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THE EXPONENTIAL STABILITY OF THE PROBLEM
OF TRANSMISSION OF THE WAVE EQUATION

WEIJIU LIU AND GRAHAM WILLIAMS

The problem of exponential stability of the problem of transmission of the wave
equation with lower-order terms is considered. Making use of the classical energy
method and multiplier technique, we prove that this problem of transmission is
exponentially stable.

1. INTRODUCTION

Throughout this paper, let Q be a bounded domain (open, nonempty, and con-
nected) in R" (n ^ 1) with a boundary F = dfl of class C2 which consists of two
parts, S\ and 52 (see Figure 1 below). S\ is assumed to be either empty or to have a
nonempty interior and S2 / 0 and relatively open in F. Assume Si n 52 = 0. Let So
with 5ofl5i = 5ofl52 = 0 be a regular hypersurface of class C2, which separates Q into
two domains, f2x and Q2, such that Sj. C Fi = dfli and 52 C F2 = 9fl2. For T > 0,
set Q = n x ( 0 , T ) , Qi = n l X ( O , T ) , Q2 = n2x(0,T), £4 = SiX(0,T) (z = 0,1,2).
The following figure is a typical domain of this kind.
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306 W. Liu and G.H. Williams [2]

In this paper we shall be concerned with the problem of rate of exponential decay
of energy for the problem of transmission of the wave equation with lower-order terms
and with dissipative boundary condition of Robin type:

(1.1)

u" — diAui + qui = 0 in Qj x (0, oo),

ui(x,0) = u°(x), u'i(x,0) - u}(x) inili, i — ^:

ui — 0 on Si x (0, oo),

— 1- a(x)u2 + (r(x)u'2 — 0, on S2 x (0, oo),

du\ du2 _, , .
ui = u2,

 ai~z— — a2"^— onS0x(0,oo).

In (1.1), v denotes the unit normal on F and So directed towards the exterior of
d and fl\, ai and a2 are positive constants, the functions q : Q. —> R, a,a : S2 -> M.
are nonnegative and satisfy

(1.2) q £ L°°(n), a, a € C1(S2).

There has been extensive work on energy decay for the wave equation. The poi-
neering work (see [14, 18]) was first performed in the mid-seventies in studies aimed at
achieving energy decay rates for the wave equation exterior to a bounded obstacle (the
so-called "exterior" problem). In contrast, the "interior" problem is more difficult than
the "exterior" problem, since the latter enjoys the advantage that the energy distributes
itself over an infinite region as t —*• oo. Russell [17] made a conjecture in 1974 concern-
ing uniform energy decay rates for the interior problem. This conjecture was verified
by Chen (see [2, 3 , 4, 5, 6]) under some natural geometrical conditions on Cl. Lagnese
[9] further relaxed the geometrical conditions on il by obtaining a key inequality which
is of independent interest. More recently, Bardos, Lebeau, and Rauch [1] considered
general second order hyperbolic equations but with smooth coefficients.

We note that in the previous work the coefficients of the equation are required
to be sufficiently smooth and it seems that the problem of transmission has not been
considered yet. Therefore, by applying the classical energy method and multiplier
technique, we here discuss this problem and generalise some known results to the case
of transmission.

Set

U =
0 Ju?, xetlu 1 f u\,
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[3] Transmission of the wave equation 307

We define the energy of system (1.1) by

E{u, t) = \J [\u'(x, t)\2 + a(x) \Vu(x, t)\2 + q(x) \u(x, t)\2]dx

a(x)a(x)\u\2dT.
s2

Let Hs(Cl) always denote the usual Sobolev space and ||-||s n its norm for any

s € R. Let

/ N r l , n e , f {u€L*(n):fnu(x)dx = 0\, if 5i - 0, q = 0, and a = 0,
(1.3) L (il, bi) = \

( L2(il), otherwise;

{ {u G H1^) : / n u(x) dx = o\, if Si = 0, q = 0, and a = 0,

| 1 : u = 0 o n 5 i [ , otherwise;

f H^) , ifSi 0,
(1.5) Hl(Q) = \ K '

J {{B£jJ1(fi):tt = O(mSi}1 otherwise.

The main result of this paper is as follows.

THEOREM 1 . 1 . Let v denote the unit normal on T and So directed towards the

exterior of Cl and Q,\. Assume there is a vector Geld l(x) = (h(x), • • • , ln(x)) of class

C 2 (n) such that

(i) I • v ̂  0 almost everywhere on Si with respect to the (n-l)-dimensional

surface measure;

(ii) I • v ^ T) > 0 almost everywhere on S2 with respect to the (n-1)-

dimensional surface measure;

(iii) (ai — 0.2)1 • v ^ 0 almost everywhere on SQ with respect to the (n-1)-

dimensional surface measure;

(iv) the matrix I -=-̂ - + 7—̂ - 1 is uniformly positive definite on (7;
\dxj dxij

(v) there exists a constant (T0 > 0 such that

Then there are positive constants M, r such that

(1.6) E{u,t) ^ Me~TtE(u,0), for allt^O
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308 W. Liu and G.H. Williams [4]

for all solutions u of (1.1) with (u0^1) € H^(Q) x L2(il,Si).

In the proof of Theorem 1.1 below, condition (iii) is crucial. Whether Theorem
1.1 still holds if condition (iii) fails is an open problem. The vector field l(x) was
first introduced in [4] and further improved in [9]. We here give an example of l(x)
which satisfies conditions (i)-(iv) of Theorem 1.1. Let Q = {x e R2 : 1 < \x\ < 3} and
So = {x € R2 : \x\ = 2}. Then 5X = {x 6 R2 : \x\ = 1} and 52 = {x e R2 : |x| =-3}.
It is easy to see that l{x) — x is a vector field as required.

In comparison with existing results, Theorem 1.1 generalises the result of Lagnese
[9] to the case of transmission with Robin boundary conditions. Also, it generalises
[8, Theorem 8.15, p.117] in three aspects: firstly, the vector field m(x) = x - x° =
(xi — x\, • • • , xn — x°) in the previous theorems is replaced by the more general vector
field l(x); secondly the condition mina(x) > 0 of [8, Theorem 8.15] has been moved

52

off; thirdly, we have considered the problem of transmission. In addition, the most
interesting part of this paper may be the strategy for handling the case where a is not
necessarily small.

The rest of this paper is divided into two sections. In Section 2, we briefly discuss
the well-posedness of problem (1.1) via the theory of semigroups of linear bounded
operators. In Section 3, we prove Theorem 1.1.

2. WELL-POSEDNESS

The well-posedness of problem (1.1) is by now well known in the case where a\ = a<i
(see [2, 10], [11, p.137-139]), and can be similarly treated without any difficulty in the
case where a\ ^ a-i. For completeness, we give an outline.

Set

f m, x€Qi, ( u\, x
u-{ u° = <

[U2, X e fi2, [ "2 ' x

,n . J - u J • i - •• - 1) 1 I u l l x £

(21) « H _ "°=<{ „ _ «1 =^ ! c
!, " 2 , X €

In the sequel, u, u°, u1 are always as in (2.1); an integral of u on a domain il means
the sum of two integrals of u\ and u2 on the subdomains il\ and f22; that an equation
related to u holds on a domain il means that the equation holds on the subdomains
fii and il2, respectively.
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[5] Transmission of the wave equation 309

Problem (1.1) can be formulated as an abstract Cauchy problem:

(2.3) v' j

'u(0Y

' o r
a(x)A-q ()

r
V

u

in the Hilbert space
Hi = H1^, Si) x L2(fi, Si)

for an initial condition (u0,^1) with

D(A)= {(u,v):{u,v)(EH2(nun2,Si) x Hl(tl,Si), ^+au + av = 0 on

The spaces used for these definition are given by (1.3)-(1.5). In addition,

) , t = 1,2; u = 0 on 5i,

du
and dui du2 \

-Q- = a^~Q~ o n Soj\

u € fl|x(fix, J22) : g / „ . «i dx = 0, g / n i (^i^i ~

if 5i = 0, g = 0, and a = 0,

fl^Qi,^)) otherwise.

Note that if2(f2i, J22,5i) C ff^fi.Si) because ui = u2 on 5 0 .
If 5i = 0, g = 0, and a = 0, L2(Q,S\) in "Wi cannot be replaced by L2(Q) since

i) is not dense in L2(fl).
In the sequel, we always use the energy scalar product on Hi:

(2.5) = I [a{x)Vu

which is equivalent to the scalar product on Hi induced by H1^} x L2(Q).
As done in [2] or [11, p.137-139], it is easy to verify that the operator A is the

infinitesimal generator of a strongly continuous semigroup of contractions on Hi.
We define the energy of system (1.1) by

(2.6) E(u, t) = \ a(x) |Vu(i,t)\2 + q(x) \u(x, t)\2]dx

If ,
2Js, l
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310 W. Liu and G.H. Williams [6]

Let X be a Banach space. We denote by Cfe([0, T];X) the space of all k times
continuously differentiate functions defined on [0, T] with values in X, and write
C([0,T);X) forC°([0,T];X).

Now an application of the theory of semigroups [16, Chapter 1] gives

THEOREM 2 . 1 . (i) For any initial condition (u0,^) G #^(£2) x I2(f2,Si),
problem (1.1) has a unique weak solution with

(2.7) u G C([0, oo); H^ (fi)) n C1 ([0, oo); L2(Sl, Sx))

and

(2-8) g , U'6L2(E2).

Moreover,

(2.9) E(u,t) ^ E(u,0), WJ0,

and there exists a constant c = c(T) > 0 such that

(2-10) ||S|L ^

fiî ) For any initial condition (it0,!*1) e D(A), problem (1.1) has a unique strong

solution with

(2.11) u e C([0, oo); H2(Q!, Q2,5i)) D C1 ([0, oo); ̂ ( f i , SJ).

Moreover, there exists a constant c = c(T) > 0 such that for all t G [0, T]

(2.12)

iKMIkn + HOIU + E II^WIU, ^ cf IKIIî i + llu°llilfi + E llA"?llo,«J •
t=i L t=i -1

P R O O F : If Si ^ 0, or g =£ 0, or a ^ 0, then H^(Q) = ^ ( f i . S i ) . It therefore
follows from semigroup theory that problem (1.1) has a unique weak solution u with
(2.7) for ( u V 1 ) G H^(Q) x L2(n,Si), and with (2.11) for ( u V 1 ) G Z?(i4). On
the other hand, by multiplying the first equation of (1.1) by uj and integrating over
Q x (0, T), we obtain

(2.13) (
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[7] Transmission of the wave equation 311

This gives (2.9). In addition, by (1.1) we have

(2.14) f ^ 2 d E = / " (au + au'fdZ,

and by the trace theorem [12, p.39], we have

(2.15)

Thus, (2.8) and (2.10) follow from (2.13)-(2.15). To prove (2.12), let T(t) be the
semigroup generated by A. Then the solution u of (1.1) can be expressed as

If (u°,ux) G D(A), by the semigroup property [16, p.4] we have

that is,

( U> )=T(t)( Ul )
\a{x) Au - qu) W \a{x) Au° - qu°J'

This yields

(2.16) | | u ' ( t ) | | l i n

Hence, (2.12) follows from (2.9) and (2.16).
Suppose Si = 0, q = 0, and a = 0. Let (u 0 , ^ ) € H^Q) x L2(fi,5x) =

(2.17) w° = u° J— / w°(x) dx, w1 - u1.
m(U) JQ

Then (IO0,!!;1) e "Hi, where m(fi) denotes the Lebesgue measure of SI. Thus, problem
(1.1) has a weak solution w for the initial condition (tu^io1). Moreover it satisfies

E(w,t) ^E(w,0), Vt^O,
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312 W. Liu and G.H. Williams [8]

and

Set

(2.18) u = w + -~-r I u°(x) dx.

It is easy to verify that u is a solution of (1.1) with the initial condition (u°, u1) (note
that q = 0 and a = 0). Moreover,

E(u, t) = E(w, t) < E(w, 0) = E(u, 0), W ^ 0,

du dw . , T2,^ ,
— = , u = w € h (2^2),
ov di>

REMARK 2.2. If u1 € i2(fi) rather than L2
Sl(Sl), v/e don't know if problem (1.1) has

a solution. Although

^L kLul(x) dx

satisfies equation (1.1) and the initial condition (u°, u1), it doesn't satisfy the boundary
condition on S2 * (0,00). In (2.19), w is the solution of (1.1) with the initial condition
(to0, w1) given by

"*""°" S5

3. PROOF OF THEOREM 1.1

In this section we prove Theorem 1.1. We first generalise an inequality of Lagnese
[9, Theorem 2] to the case of transmission. This inequality is the key to proving
Theorem 1.1.

In the sequel, all functions are assumed to be real-valued.

THEOREM 3 . 1 . For every e > 0 there exists a constant c(e) such that for every
6>0,

(3.1) [°° [ e-2St(u - I(u°))2dxdt < c(e)E(u, 0) + e f°° f e~2it \u'\2 dxdt,
Jo Jsi Jo Jn
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[9] Transmission of the wave equation 313

for every solution of (1.1) with (u0,!*1) € Hs (Q) x L2(f2,Si), where

f—}— f u°dx, if Si = 9, q = 0, anda = 0,
(3.2) I(uo) = I m{O) Jn

\ 0, otherwise.

Theorem 3.1 will be proven below. We show how it can be used to prove Theo-
rem 1.1.

For convenience, we adopt the following notation. For a vector field Z(x) =
(Zi(x), • • • , Zn(x)) of class C2(H) the additional subscripts in Zy and IUJ denote deriva-

tives of the vector field Z, for example, Z<, = -^-.
OXj

PROOF OF THEOREM 1.1: Case I: c*o = maxa(x) is small enough.
16S2

We begin with the case where (u^u1) € %\. We may as well assume that
(u^u1) € D(A) since the general case (u^u1) € Mi can be handled by a simple
limiting process. Then u is a classical solution of (1.1). After a straightforward and
tedious calculation, we have

j t [t(\uf + a(x) |Vu|2 + q \u\2) + 2u'(l • Vu) + (

= div[2ta(x)u'Vu + 2a(s)(J • Vu)Vu + \u'\2

(3-3) , -,
+ a{x)(lu - l)tiVu - a(x) |Vu|2 Zj

2a(x)(Sij - UfijLJL - a{x)hiju^- + (2 - J«)« |u|2 - 2q(l • Vu)u,

where 8ij denote the Kronecker symbol, that is,

and summation convention is assumed. Set

(3.4) P(t) =f[l (W\2 + o(«) |Vu|2 + q \u\2) + 2u'(l • Vu) + (Z« - l )uu ' ] dx

+ f t-a{x)a{x) \u\2 dT.
Js-, l
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314 W. Liu and G.H. Williams [10]

Since

^ J t(\u'\2 + a(x) |Vu|2 + q \u\2) dx

= f (l«'|2 + a(x) |Vu|2 + q |u|2) dx

+ 2t f (u'u" + a(x)Vu • Vu' + quv!) dx

= f (\u'f+a{x)\Vu\2 + q\u\2)dx + 2t f a(x)u'^dT,
JnK ' Js2

 dv
s2

and

^ / t-a(x)a(x)\u\2dT= f ^a(x)a(x) \u\2 dT + f ta{x)a{x)uu'dT,
ot JS2 2 JS2 2 JS2

/ f
S2 2 JS2

it follows from (3.3) and the divergence theorem that

+ J [-a(x)liijU^- + (2 - hjq \u\2 - 2q(l • Vu)u\ dx (= /3)

+ J
J [a2tu'2 \2^ + a(x)u2j

1 ) « 2 - T ^ - a2 }Vu2\
2l • v + ^a2a(x) \u2\

2jdT

J
J [a2tu' \ 2 ^ + a(x)u2j + 2a2(l •

 v « 2 ) ^ + \u2

+ (a2|VU2|2-a1|Vu1|2)/-1/]dT (=/6)

= - i f f|u'|2 + a(x)|Vu|2+g|u|2)di-i / aa\u\2 dT (=
2 JnK ' 2 JSo

I2 + I3 + I4

J [a2tu'2 (j£ + a(z)u2) + 2a2(Z • Vu2) ̂  + \u'2f I- v

a2{lii - I)u2-j^ - a2 |Vu2|21 • v + a2a{x) \u2\
2]dT (= 75)
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[11] Transmission of the wave equation 315

= 7i + I2 + 73 + I4 + 75 + 76.

Since, for any positive constant c, cl still satisfies conditions (i)-(iv) of Theorem 1.1,
we may assume that (2<$jj — lij — Iji) is negative definite in Cl by multiplying / by an
enough large positive constant. Thus we have I2 ^ 0. From condition (i) of Theorem

1.1 and the fact Vu = -^-v on Si it follows that
ov

(3.5) I 4 = /"
J5i/5i

Concerning 7s, it follows from the fourth equation of (1.1) and condition (ii) of Theorem
1.1 that

f r 2 2
h — I - a 2 < 7 i | u ' 2 | — 2 a 2 ( i • V u 2 ) ( a u 2 + c r u ' 2 ) + \u'2\ l - v

J s 2
l

2 2~\

- a2(lu — I)u2(au2+<JU2) - a2\Vu2\ I • v + a2a(x) \u2\ \dT

f
s2

M |Vu2|2 + c(a, I, V, a) |u'2|
2 + |U'2|21 • v

- a2(/ii - I)a|u2|2 +e |u2 | 2 + c(e,a,l,a) \u'2\
2 - a2r/|Vu2|2 +a2a(x) |u2|2 dT

/" [(-aatao + riz + ̂ a , / , ^ ^ ) ) ! ^ ! 2 - ^|Vu2|2]dT

s2

By the trace theorem, we have

(3-6) J52 ^ c 1 ( e + c(a,i,»7)(ao +

Concerning 73, we have

(3.7) I3^e f |Vu|2 dx + c(e,a,l,q) [ \u\2 dx.
Ja Jn

If e and c*o are small enough, then by (3.6)-(3.7) we have

/3 + la ^ \ f (W'\2 + a(x) |Vu|2 + q \u\2) dx +\ f aa \u\2 dT4 Jnv ' 4 Js2

+ c(e,a,l,q) f \u\2 dx.
Jn
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It therefore follows that

h + h + h2 ^ - \ f (Vl2 + a(x) |Vu|2 + q \u\2) dx

-\f aa\u\2dT + c(e,a,l,q) f \u\2 dx,4 Js2 Jn

if e and ao are small enough. Fix e and ao, then 751 < 0 if t is large enough. We
also prove that 1$ ^ 0. Since u\ — v>2 on So, we have

V(W2 - U l ) = d-^g^-u, on So.

Then,

So,

2 a i ( / • V u i ) ^ - - 2a2(Z • V u 2 ) ^ + (o2

a2 \ av i

This show that I& ̂  0 because of (iii) of Theorem 1.1. It therefore follows that

(3.8) ^^-\J^ (|u'|2 + a(x) \Vu\2 + q \u\2) dx

- \ [ aa \u\2dT + c(e) f \u\2 dx, t 2 Tlt4 Js2 Jn>s2

if T\ is large enough.

https://doi.org/10.1017/S0004972700031683 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700031683


[13] Transmission of the wave equation 317

On the other hand, there exists T2 sufficiently large such that

(3.9) 0 ^ P(t) ^ c(t + l)E(u, t), t > T2,

where c is a constant independent of t, u.

Let 8 > 0 be fixed. Set T = max{Ti,T2}. By multiplying (3.8) by e~2it and
integrating from T to +00, we get
(3.10)

28 [°°e-2StP{t)dt+l [°°e-2StE(u,t)dt ^ ClE(u,0) + c2 f°° f e~2Stu2 dxdt,
JT ° JT JT Jn

where c\, c2 are independent of 8. It therefore follows from (3.9) and (3.10) that

/ e~26tE{u, t) dt ^ ClE(u, 0) + c2 f f e~2Stu2 dxdt.
Jo Jo Jn

Applying Theorem 3.1, we conclude that

f e-2StE(u,t)dt^cE(u,0).
Jo

Letting 8 —> 0, we obtain

f E(u,t)dt^cE(u,0).
Jo

By [16, Theorem 4.1, p.116], there are positive constants M, r such that

(3.11) E(u, t) ^ Me-TtE(u, 0), t ^ 0.

If Si = 0, q = 0, a = 0, and {u°,v}) € H^Q,) x L|x(fi) rather than Hi, then

we take (tu0,^1) as in (2.17). Let w be the solution of (1.1) with the initial condition

(w0,™1), then

= w

is the solution of (1.1) with the initial condition (u°, u1) and (3.11) holds for w. There-

fore,

E{u,t) = E(w,t) ^ Me~TtE(w,0) = Me~TtE{u,Q).

We shall use control-theoretic method given in [2] and [13] to prove Theorem 1.1
in the case that c*o is arbitrary. Therefore we now employ Russell's "controllability via
stabilisability " principle (see [17]) to solve the following exact controllability problem:
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For (j/°, y}) in a suitable Hilbert space and T large enough, find a control function
4>{x, t) such that the solution of

(3.12)

' y'f - ajAj/i +

w(0) = y?,
2 / i = 0

— + ai/z =

?y< = 0

J/,'(o) = y*

in

in

on

on

Qi,

ft,
S i ,

s2,
Cj/1 OJ/2

satisfies

(3.13) in *. t = 1,2.

Because the problem is linear, this is equivalent to steering any initial state to any
terminal state. This controllability problem was discussed in [1] in the general case of
second order hyperbolic equations, but the coefficients of the equations are required to
be smooth enough. Thus, problem (3.12) (3.13) here is not covered by [1]. With the
help of the Hilbert Uniqueness Method, problem (3.12) (3.13) was also considered in
[15] but with a = 0. D

THEOREM 3 . 2 . Suppose all assumptions of Theorem 1.1 are satisfied. Suppose
a0 is small enough and T is given large enough. Then for any (y°, y1) G %i, there
exists a boundary control function

such that the solution of (3.12) satisfies (3.13). Moreover, there exist positive constants
ci(T), c2{T) such that

(3.14) ciE(y,0)

PROOF: We first consider the problem:

(3.15)

c2E(y,0).

< -

9u2

- /?. • ^ ^/. •

\ 0

= 0

+ au2

+ qi

<

ii =

(0)

/ _

0

= u}

• 0

in

in

on

on

Qi

Qi,

Si

s2

X

i

X

X

(0,

=

(0

(0

oo),

1,2,

,oo),

,°°),
dui du2 .

= U2,
 al-fo = a2"o~ On S0 X (0,OO),
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which has a unique weak solution with

u{t) € C([0, oo); Hl(Cl, Si)) n Cl([0, oo); L2(n, Si))

and

u' 6 L2(S2)

for any (u°, u1) G fti, thanks to Theorem 2.1.

Using the solution u of (3.15), we then consider the backwards problem:

r w" — CiAwi + qwi = 0 in f2j x (0, oo),

Wi(T) = Ui(T), w'i(T) = uj(r) in iU, * = 1,2,

w1=0 on Si x (0,oo),

• crio2 = 0 on S2 x (0, oo),

to i = du
on So x (0,oo),

which has a unique weak solution with

ti; e C([0, T}; H\Q, Si)) n C1 ([0,T]; L2(Q, S I ) )

and

since {u(x,T),u'{x,T)) e Ux.

Set

and

w' € L2(E2)

y = u-w,

= -a{x){w' + v!) £ L2{Y,2).

Then j / satisfies

' j/f - aiAyj + qyi = 0

= u? -

= 0

2/i =

^~ ay2 =

9j/i 9t/2

in Cli x (0,oo),

in f2j,

in fij, t = 1,2,

on Si x (0,oo),

on S2 x (0, oo),

on So x (0, oo).
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We define an operator A by

Then it is clear that A is a linear operator from Hi into Hi. Moreover, by Theorem
1.1 (in the case where ao is small enough) we have

Therefore,

Taking T large enough so that Me~rT < 1, then / - A is an isomorphism from Hi

onto Hi. Thus, for any ( JAJ / 1 ) € Hi, there exists a unique (u0,^1) 6 Hi such that

(3.17) (j/V) = (u<V) - A(u°,ul) = (uW) ~ (w(x,0),w'(x,0)).

Consequently, we have constructed a control function <j> = —cr(x)(w' +u') solving the

exact controllability problem (3.12)-(3.13).

On the other hand, by multiplying the first equation of (3.15) by u' and integrating

over Q, we obtain

Likewise, we have

f a(x)(T{x) |W/|

It therefore follows from Theorem 1.1 that there exist positive constants a, c-i such

that

C l ( l - Me-TT)l'2El<2{u,0) ^ ||«'IU2(Ea) <2

and

C l( l - Me-TT)1/2E"2{w,T) ^ |K | | i 2 ( E 2 ) <2

Noting E(u,T) = E(w,T), we deduce from the triangle inequality and Theorem 1.1

that

Cl [l - Me~TT]1/2 [l - (Me"T)1/2] E^u, 0) < ||u' + «;'|

(3.18) ^ c2[l + (Mc-Tr)
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Since / - A is an isomorphism, (3.14) follows from (3.17) and (3.18).

PROOF OF THEOREM 1.1: Case II: a0 is arbitrary.
Let e > 0 be small enough and T large enough. It then follows from Theorem 3.2

that there exists a control </> such that

(3.19)

0 ? - *

tfi(O) =

W(T) -

2 / i=0

Aj/

o,
i + Q2/i

»i(0)

en,

= 0
= 0

yj(T) = «j(r;

in

in

) in

on

= 1,2,

on

According to the proof of Theorem 3.2, y and <j> can be written as

(3.20) y-v-w, <j) = a(v' + to'),

where t; and w are respectively the solutions of

v" — ciiAvi + qvi = 0 in Qi,

Vi(T) = w?, vKT) = v\ in Qi, i = 1,2,

ih = 0 on Ei,
(3.21)

-„ h £̂ 2 - av'2 = 0 on E2,

dv\ dv2
on

(3.22)

' w" — diAwi + gwi = 0 in Qit

«»i(0) = «i(0), <(0) = w?(0) in ft,, i = 1,2,

iOi = 0 on Ei,

dv
£102+17102 = on E2,

on So-

In (3.21), (u0,?;1) are chosen to be such that

(3.23) (v°, v1) - (w(T), w'{T)) = (v°, vl) - A(v°, v1) = (u(
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Integrating by parts, we obtain
(3.24)

0 = / [y'(u" - aAu + qu) + u'{y" - a Ay + qy)] dxdt
JQ

= f I;(«V + aVu • Vy + quy) dxdt - f a(y'~+u'^)di:

= J (\u'{T)\2 + a |Vu(T)|2 + q |u(T)|2) dx+f a[y'(au + au1) + u'(ey - 0)] rfE

= 2E(u, T)+ [ au'(ay' - ay + ey - <t>) dE.

The following constants c = c(T) denote various positive constans depending on T.
By the trace theorem and (3.20) and (3.23), we have

pT
/ \\y(t)\\2

HHQt
J 0

Sl)dt

Moreover, since

(3.26) f

and

(3.27)

it follows from (3.20) and (3.23) that

(3-28) f

By (3.14) we have

(3.29)

By the Cauchy-Schwartz inequality we deduce from (3.24) that

(3.30) (E(u,T))2^cf \u'\2dz[ \oy'- ay + ey -
J E 2 VE2

4>\2
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which, combining (3.25), (3.28), and (3.29), yields

(3.31) f \u'\2dZ>cE(u,T).

On the other hand, we have

(3.32) f aa\u'\2d?, = E(u,0)-E(u,T).

We then conclude
E(u,0) - E(u,T) > cE(u,T),

so that
E{u,T) ^ -^—cE{u,$).

By repeating the above reasoning, we get

1 + c
1

(1 + c)K

This implies (1.6) with

fc = 0,1,2, •

r=-ln(l

The proof of Theorem 1.1 is complete. D

REMARK 3.3. From Theorem 1.1 and the proof of Theorem 3.2 we can conclude that
Theorem 3.2 still holds true for arbitrary Qo.

If Si — 0, q = 0, and a = 0, then Hi in Theorem 3.2 cannot be replaced by
i?^(n) x L2(f2,Si) because (E{u,0))l/2 is no longer a norm on # l ( n ) X L2(Sl,Si).

Nevertheless, (3.16) still holds on the quotient space (H1^) X L2(fi, SI)\/N, where

N = {(c,0) : c e l t } . Therefore, Theorem 3.2 still holds when Hi is replaced by

(H\Q) x L2(fi,Si))/iV. Because the zero element in (H^Si) X L2(fi,5i))/jV is

N, we can only drive any initial state (j/0,?/1) € if1(J2) x L2(Sl, S\) to a constant
function (c, 0). In fact, we can explain this in the following way. For any (y°,yl) £
Hl(n)xL2 (0), set
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Then (to0, w1) EHi. By Theorem 3.2, there exists a control function <j>(x, t) such that
the solution w of (3.12) with the initial state (to0, to1) satisfies (3.13). It is easy to
check that

is the solution of (3.12) with the initial state (j/°, y1), but

If T f
y(x, T; 4>) = ^ - r I y°(x) dx + ^ ^ y / yx(x) dx, (a constant),

y'(x,T; (f>) = —j— / yl(x)dx, (a constant).

At last, we want to prove Theorem 3.1. For this, we need the following lemma.

LEMMA 3 . 4 . Let 4>e #1/2(JT). Then there exists u e H2(ili,Q2) such that

du
(3.33) u = 0, g^ = ^ on r '

and

(3-34) IKIIg,^ + IMI2,fi2 ^ c||^||Hi/2(r),

where c is a positive constant and

H2(n!,n2) = {u : Ui = ufoi € H2{Qi), i = 1,2; ux=u2, ai-^ = a2-j^ on So}.

PROOF: By the trace theorem, it follows that there exists w S H2(fl) such that

dw
w = 0, -r- = <j>, on T,

av

and

Since w € H2 (^2)1 again by the trace theorem, we have

w e H3/2(S0), ^ € H^(So).

Also by the trace theorem, it follows that there exists v 6 H2(Qi) such that

dv

v = o, -faJ=<t> on mr,,
dv ai dw

v = w, -K~-—-^~ on 60,av a\ av
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and
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+ UHIi?3/2(S0) +

Then, u denned by

u =
v, xe fti,

W, X & 0,2,

325

belongs to H2(Qi,Q2) and satisfies (3.33) and (3.34). •

We also need the following unique continuation theorem for elliptic operators given

in [7].

Let A(x) = (a,ij(x)) be a real symmetric matrix-valued function on ft satisfying

the assumptions:

(i) there exists a p € (0,1) such that, for every i 6 ( l and ( g R n ,

(3.35)

(ii) there exists a K > 0 such that, for every x,y € Q,,

(3.36) \aij(x) - aij{y)\ ^ K \x - y\, i, j = 1,2, • • • ,n.

Let the potential V satisfy the assumption: for every xo € ft there exist ro > 0 and
two constants Ci, C2 > 0 such that if V(x) = V+{x) - V~(x), then

(3-37)

(3.38)

0 ^ V+(x)
|x - xo|

\X~Xo\

for any x € Bro(xo) n ft, where Bro(xo) = {x e K" : |x - xo| < r 0 } .

THEOREM 3 . 5 . [7, Corollary 1.1] Assume that A(x) and V(x) satisfy the above

assumptions (3.35)-(3.38). Then the operator L = -div(A(x)V) +V(x) has the unique
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continuation property in fi, that is, the only H}oc{p) solution of Lu = 0 which can
vanish in an open subset of Cl is u = 0.

PROOF OF THEOREM 3.1: Case I: Si ^ 0, or q ^ 0, or a ^ 0. The proof is the
same as the one of Theorem 2 of [9] except for the following two points:

(i) In the proof of Theorem 2 of [9], Lagnese used the analyticity of the
solution of

AW - w2W = 0 in n, u real

to conclude that W = 0 in fi if W — 0 in an open subset of fl. For
the present case of transmission, we use Theorem 3.5 since we now can
no longer appeal to the analyticity of solutions.

(ii) The usual trace theorem used in the proof of Theorem 2 of [9] is replaced
by Lemma 3.4.

Case II: Si = 0, q = 0, a = 0. If (w0,^1) € ff^(fi) x Z,2(f2,Si) rather than

Hi, then we take (w°, w1) as in (2.17). Let w be the solution of (1.1) with the initial

condition (w0,™1). Then

is the solution of (1.1) with the initial condition (u°,ul) and (3.1) holds for w. There-

fore,

f°° [ e-2it(u - l(u°)Y dxdt = f°° [ e-2Stw2dxdt
Jo Jo. v ' Jo Jn

^ c(e)E(w, 0) + e f f e~2St \w'\2 dxdt
Jo Jn

= c{e)E{u, 0) + e [ f e~2St \u'f dxdt.
Jo Jn
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