible to analyze representations originating from vector bundles with
infinite dimensional geometric fibers. According to Chang’s amplification [8] of a
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result by Hecht, Miličić, Schmid and Wolf [15], duality relates the representations
realized in this paper to those studied in Vogan’s book [28, Definition 6.3.1]. In
some cases this duality can be made geometrically explicit (essentially because we
can apply Serre duality [24]). This allows us to treat a certain conjecture about the
geometric realization of Zuckerman modules [28, 29, Conjecture 6.11]. In case of
finite dimensional geometric fibers, we obtain a new proof of a result due to Wong
[31].

In order to make a precise statement of the main result we now specify the
basic context for all that follows. Throughout this paperG will denote a connected
reductive complex linear algebraic group with Lie algebra g. A real form of G
means a closed subgroup whose Lie algebra is a real form for g. SupposeG0 � G

is a real form and assume as well thatG0 has finitely many connected components.
The purpose of this paper is the geometric realization of some representations for
G0.

A parabolic subgroup of G is defined to be any algebraic subgroup P �

G such that the corresponding quotient variety G=P is complete. On the other
hand, a generalized complex flag manifold on which G acts is simply a complete
homogeneous space for G. Suppose that P � G is a parabolic subgroup and
consider the generalized flag manifold G=P . A Levi factor of P refers to any
maximal reductive algebraic subgroup L � P . We say that the G0 orbit S of P in
G=P is a Levi orbit provided P has a Levi factor L such that L0 = G0 \ L is a
real form of L. Suppose that S is a Levi orbit and fix a maximal compact subgroup
K0 � G0. By moving to a new point of S, if need be, we may assumeK0 \L0 is a
maximal compact subgroup in L0. Assume K � G is the complexification of K0

and let Q denote the K orbit of P in G=P .
When a finite length, admissible representation for L0 has an infinitesimal

character then it will determine two geometrically defined objects as follows. On
the one hand the underlying Harish–Chandra moduleV of the representation carries
an algebraic action ofK\L. Allowing the unipotent radical ofK\P to act trivially,
we can thus obtain a K equivariant algebraic vector bundle with fiber V defined
over theK orbitQ. Since V has infinitesimal character we can next apply a certain
direct image construction, analogous to the direct image for D modules, to the
sections of the bundle. The resulting object I(P; V ) is a K equivariant sheaf of g
modules defined on all of Y .

On the other hand the minimal globalization Vmin ofV gives a global topological
representation for the group L0 [16] [22]. Similar to the above, we view G0 \ P

as acting on Vmin by allowing the unipotent radical to act trivially. Since this
continuous representation consists entirely of real analytic vectors, it determines
a G0 equivariant real analytic vector bundle with fiber Vmin defined over the G0

orbit S. The Lie algebra p of P determines an equivariant polarization for the
homogeneous vector bundle. LetA(P; Vmin) denote the subsheaf of sections of the
bundle which are annihilated by this polarization. The main result established in
this paper is the following
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THEOREM. Let q denote the codimension of Q in Y .
(a) The compactly supported sheaf cohomology groupsHp

c (S;A(P; Vmin)) have
naturally defined dual nuclear Fréchet topologies and continuousG0 actions. The
resulting representations are admissible and have finite length.

(b) If the Harish–Chandra module V has an infinitesimal character which is
antidominant for Y [Section 3] then the compactly supported sheaf cohomology
groups Hp

c (S;A(P; Vmin)) vanish unless p = q, in which case the G0 module
Hq
c (S;A(P; Vmin)) is naturally and topologically isomorphic to the minimal glob-

alization of �(Y;I(P; V )).
(c) In any case the sheaf cohomology group Hp�q(Y; I(P; V )) is a Harish–

Chandra module for (g;K) whose minimal globalization is naturally isomorphic
to the topological G0 module Hp

c (S;A(P; Vmin)) for all p.
If theG0 orbitS is open and if the inducing representationV is finite dimension-

al, then A(P; V ) is the sheaf of sections for a homogeneous holomorphic bundle
with fiber V . Hence, duality coupled with our main theorem allows us to give a
new proof of a conjecture by Vogan about Zuckerman modules, as mentioned in
the end of the second paragraph.

Our main difficulty in seeing that this duality should be geometric when Vmin

is infinite dimensional occurs because the standard methods cannot show that
A(P; Vmin) is something like the sections of a holomorphic vector bundle. Appar-
ently this difficulty was not anticipated in [28, 29], therefore we conclude the paper
with a brief consideration of the problem.

This paper is divided into ten sections and is structured according to the follow-
ing outline.

The first section is the introduction. In the following three sections we introduce
the basic geometric setting and the essential functorality used for establishing
the main result. Some of the relevant facts pertaining to analytic localization are
reviewed and the theory is expanded somewhat to the setting of a generalized
flag manifold. In addition we briefly recall some points in the algebraic theory for
sheaves of twisted differential operators as well as develop a few analogs for the
generalized counterpart. The fifth section introduces the Levi orbits and their duals,
which provides a geometric setting where the current technology readily facilitates
an understanding of the analytic sheaf.

In the sixth section we begin to consider the induced sheaves. Subsequently, we
consider how an analytic group action effects the structure of the localization. It
turns out that the analytic localization of the minimal globalization of a Harish–
Chandra module provides a certain (weak) equivariant complex of sheaves whose
hypercohomology is known. The aim of the forthcoming argument is to show (at
least in some cases) that the hypercohomology of this complex of sheaves in fact
computes the sheaf cohomology groups for the induced sheaf. A fundamental tool
used for establishing this fact is a comparison theorem for geometric fibers which
we prove in the seventh section.
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In the case of regular antidominant infinitesimal character, it is now a simple
matter to establish the main result, which we do in Section 8. Using tensoring argu-
ments, the complete result is obtained in Section 9. Finally, Section 10 examines
the special case of an open orbit, as mentioned previously.

Before beginning the main body of the paper, we would like to establish the
following conventions and notations. A smooth algebraic variety X will at times
be viewed as a complex manifold. Typically we let OX denote the sheaf of holo-
morphic functions on X , we let DX denote the sheaf of differential operators
with holomorphic coefficients and so on. The sheaf of regular functions on X is
denotedOalg

X , the sheaf of differential operators with regular coefficients is labeled
D

alg
X and so on. Given a morphism ':X ! Y of topological spaces we let '�

denote the direct image in the category of sheaves, we let '! denote direct image
with proper supports and we let '�1 denote the inverse image in the category of
sheaves. A morphism ': (X;OX ) ! (Y;OY ) of ringed spaces has inverse image
'� in the category ofO modules. We refer the reader to Section 4 of this paper for
a discussion of the functor '+.

2. Localizing to a flag manifold

In this section we briefly review some relevant points about localizing to a flag
manifold.

Geometrically defined, a complex generalized flag manifold is any complete
algebraic variety which carries a transitive action by a connected, complex affine
algebraic group. These are precisely the spaces which can be realized as the quotient
of a connected algebraic reductive group modulo a parabolic subgroup. On the
other hand a Borel subgroup of a connected, linear algebraic group is a maximal
solvable connected subgroup. The theory of affine algebraic groups reveals that
the Borel subgroups are all conjugate, that the parabolic subgroups equal their
own normalizers and that a subgroup is parabolic if and only if it contains a Borel
subgroup.

We use the notation Y = G=P where P � G is a parabolic subgroup to denote
a member of the family of generalized flag manifolds on which G acts. In case
the stabilizer of a point in the complete homogeneous space is a Borel subgroup
B � G we use the notation X = G=B and call X the full flag manifold. For each
point y 2 Y let py be the Lie algebra of the stabilizer Py of y. Since parabolic
subgroups equal their own normalizers, it follows that Y can be naturally identified
with the G conjugates of py. In particular, X can be identified as the variety of
maximal solvable subalgebras of g.

Let x 2 X and let nx = [bx; bx] be the nilradical of bx. The adjoint actions of
Bx on bx and nx determine homogeneous holomorphic vector bundles on X , with
corresponding sheaves of sections b� and n�. Since Bx acts trivially on bx=nx, the
sheaf h� = b�=n� is a free OX module and the global sections h = �(X; h�) form
what we call the universal Cartan subalgebra. For any point x 2 X , if c is a Cartan

comp3886.tex; 24/06/1997; 7:08; v.6; p.4

https://doi.org/10.1023/A:1000126010326 Published online by Cambridge University Press

https://doi.org/10.1023/A:1000126010326


REALIZING REPRESENTATIONS ON GENERALIZED FLAG MANIFOLDS 287

subalgebra of g contained in bx, then the linear isomorphisms: h ! bx=nx  c

determine an identification of h with c, called a specialization of h to c at x. The
specialization maps allow one to define a universal root system � � h� and a set
of universal positive roots �+ � �; we adopt the following positivity convention:
if c is a Cartan subalgebra in some Borel subalgebra bx, then the positive roots at
x 2 X are identified with the roots of c in bx.

A choice of � 2 h� determines a twisted sheaf of differential operatorsD�, onX
[See Prop. 3.1]. This sheaf has a certain topological structure inherited from the fact
that it is locally free as anOX module. In particular, sections over compact sets carry
dnF(= dual nuclear Fréchet) topologies which give the structures for topological
algebras. The restriction morphisms for nested compact sets provide continuous
maps for these topologies. We are led to consider the categoryMdnF(D�) of dnF
D� modules. The objects here are some sheaves of D� modules which carry a
reasonable dnF topology over the compact sets in X . A D� morphism ':M! N

of two dnF D� modules is a morphism inMdnF(D�) precisely when the induced
map 'x:Mx ! Nx on stalks is continuous, at each x 2 X . An argument then
shows that the image and cokernel of a continuous morphism belong toMdnF(D�),
if the induced maps on stalks have closed ranges. One interesting point is that the
categoryMdnF(D�) has enough acyclic objects for the functor of global sections:
each object has a �X acyclic resolution constructed from within the category [13].

It is known that D� is acyclic for �X [19]. Let U� = �(X;D�). Since X is
compact,U� is a dnF algebra: in fact it is an inductive limit of its finite dimensional
subspaces. Because of this fact, U� 
M is complete in the projective topology,
when M is dnF, and hence it is a dnF space. Analogous to the sheaf side, we
consider the category MdnF(U�), of dnF U� modules. A U� module belongs to
this category precisely when it carries a dnF topology which allows U� to act by
continuous operators. We observe that wheneverM is an object inMdnF(U�), then
the free left U� module U� 
M is also a dnF module and there is a continuous
surjection U� 
M !M . Hence for each object inMdnF(U�) we can construct a
free resolution of U� modules within the dnF category.

Let b
 denote the completed projective tensor product. In order to relate the
categoriesMdnF(U�) andMdnF(D�), we first consider the object:

�X(M) = D� b
U�M:

Since �X(M) is the cokernel of a morphism in MdnF(D�), it need not be an
object in this category. A more important consideration is this: for many interesting
objects M inMdnF(U�), examples show that �X(M) = 0.

It turns out that the program of analytic localization makes sense in the con-
text of derived categories. In particular, it is possible to define derived categories
D(MdnF(U�)) andD(MdnF(D�)), of dnFU� modules and dnFD� modules. Both
categories are triangulated in the usual way and �X induces an exact functor
L�X :D(MdnF(U�))! D(MdnF(D�)) of triangulated categories. We will make
a subtle use of the following fundamental result [13].
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THEOREM 2.1 [Hecht and Taylor]. If � is regular, then L�X :D(MdnF(U�)) !
D(MdnF(D�)) is an equivalence of categories, with inverse R�X :
D(MdnF(D�))! D(MdnF(U�)).

At this point we briefly recall the structure of U�. Let Z(g) denote the center
of the universal enveloping algebra U(g). At a point x 2 X , an element z 2 Z(g)
agrees, mod the right ideal inU(g) generated by nx, with a unique element x(z) 2
U(bx=nx). The resulting element in U(h) determined by this scheme, remains
unchanged for any choice of point x. In this way we obtain an unnormalized Harish
Chandra map  :Z(g)! U(h). LetW be the Weyl group of�, put � = one half the

sum of the positive roots and let �� denote the composite: Z(g)
 
�! U(h)

�+�
�! C .

Then �w� = ��, for each w 2 W . Put J� = ker ��. It is known that U� is
isomorphic to U(g)=J�U(g), as an algebra [2] [19]. In spite of this, it is convenient
to keep the dependence on � specific.

Before treating the case of a generalized flag manifold, a few remarks relating
algebraic localization and analytic localization are in order. For � 2 h�, Beilinson
and Bernstein introduced a twisted sheaf of differential operators Dalg

� , with reg-
ular coefficients, on X . Let M(U�) denote the category of U� modules and let
Mqc(D

alg
� ) be the category of quasicoherent Dalg

� modules. If M is an object in
M(U�), define

�
alg
X (M) = D

alg
� 
U� M:

Recall that � 2 h� is called antidominant if ��(�) is not a positive integer, for each
� 2 �+. In [2] the following celebrated theorem is established.

THEOREM 2.2 [Beilinson and Bernstein]. If � is regular and antidominant,
then �

alg
X :M(U�) ! Mqc(D

alg
� ) is an equivalence of categories, with inverse

�X :Mqc(D
alg
� )!M(U�).

In the context of representation theory for real reductive groups, the functor
�

alg
X yields very interesting results, for certain finitely generated U� modules. This

information is retained by the functor of analytic localization via the following
scheme. A finitely generated U� module M is a dnF module, when it comes
equipped with the inductive limit topology of its finite dimensional subspaces. By
the very nature of its construction,D� b
M ' D�
M for this case. The Hochschild
resolution of M is the free resolution F:(M) given by

Fp(M) = 
p+1U� 
M:

Observe that�X(F0(M)) ' D�
M and that�X(Fp(M)) ' D�
(

pU�)
M

if p � 1. For a quasicoherentOalg
X module F , let F 7! Fan denote the application

of Serre’s GAGA functor [9] [25]. Since (D
alg
� )an ' D� as a left D� module
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and using the fact that GAGA is an exact functor, it follows that Lp�X(M) '

(Lp�
alg
X (M))an as a D� module, for each p.

3. Analytic localization on a generalized flag manifold

In this section we briefly treat the analytic localization to a generalized flag mani-
fold. Some functorality is developed as needed for the proof of the main result.

LetY be a generalized flag manifold on whichG acts. If bx is a Borel subalgebra
of g, there is a unique point y 2 Y with bx � py. Hence, there is a G equivariant
projection �:X ! Y . Since � is a proper morphism, the sheaf ��D� is a dnF sheaf
of algebras. Note that �(Y; ��D�) = U�:

We first review some key structural details about the sheaf ��D�. Let uy be the
nilradical of py. The adjoint actions of Py on uy and py determine homogeneous
holomorphic vector bundles on Y , with corresponding sheaves of sections u� and
p�. In this case Py need not act trivially on the quotient ly = py=uy . Nevertheless,
l� = p�=u� determines a sheaf of enveloping algebras U(l�). Note that U(l�) is
the locally free G equivariant sheaf determined by the Py action on U(ly), with
algebra structure given by pointwise multiplication. Hence, if Z(l�) = the center of
U(l�), then Z(l�) is a free sheaf on Y . Put Z(l) = �(Y;Z(l�)), the universal center
for the enveloping algebra of the Levi factor. For any Levi factor l � py there
are morphisms of algebras U(l) ! U(ly)  �(Y;U(l�)). Letting Z(l) denote the
center of U(l), we thus obtain the specialization isomorphism Z(l) ! Z(ly) !
Z(l).

Similar to the case of a flag manifold, we have an unnormalized Harish Chandra
map Z(l) ! U(h), obtained as follows. The preimage of a point Xy = ��1(y)
is the flag manifold for the reductive Lie algebra ly . An element of the universal
Cartan for ly is identified with a section of h along Xy . Hence, via the Harish
Chandra map previously defined, an element of Z(ly) determines an element of
U(h). The desired map is obtained by evaluating an element from Z(l), at y. The
result of this map is the same for any choice of the point y. This identification
of h with the universal Cartan of ly allows one to define the universal roots of h
in the Levi factor �(l) � �, a corresponding set of positive roots �(l)+ � �+

and a Weyl group Wl � W . Let �� denote the composite: Z(l) ! U(h)
�+�
�! C .

Then �� = �w� for all w 2 Wl. In order to compensate for the ambiguity in this
parametrization of characters for Z(l), the following definition is convenient. We
call � 2 h� antidominant for Y if there is an element in the orbit Wl � � which
is antidominant. An equivalent condition is that ��(�) not be a positive integer for
each � 2 �+ � �(l)+. On the other hand we say � is antidominant for l if ��(�)
is not a positive integer for each � 2 �(l)+. A basic fact is that each element in h�

is conjugate under Wl to an element that is antidominant for l.
The left action of g on OY , denoted by f 7! �lf , for � 2 g and f a local

holomorphic function, is utilized in defining an algebra structure on the sheaf
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U �(g) = OY 
U(g) as follows. To begin with, we require thatOY 
1, and 1
U(g)
be subalgebras ofU �(g) under the usual operations. This first requirement, together
with the commutator relation: [1 
 �; f 
 1] = �lf 
 1, for f 2 OY and � 2 g,
determines the desired algebra structure. Note that u� � U �(g) is a sheaf of Lie
subalgebras, under the operation of pointwise bracket. It turns out that u�U �(g) is
a sheaf of two sided ideals in U �(g). Define:

Dl =
U �(g)

u�U �(g)
:

There are natural inclusions of sheaves of algebras: Z(l) ! U(l�) ! Dl. One
checks that Z(l) is the center of Dl. The following is established in [7, 13].

PROPOSITION 3.1 (Chang, Hecht and Taylor). For each � 2 h�

(a) D� is acyclic for ��
(b) ��D� ' Dl 
Z(l) C �+� , as a sheaf of algebras.

There is a categoryMdnF(��D�) of dnF ��D� modules and a corresponding
derived categoryD(MdnF(��D�)). Using the same sort of topological Czech reso-
lutions as employed on the flag manifold [13] we define a derived functor of global
sections R�Y :D(MdnF(��D�))! D(MdnF(U�)).

For M an object inMdnF(U�) consider the sheaf

�Y (M) = ��D� b
U�M:

This definition determines a right exact functor �Y into the category of sheaves
of ��D� modules. The functor carries continuous morphisms of dnF U� mod-
ules to morphisms of ��D� modules, which are continuous for the quotient
topologies induced on stalks. Using the same sort of construction previously
employed on the flag manifold we obtain a derived functorL�Y :D(MdnF(U�))!
D(MdnF(��D�)).

PROPOSITION 3.2. (a) The functor R�Y � L�Y is isomorphic to the identity.
(b) L�Y ' R�� � L�X as functors D(MdnF(U�))! D(MdnF(��D�)).
Proof. With the help of Proposition 3.1, the argument for (a) becomes identical

to the case of a flag manifold [13, Prop. 5.2].
To establish (b) suppose thatM is a dnFU� module. Using the fact that �:X !

Y is proper we can see that the map: ��D� b
M ' ��(D� b
M)! ��(D� b
U�M)
determines a natural transformation of functors �Y ! �� � �X , which is an
isomorphism on free objects fromMdnF(U�). Since free dnF D� modules are ��
acyclic and since �� has finite cohomological dimension, a simple formal argument
allows us to conclude the desired result 2
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The next task is to develop a simple but crucial functorial relationship which we call
the analytic base change. The result we need can be easily and elegantly expressed
in the language of derived categories.

Let y 2 Y put Xy = ��1(y) and consider the following diagram

Xy
i - X

fyg
?

- Y
?

�

Let l be a Levi factor for py. When F is a D� module, then i�F is a sheaf of
l modules via a tensor product action. This l action induces an action of the sheaf
of algebras U �(l) = OXy 
 U(l). In turn, this action factors through a sheaf of
ideals, so that the quotient Di� is a twisted sheaf of differential operators for the
flag manifold Xy, acting on i�F . In particular, �(Xy; i

�F) is a sheaf of modules
for

U�(l) = U(l) 
Z(l) C �+� = �(Xy;D
i
�);

where Z(l) acts through the Harish–Chandra map: Z(l) ! Z(ly) ! U(h). On
the other hand if F is a sheaf of ��D� modules then the morphism of algebras
U(l)! �(Y; ��D�) determines an action ofU�(l) on the geometric fiber TyF . Let
D(MdnF(U�(l))) andD(MdnF(D

i
�)) denote the derived categories of appropriately

defined dnF modules.

PROPOSITION 3.3. (a) The functors i� and Ty determine derived functors: Li�:
D(MdnF(D�)) ! D(MdnF(D

i
�)) and LTy:D(MdnF(�� D�)) ! D(MdnF

(U�(l))).
(b)LTy�L�Y ' R�Xy�Li

��L�X as functorsD(MdnF(U�))! D(MdnF(U�
(l))).

Proof. Let x 2 Xy . Since the stalk OXy;x is a finitely generated module for
OX;x, the natural map: OXy;x 
OX;x

M ! OXy;x
b
OX;x

M is a bijection, when-
ever M is a dnF module for OX;x. In fact, resolving OXy;x by finitely generated
free OX;x modules and applying the natural transformation: (� � �) 
OX;x

M !

(� � �)b
OX;x
M shows at once that free dnF OX;x modules are acyclic for the func-

tor: OXy;x 
OX;x
(� � �). Hence, free dnF D� modules are acylic for i� and there

is an isomorphism of sheaves: i�(D� b
M) ' (i�D�)b
M , where i�D� is a dnF
sheaf on Xy in a natural fashion and M is any dnF space. In more generality, if
D� b
F is a quasifree object fromMdnF(D�) [13] then its stalk at x is isomorphic
to D�;x b
Fx. It follows that quasifree objects are acyclic for i� and there is an
isomorphism of sheaves: i�(D� b
F) ' (i�D�)b
i

�1(F). Since the functor i� has
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finite cohomological dimension we can now see there is a naturally induced derived
functor Li�:D(MdnF(D�))! D(MdnF(D

i
�))

Using the fact that ��D� is a locally free OY module, nearly identical consid-
erations show that quasifree dnF ��D� modules are acyclic for Ty and there is an
isomorphism Ty(��D� b
F) ' (Ty��D�)b
Fy . In particular, we obtain a derived
functor LTy:D(MdnF(��D�))! D(MdnF(U�(l))).

To establish (b) assume M is a dnF U� module. Then the morphisms
(Ty��D�)b
M ' �(Xy; i

�D�)b
M ' �Xy � i
�(D� b
M) ! �Xy � i

� � �X(M)
determine a natural transformation: Ty � �Y ! �Xy � i

� � �X , which is an iso-
morphism on free dnF U� modules. Indeed, because �(Xy; i

�D�) ' Ty��D� is a
direct limit of its finite dimensional subpaces, it follows that �(Xy; i

�D�)b
M '
�(Xy; i

�D�)
M . Recalling that i�D� is acyclic for �Xy [13], it now follows that
i�(D� b
M) is acyclic for �Xy as well. 2

4. The category Mqc(��D
alg
� )

In this section we recall a few facts about the algebraic localization to a generalized
flag manifold. We also consider the generalized direct image functor, which is a
natural analog of the direct image for D modules in the setting of a generalized
flag manifold.

If we think ofX and Y as algebraic varieties then �:X ! Y is a morphism. Let
��D

alg
� denote the sheaf of algebras ��(D

alg
� ) and letMqc(��D

alg
� ) be the category

of quasicoherent ��D
alg
� modules.

If M is a U� module then the algebraic localization to the generalized flag
manifold is the quasicoherent sheaf of ��D

alg
� modules defined as follows

�
alg
Y (M) = ��D

alg
� 
U� M:

LEMMA 4.1. If � is antidominant, then the following hold

(a) ��:Mqc(D
alg
� )!Mqc(��D

alg
� ) is exact.

(b) �alg
Y ' �� ��

alg
X .

(c) �Y ��
alg
Y ' id:

Proof. The first claim is shown in [7, Theorem 4.16]. To establish (b), observe
there is an exact sequence U� 
K ! U� 
M ! M ! 0, for M fromM(U�).
Now use the natural transformation �alg

Y ! �� ��
alg
X and apply part (a). Part (c) is

a formal consequence of Part (b) and the identity �Y � �� ' �X . 2

We will make use of the following analog of Theorem 2.2, which was observed by
Chang in his thesis [7].
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THEOREM 4.2 [Chang]. If � is regular and antidominant for Y , then�alg
Y :M(U�)

!Mqc(��D
alg
� ) is an equivalence with inverse �Y .

We make note here that the remarks following Theorem 2.2 hold in the context
of the generalized flag manifold as well. In particular, if F is a quasicoherent
O

alg
Y module and if F 7! Fan denotes the application of Serre’s GAGA functor

then the canonical morphism Hp(Y;F) ! Hp(Y;Fan) is an isomorphism [9].
Observe that the natural map (��D

alg
� )an ! ��D� induces an isomorphism on

geometric fibers. Since both sheaves are locally free, the map is an isomorphism of
left ��D� modules. LetM be a finitely generatedU� module and let F:(M) denote
its Hochschild resolution. As before, when M is regarded as limit of its finite
dimensional subspaces, there is an isomorphism�Y (F:(M)) ' (�

alg
Y (F:(M)))an

of complexes of ��D� modules.
We now briefly consider a certain direct image functor for some sheaves on the

generalized flag manifold which gives the analog for the direct image of algebraic
D modules [3]. We alter the notations momentarily to streamline the exposition. In
particular, letA� = ��D

alg
� and assume that all objects are defined in the algebraic

category for the remainder of this section.

Suppose thatQ � Y is a smooth subvariety with inclusion morphismQ
j
�! Y .

LetAj� be the sheaf of differential endomorphisms of theOQ module j�A� which
commute with the right j�1A� action. Let
Q and
Y be the canonical bundles for
Q and Y . Put
QjY = 
Q
OQ j

�
�1
Y and (A�)Y Q = 
QjY 
OQ j

�A��, where
A�� is the sheaf of algebras opposite toA�. Then (A�)Y Q is a left j�1A�, right
A
j
� bimodule. If V is a module for Aj� we define

j+(V) = j�((A�)Y Q 
Aj
�

V)

In slightly more generality, assume we have nested inclusions of smooth subva-

rieties Q1
j1
�! Q2

j2
�! Y and let j = j2 � j1. In the manner preceding, it is

possible to define a sheaf of algebrasAj1
� which acts on j�1 (A

j2
� ) and a direct image

j1+:M(Aj1
� ) ! M(Aj2

� ). The following extensions of the usual D module case
appear in [7, 8].

THEOREM 4.3 [Chang]. (a) The above definitions give left exact functors
j1+:Mqc(A

j1
� )!Mqc(A

j2
� ) and j2+:Mqc(A

j2
� )!Mqc(A�).

(b) Aj1
� ' A

j
� and j+ ' j2+ � j1+ as functorsMqc(A

j
�)!Mqc(A�).

(c) When Q1 is open in Q2 then j1+ can be naturally identified with the direct
image in the category of sheaves.

(d) If Q1 is closed in Q2 then Kashiwara’s equivalence of categories holds
[3, Thm. 7.11]. In particular, j1+ gives an equivalence ofMqc(A

j1
� ) with the full

subcategory of sheaves inMqc(A
j2
� ) supported in Q1.
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A relatively simple and formal consequence of Kashiwara’s theorem is a certain
algebraic base change which will play a crucial role in the main argument. In
particular, suppose y is a point in Q and let TQy denote the geometric fiber at y
relative to the smooth subvarietyQ. Ty will denote the geometric fiber at y relative
to the global space Y . We consider the following diagram:

fyg

	�
�
�
�
� @

@
@
@
@R

Q
j

- Y

If V is an Aj� module then U�(ly) acts on the geometric fiber TQy V . Similarly,
if W is a module for A� then TyW is also a module for U�(ly). The functors
TQy and Ty determine derived functors: LTQy :D(Mqc(A

j
�)) ! D(M(U�(ly)))

and LTy:D(Mqc(A�)) ! D(M(U�(ly))). By first applying j+ and following
this with the fully faithful embedding Mqc(A�) ! D(Mqc(A�)) we obtain a
functorLTy � j+:Mqc(A

j
�)! D(M(U�(ly))). On the other hand let q denote the

codimension of Q in Y and let [q] denote q applications of the translation functor
on D(Mqc(A

j
�)). By first utilizing the fully faithful embedding Mqc(A

j
�) !

D(Mqc(A
j
�)) we obtain the functor LTQy � [q]:Mqc(A

j
�)! D(M(U�(ly))).

PROPOSITION 4.4. (a) For each y 2 Q, LTy � j+ ' LTQy � [q]:
(b) If y is not inQ and ifQ is affinely embedded in Y thenLTy�j+ is isomorphic

to zero.
Proof. The result can be deduced from Kashiwara’s theorem in exactly the same

manner as the base change for algebraicD modules [3, Theorem 8.4 and Corollary
8.5]. 2

5. Special points, Levi orbits and dual Levi orbits

Let G0 � G be a real form and assume that G0 has finitely many components. In
this section we consider some simple geometry that relates the action (on Y ) of the
real form to the action of a certain linear algebraic group K � G.

The Lie algebra g0 � g of G0 uniquely determines a complex conjugation
� : g ! g whose fixed point set is g0. Fix a maximal compact subgroup K0 � G0

and letK � G be the complexification ofK0. Let �: g0 ! g0 be a Cartan involution
given by the maximal compact subgroupK0 [11, Sect. 3] and extend � to a complex
linear involution on g.

A point y in the generalized flag manifold Y is called special if the parabolic
subalgebra py has a Levi factor lwhich is stable under both � and �. Observe that the
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Lie algebra ��py \ py is reductive in py since the corresponding integral subgroup
in the adjoint groupAd(G) is the complexification of a compact subgroup. Because
l � ��py \ py is a subalgebra which is maximal with respect to the property of
being reductive in py it follows there is exactly one �; � stable Levi factor associated
to a special point. This �; � stable Levi factor will be refered to as the stable Levi
factor.

In the ensuing discussion we fix a special point y 2 Y . Let Py � G denote the
corresponding subgroup and let l be the stable Levi factor. Put L = the normalizer
of l in Py. Then L is a connected reductive complex linear algebraic group: it is
the connected subgroup in G with Lie algebra l. Furthermore Py is a semidirect
product Py = L � Uy, where Uy = exp(uy) is the unipotent radical for Py . Let
G0y = Py\G0 denote the stabilizer of y for theG0 action on Y and letL0 = L\G0

be the normalizer of l in G0y. Then L0 is a real form for L having finitely many
components. In fact, L0 has maximal compact subgroup K0 \ L0 [28, Lemma
3.2.14].

The fiberXy = ��1(y) is naturally identified with the flag manifold for l (Borel
subalgebras of g contained in py intersect with l to give the Borel subalgebras of l).
Observe that when a G0 orbit SX on X has nontrivial intersection with the fiber
Xy then L0 acts transitively on the intersection Xy \ SX . In particular, G0 orbits
having nonempty intersection with Xy correspond to L0 orbits on the fiber.

On the other hand, consider the stablizerKy = Py \K of y for theK action on
Y . Then the normalizer L \K of l in Ky is the complexification of the compact
group K0 \ L0 (the argument is formally the same as the argument that L0 has
maximal compact subgroupK0\L0). Similar to the above considerations, ifQX is
aK orbit onX that intersects the fiberXy nontrivially then L\K acts transitively
on the intersection Xy \QX .

The following fundamental result is the special case of a more general result
established by Matsuki and is often refered to as Matsuki duality. We state the
following lemma [17, Sect. 1] for the purpose of establishing Proposition 5.3.

LEMMA 5.1 [Matsuki]. (a) Each Borel subalgebra contains a � stable (also a �
stable) Cartan subalgebra.

(b) Each � stable (or each � stable) Cartan subalgebra is conjugate under an
element of the identity component of K (orG0) to a �; � stable Cartan subalgebra.

(c) If two special points in the flag manifold are conjugate under K (or under
G0) then they are conjugate under K0.

The duality theorem is now an immediate corollary of the lemma. Let U denote
the set of special points in the flag manifold X .

THEOREM 5.2 [Matsuki]. The inclusion U ! X defines a one to one correspon-
dence between the following:

(i) The K0 orbits on U and the K orbits on X
(ii) The K0 orbits on U and the G0 orbits on X .
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In particular, for a special point y 2 Y the Matsuki duality applied to Xy

determines a one to one correspondence between the L0 and the L \K orbits on
Xy. This in turn defines a correspondence between someG0 and someK orbits on
Y (the general case has also been solved by Matsuki [18]). In order to make this
correspondence explicit we have the following definitions. A G0 orbit S � Y is
called a Levi orbit if it contains a parabolic subalgebra with a � stable Levi factor.
A K orbit Q � Y is called a dual Levi orbit if it contains a parabolic subalgebra
that has a � stable Levi factor. The G0 orbit S is said to be dual to the K orbit Q if
S \Q contains a special point.

PROPOSITION 5.3. The following conditions hold on Y

(a) Each Levi orbit (also each dual Levi orbit) contains a special point.
(b) If S is a Levi orbit (or ifQ is a dual Levi orbit) then the compact subgroupK0

acts transitively on the special points in S (or in Q)
(c) The relationship of duality establishes a one to one correspondence between

the Levi orbits and the dual Levi orbits

Proof. To establish (a) let Q be a dual Levi orbit. Then for some y 2 Q there
is a parabolic subalgebra py which has a � stable Levi factor l. In turn, there is a
Cartan subalgebra c � l which is � stable [Lemma 5.1]. For some k 2 K the Cartan
subalgebra Ad(k)c is stable under � and � [Lemma 5.1]. This implies that the Levi
factor Ad(k)l is stable under the product �� (because a root vector for Ad(k)c in
Ad(k)l is sent by �� to a root vector for the negative root). Since Ad(k)l is � stable
we have the desired result.

To establish (b) let y1 and y2 be two special points in a dual Levi orbit Q. By
applying Lemma 5.1 to the fiberXy1 we obtain a special point x1 2 Xy1 . For some
k 2 K the point k � x1 is in the fiber Xy2 . Now applying Lemma 5.1 to the fiber
Xy2 we obtain some k0 2 K \ Py2 such that k0k � x1 is special. This implies that
the points x1 and k0k � x1 are in the same K0 orbit 2

6. Induction and analytic localization of group representations

The underlying set ofK0 finite vectors in an admissible, finite length representation
forG0 yields a certain algebraic object whose formal properties define what is called
a Harish–Chandra module. The study of these objects has greatly facilitated the
understanding of topological representations for G0. In turn, it is known that each
Harish–Chandra module arises as theK0 finite vectors in some global, topological
representation forG0 [5]. In this section we begin by briefly recalling a few relevant
points about Harish–Chandra modules and their globalizations.

Suppose that M is a complex vector space that comes equipped with actions
of K and g. Then we call M a Harish–Chandra module for (g;K) provided the
following conditions hold
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(a) M is a union of finite dimensional algebraic K modules.
(b) The differential of the K action agrees with the g action.
(c) The action map U(g)
M !M is K equivariant.

Here K is acting on U(g) 
M via the tensor product of the adjoint action
with the action on M .

(d) M has a finite composition series.

On the other hand, suppose we have a continuous representation: G0 �M! !

M! given by (g;m) 7! !(g)mwhereM! is some complete locally convex space. A
vectorm 2M! is called analytic if the functionG0 !M! defined by g 7! !(g)m
is given locally by a convergent power series. When each vector in M! is analytic
then the Lie algebra g acts onM! by complexifying the derivative of theG0 action.
Because G0 � G is a real form it turns out that M! is an analytic dnF (g; G0)
module [13] precisely when M! is a dnF space consisting of analytic vectors such
that the operators !(�) for � 2 g are continuous. If in addition, the center of the
enveloping algebra acts by the infinitesimal character � 2 h� then we call M! an
analytic (U�; G0) module.

The K0 finite vectors in any analytic (g; G0) module M! will form a (g;K)
module M satisfying (a) through (c) of the above definition. In case M also
satisfies (d) thenM! is said to globalize (or complete) the Harish–Chandra module
M and we refer to M! as an analytic globalization (or analytic completion) of the
Harish–Chandra module M .

It follows from work of Casselman and Wallach [6] that each Harish–Chandra
module has a canonical and functorial analytic globalization (which carries the
topology of a dnF space [13]). In fact, Schmid has shown that this canonical ana-
lytic completion coincides with the minimal globalization of the Harish–Chandra
module [16, 22].

The induced sheaves

Suppose that y 2 Y is a special point and adopt the notations of the previous
section. In particular, let S be the G0 orbit of y and let  :G0 ! S denote the
projection  (g) = g � y. Assume V is a Harish–Chandra module for (l;K \ L)
where l is the stable Levi factor and let V! denote the minimal globalization of V .
We now introduce the notion of the corresponding standard analytic (or analytic
induced) sheafA(y; V!).

The action of L0 on V! extends to the full stabilizer G0y by allowing the
unipotent radical to act trivially. Since V! is an analytic module, this representation
in fact determines a homogeneous real analytic vector bundle defined over the G0

orbit S. The sections of this vector bundle over an open set U � S are precisely
the real analytic functions F : �1(U)! V! which satisfy:

F (gb) = !(b�1)F (g)

for g 2  �1(U) and b 2 G0y.
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The Lie algebra py defines what is sometimes refered to as an equivariant
polarization for the homogeneous bundle determined by V!. We describe this as
follows. Extend the action of l on V! to all of py by allowing the unipotent radical to
act trivially. Then the locally free equivariant sheaf p� [Sect. 3] acts on the sections
of the vector bundle via two actions. Differentiating the left translation of real
analytic functions determines a g action and hence one corresponding action for
p�. On the other hand, the action of py on V! determines a pointwise action for p�

on the sections. Then the induced analytic sheaf (on S) is nothing but the subsheaf
of sections for the homogeneous bundle which are annihilated by the difference of
these two p� actions.

In other words, the induced analytic sheaf AS(y; V!) can be defined (on S)
as follows. For an element � 2 g let �r denote the operator obtained by differ-
entiating the right translation of real analytic functions. If U � S is open, then
�(U;AS(y; V!))= the set of real analytic functionsF : �1(U)! V! which satisfy

(a) F (gb) = !(b�1)F (g); for g 2  �1(U) and b 2 L0;

(b) �rF = 0; for � 2 uy:

The left translation of real analytic functions defines a G0 action onAS(y; V!).
Let i:S ! Y denote the inclusion. Extension by zero provides a global sheaf
A(y; V!) = i!AS(y; V!) defined on all of Y . Differentiating the G0 action and
complexifying defines a g action and in fact A(y; V!) is a sheaf of Dl modules.

Let 
:U � Y ! G be a holomorphic cross section for the fibration g 7! g � y

with 
(y) = e (the identity element of G). The following result is discussed in
[13].

LEMMA 6.1 [Hecht and Taylor]. (a)A(y; V!) is a dnF sheaf of (Dl; G0) modules.
In particular, when V! is an analytic (U�(l); G0) module, then A(y; V!) is a dnF
sheaf of (��D�; G0) modules.

(b) The section 
 determines an isomorphism of dnFOY;y modules between the
stalk of the induced sheaf at y and OY;y b
V! .

Since the complexification K of the maximal compact subgroup K0 � G0 is a
linear algebraic subgroup ofG, theK orbits onY are smooth algebraic subvarieties.
In particular this is true for the K orbit Q of the special point y. Similar to the
above construction, we extend the Harish–Chandra module V to a module for
the stabilizer Ky by allowing the unipotent radical to act trivially. In this way V
determines a K homogeneous algebraic vector bundle defined over the K orbit Q.
Let V denote the corresponding sheaf of sections. More precisely: let �:K ! Q

be the projection �(k) = k �y and letU � Q be an open set. Then�(U;V) consists
of all finite rank regular functions F :��1(U)! V which satisfy

F (kb) = !(b�1)F (k);

for k 2 ��1(U) and b 2 Ky .
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We assume that V has infinitesimal character � 2 h�. Let k denote the Lie
algebra of K . The group K acts on V through the left translations. This in turn
determines an action for the sheaf of algebrasU �(k)alg [Sect. 3]. On the other hand,
the adjoint action of Ky on ly = py=uy determines a locally free K equivariant
sheaf U�(l �)

alg
Q with fiber U�(ly) [Sect. 3]. Via the l action on V the sheaf V is a

module for U�(l �)
alg
Q .

Let j:Q ! Y be the inclusion and recall the notations of Section 4. The fol-
lowing extensions from the setting of a flag manifold to the setting of a generalized
flag manifold are treated in [7, 8].

LEMMA 6.2 [Miličić, Chang]. (a) The orbit Q is affinely embedded in Y .
(b) The actions of U �(k)alg and U�(l �)

alg
Q on V determine an action ofAj�.

(c) j+V is a coherent sheaf of modules for (��D
alg
� ;K). In particular,�(Y; j+V)

is a Harish–Chandra module for (U�;K).

We use the notation I(y; V ) to denote the sheaf j+V and we refer to I(y; V ) as
the standard Harish–Chandra (or algebraic induced) sheaf corresponding to V .

Analytic localization of group representations

Suppose thatM is a Harish–Chandra module for (U�;K) and thatM! is an analytic
completion on which G0 acts. At first glance it may not seem so clear how this
information could possibly effect the structure of the analytic localization. For
regular � the Koszul complex can be used to facilitate a description of the analytic
localizations to a flag manifold [13]. For our purposes, it seems more advantageous
to utilize a certain canonical free resolution. When these resolutions (for M and
M! respectively) are localized then the respective groups K and G0 will act on
the resulting complexes of sheaves. These actions provide complexes of (D�;K)
(respectively (D�; G0)) modules which carry a certain structure sometimes refered
to as weak [1, Defn. 1.3.1]. The point is that the derivative of the group action
and the algebra action do not agree at the level of the complex. Nevertheless these
two actions are homotopic [12]. Because the module M! is analytic, it turns out
we can understand the basic structure of the localizations (i.e. the homologies of
the derived localization) on a G0 orbit if only we know the geometric fibers (as
topological representations for the stabilizer) at a point in that orbit.

In particular, we recall the Hochschild resolution F:(M!) given by

Fp(M!) = 

p+1U� 
M!:

The analytic localization of M! is realized as the complex �Y (F:(M!)). The
groupG0 acts on this complex of sheaves�Y (F:(M!)) via: the action on ��D� b

the adjoint action on U� b
 the action on M!. Coupling this G0 action with the left
action of ��D� one obtains the weak equivariant complex refered to above.
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Choose y 2 Y and let �Y (F:(M!))y denote the induced complex on stalks.
Choose a holomorphic cross section 
:U � Y ! G for the projection g 7! g � y

with 
(y) = e. If F is a sheaf ofOY modules let Ty(F) denote the geometric fiber
of F at y. Put G0y = the stabilizer of y in G0. The existence of the previously
mentioned homotopies establishes that the pth homology hp(Ty � �Y (F�(M!)))
will be an analytic (py; G0y) module provided it is Hausdorff. Let S be theG0 orbit
of y. The following lemma can be established in a similar manner as the case for
the flag manifold [13, Prop. 8.3 and Prop. 8.7].

LEMMA 6.3. AssumeM! is an analytic (U�; G0) module.
(a) The section 
 and the action ofG0 determines an isomorphism of complexes

of dnFOY;y modules �Y (F:(M!))y ' OY;y b
Ty ��Y (F:(M!)).
(b) If hp(Ty ��Y (F:(M!))) is Hausdorff for each p thenLp�Y (M!) restricted

to S is isomorphic, as a (��D� jS ; G0) module, to the sheaf analytically induced
from hp(Ty ��Y (F:(M!))).

7. The comparison theorem

When M is a Harish Chandra module for (g;K) with minimal globalizationMmin

there is a natural equivariant inclusion M ! Mmin onto the K0 finite vectors.
Suppose M has infinitesimal character � 2 h� and consider the inclusion M !

Mmin as a morphism between objects in D(MdnF(U�)) via the usual fully faithful
embedding. On the sheaf side, the relation between a Harish Chandra module and
its minimal globalization is captured as a morphism L�Y (M) ! L�Y (Mmin)
in D(MdnF(��D�)). Examples show that the induced morphisms on homologies
Lp�Y (M) ! Lp�Y (Mmin) are often all zero. So the question is raised: what is
the geometric content to this relation between a Harish–Chandra module and its
minimal globalization on the sheaf side? It is the aim of the forthcoming comparison
theorem to answer exactly this question.

In the setting of a full flag manifold X , Hecht and Taylor have established
the following result [14], which turns out to be the key technical point in the
development of our argument. In particular, suppose x 2 X is a special point and
let c � bx be the stable Cartan subalgebra. Assume Tx denotes the functor for
the geometric fiber at x. Then there is a derived functor LTx:D(MdnF(D�)) !
D(MdnF(U�(c))) [Sect. 3]. Hence we obtain a morphism LTx � L�X(M)) !
LTx � L�X(Mmin) in the derived category D(MdnF(U�(c))). The comparison
theorem for a flag manifold says the following

THEOREM 7.1 [Hecht and Taylor]. Assume that � 2 h� is regular and thatM is a
Harish–Chandra module for (U�;K). LetM !Mmin be an equivariant inclusion
onto theK0 finite vectors. Then the corresponding morphism LTx �L�X(M))!
LTx � L�X(Mmin) in D(MdnF(U�(c))) is an isomorphism.
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In particular, let F:(M) and F:(Mmin) denote the respective Hochschild reso-
lutions. Then the inclusion M ! Mmin determines a morphism of the complexes
�X(F:(M)) ! �X(F:(Mmin) which is equivariant for the K0 actions [Sect. 6].
Thm. 7.1 implies that this morphism of complexes is in fact a quasi-isomorphism.
Hence the induced morphisms on the homologieshp(Tx��X(F:(M)))! hp(Tx�
�X(F:(Mmin))) are equivariant isomorphisms for the associated (c; C0) actions.

The rest of this section is concerned with proving the following extension of the
comparison theorem to a generalized flag manifold.

THEOREM 7.2. Comparison theorem. Assume � is regular and antidominant for
Y . Let M be a Harish Chandra module for (U�;K0) with minimal globalization
Mmin. Suppose y 2 Y is special. Then hp(Ty ��Y (F:(M))) is a Harish–Chandra
module for (l;K0\L0) whose minimal globalization is naturally isomorphic to the
toplogical L0 module hp(Ty � �Y (F:(Mmin))). In particular, let M ! Mmin be
an equivariant inclusion onto the K0 finite vectors. Then corresponding morphism
hp(Ty ��Y (F:(M))) ! hp(Ty ��Y (F:(Mmin))) is an an equivariant inclusion
onto the K0 \ L0 finite vectors.

Proof. Without loss of generality assume � is regular and antidominant. Let
S be the G0 orbit of y and let Q = K � y be the corresponding K orbit. Put
q = dimX�dimQ. Assume x 2 X is a special point, c � bx is the stable Cartan
subalgebra andC0 � G0 is the corresponding Cartan subgroup. A Harish–Chandra
moduleM is called a Beilinson Bernstein standard module ifM = �(X; I(x; V ))
where V is an irreducible module for K0 \ C0, c acts on V by �+ � and I(x; V )
is the corresponding standard Harish–Chandra sheaf originating from the K orbit
QX = K � x. Put qX = dim X�dim QX and let SX be the G0 orbit of x. The
module V is (c; C0) module (that is: V = Vmin), so we obtain an induced analytic
sheaf A(x; V ) originating from SX . We first check that the theorem holds when
M is a Beilinson Bernstein standard module.

LEMMA 7.3. Assume M = �(X;I(x; V )) is a Beilinson Bernstein standard
module with � regular and antidominant. Then the following hold.

(a) L�X(Mmin) ' A(x; V )[qX ] in D(MdnF(D�)).
(b) If x does not belong to ��1(Q \ S) then LTy � L�Y (M) '

LTy � L�Y (Mmin) ' 0 in D(MdnF(��D�)):

Proof. Observe that (a) is a slight generalization of [13, Prop. 10.8]. We use the
comparison theorem onX [Thm. 7.1] and the description ofL�X(Mmin) [Lemma
6.3] to derive our result. This illustrates the key idea for establishing the main
theorem in the next section. LetF:(M) andF:(Mmin) be the Hochschild resolutions.
The inclusionM !Mmin induces a morphism of complexes:F:(M)! F:(Mmin).
Since � is regular and antidominant, it follows that Lp�

alg
X (M) = 0 unless p = 0

in which case �alg
X (M) ' I(x; V ). Let x0 be a special point not in QX \ SX and

let Tx0 be the geometric fiber functor at x0. Observe x0 is not in QX [Thm. 5.2].
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Since the complex Tx0 ��X(F:(M)) computes the geometric fibers of I(x; V ) at
x0 it follows that this complex has vanishing homology [Prop. 4.4] (this uses the
fact that QX is affinely embedded in X [15]). Hence, the comparison theorem on
X implies that the complex Tx0 ��X(F:(Mmin))) has vanishing homology. Now
one concludes that the restriction of L�X(Mmin) to the complement of SX is zero
[Lemma 6.3]. For the special point x we see that hp(Tx ��X(F:(M))) = 0 unless
p = qX where hqX (Ty ��X(F:(M))) ' V [Prop. 4.4]. Hence, another application
of the comparison theorem shows that hp(Tx��X(F:(Mmin))) = 0 unless p = qX ,
in which case the map: hqX (Tx ��X(F:(M)))! hqX (Ty ��X(F:(Mmin))) is an
isomorphism. Since this map is evidently equivariant for the (c;K0 \ C0) actions,
the desired result follows.

To establish (b) observe when x does not belong to ��1(Q \ S) then the orbits
SX andQX cannot intersect the fiberXy = ��1(y), since x and y are special [Sect.
5]. Let i:Xy ! X be the inclusion. Then the homology of LTy � L�Y (Mmin) is
isomorphic to the hypercohomology (on Xy) of i�A(x; V )[qX ] [Prop. 3.3]. Thus
LTy � L�Y (Mmin) = 0. The analogous statement holds for M once we see that
Li�(I(x; V )) has vanishing homologies. To establish this last fact it suffices to
apply the base change for twisted sheaves of differential operators [3, Thm. 8.4] to
the diagram

QX \Xy
- QX

Xy

?

i
- X
?

Since QX \ Xy is empty and since QX is affinely embedded in X we have the
desired result [3, Cor. 8.5]. 2

We now consider the case where �(x) 2 Q \ S. Since K0 acts transitively on
QX \ SX , we may assume �(x) = y. Adopting the earlier notations, recall the
twisted sheaf of differential operators Di� which acts on i�D� [Sect. 3], the real
stable Levi factor L0 � Py and the complexification K \ L of K0 \ L0. Since
C0 � L0, the module V determines a standard Harish–Chandra sheaf Ifiber(x; V )
on Xy originating from the K \ L orbit QX \Xy . Then �(Xy;Ifiber(x; V )) is a
Harish–Chandra module for (U�(l);K \ L).

LEMMA 7.4. Maintain the assumptions on � and M as specified in Lemma 7.3.
Assume �(x) = y. Then the following hold.

(a) LTy � L�X(M) ' �(Xy;Ifiber(x; V ))[q] in D(MdnF(U�(l))).
(b) LTy � L�X(Mmin) ' �(Xy;Ifiber(x; V ))min[q] in D(MdnF(U�(l))).
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Proof. To establish (a) note that the Harish–Chandra module�(Xy;Ifiber(x; V ))
determines a standard Harish–Chandra sheaf
I(y;�(Xy;Ifiber(x; V ))) originating from the K orbit Q on Y . Using the ‘induc-
tion in stages’ for the standard Harish–Chandra sheaves [7, Thm. 4.14 and 5.4] one
knows that ��I(x; V ) ' I(y;�(Xy;Ifiber(x; V ))) as a sheaf of (��D

alg
� ;K) mod-

ules. Since � is regular and antidominant, it follows that �alg
Y (M) ' I(y;�(Xy;

Ifiber(x; V ))) [Lemma 4.1 and Thm. 4.2]. In addition,Lp�Y (M) = 0 forp different
from zero. Hence, the homology of the complexTy��Y (F:(M)) computes the geo-
metric fibers of I(y;�(Xy;Ifiber(x; V ))). It follows that hp(Ty ��Y (F:(M))) = 0
unless p = q in which case hq(Ty � �Y (F:(M))) ' �(Xy; Ifiber(x; V )) as a
Harish–Chandra module for (l;K \ L) [Prop. 4.4]. This establishes part (a).

On the analytic side, the module V determines a standard analytic sheaf
Afiber(x; V ) ' i�A(x; V ) on Xy . Since L�X(M) ' A(x; V )[qX ] and since
A(x; V ) is acyclic for i� it follows that Li� � L�X(Mmin) ' Afiber(x; V )[qX ] in
D(MdnF(D

i
�)). Since the parameter for the sheaf Di� is antidominant and regular

with respect to the Levi factor l we see that L�Xy(�(Xy;Ifiber(x; V ))min[q]) '
Afiber(x; V )[qX ] [Lemma 7.3]. Thus,R�Xy �Li

� �L�X(Mmin) ' �(Xy;Ifiber(x;
V ))min[q] [Prop. 3.2]. The desired result follows by Proposition 3.3 2

We need to check that the morphismhq(Ty��Y (F:(M)))! hq(Ty��Y (F:(Mmin))
induced from the inclusion M !Mmin is an isomorphism onto the K0 \L0 finite
vectors. Put W = �(Xy;Ifiber(x; V )) and observe that the morphism in ques-
tion belongs to Hom(U�(l);K0\L0)

(W;Wmin). The following lemma shows that it’s
enough to check that this morphism is nonzero

LEMMA 7.5. Hom(U�(l);K0\L0)
(W;Wmin) ' Hom(c;K0\C0)

(V; V ) ' C .
Proof. The (c;K \C) module V determines an induced sheaf V on the K \L

orbit QX \ Xy . Let j:QX \ Xy ! Xy be the inclusion. Then V is a sheaf
of modules for twisted sheaf of algebraic differential operators Dalg; i�j� and our
defintion of Ifiber(x; V ) is given by Ifiber(x; V ) = j+V . Since an element of
Hom(U�(l);K0\L0)

(W;Wmin) has range inside the (K0 \ L0) finite vectors, we see
that

Hom(U�(l);K0\L0)
(W;Wmin) ' Hom(U�(l);K0\L0)

(W;W )

' Hom(U�(l);K\L)(W;W ) ' Hom
(D

alg; i
�

;K\L)
(j+V; j+V)

' Hom
(D

alg; i�j
�

;K\L)
(V;V) ' Hom(,̧K\C)(V; V );

from which the desired result follows 2

Let �:M ! Mmin denote the inclusion. Via the fully faithful embedding
MdnF(U�(l))! D(MdnF(U�(l)))we obtain the isomorphism HomU�(l)

(W;Wmin)
' HomD(MdnF(U�(l)))

(W;Wmin). Hence if the morphism hq(Ty ��Y (F:(M))) !
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hq(Ty ��Y (F:(Mmin)) induced from � is zero, then the morphismLTy �L�Y (�)
is zero in D(MdnF(U�(l))) [Lemma 7.4]. It follows from this that the morphism
R�Xy � Li

� � L�X(�) is zero [Prop. 3.3]. This in turn implies that the morphism
Li� �L�X(�) is zero, by the equivalence of derived categories on Xy [Thm. 2.1].

Let TXy
x denote the geometric fiber functor at the special point x in relation to

OXy . Then we see that LTXy
x � Li� � L�X(�) ' LTx � L�X(�) is zero as well.

Since this contradicts the comparison theorem onX , we have the desired result for
Beilinson–Bernstein standard modules.

To establish the general case, let M be a Harish–Chandra module for (U�;K0)
and adopt the notation hp(y;M) to denote the (U�(l);K0 \ L0) module hp(Ty �
�Y (F:(M))). The standard sort of considerations show that hp(y;M) is a Harish–
Chandra module for (U�(l);K0 \ L0). Changing notations briefly let cM be the
minimal globalization of M and put hp(y; cM) = hp(Ty � �Y (F:(cM ))). Since
hp(y; cM) ' hp(�Xy � i

� � �X(F:(cM ))) as a module for (U�(l); L0) it follows,

using [13, Lemma 10.11] applied to the flag manifold Xy , that hp(y; cM) is a
minimal globalization for L0. The following lemma is only a slight modification
of [14, Lemma 3.1].

LEMMA 7.6. Let 0 ! M 0 ! M ! M 00 ! 0 be a short exact sequence of
Harish–Chandra modules for (U�;K0) and assume that Theorem 7.2 holds for any
two of the modules. Then it also holds for the third.

Proof. Using the fact that minimal globalization is an exact functor [16, 22] we
have a commutative diagram with exact rows

� � � �!hp+1(y;M
00

)�!hp(y;M
0

)�!hp(y;M)�!hp(y;M
00

)�!hp�1(y;M
0

)�!

� � � �!hp+1(y;dM 00)

?
�!hp(y;cM 0)

?
�!hp(y; bM)

?
�!hp(y;dM 00)

?
�!hp�1(y;cM 0)

?
�!

Since the functor of minimal globalization is exact, we can apply it to the top
row and then use the five lemma together with the open mapping theorem for the
desired result 2

To complete the proof of the comparison theorem, one can now argue exactly
as in [14, Prop. 3.2] 2

8. Realizing representations from the Levi orbits:
The case of regular antidominant infinitesimal character

Let y 2 Y be a special point and letV be a Harish–Chandra module for (U�(l);K0\

L0). Put q = dim Y � dim Q, whereQ = K � y is theK orbit of y. We will utilize
the following terminology. If F � is a complex of sheaves on Y and if S � Y is
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a locally closed subset then we say F � is supported in S provided the stalks for
each of the cohomology sheaves hp(F �) vanish at all points outside of S.

This section is devoted to establishing the following result.

THEOREM 8.1. Assume � is regular and antidominant for Y . Then
Hp(Y;A(y; Vmin)) vanishes for p different from q in which caseHq(Y;A(y; Vmin))
is the minimal globalization of �(Y; I(y; V )). More specifically, there is a natu-
rally defined dnF topology as well as a continuousG0 action onHq(Y;A(y; Vmin))
such that the resulting functor V ! Hq(Y;A(y; Vmin)) from Harish–Chandra
modules for (U�(l);K0 \ L0) to topological G0 modules is isomorphic to the
functor V ! �(Y;I(y; V ))min.

Proof. Choose an element � 2 h�, representing the infinitesimal character of
V , which is both regular and antidominant. Let M = �(Y; I(y; V )). Think of M
and Mmin as objects in D(MdnF(U�)). The point of the argument is to see there
is an isomorphism L�Y (Mmin) ' A(y; Vmin)[q] in D(MdnF(��D�)). The desired
result then follows sinceR�Y �L�Y is isomorphic to the identity [Prop. 3.2]. We
consider the naturality (which will be crucial later on) at the end of the proof.

The argument proceeds in a similar fashion as the proof of Lemma 7.3. Let
S = G0 � y be the G0 orbit of y and let F:(M) be the Hochschild resolution of M .
Applying the equivalence of categories [Thm. 4.2] as well as the algebraic base
change [Prop. 4.4] we see that the homologies of the complex Ty � �Y (F:(M))
vanish except in degree q where we obtain the (U�(l);K0 \ L0) module V . Now
applying the Comparison Theorem [Thm. 7.2] in conjunction with Lemma 6.3 it
follows that Lp�Y (Mmin) jS= 0 unless p = q in which case Lq�Y (Mmin) jS'
A(y; Vmin) jS . Hence to complete the argument it suffices to show thatL�Y (Mmin)
is supported in S.

Because �:X ! Y is a proper morphism it follows that R�� sends a complex
of sheaves supported in ��1(S) to a complex of sheaves supported in S. Using the
identity [Prop. 3.2]

L�Y ' R��L�X ;

we can thus establish the desired result provided we show that L�X(Mmin) is
supported in ��1(S).

Let x 2 X be a special point and assume �(x) is not in S. Let Tx denote the
functor of geometric fiber at x. In order to check that L�X(Mmin) is supported in
��1(S) it is enough to see that Tx � Lp�X(Mmin) = 0 for each p. Applying the
Comparison Theorem onX we only need to check that hp(LTx(�X(M))) = 0 for
each p. To establish this last point letQ = K �y be theK orbit of y and observe that
the discussion in Section 5 implies that y0 = �(x) does not belong to Q. Suppose

that Xy0
i
! X is the inclusion of the fiber over y0 into the flag manifold. To see

that hp(LTx(�X(M))) = 0 for each p it is enough to check that Li� � L�X(M)
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is isomorphic to zero in D(MdnF(D
i
�)). Since � is regular and antidominant an

application of Theorem 2.1 shows that it is enough to check that

R�Xy0
� Li� � L�X(M) ' 0:

By the analytic base change [Prop. 3.3] we only need to see thatLTy0 �L�Y (M) '
0. Using the fact thatQ is affinely embedded in Y , this result follows from algebraic
base change formula [Prop. 4.4].

The proof that our construction is natural parallels the above considerations. In
particular suppose thatV andW are Harish–Chandra modules for (U�(l);K0\L0).
LetM andN be the corresponding Harish–Chandra modules for (U�;K0) obtained
by taking global sections of the induced algebraic sheaves I(y; V ) and I(y;W ).
Assume we have a morphism M ! N obtained functorially from a morphism of
the Harish–Chandra modules V ! W . Then we have the following communative
diagram

M - N

Mmin

?
- Nmin

?

where the vertical arrows are equivariant inclusions onto the K0 finite vectors and
the bottom morphism is the completion of the top morphism. Applying the functors
of analytic localization and geometric fiber to the respective Hochschild resolutions
provides a commutative diagram of complexes. Taking the qth homolgy we recover
the original morphism V ! W of Harish–Chandra modules for (U�(l);K0 \ L0)
[Thm. 4.2 and Prop. 4.4]. Thus the comparison theorem [Thm. 7.2] together with
the above description of the localizations L�Y (Mmin) and L�Y (Nmin) implies
that the bottom row Mmin ! Nmin in the diagram above localizes to the morphism
A(y; Vmin) ! A(y;Wmin) obtained via the completion of the original morphism
V ! W . Hence we recover the morphism Mmin ! Nmin by applying R�Y to
A(y; Vmin)! A(y;Wmin) [Prop. 3.2] 2

9. The tensoring argument

We divide the argument into two parts. The first part establishes the main theorem
when the infinitesimal character for the stable Levi factor is antidominant for Y .
In turn, this result for the antidominant case then becomes the initial step in an
induction argument based on the length of an infinitesimal character. We supply
details for this induction argument in the second part of the section.
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Tensoring to the walls

In this part we argue that, for our purposes, the case of antidominant infinitesi-
mal character reduces to the case of regular antidominant infinitesimal character.
Under certain conditions tensoring on the geometric fibers commutes with both the
analytic and the algebraic inductions. This fact can be utilized to understand the
antidominant case once we see that the stable Levi factor has enough modules with
regular antidominant infinitesimal character. In order to establish this last point we
begin with a geometric description of the translation functor on the fiber.

Let y 2 Y , let L � Py be a Levi factor and suppose that C � L is a Cartan
subgroup. Via specialization to a point x 2 Xy the differential of a holomorphic
character forC determines a weight � 2 h�. Induction at the point x determines the
sheaf of sections O(�) for an L homogeneous algebraic line bundle on Xy. More
generally, we refer to an element � 2 h� as an integral weight provided ��(�) is an
integer for each � 2 �. One basic fact is that each integral weight � determines a
unique irreducible finite dimensional g module F � with extremal weight � [28].

Let i:Xy ! X be the inclusion. Suppose � 2 h� and let Dalg; i
� be the corre-

sponding sheaf of twisted differential operators on Xy . If V is a sheaf of modules
for Dalg; i

� and if � is an integral weight corresponding to the differential of a holo-
morphic character forC � G thenDalg; i

��� acts onV(��) = V

O

alg
Xy

O(��). On the

other hand, if F � is the finite dimensional G module with extremal weight � then
V(��)
F � is a sheaf of modules for U �(py)alg = O

alg
Xy

U(py) [Sect. 3]. Given a

sheafM of modules for U(l) letM(�) denote the generalizedZ(l) eigensheaf and
letM[�] denote the Z(l) eigensheaf, both corresponding to the parameter � 2 h�.
An element in h� is called dominant if the negative of that element is antidominant.
The following result from [19] is in fact a version of the ‘key lemma’ in [2].

LEMMA 9.1 [Miličić]. Let � 2 h� and suppose that � corresponds to the differ-
ential of a holomorphic character for a Cartan subgroup C � L. Suppose there
is a w 2 W such that w� is antidominant and w� is dominant. Then we have the
following.

(a) For each weight � of F � and for each s 2W if s� = �� �+ � then s� = �

and � = �.
(b) If V is a Dalg; i

� module then (V(��) 
 F �)(�) is a Dalg; i� module naturally
isomorphic to V .

We now apply this result to show that, for our purposes, there are enough l

modules with regular antidominant infinitesimal character.
Assume l is the stable Levi factor associated to a special point y 2 Y .

LEMMA 9.2. Let V be a Harish–Chandra module for (U�(l);K\L) and suppose
that � is antidominant. Let � be an integral weight corresponding to the differential
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of a holomorphic character for C � L. Assume that � is so very dominant that
��� is antidominant and regular. Then there exists a Harish–Chandra moduleM
for (l;K\L)with infinitesimal character��� such that V is naturally isomorphic
to (M 
 F �)(�).

Proof. Let �
alg
� denote the localization functor from U�(l) to Dalg; i� and

let M be the sheaf of (Dalg; i��� ;K \ L) defined by M = �
alg
� (V )(��). Then

�
alg
� (V ) ' (M
F �)(�) [Lemma 9.1]. PutM = �(Xy;M). Then (M
F �)(�) '

�(Xy; (M
 F
�)(�)) ' �(Xy;�

alg
� (V ) ' V [Lemma 4.1] 2

For the moment assume M is an arbitrary Harish–Chandra module for (l; L \K)
and suppose that F is a finite dimensional G module. Using Schmid’s results
on minimal globalizations [16, 22] one can see that Mmin 
 F is the minimal
globalization of M 
 F and that the eigenspace space (Mmin 
 F )[�] (which is a
closed subspace of Mmin 
 F ) is in fact the minimal globalization of (M 
 F )[�].
SinceM
F splits into a finite direct sum of generalizedZ(l) eigenspaces [28] one
can deduce in a similar fashion that the minimal globalization of the generalized
eigenspace (M 
 F )(�) is naturally isomorphic with (Mmin 
 F )(�)

LEMMA 9.3. Make the same assumptions on � and � and w as in Lemma 9.2 and
let M be a Harish–Chandra module for (U���(l);K \ L).

(a) Let (A(y;Mmin)
F
�)(�) denote the generalizedZ(g) eigensheaf on Y corre-

sponding to the infinitesimal character � 2 h�. Then (A(y;Mmin)
F
�)(�) is

a dnF sheaf of (��D�; G0) modules naturally isomorphic with A(y; (Mmin 


F �)[�]).
(b) Let (I(y;M) 
 F �)(�) be the generalized Z(g) eigensheaf corresponding

to �. Then (I(y;M) 
 F �)(�) is a sheaf of (��D
alg
� ;K) modules naturally

isomorphic to I(y; (M 
 F �)[�])

Proof. At this point we briely modify the general setup established in Sect. 6.
In particular, we view Mmin 
 F � as a module for (py; G0y) where the respec-
tive nilradical and unipotent radical act via the tensor product action [28, Defn.
4.1.11(b)]. ThenMmin
F

� is an analytic (py; G0y) module andA(y;Mmin
F
�)

is a dnF sheaf of analytic modules for (U �(g); G0) [13]. Indeed, there is a natural
isomorphismA(y;Mmin)
 F

� ' A(y;Mmin 
 F
�) [28, Lemma 4.5.2].

To see that the generalized Z(l) eigenspace in Mmin 
 F
� corresponding to �

coincides with the eigenspace (Mmin
F
�)[�] let t be an element of the Weyl group

Wl of l such that t(� � �) is antidominant for l [Sect. 3]. Consider the algebraic
localization �

alg
t(���)(Mmin) of Mmin to Xy and let V denote the sheaf of Dalg; i

t�

modules defined by the equation V = �
alg
t(���)

(Mmin) 
OXy
O(t�). Now apply

Lemma 9.1 using the parameters t� and t�.
To complete the argument, filter F � as in [28, Lemma 7.2.3(b)]. Using Lemma

9.1, we can argue as in [28, Prop. 7.4.1] to obtain the desired result.
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The proof for Part (b) is similar, but with a slight twist. The naturality depends on
the naturality of Kashiwara’s theorem. ViewI(y;M)
F � as a sheaf of modules for
(U �(g)alg;K) via the tensor product action and argue, using the obvious filtration
coupled with Lemma 9.1, that (I(y;M)
F �)(�) is in fact a sheaf of (��D

alg
� ;K)

modules on which Z(g) acts via the Harish–Chandra morphism Z(g) ! Z(l)
[Sect. 3]. To complete the argument, fix a resolution R � ! I(y;M) of I(y;M)

by flat, quasicoherent��D
alg
� modules. Then we can apply the above sort of filtration

arguments to the complex ofZ(l) finite sheaves of modules i�(R �
F �). The final
result follows via some applications of Kashiwara’s theorem [7, Thm. 7.11]. 2

We are now prepared to conclude Part (b) of the main theorem described in the
introduction. It turns out that for our proof of the general case (in the next section)
we need (and can obtain) a slightly stronger naturality than alluded to in the
introduction.

THEOREM 9.4. Assume y is special and let q = dim Y � dim Q be the codi-
mension of the K orbit Q = K � y. Suppose V is a Harish–Chandra module for
(l;K0 \ L0) with an infinitesimal character that is antidominant for Y . Then the
sheaf cohomology groups Hp(Y;A(y; Vmin)) vanish unless p = q in which case
Hq(Y;A(y; Vmin)) is a topological G0 module naturally isomorphic to the mini-
mal globalization of �(Y;I(y; V )). More specifically: let I(y; V )) 7! I(y; V ))an

denote the application of Serre’s GAGA functor [Sect. 2 and Sect. 4]. Then there
is a natural morphism I(y; V ))an ! A(y; Vmin)[q] in D(M(��D�)) such that the
resulting morphism h0(R�Y (I(y; V )

an)) ! h0(R�Y (A(y; Vmin)[q])) gives the
desired isomorphism of functors.

Proof. Let � be an antidominant element of h� representing the infinitesimal
character of V . There exists a � corresponding to the differential of a holomor-
phic character for C � L and which is so dominant that � � � is antidominant
and regular. According to Lemma 9.2 there is a finite dimensional G module F �

of highest weight � and there is a Harish–Chandra module M with infinitesimal
character � � � such that V is naturally isomorphic to (M 
 F �)(�). Hence we
see thatHp(Y;A(y; Vmin)) ' H

p(Y; (A(y;Mmin)
F
�)(�)) [Lemma 9.3]. A stan-

dard argument for sheaf cohomology shows that Hp(Y; (A(y;Mmin)
 F
�)(�)) '

(Hp(Y;A(y;Mmin)) 
 F
�)(�). Thus an application of Theorem 8.1 makes van-

ishing clear and shows that Hq(Y;A(y; Vmin)) is the minimal globalization of
(�(Y;I(y;M))
 F �)(�). The desired result is obtained by another application of
Lemma 9.3.

To obtain the morphism I(y; V ))an ! A(y; Vmin)[q] in the case of reg-
ular antidominant � simply localize the equivariant inclusion �(Y; I(y; V ) !
Hq(Y;A(y; Vmin)). Use the tensoring [Lemma 9.3] for the general case. The natu-
rality of the construction is apparent from Theorem 8.1 and Lemma 9.3. 2
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Tensoring down the length

Our first task is to define a notion of length for an infinitesimal character of a Levi
factor. Suppose y 2 Y and let l � py be a Levi factor. Let �(l)+ � �+ be the set
of positive roots for h in l and let �(u) = �+ � �(l)+ denote the roots of h in
the nilradical. Assume � is a character for Z(l) and suppose � 2 h� is a parameter
representing �. We consider the nonnegative integer n(�) = the number of roots
� 2 �(u) such that ��(�) is a positive integer. Since the Weyl group Wl for l is
contained in the set of w 2 W which map �(u) to itself, we see that the number
n(�) is independent of the choice of parameter � representing �. We refer to this
nonnegative integer n(�) as the length of �.

In order to apply a certain result of Miličić [19] we also introduce a notion
of length for elements of h� that is closely related to the previous definition.
Specifically, for � 2 h� define n(�) = the number of roots � 2 �+ such that ��(�)
is a positive integer. Observe that if �� is the character corresponding to � then we
have the inequality

n(��) � n(�):

For any root � let s� denote the corresponding reflection on h�.

LEMMA 9.5 [Miličić]. Let � 2 h� and suppose that n(�) is positive. Then there
exists an integral weight � and an � 2 �+ such that

(i) ��(�) = ��(�) is positive
(ii) n(�� �) and n(s��) are both less than n(�)
(iii) If � is any weight of F � and if s 2 W then the equation � � � + � = s�

is satisfied if and only if either s� = � and � = � or else if s� = s�� and
� = s��.

The next lemma simply points out that the result by Miličić is sufficient for an
induction on the length of infinitesimal characters for a Levi factor.

LEMMA 9.6. Suppose that � 2 h� is antidominant for l and that n(�) is positive.
Suppose we have an integral weight � and an � 2 �+ satisfying the properties
spelled out in the previous lemma. Then n(����) and n(�s��) are both less than
n(��). In particular � 2 �(u).

Proof. Since � is antidominant for l it follows that n(��) = (�). Hence the
claims follow from the above inequality. 2

There is a slight complication that occurs in our argument because it may be the
case that the � we need from Lemma 9.5 does not correspond to the differential of
a holomorphic character for a Cartan subgroup of G. For that reason we introduce
a certain covering group defined in [28, Lemma 7.3.5].
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LEMMA 9.7 [Vogan]. There is a finite covering group eG ! G with the property
that for each weight � 2 h� there exits e� 2 h� which corresponds to the differential
of a holomorphic character for a Cartan subgroup eC � eG and which satisfies:
��(~�) = ��(�) for all � 2 �. In particular, we may replace � by e� in Lemma 9.5
and retain the stated properties.

The following result is the analog to Lemma 9.2 and shows that, for our purposes
there are enough Harish–Chandra modules with shorter infinitesimal characters.

Assume that l is the stable Levi factor associated to a special point y 2 Y and
let K e\L be the preimage of K \ L in eG.

LEMMA 9.8. Suppose that V is a Harish–Chandra module for (l;K \ L) with a
given infinitesimal character of positive length. Let � be a parameter for this infini-
tesimal character that is antidominant for l. Fix an integral weight� corresponding
to the differential of a holomorphic character for eC � eG and a root � having the
properties spelled out in Lemma 9:5. Then there exists a Harish–Chandra module
M for (l;K e\L) with infinitesimal character � � � and a natural isomorphism
V ' (M 
 F �)(�) of (l;K e\L) modules where (M 
 F �)(�) denotes the general-
ized Z(l) eigenspace. In addition the K e\L action on (M 
F �)(s��) factors to an
action of K \ L.

Proof. Let M be the sheaf of (Dalg; i��� ;K
e\L) modules defined by M =

�
alg
� (V )(��) and let M = �(Xy;M). An argument as in the proof of Lem-

ma 9.2 via an application of Lemma 9.5 shows that �alg
� (V ) ' (M
 F �)(�).

Hence we recover the first claim by taking global sections [Lemma 4.1].
Another application of Lemma 9.5 to the (by now) standard filtration argu-

ment establishes an isomorphism of (Dalg; i��� ;K
e\L) modules: (M
 F �)(s��) '

�
alg
� (V )(���(�)�). Since theK e\L action onO(���(�)�) factors through toK\L

we recover the second claim by taking global sections 2

LEMMA 9.9. Let V be a Harish–Chandra module for (U�(l);K \ L). Suppose
that � has positive length and is antidominant for l. Fix �; � and M as in the
previous lemma.

(a) Let (I(y;M) 
 F �)(�) denote the generalized Z(g) eigensheaf on Y corre-
sponding to the infinitesimal character � 2 h�. Then there is the following
short exact sequence of (U �(g)alg;K) modules:

0! I(y; V )! (I(y;M)
 F �)(�) ! I(y; (M 
 F
�)[s��])! 0

(b) Let (A(y;Mmin) 
 F
�)(�) be the generalized Z(g) eigensheaf on Y corre-

sponding to the infinitesimal character �. Then there is the following short
exact sequence of dnF (U �(g); G0) modules.

0 ! A(y; Vmin)! (A(y;Mmin)
 F
�)(�)

! A(y; (Mmin 
 F
�)[s��])! 0:
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Proof. To establish part (b) use Lemma 9.5 and argue as in [28, Prop. 7.4.3].
Lemma 9.8 shows that the generalized Z(l) eigenspace (Mmin 
 F

�)(s��) agrees
with the the eigenspace (Mmin 
 F

�)[s��]. These considerations show we obtain

an exact sequence of sheaves of dnF (U �(g); fG0) modules where fG0 � eG is the
preimage ofG0 in eG. Another application of Lemma 9.8 shows that (A(y;Mmin)


F �)(�) is an extension of twoG0 modules. Hence the action offG0 on (A(y;Mmin)

F �)(�) factors through to G0.

The above considerations coupled with the techniques utilized in the proof of
Lemma 9.3 make the proof of part (a) straightforward. 2

The main result in the paper is the following theorem. As mentioned earlier it turns
out we need (and can obtain) a slightly stronger version of naturality than alluded
to in the introduction.

THEOREM 9.10. Let y 2 Y be a special point and let V be a Harish–Chandra
module for (l;K\L)with infinitesimal character. Let q denote the codimension for
the K orbit of y. Then there is a naturally defined dnF topology and a continuous
G0 action defined on the sheaf cohomolgy group Hp(Y;A(y; Vmin)) such that for
each p the resulting G0 module is naturally and topologically isomorphic to the
minimal globalization of Hp�q(Y;I(y; V )). More specifically there is a natural
morphism I(y; V )an ! A(y; Vmin)[q] in D(M(��D�)) such that the resulting
morphisms:

hp�q(R�Y (I(y; V )
an))! hp�q(R�Y (A(y; Vmin)[q]))

provide the desired isomorphisms of functors.
Proof. We induct on the length of the infinitesimal character � of V . When �

has length zero then the result reduces to Theorem 9.4. So assume � has positive
length and suppose the theorem holds for all Harish–Chandra modules with shorter
infinitesimal characters. Suppose � is an l antidominant element of h� representing
the infinitesimal character �. Fix �; � and M as in the previous lemma. Using the
inductive hypothesis as well as Lemma 9.9 we obtain the following diagram:

0 �! I(y; V ) �! (I(y;M)
 F�
)(�) �! I(y; (M 
 F�

)[s��]) �! 0

j j
# #

0 �! A(y; Vmin)[q] �! (A(y;Mmin)
 F�
)(�)[q] �! A(y; (Mmin 
 F�

)[s��])[q] �! 0

Because of the naturality the vertical morphisms coming from the inductive assump-
tion are such that the square commutes in D(M(��D�)). Thus we obtain a mor-
phism I(y; V ) ! A(y; Vmin)[q] in D(M(��D�)) such that the above diagram
completes to a morphism of distinguished triangles. To see that the morphism
I(y; V ) ! A(y; Vmin)[q] satisfies the necessary naturality simply argue using the
functorality of the short exact sequences in Lemma 9.9.
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We change notations briefly. Let Hp�q(V ) denote the sheaf cohomology group
Hp�q(Y;I(y; V )) , let Hp�q(W ) stand for (Hp�q(Y; I(y;M))
 F �)(�) and put
Hp�q(Q) = Hp�q(Y;I(y; (M 
F �)[s��])). Similarly for the analytic sheaves let
Hp(Vmin) denoteHp(Y;A(y; Vmin)) and likewise for the rest. Applying the derived
functor of global sections to the above morphism of distinguished triangles gives
the resulting morphism of long exact sequences in sheaf cohomology

� � � �! Hp�1�q
(Q) �! Hp�q

(V ) �! Hp�q
(W ) �! Hp�q

(Q) �! Hp+1�q
(V ) �!

j j j j j
# # # # #

� � � �! Hp�1
(Qmin) �! Hp

(Vmin) �! Hp
(Wmin) �! Hp

(Qmin) �! Hp+1
(Vmin) �!

The bottom row is a long exact of sequence of topological U(g) modules and
continuous morphisms. Using the inductive assumption and a standard argument
[13, Lemma 9.1 and Corollary A.11] we see that this bottom row is in fact a long
exact sequence of dnF U(g) modules. Because the relevant categories we consider
are not closed under extensions by U(g) modules, we refer to the formalism of
group actions on sheaf cohomology in order to complete the argument [8, 13].

LEMMA 9.11 [Chang, Hecht and Taylor]. (a) The U� modulesHp�q(Y; I(y; V ))
have naturally defined compatible algebraicK actions.

(b) The dnF U� modules Hp(Y;A(y; Vmin)) have naturally defined compatible
analytic G0 actions.

Observe that theK andG0 actions are each uniquely determined for the identity
components by the g action.

Using Lemma 9.9 together with the inductive hypothesis it follows that the
top row is a long exact sequence of Harish–Chandra modules while the bot-
tom row is long exact sequence of minimal globalizations [13, Lemma 10.11]
such that the vertical morphisms are (g;K0) equivariant. In particular the mor-
phisms Hp�q(V ) ! Hp(Vmin) lift to continuous G0 equivariant morphisms
(Hp�q(V ))min ! Hp(Vmin). Hence we can apply the functor of minimal glob-
alization to the top row and use the five lemma to obtain the desired result. 2

10. An open orbit and duality

If x 2 X is a special point in the flag manifold then the G0 orbit of x is open if
and only if the corresponding Borel subalgebra bx is � stable. On the generalized
flag manifold, examples show that an open G0 orbit need not contain a � stable
parabolic subalgebra. Nevertheless if y 2 Y is special then theG0 orbit S = G0 � y

is open if and only if py is � stable. In turn this happens if and only ifG0\Py = L0

is the real stable Levi factor associated to y. For the remainder of the section we
fix a special point y and we assume py is � stable. Let Q be the K orbit of y and
put q = dimY�dimQ. Since the preimage ��1(Q) � X contains a closedK orbit
[17] it follows that Q is closed in Y .
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For the moment assume � is antidominant for Y . Then we can apply the
following argument exactly as in the case of a flag manifold. In particular, �Y ��

alg
Y

is naturally isomorphic to the identity [Lemma 4.1]. Using these facts we can in turn
conclude that wheneverV is an irreducible, coherent sheaf of (��D

alg
� ;K) modules

then �(Y;V) is an irreducible Harish–Chandra module provided it is nonzero.
On the other hand, suppose that V is an irreducible Harish–Chandra module for
(l;K0 \L0). SinceQ is closed, with the help of Kashiwara’s theorem we conclude
that I(y; V ) is an irreducible, coherent sheaf of (��D

alg
� ;K) modules. Thus we

have the following

COROLLARY 10.1. Suppose that y is a � stable special point and that Vmin is a
topologically irreducible minimal globalization for L0 whose infinitesimal charac-
ter is antidominant for Y . Then Hq(Y;A(y; Vmin)) is a topologically irreducible
representation forG0 whenever it is nonzero. If the infinitesimal character for Vmin

is regular as well as antidominant for Y then Hq(Y;A(y; Vmin)) is not zero.

Our final task in this paper is to briefly consider an application of the main results
to a certain conjecture about the geometric realization of Zuckerman modules [28,
29, Conj. 6.11]. In particular, using a derived functor construction (which depends
on the parabolic subalgebra py), each Harish–Chandra module V for (l; L0 \K0)
determines a family of Harish–Chandra modules: Rp(y; V ); p = 0; 1; 2; : : : ; for
(g;K0) called Zuckerman modules [15, 28]. The conjecture we refer to proceeds
as follows. Using a smooth globalization of V and the polarization py define a G0

equivariant holomorphic vector bundle over the complex manifold S = G0 � y. Let
V denote the corresponding sheaf of sections. Then the sheaf cohomolgy groups
Hp(S;V) are conjectured to be globalizations of the Zuckerman modulesRp(y; V ).

To approach this problem we use a duality theorem relating the Harish–Chandra
modules we have considered here to the Zuckerman modules, as follows. When
M is a Harish–Chandra module for (g;K0) then the K0 finite dual M_ is again a

Harish–Chandra module. Indeed, the continuous dualM
0

min of the minimal global-
ization ofM is a maximal globalization ofM_ [22]. Put s = dimQ. Let Ty(
) be
the geometric fiber of the canonical bundle at y. As an L0 module Ty(
) '

Vn
uy

where n is the dimension of Y and uy is the nilradical of py. Using precisely
the methods developed by Hecht, Milicić, Schmid and Wolf in [15], Chang has
established the following result [8].

THEOREM 10.2 [Hecht, Milicić, Schmid and Wolf; Chang]. If V is a Harish–
Chandra module for (U�(l);K0\L0) then for each integer p there is a natural iso-
morphism of Harish–ChandramodulesHp(Y; I(y; V ))_ ' Rs�p(y; V _
Ty(
)).

COROLLARY 10.3. If the Harish–Chandra moduleV has an infinitesimal charac-

ter thenHp(Y;A(y; Vmin))
0

is the maximal globalization ofRn�p(y; V _
Ty(
))
for each p.
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If V is a finite dimensional representation for L0 and if A(y; V ) denotes the
corresponding induced analytic sheaf then A(y; V )jS is the sheaf of sections for
a homogeneous holomorphic vector bundle defined over S. In all cases the sheaf
cohomology groups Hp(Y;A(y; V )) are naturally identified with the compactly
supported sheaf cohomology groups Hp

c (S;A(y; V )jS). Nevertheless, even here
the application of Serre duality [24] is not completely trivial, since we have not used
the Dolbeault resolution to define topologies for the sheaf cohomology groups. Our
approach for dealing with the topological duality utilizes some ideas developed by
Hecht, Miličić and Taylor.

Assume now that V is a Harish–Chandra module for (l;K0 \ L0). To simpli-
fy notation let A denote the sheaf A(y; Vmin) and let C �(A) denote the Czech

resolution of A. Consider the complex D
p(A)(Y ) = �(Y; Cn�p(A))

0
obtained

by shifting the global sections of the Czech complex and applying the functor of
continuous dual. In particular D �(A)(Y ) is a complex of nF (= nuclear Fréchet)
modules for U(g). Since the cohomologies for the global sections of the Czech
complex are Hausdorff, it follows that the cohomologies hp(D �(A)(Y )) provide
the maximal globalizations refered to in Corollary 10.3. The question we are inter-
ested in is this: does the complex D

�(A)(Y ) compute the sheaf cohomology (on
S) of a reasonably defined induced sheaf?

One thing is certain: the complex D
�(A)(Y ) does compute the hypercohomol-

ogy of a certain complex of sheaves on Y . In particular, we can see that when F
is a dnF sheaf on Y then the compactly supported sections of F in an open set
U � Y are identified with a closed subspace of the global sections, since we have
the short exact sequence:

0! �c(U;F)! �(Y;F)! �(Y � U;F):

Hence, �c(U;F) is a dnF space. If F is a dnF sheaf of ��D� modules then

�(U; ��D��) acts on the continuous dual �c(U;F)
0
. SupposeF is a dnF sheaf and

let F �(F) denote the Czech resolution of F . For each p consider the presheaf

defined by: D
p(F)(U) = �c(U;F

n�p(F))
0
. Using the fact that the sheaves

Fn�p(F) are fine, one checks that the presheaf D p(F) is in fact a sheaf, which is
flabby since �c(U;Fn�p(F)) injects onto a closed subspace of �(X;Fn�p(F)).
The resulting complex of sheaves D �(F) will be refered to as the dual complex. We
summarize the above remarks in the following proposition.

PROPOSITION 10.4. To each dnF sheaf F on Y we can functorially assign a
complex of flabby nF sheaves denoted D

� (F) and called the dual complex for F .
WhenF is an object inMdnF(��D�) then D

�(F) is a complex of ��D�� modules. If
Hp(Y;F) is Hausdorff for each p, then the dual complex has hypercohomologies:

H
p(Y; D � (F)) = hp(D �(F)(Y )) = Hn�p(Y;F)

0
.

Let V be a finite dimensional module for L0. As above letA = A(y; V ) denote
the corresponding induced analytic sheaf. Since AjS is the sheaf of sections of a
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holomorphic vector bundle on S we can also consider the sheaf of sections A� for
the dual bundle (on S) extended by zero to all of Y . In particular, A� ' A(y; V �)
where L0 acts on V � in the standard fashion. SinceA�
O
 is a U �(g) module the
sheaf cohomologiesHp(S;A�
O
) areU(g)modules. The following proposition
assures us that Serre duality holds in this case.

PROPOSITION 10.5. (a) hp(D �(A))jS = 0 unless p = 0, in which case
h0(D �(A))jS ' (A� 
O 
)jS as U �(g)jS modules.

(b) For each p; hp(D �(A)(Y )) ' Hp(S;A� 
O 
) as a U(g) module.
Proof. To establish (a), let U � S be an open set. For each p, letHp

c (U;A)Czech

denote the pth compactly supported sheaf cohomology on U computed as a
topological vector space using the Czech resolution and let Hp

c (U;A)Dolbeault

denote the same sort of object constructed using the Dolbeault resolution with
distribution coefficients. Then Taylor has shown [26] there is a continuous iso-
morphism Hp

c (U;A)Czech ! Hp
c (U;A)Dolbeault which is topological whenever

Hp
c (U;A)Dolbeault is Hausdorff. In particular, if U � S is a Stein open set, then

Hp
c (U;A) vanishes unless p = n in which caseHn

c (U;A)Dolbeault is Hausdorff with
continuous dual (isomorphic to) �(U;A� 
O 
) [24]. Hence hp(D �(A))jS = 0
unless p = 0. Indeed, the two isomorphisms mentioned above determine an iso-
morphism of presheaves (A�
O 
)jS ! h0(D � (A))jS defined on a basis of Stein
open sets.

To establish (b), note that part (a) together with the fact that the dual complex
consists of flabby U �(g) modules implies hp(D �(A)(S)) = Hp(S;A� 
O 
)) as
a U(g) module. Now consider the inclusion of complexes of DNF U(g) modules:
�c(S;F

�(A)) ! �(Y;F�(A)). By the very nature of the constructions involved
this inclusion is a quasi-isomorphism. Since the cohomologies hp(�(Y;F�(A)))
are Hausdorff, one sees that the morphism of complexes D

�(A)(Y ) ! D
�(A)(S)

is also a quasi-isomorphism 2

In particular, if V is the sheaf of sections of a holomorphic vector bundle
defined on an open set S � Y then the previous argument shows that Serre duality
holds whenever the Czech resolution yields Hausdorff topologies for the compactly
supported sheaf cohomology groups.

The following result was established in [13] using different methods.

COROLLARY 10.6. Let y 2 Y be a � stable special point and let V be a finite
dimensional L0 module. Assume V is the sheaf of sections of the corresponding
homogeneous holomorphic vector bundle onS = G0 �y. Then, for each p, the sheaf
cohomologies Hp(S;V) are maximal globalizations of the Zuckerman modules
Rp(y; V ).

We conclude with a brief consideration of the difficulties involved in gener-
alizing this result to the case where V is an infinite dimensional Harish–Chandra
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module for (l; L0\K0). AssumeV has an infinitesimal character which is antidom-
inant for Y . Let (g; v) ! !(g)v denote the action of L0 on Vmin and as before, let
A denote the sheaf A(y; Vmin). Observe that Proposition 10.4 and Corollary 10.3
imply that the dual complex D

�(A) has hypercohomologies H
p(Y; D �(A)) = 0

unless p = s in which case H
s(Y; D �(A)) is a maximal globalization of the Zuck-

erman module Rs(y; V _ 
 Ty(
)). The difficulty is in seeing that something like
Proposition 10.5(a) should hold. In particular, we would like to know that for some
open sets U � Y forming a basis of the topology on Y that the compactly support-
ed sheaf cohomologiesHp

c (U;A) vanish unless p = n in which case Hn
c (U;A) is

Hausdorff. This would allow us to conclude that the hypercohomology of the dual
complex computes the cohomology of a sheaf on S. A sufficient reason this holds
when V is finite dimensional is the following: the action of L0 on Vmin extends to
a local holomorphic action of the complex group L. This in turn is equivalent to
condition that each of the real analytic functions g 7! !(g)v for v 2 Vmin extends
to a holomorphic function on some (small) fixed open set in the complex group L
(where this open set is not dependent on the choice of v). Hence, one is able to
deduce that the sheafA is locally free as anO module on S. Our final result shows
that this line of argument works only if Vmin is finite dimensional.

We establish the following terminology. A local action of the complex group L
on Vmin consists of an open set U � L and a continuous map �:U � Vmin ! Vmin

that satisfies

(a) v 7! �(g)v is a linear map Vmin ! Vmin for each g 2 U .

(b) �(g)�(h)v = �(gh)v if g, h and gh all belong to U .

This local action ofL onVmin is said to be holomorphic if the functionsU ! Vmin

by g 7! �(g)v are holomorphic, for each v 2 Vmin.

PROPOSITION 10.7. Suppose the action of L0 on Vmin extends to a local holo-
morphic action of the complex group L. Then Vmin is finite dimensional.

Proof. The ingredients of the proof are classical. To begin with, simple length
considerations reduce the argument to the case where L0 is a connected linear
semi-simple group and Vmin is topologically irreducible. A slight modification of
the argument given in [20, Section 51] shows that the local holomorphic action
of L determines a global holomorphic action for the simply connected covering
group eL of L. Let fU0 �

eL be a compact real form (eL is semisimple). Now a simple
modification of the argument given in [27, Thm. 4.11.14] shows that the action of
fU0 on Vmin is irreducible. Finally, one knows that the irreducible representations
of a compact group on a complete, locally convex space are finite dimensional
[30, Sect. 4.4.3]. 2
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15. Hecht, H., Miličić, D., Schmid, W. and Wolf, J.: Localization and standard modules for semisimile

Lie groups I: the duality theorem, Invent. Math. 90 (1987), 297–332.
16. Kashiwara M. and Schmid, W.: Quasi-equivariant D-modules, equivariant derived category

and representations of reductive Lie groups, Research announcement, Research Institute for
Mathematical Sciences, Kyoto University, 1994.

17. Matsuki, T.: The orbits of affine symmetric spaces under the action of minimal parabolic sub-
groups, J. Math. Soc. Japan, 31 (1979), 331–357.

18. Ibid., Orbits on affine symmetric spaces under the action of parabolic subgroups, Hiroshima
Math. J. 12 (1982), 307–320.
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