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Characteristic Varieties for a Class of Line
Arrangements

Thi Anh Thu Dinh

Abstract. Let Abe a line arrangement in the complex projective plane P
2, having the points of multi-

plicity ≥ 3 situated on two lines in A, say H0 and H∞. Then we show that the non-local irreducible

components of the first resonance variety R1(A) are 2-dimensional and correspond to parallelograms

P in C
2

= P
2 \ H∞ whose sides are in A and for which H0 is a diagonal.

1 Introduction

Let A be a line arrangement in the complex projective plane P
2 and denote by M the

corresponding arrangement complement. It is classically known that the fundamen-

tal group of M is abelian if and only if the line arrangement A has only double points,

see Theorem 1.1 in [1] and the reference to Zariski’s work given there.

The main object of study of [1] is the next simplest case of a line arrangement,

namely a line arrangement A where the points of multiplicity ≥ 3 are situated on

a line H0 ∈ A. If we take this line as the line at infinity, then this is the same as

studying affine line arrangements in the plane C
2 having only nodes. For this class of

arrangements, call it C1, one can compute explicitly the corresponding fundamental

group π1(M) and the characteristic varieties Vk(M), see [1]. The features of these

characteristic varieties, which are also denoted by Vk(A), include

(i) there are no translated components, and

(ii) for any irreducible component W of some characteristic variety Vk(M), the di-

mension of H1(M,L) is constant for L ∈ W \ {1}.

In this paper we show that the description of the characteristic varieties Vk(M)

can be pushed one step further, namely to the class C2 of line arrangements A where

the points of multiplicity ≥ 3 are situated on two lines in A. The corresponding

characteristic varieties Vk(M) enjoy the properties (i) and (ii) above.

The deleted B3-arrangement studied by A. Suciu for its translated component, see

[16], has the points of multiplicity ≥ 3 situated on three lines in A. This shows that

in some sense our result is the best possible.

In fact, to determine these varieties, we use a recent result by S. Nazir and Z. Raza

[12], saying that in such a situation all rank one local systems are admissible (see Def-

inition 2.1). A consequence of this fact is that properties (i) and (ii) hold, as shown

in [5]. Therefore the characteristic varieties Vk(M) are completely determined for

this class of arrangements by the resonance varieties Rk(M), also denoted by Rk(A).
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So the main technical point of this paper is a detailed description of these resonance

varieties. Roughly speaking, our main result can be stated as follows. For a more

precise statement, see Theorem 4.3.

Theorem 1.1 Let A be a line arrangement in P
2, having the points of multiplicity ≥ 3

situated on two lines in A, say H0 and H∞. Then the non-local irreducible components

of R1(M) are 2-dimensional and correspond to parallelograms P in C
2

= P
2 \ H∞

whose sides are in A and for which H0 is a diagonal.

A moment’s thought shows that this statement is in fact symmetric with respect to

the two lines H0 and H∞. That is, if we look for the parallelograms P′ in C
2
= P

2\H0

whose sides are in A and for which H∞ is a diagonal, we get exactly the same family

of parallelograms as in Theorem 1.1.

Corollary 1.2 If A is a line arrangement in the class C2, then the Orlik–Solomon

algebra A(A) determines the Tutte polynomials of the matroid associated with A.

This claim follows from Theorem 1.1 and Falk’s [9, Theorem 3.16].

In the second section we recall the notion of admissible local system and the fact

that any local system of rank one on the complement of a line arrangement in the

classes C1 and C2 is admissible.

In the third section we recall the notions of characteristic and resonance varieties,

and we reobtain the description of the characteric varieties for the class C1 given in

[1] using the new approach described above.

In the final section we prove the main result of this paper, which is the description

of the characteristic and resonance varieties for the class C2.

2 Admissible Rank One Local Systems

Let A = {H0, H1, . . . , Hn} be a line arrangement in P
2 and set M = P

2 \ (H0 ∪
· · · ∪ Hn). Let T(M) = Hom(π1(M), C

∗) be the character variety of M. This is an

algebraic torus T(M) ≃ (C
∗)n. Consider the exponential mapping

(2.1) exp : H1(M, C) → H1(M, C
∗) = T(M)

induced by the usual exponential function exp(2πi−) : C → C
∗.

Clearly one has exp(H1(M, C)) = T(M) and exp(H1(M, Z)) = {1}.

More precisely, a rank one local system L ∈ T(M) corresponds to the choice of

some monodromy complex numbers λ j ∈ C
∗ for 0 ≤ j ≤ n such that λ0 · · ·λn = 1.

And a cohomology class α ∈ H1(M, C) is given by

α =

∑

j=0,n

a j

d f j

f j

,

where the residues a j ∈ C satisfy
∑

j=0,n a j = 0 and f j = 0 a linear equation for the

line H j . With this notation, one has exp(α) = L if and only if λ j = exp(2πia j) for

any j = 0, . . . , n.
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Definition 2.1 A local system L ∈ T(M) as above is admissible if there is a coho-

mology class α ∈ H1(M, C) such that exp(α) = L, a j /∈ Z>0 for any j and, for any

point p ∈ H0 ∪ · · · ∪ Hn of multiplicity at least 3, one has

a(p) =

∑

j

a j /∈ Z>0.

Here the sum is over all j’s such that p ∈ H j .

Remark 2.2 When M is a hyperplane arrangement complement, one usually de-

fines the notion of an admissible local system L on M in terms of some conditions on

the residues of an associated logarithmic connection ∇(α) on a good compactifica-

tion of M, see for instance [7–10, 15]. For such an admissible local system L on M

one has

dim Hk(M,L) = dim Hk(H∗(M, C), α∧)

for all k.

For the case of line arrangements such a good compactification is obtained by

blowing up the points of multiplicity at least 3 in A. This explains the simple version

of this definition given above.

The following result was obtained by S. Nazir and Z. Raza [12].

Proposition 2.3 If A is a line arrangement in the classes C1 or C2, then any local

system L ∈ T(M) is admissible.

3 Characteristic and Resonance Varieties

To go further, we need the characteristic and resonance varieties, whose definitions

are recalled below. The characteristic varieties of M are the jumping loci for the co-

homology of M, with coefficients in rank 1 local systems:

V
i
k(M) = {ρ ∈ T(M) | dim Hi(M,Lρ) ≥ k}.

When i = 1, we use the simpler notation Vk(M) = V1
k(M).

The resonance varieties of M are the jumping loci for the cohomology of the com-

plex H∗(H∗(M, C), α∧), namely:

R
i
k(M) = {α ∈ H1(M, C) | dim Hi(H∗(M, C), α∧) ≥ k}.

When i = 1, we use the simpler notation Rk(M) = R1
k(M).

Example 3.1 We consider the resonance and characteristic varieties for a central

arrangement A of n lines H1, . . . , Hn in C
2. In other words, we have chosen the line

H0 to be the line at infinity. Let ω j =
d f j

f j
( j = 1, . . . , n) be the standard genarators

of H1(M, C) associated with this choice. Let α =
∑n

j=1 a jω j , β =
∑n

j=1 b jω j be two

elements of H1(M, C).
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When n = 1, M has the homotopy type of the circle S1 and hence, R1(M) = {0},

Rk(M) = ∅ for all k > 1, V1(M) = {1}, and Vk(M) = ∅ for all k > 1.

When n = 2, M has the homotopy type of the real torus S1 × S1. It follows that

the group H2(M, C) is generated by ω1 ∧ ω2 and hence α ∧ β = 0 if and only if

a1b2 − a2b1 = 0, i.e., β and α are collinear. We get R j(M) = {0} for j = 1, 2,

Rk(M) = ∅ for all k > 2, V j(M) = {1} for j = 1, 2, and Vk(M) = ∅ for all k > 2.

When n > 2, note that ω1ω2, . . . , ω1ωn form a basis of H2(M, C). We find that,

for α 6= 0, dim Hi(H∗(M, C), α∧) is equal to either 0 or n − 2, see for instance

[10, Lemma 3.1]. The later case occurs if and only if
∑n

i=1 ai = 0 Hence,

Rk(M) =
{

α
∣

∣

n
∑

i=1

ai = 0
}

for 0 < k ≤ n − 2,

Rk(M) = {0} for k = n − 1, n and

Rk(M) = ∅ for the other k.

It is known that Vk(M) = {λ ∈ T(M) = (C
∗)n |

∏n
i=1 λi = 1} for 0 < k ≤ n−2,

Vk(M) = {1} for k = n − 1, n, and Vk(M) = ∅ for the other k. For a general

approach to this question, see [3, Proposition 6.4.3].

Example 3.2 Here we give the description of the resonance and characteristic va-

rieties for a nodal arrangement A in P
2. As we mentioned in the introduction,

π1(M) = Z
n where |A| = n + 1. On the other hand, the first resonance and char-

acteristic varieties depend only on the fundamental group, [6]. It follows that we

can replace M by (C
∗)n and hence this easily yields Rk(M) = 0 and Vk(M) = 1 for

0 < k ≤ n.

The more precise relation between the resonance and characteristic varieties can

be summarized as follows, see [2] or [6] for a more general result.

Theorem 3.3 Assume that M is a hyperplane arrangement complement. Then

the irreducible components E of the resonance variety R1(M) are linear subspaces in

H1(M, C), and the exponential mapping (2.1) sends these irreducible components E

onto the irreducible components W of V1(M) with 1 ∈ W .

One also has the following result, see [5, Remark 2.9(ii)].

Theorem 3.4 If any local system in T(M) is admissible, then for any k one has the

following.

(i) There are no translated components in the characteristic variety Vk(M) , and

(ii) for any irreducible component W of some characteristic variety Vk(M), the dimen-

sion of H1(M,L) is constant for L ∈ W \ {1}.

The following result about the locality of the resonance was obtained in [1]. We

provide an alternative simpler proof.

Proposition 3.5 (Description of the resonance varieties for the class C1) The irre-

ducible components of R1(A) are vector subspaces Ei one-to-one corresponding to the

maximal families Ai of parallel lines in A with #Ai > 1. In particular, dimEi = #Ai .
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Proof Keeping the notations in Example 3.1 (in particular H0 is the line at infinity),

we have

α ∧ β =

(

∑

a jω j

)

∧
(

∑

b jω j

)

=

∑

1≤i< j≤n

(aib j − a jbi)ωi ∧ ω j .

If {a} = Hi ∩ H j and since the intersection points in the affine part are double

points, the local complement of A at a, denoted by Ma, has the cohomology group

H2(Ma, C) generated by unique element, namely by (the restriction of). Moreover,

the forms ωi ∧ ω j with and the forms 1 ≤ i < j ≤ n and Hi ∩ H j 6= ∅ yield a basis

for H2(M, C), see [11, Corollary 3.73].

There are two possibilities to discuss.

(i) If A contains no parallel lines, then ωi ∧ ω j (1 ≤ i < j ≤ n) form a basis of

H2(M, C). It follows that α ∧ β = 0 if and only if
∣

∣

∣

∣

ai a j

bi b j

∣

∣

∣

∣

= 0 for all 1 ≤ i < j ≤ n.

If α 6= 0, then we can assume for instance that a1 6= 0. Then we have
∣

∣

∣

∣

a1 ai

b1 bi

∣

∣

∣

∣

= 0 ⇔

(

bi

b1

)

= λi

(

ai

a1

)

=
b1

a1

(

ai

a1

)

⇔ α⊥
= C〈α〉.

Here the orthogonal complement α⊥ is taken with respect to the cup-product.

Therefore R1(A) = {0}.

(ii) If there are s families of parallel lines in A, we can write A = A1∪· · ·∪As∪As+1,

where A1, . . . ,As are the families of parallel lines (containing at least 2 lines) and

As+1 consists of the lines that cut all the other lines in A. Let Ii be the index set of Ai

(#Ai > 1 for i 6= s + 1). Note that if Hi ‖ H j , then ωi ∧ ω j = 0. Thus we have

α ∧ β =

( s+1
∑

i=1

∑

ji∈Ii

a ji
ω ji

)

∧

( s+1
∑

i=1

∑

ji∈Ii

b ji
ω ji

)

=

∑

p<q
Hp∩Hq 6=∅

∣

∣

∣

∣

ap aq

bp bq

∣

∣

∣

∣

ωp ∧ ωq.

If al 6= 0 for some l ∈ Is+1: by considering the minors
∣

∣

∣

al a ji

bl b ji

∣

∣

∣
, we find as above that

α⊥
= C〈α〉.

If al, am 6= 0 for l ∈ Ai 6= A j ∋ m: by considering the minors
∣

∣

∣

∣

al a ji

bl b ji

∣

∣

∣

∣

and

∣

∣

∣

∣

am a ji

bm b ji

∣

∣

∣

∣

,

we find that α⊥
= C〈α〉.

Thus, without loss of generality, now we can assume that a ji
= 0 for ji /∈ I1. It is

easy to check that α⊥
=

⊕

j1∈I1
C〈ω j1

〉, and this space contains strictly C〈α〉.
So we have

R1(A) =
⋃

i 6=s+1

Ei ,

where Ei =
⊕

ji∈Ii
C〈ω ji

〉. In other words, Ei consists exactly of the 1-forms α sup-

ported on the lines in the family Ai .
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Using Theorems 3.3 and 3.4, we now recover the following description of the char-

acteristic varieties given in [1].

Corollary 3.6 (Description of the characteristic varieties for the class C1)

V1(A) = {λ ∈ T(M) ≃ (C
∗)n | ∃i < s + 1 such that λ j = 1∀ j /∈ Ii}

= (C
∗)|A1| × 1 × · · · × 1 ∪ 1 × (C

∗)|A2| × · · · × 1 ∪ . . .

∪ 1 × · · · × 1 × (C
∗)|As| × · · · × 1.

The last equality holds under the assumption that the lines in A, distinct from H0,

have been numbered such that Hi ∈ Ap and H j ∈ Aq with p < q implies i < j.

Remark 3.7 The groups G = π1(M) for line arrangements in class C1 are of the

form

G = Fn1
× · · · × Fnr

,

where Fm denotes the free group on m generators. Such a group G is the right-angled

Artin group GΓ corresponding to the complete multi-partite graph Γ = Kn1,...,nr
.

The resonance varieties R1
1(GΓ, K) of any right-angled Artin group G, and over any

field K, were computed in [13]. The characteristic varieties V1
1(GΓ, C) of any right-

angled Artin group G were computed in [6]. And finally, the cohomology jumping

loci Ri
k(GΓ, K) and Vi

k(GΓ, K), for all i, k ≥ 1, and over all fields K, were computed

in [14].

4 The Resonance and the Characteristic Varieties for the Class C2

In this section we use a slightly different notation than above.

Let A be an affine line arrangement whose points of multiplicity ≥ 3 all lie on the

line H0. Let A0, . . . ,Am denote the families of parallel lines in A, with A0 ∋ H0 (here

#A j ≥ 2 for j > 0). Let A1, . . . ,An denote the central subarrangements of A strictly

containing H0. These are the local arrangements Ax based at the multiple points x of

A along H0.

We set A0
= A0\{H0} and note that this arrangement can be empty.

To complete the picture, one can introduce the line at infinity H∞ and consider

the projective arrangement A ′ obtained from A by adding this line. Then A ′ belongs

to the class C2: the points of multiplicity ≥ 3 lying on the line at infinity H∞ corre-

spond exactly to the families of parallel lines A j with #A j ≥ 2. However, we do not

use this point of view explicitly.

Let α =
∑

H∈A
aHωH and β =

∑

H∈A
bHωH be two elements of H1(M(A), C).

For every intersection point x of the lines in A, we denote

αx =

∑

x∈H

aHωH .

The isomorphism between the cohomology algebra H∗(M(A), C) and the Orlik–

Solomon algebra, and the decomposition of the latter via the poset of A (see [11,
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Theorem 3.72]) imply that αβ = 0 if and only if αxβx = 0 for every x ∈ L2(A). This

condition is satisfied in the following cases:

(i) If αx = 0, then βx can be arbitrary.

(ii) If αx 6= 0, then either:

(a) if x is a double point or
∑

x∈H aH 6= 0, then αx and βx must be collinear; or

(b) if the multiplicity of x is at least 3 and
∑

x∈H aH = 0, then the orthogonal

complement of αx in H1(M(Ax), C) is {βx |
∑

x∈H bH = 0}.

To get the last two claims, recall Example 3.1.

First we give a criterion for α not to belong to R1(A).

Lemma 4.1 (Key Lemma) Let H1 ∈ Ai 6= A j ∋ H2, (i, j = 0, . . . , n), be two

lines different from H0 such that H1 ∩ H2 6= ∅ and aH1
, aH2

6= 0. If there exists a line

H3 6= H0 cutting H2 at double point and aH3
6= 0, then α /∈ R1(A).

Proof As a consequence of the hypotheses, we see as in the proof of Proposition 3.5

that, for β ∈ α⊥, the quotients bHk
/aHk

are equal for k = 1, 2, 3. Below, we treat the

situation when i > 0 and j > 0. The remaining cases, i.e., i = 0 or j = 0 are simpler,

and the reader can treat them using essentially the same approach.

Case 1: H3 cuts H1 at a double point. Then for every H ∈ A\{H0}, either

(1a) H ∩ H1 is a double point: the statement (ii)(a) gives us α⊥ ⊂ {β | bH =

(bH1
/aH1

)aH}, or

(1b) H ∩ H2 is a double point: similarly, we have α⊥ ⊂ {β | bH = (bH2
/aH2

)aH =

(bH1
/aH1

)aH} or

(1c) H ∩ H3 is a double point: then α⊥ ⊂ {β | bH = (bH3
/aH3

)aH = (bH1
/aH1

)aH}.

Let x ∈ H0 be a point of multiplicity ≥ 3 (such a point exists, otherwise we have

an arrangement of class C1). If
∑

x∈H aH 6= 0, one finds that α⊥ ⊂ {β | bH0
=

(bH1
/aH1

)aH0
}. Otherwise, by the statement (ii)(b), for β ∈ α⊥, one has

bH0
= −

∑

H∈Ax\{H0}

bH = −
bH1

aH1

∑

H∈Ax\{H0}

aH =
bH1

aH1

aH0
.

Thus, β is proportional to α and so α /∈ R1(A).

Case 2: H3 ‖ H1. Since every H ∈ Ai\{H0, H1} cuts H3 at double point, by the

statement (ii)(a), in α⊥, we have

bH =
bH3

aH3

aH =
bH1

aH1

aH .

If
∑

H ′∈Ai aH ′ 6= 0, it is clear that we must have bH0
= (bH1

/aH1
)aH0

= (bH2
/aH2

)aH0
.

If this sum equals zero, the same argument as above also gives bH0
= (bH1

/aH1
)aH0

.

For H ∈ A j\{H0}, if H ∩ H1 is a point, then α⊥ ⊂ {β | bH = (bH1
/aH1

)aH =

(bH2
/aH2

)aH}.

If H ‖ H1, then using the value of the sum
∑

H∈A j aH as above, we get bH =

(bH2
/aH2

)aH .
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It is easy to get the same relation for bH for the other lines H, since they meet

either H1 or H2 in a double point.

Case 3: H3 ∈ Ai . Every H 6∈ Ai cuts H1 or H3 in a double point, and one deduces

that bH = (bH3
/aH3

)aH . Next, considering A j , we can prove that bH0
= (bH3

/aH3
)aH0

.

Finally we deal with the lines in Ai as in the Case 2 (since there is at most one such

lines not meeting H2 in a double point).

In conclusion, α⊥ turns out to be 1-dimensional (spanned by α) in all the cases.

Definition 4.2 Let α be an element of H1(M, C). The support of α, denoted by

supp α, is the set of lines H ∈ A with aH 6= 0.

Let α ∈ H1(M, C) be a non-zero element. We get information on the support

of α and we decide when α ∈ R1(A) in the following careful discussion of various

possible situations.

Case A: Let us consider first the simple case where supp α = {H0}. Whence aH0
6= 0,

we find using (ii)(a) that α⊥ ⊂ {β | bH = 0 for all H /∈ A0}. In particular α ∈
R1(A) if and only if #A0 ≥ 2.

Case B: Now we assume that supp α 6= {H0} and take H1 ∈ supp α \ {H0} such that

the pencil Ai that contains H1 is of maximal cardinal, i.e, whenever #A j > #Ai , aH

must be zero for all H in A j\{H0}.

Case B1: #Ai > 2 and i 6= 0.

Case B1a: supp α ⊂ Ai and i 6= 0. If
∑

H∈Ai aH = 0, then obviously α ∈ R1(A).

If
∑

H∈Ai aH 6= 0 and aH0
6= 0, then bH = (bH0

/aH0
)aH for all H ∈ A. This

follows by applying (ii)(a) at each of the points x j ∈ H0, the centers of the subar-

rangements A j . Since all the lines H ∈ A0 intersect H1 at a node, we get the same

result for such lines.

If
∑

H∈Ai aH 6= 0 and aH0
= 0, it is required that bH = (bH1

/aH1
)aH for all

H 6 ‖ H1. If there exists another line H2 ∈ Ai such that aH2
6= 0, since every line

parallel to H1 cuts H2 at a double point, we can deduce that α /∈ R1(A).

In the case where suppα = {H1}, obviously, dimα⊥
= #{lines of the same direc-

tion with H1}.

Case B1b: supp α \ Ai 6= ∅ and i 6= 0. This means that there exists H3 ∈ A j with

j 6= i, H3 6= H0 and aH3
6= 0. If #(supp α∩ (Ai\{H0})) ≥ 3, there must be two lines

in supp α ∩ (Ai\{H0}) that cut H3 at double points. So by the Key Lemma, in such

a case α /∈ R1(A).

Case B1b ′: #(supp α ∩ (Ai \ H0)) = 2 and i 6= 0. Assume more precisely that

supp α ∩ (Ai \ H0) = {H1, H2}. Let H ∈ A j be a line with aH 6= 0. Then H cannot

simultaneously cut H1, H2 if α ∈ R1(A) (again by the Key Lemma). Assume that

H ‖ H1, then (bH2
/aH2

) = (bH/aH).

If #A j
= 2 (in this case H = H3), for β ∈ α⊥, we have bH0

= (bH3
/aH3

)aH0
, and

this proportion holds for the lines in Ai which cut H3, therefore, whatever
∑

H∈Ai aH

is, we also obtain bH1
= (bH3

/aH3
)aH1

. Consequently, dimα⊥
= 1, i.e., α /∈ R1(A).
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If #A j > 2, but A j does not contain any line parallel to H2, then aH = 0 for

H ∈ A j\{H0, H3} (use the Key Lemma) and this implies bH = 0. Thus, whatever
∑

H∈A j aH is, we have bH0
= (bH3

/aH3
)aH0

and as above, dimα⊥
= 1. The case

where there is a line H4 ∈ A j with H4 ‖ H2 and aH4
= 0 is similar.

Consider now the case where #A j > 2 and there is a line H4 ∈ A j with H4 ‖
H2 and aH4

6= 0. The Key Lemma implies that supp α ⊂ {H0, H1, H2, H3, H4}. If

β ∈ α⊥, then again supp β ⊂ {H0, H1, H2, H3, H4}.

If
∑

H∈A j aH or
∑

H∈Ai aH is non-zero, then α and β must be proportional. On

the other hand, if both these two sums equal zero, then the linear subspace α⊥ is

given by the following equations:

bH0
+ bH1

+ bH2
= 0

bH0
+ bH3

+ bH4
= 0

aH1
bH4

− aH4
bH1

= 0

aH2
bH3

− aH3
bH2

= 0

Computing the minors of the associated matrix shows that the solution space of this

system is of dimension > 1 if and only if aH1
= aH4

and aH2
= aH3

. It follows

that the parallelogram P = {H1, H2, H3, H4} yields some non-trivial elements in the

resonance variety R1(A).

Case B1b ′ ′: suppα∩(Ai\H0) = {H1}. One can assume that for every A j there exists

at most a line different from H0, whose associated coefficient is non-zero (otherwise,

by changing the role of Ai into A j , we return to the previous case).

If suppα ⊂ {H ‖ H1} ∪ {H1}, then aH0
6= 0, bH = (bH0

/aH0
)aH ∀H ∈ A, so

α /∈ R1(A). If aH0
= 0, then dimα⊥

= #{lines of the same direction with H1}.

If there exists H2 ∈ A j that intersects H1 with aH2
6= 0, then in order to get rid of

Cases 1 and 3 in the Key Lemma, aH must be zero for H ∈ A\{H0, H1, H2}. Under

this condition, if there is no line in A j parallel to H1 (or no line in Ai parallel to H2),

the same argument as in Case B1b ′ shows that α and β are collinear.

Now we assume that there is a line in Ai (resp. A j) parallel to H2 (resp. H1), if
∑

H∈Ai aH 6= 0 or
∑

H∈A j aH 6= 0, α and β will be collinear. In the opposite case,

i.e, aH0
= −aH1

= −aH2
, it is easy to check that α ∈ R1(A). (Note that this case is

degenerated from case B1 ′ when H2 plays the role of H3 and aH2
, aH4

equal zero.)

Case B2: #Ai
= 2 and i 6= 0. Now suppα ⊂ {H|H ∩ H0 in a double point} ∪ {H0}.

Therefore, if aH ′ 6= 0 for some H ′ 6= H0 that cuts H1 at a double point (H ′ cuts H0

at a double point), α /∈ R1(A).

If aH = 0 for all H ∈ A\{H0} such that H 6 ‖ H1, as above, we see that aH0
= 0 if

α ∈ R1(A). In this case, dimα⊥
= #{lines of the same direction with H1}.

Case B3: i = 0 (H1 ‖ H0). All the lines H that cut H0 must cut H1 at a double point,

so bH = (bH1
/aH1

)aH . If there is H2 /∈ A0 such that aH2
6= 0, then for every H ∈ A0,

since H ∩H2 is a double point, bH = (bH2
/aH2

)aH = (bH1
/aH1

)aH . Besides, whatever

the multiplicity of H2 ∩ H0 is, we also have bH0
= (bH2

/aH2
)aH0

. Thus, α and β are

collinear.
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If aH = 0 for all H /∈ A0, it is easy to see that α⊥ ⊂ {β | bH = 0 ∀H /∈ A0}. In

that case, α ∈ R1(A) if and only if #A0 ≥ 2.

Thus we have proved the following main result.

Theorem 4.3 (Description of the resonance varieties for the class C2) We denote by

Ak,l,p,q = {H0, Hk, Hl, Hp, Hq}, where Hk ‖ Hl, Hp ‖ Hq, Hk ∩ Hp ∩ H0 6= ∅, Hl ∩
Hq ∩ H0 6= ∅, the parallelograms in C

2 constructed with the lines in A and having H0

as a diagonal. If A0
= ∅, then

R1(A) =

n
⋃

i=1

{α | supp α ⊂ Ai} ∪
⋃

#A j>2

{α |
∑

H∈A j

aH = 0, supp α ⊂ A
j}

∪
⋃

Ak,l,p,q

{α | aH0
+ aHk

+ aHp
= 0, aHk

= aHq
, aHl

= aHp
, supp α ⊂ Ak,l,p,q}.

Otherwise

R1(A) =

n
⋃

i=0

{α | supp α ⊂ Ai} ∪
⋃

#A j>2

{α |
∑

H∈A j

aH = 0, supp α ⊂ A
j}

∪
⋃

Ak,l,p,q

{α | aH0
+ aHk

+ aHp
= 0, aHk

= aHq
, aHl

= aHp
, supp α ⊂ Ak,l,p,q}.

Remark 4.4 1. All the components of R1(A) except those coming from the paral-

lelograms P = Ak,l,p,q (when they exist) are local components. In fact the first ones

in the formulas above are obviously local when we consider the associated projective

arrangement A ′.

2. It is obvious that

dim{α| supp α ⊂ Ai} = #Ai , dim
{

α |
∑

H∈A j

aH = 0, supp α ⊂ A
j
}

= #A
j − 1,

and

dim{α | aH0
+ aHk

+ aHp
= 0, aHk

= aHq
, aHl

= aHp
, supp α ⊂ Ak,l,p,q} = 2.

On the other hand, it is known that the resonance varieties Rk(A) enjoy the filtration

by dimension property; namely, Rk(A) is the union of the irreducible components E

of R1(A) with dim E > k, see for instance [6]. These two facts and Theorem 4.3 yield

a complete description of all the resonance varieties Rk(A).

We can also define the support of a local system λ, and denote it by supp λ, to be

the set of lines H ∈ A such that the associated monodromy λH 6= 1.

Corollary 4.5 (Description of the characteristic varieties for the class C2)

If A0
= ∅, then

V1(A) =

n
⋃

i=1

{λ | supp λ ⊂ Ai} ∪
⋃

#A j>2

{λ |
∏

H∈A j

λH = 1, supp λ ⊂ A
j}

∪
⋃

Ak,l,p,q

{λ | λH0
λHk

λHp
= 1, λHk

= λHq
, λHl

= λHp
, supp λ ⊂ Ak,l,p,q}.
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Otherwise

V1(A) =

n
⋃

i=0

{λ | supp λ ⊂ Ai} ∪
⋃

#A j>2

{λ |
∏

H∈A j

λH = 1, supp λ ⊂ A
j}

∪
⋃

Ak,l,p,q

{λ | λH0
λHk

λHp
= 1, λHk

= λHq
, λHl

= λHp
, supp λ ⊂ Ak,l,p,q}.

Example 4.6 Let us consider the arrangement A in P
2 given by the equation

xyz(x − z)(x − y)(y − z)(y + x − 2z). After choosing z = 0 as the line at infin-

ity H∞, the line x− y will take the role of H0 in the above description. Let us number

the lines H1 : x = 0, H2 : y = 0, H3 : x − z = 0, H4 : y − z = 0, H5 : x + y − 2z = 0

(see the figure below).

H0

H1

H2

H3

H4

H5

By Theorem 4.3, the resonance variety of A has the following components:

• 2 components E1 and E2 corresponding to the two families of parallel lines.
• 2 components E3 and E4 corresponding to the central arrangements of cardinal 3

and 4, respectively.
• 1 component E5 corresponding to the parallelogram determined by the lines H1,

H2, H3, and H4. This component E5 corresponds to a regular mapping f5 : M →
C \ {0, 1}, see for instance [4], given by

f5(x, y) =
x(y − 1)

y(x − 1)
.

Note that the fiber over 1 ∈ C (which is deleted) is precisely the line H0. If we

consider f5 as a pencil of plane curves in P
2, the corresponding fiber is H0 ∪ H∞,

which explains our remark following Theorem 1.1.

The above components, except E4, are 2-dimensional, dim E4 = 3 and they satisfy

Ei ∩ E j = 0 for i 6= j (as the general theory predicts).
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