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IDEALS IN RINGS OF ANALYTIC FUNCTIONS 
WITH SMOOTH BOUNDARY VALUES 

B. A. TAYLOR AND D. L. WILLIAMS 

1. Introduction. Let A denote the Banach algebra of functions analytic 
in the open unit disc D and continuous in D. If / and its first m derivatives 
belong to A, then the boundary function f(eid) belongs to Cm(dD). The space 
Am of all such functions is a Banach algebra with the topology induced by 
Cm(dD). If all the derivatives of/ belong to A, then the boundary function 
belongs to Cœ(dD), and the space A™ oî all such functions is a topological 
algebra with the topology induced by Cœ(dD). In this paper we determine 
the structure of the closed ideals of 4̂°° (Theorem 5.3). 

Beurling and Rudin (see e.g. [7, pp. 82-89; 10]) have characterized the 
closed ideals of A, and their solution suggests a possible structure for the closed 
ideals of Aœ. To a closed ideal I in A°°, associate S, the greatest common 
divisor of the singular inner factors of the non-zero functions in / , and 
Z(I) = {Z*C0}, where 

z\i) = n{*e D:f*\z) = o,* = o,...,»}, 

n = 0, 1, . . . . Let I(Z(I)) denote the closed ideal of all functions f £ Aœ 

with /<"> (z) = 0 for z £ Zn(I), n = 0, 1, We show that 

/ = {/£ I{Z{I)):S\f] = S-I(Z(I)). 

The proofs given here parallel the proof of the Beurling-Rudin Theorem for A, 
as presented in [7, pp. 82-89], except that the role of the F. and M. Riesz 
Theorem is replaced by certain estimates for subharmonic functions. 

In studying the ideal problem, the question of factorization of 4̂°° functions 
arises. We show, in particular, that if an inner function 5 divides the inner 
part of an 4̂°° function/, then f/S belongs to Aœ (Theorem 4.1). 

Since zero sets play a prominent role in the ideal structure of ^4°°, it is of 
interest to characterize the zero sets of 4̂°° functions. Carleson [2] has shown 
that the boundary zero sets of analytic functions in Am, or even satisfying a 
Lipschitz condition, are the closed sets E C dD such that the function 
logp(e^, E) is integrable. Here, p(eid, E) is the distance from eid to E. Such 
sets are called Carleson sets. Novinger [9] and ourselves have independently 
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RINGS OF ANALYTIC FUNCTIONS 1267 

shown that the Carleson sets are also the boundary zero sets of 4̂°° functions. 
Also, L. Carleson and S. Jacobs have recently proved that if F G A is an 
outer function with \F\ G Cœ(dD), then F G Aœ (unpublished). This result 
can be used to easily construct 4̂°° functions vanishing on a given Carleson 
set. In our proof of the theorem characterizing the closed ideals of ^4°°, we 
have found it necessary to construct outer functions in 4̂°° whose zero sets 
are a given Carleson set and which have some additional properties (see 
Theorem 3.3). We also note that the sets in D which are zero sets of Aœ 

functions have been characterized as follows [13]. A closed set Z C F) is the 
zero set of an 4̂°° function, or a function satisfying a Lipschitz condition, if 
and only if 

J»2TT 

\ogP(ei\Z)dd> - oo. 
- , ^ „ . . ~ o 

The techniques we use to obtain the ideal structure of 4̂°° may be applied to 
obtain information about the ideal structure of other algebras of analytic 
functions satisfying some regularity condition on 3D. In § 6, we comment on 
the ideal structure of Am. In particular, we determine the structure of those 
closed ideals of Am whose functions have at most a finite number of common 
zeros of order m on 3D. This result is closely related to some recent work of 
Kahane [8] and Gurariï [6]. 

Acknowledgement. We wish to thank Professors Allen L. Shields and Harold S-
Shapiro for helpful conversations concerning this work. 

2. Definitions and duality. Let D denote the open unit disc in the complex 
plane C and let A be the Banach algebra of functions / analytic in D and 
continuous in D with \\f\\m = sup{|/(z)|: z G dD}. 

2.1. Definition. The space Am, m = 1, 2, . . . , is the algebra of functions 
f G A such that f(n) G A, n = 0, 1, . . . , m. The space Aœ is the algebra of 
functions f G A such that f(n) G A for n — 1, 2, . . . , i.e., 

Aœ = pi {Am: m = 1,2, . . .}. 

We now give a brief account of the topology and the dual space of .4°°. Let 
Cœ(dD) be the space of infinitely differentiate complex-valued functions on 
the unit circle. We provide C°(dD) with the usual locally convex topology 
defined by the seminorms 

m 

ll/IL = i ; i l / W | L m = 0 ,1,2, . . . . 
Jc=0 

Each / G Cœ(dD) has a Fourier series expansion f(eie) = J^n = -œ cne
in\ con­

vergent in the topology of Cœ(dD), where \cn\ = 0{\n\~m) for all positive 
integers m. The seminorms 

ll/IU' = supnlcld»! + l)m , m = 0, 1, 2, . . . , 

also describe the topology of Cœ(dD). 
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By restricting each / G 4̂°° to 3D, we may identify 4̂°° with the closed 
subalgebra of Cœ(3D) consisting of those functions with vanishing negative 
Fourier coefficients. 

Since the topologies of Cœ(3D) and 4̂°° are given by a countable collection 
of seminorms, they are Fréchet and hence barrelled spaces. Also, the closed 
bounded sets in Cœ(3D), and hence in ^4°°, are compact. Thus Cœ(3D) and 
Aœ are Mon tel spaces. 

The dual of Cœ(3D) is St' (3D), the space of Schwartz distributions on the 
circle 3D. The value of a distribution T at f G 0e0 (3D) is denoted by (/, T). 
Every distribution T G &' (3D) has a Fourier series representation 

CO 

T(ete)= £ dne
in\ 

n=—oo 

converging to T in the strong topology of &'(3D), where dn = (e~ind, T) and 
\dn\ = 0(\n\m) for some sufficiently large integer m [11, p. 224]. Conversely, 
every trigonometric series with coefficients satisfying this growth condition is 
the Fourier series of a unique distribution. If 

oo oo 

f(ete) = E cne
Me C°(dD) and T(eu) = £ dn e

tn6 £ 9\dD), 
n=—co n=—co 

then 

(/» T) = X Cn d-n. 
n = — oo 

Let B' be the strongly closed subspace of Sff (3D) consisting of the distribu­
tions with vanishing positive Fourier coefficients. The space Cœ(3D) is the 
topological direct sum of A°° and the subspace of Cœ(3D) functions with 
vanishing non-negative Fourier coefficients. Likewise, Qf1(3D) in the strong 
topology is the topological direct sum of B' and the subspace of distributions 
with vanishing non-positive Fourier coefficients. Thus B' is the dual of ^4°°; if 

00 CO 

f(z) = £ a» 2" € Am and T(eie) = £ bn e~mi £ B', 
n= 0 n= 0 

then the value of T at / is (/, T) = J2n=o ctnbn. 
For each T G B\ the (Borel) transform r ( f ) = (/r, T), where / f (s) = 

f (f — s)_ 1 , is a function analytic for |f| > 1. If T has the Fourier series 
Y,n=o bne~ind, then ]£r=o Kt~n is the Laurent expansion of T(f). A short 
calculation shows that if \bn\ ^ (n + l ) w , then 

| r ( f ) | ^ const • [(|f| - 1 ) — * + 1], |f| > 1. 

On the other hand, if C/(f ) is any function analytic for |f | > 1 such that 

\U(!)\ ^ (|f| - l ) - ™ + l , 

then its Laurent coefficients {dn} satisfy 

| 4 | ^ const • (n + l)m, n = 0, 1, 2, 
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Consequently, £/(f) determines uniquely the element U(eid) = J^n=o dne~ind 

of B''. Therefore, we may identify B' with the space of all functions T(f) 
analytic for |f| > 1, including oo, such that 

\T(Z)\ = o((|f| - i)-™), |rl-*i+, 
for some m > 0. We will regard T £ Br as the boundary value of the analytic 
function !T(f) as |f| —> 1+. It is easy to verify that for T £ B' a n d / £ ^4œ, 

( / J ) = Mm ± f f(eie)T(reie)d6. 

2.2. Remark. The space 13' can also be identified, by Fourier transform, 
with the space of all entire functions F(z) such that 

|^(z) | Û C(l + \z\)meW. 

See [12]. 

3. Construction of 4̂°° outer functions. To establish the characterization 
of the closed ideals of Aœ (Theorem 5.3) we have found it necessary to use 
certain well-behaved outer functions in Aœ. In this section the existence of 
such outer functions is proved by a modification of a construction of Carleson 
[2, Theorem 1]. 

Let £ be a closed subset of dD and let p{z) = p(z, E) denote the distance 
from z to E. 

3.1. Definition. The closed set E C dD is a Carleson set if 

(3.1) J logp(et9,E)dd> - oo. 

Now, if F G A1 (or even if F satisfies a Lipschitz condition of order a > 0), 
F ^ 0, and F vanishes on E, then 

log\F(z)\ ^alogp(z,E) +K 

for some a, K > 0. Thus, (3.1) holds since log F(eie) is integrable for 
— 7T ̂  6 ^ 7T. As mentioned earlier, the converse is true. For our purposes, we 
need a slight extension of the converse. 

3.2. Definition. For f £ Aœ let 

Zn(f) = {z e D:fW(z) = 0, k = 0, 1, . . . , » } , » = 0, 1,2, . . . , 

and let 
oo 

zœ(/) = n zn(f). 
3.3. THEOREM. Letf E be a Carleson set. Then there exist outer functions 

Fk ç. Aœ, k = 1, 2, . . . , such that 

Z°(Fk) = Zm{Fk) = E 

and for every h £ Aœ with Zœ(h) Z) E, the sequence {Fkh\ converges to h in Aœ. 
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To construct such outer functions Fk we consider real-valued functions <p 
on 3D which satisfy the following conditions: 

(3.2) - - f \<p(ei9)\dd ^ M< +00; 

(3.3) <p is infinitely differentiable on 3D ~ E and 

g CnP(eierm, n = 0, 1, 2, . . . , 

for some constants Cn, pn ^ 0; 

(3.4) ^ 0 and for every C > 0, 

(p(eie) + ClogP(eie) - > + o o asp(e^) -> 0. 

Now define 

(3.5) G(2) = G(2, ?) = ---. P 4—-- *>(e") de, z £ 5. 

Provided that <p satisfies (3.2)-(3.4), it will be shown that F = e x p ( - G ) £ Aœ. 
To do this and to prove Theorem 3.3 we use the following two lemmas. 

3.4. LEMMA. Assume that <p satisfies (3.2) and (3.3) and that G is defined by 
(3.5). Then 

\GM(z)\ £DnP(z)-<», « = 0 , 1 , 2 , . . . , 

for some constants Dn, qn ^ 0 which depend only on M, Cnj and pn. 

The proof of this lemma follows closely Carleson's proof of [2, Theorem 1], 
and is exactly the same as that of [13, Lemma 2.3]. We shall not reproduce 
it here. 

3.5. LEMMA. Assume that <p ^ 0 and satisfies (3.2). Then for z = reid with 
Ï < r < 1, 

ReG(s) ^ v(r,0), 
where 

y(r, 6) = \r~l/2 initie"): \t - 6\ ^ r~1/2(l - r)}. 

If in addition (3.4) holds, then 

\F(Z)\ ^ P(zyw, z e D, 

where T(Z) —> +00 as p(z) —> 0. 

Proof. Setting ô = ô(r) = r~1/2(l — r) and using the Poisson kernel 

P(r, t) = (1 - r2) (1 - 2r cos / + r2)~\ 

we have 

ReG(s) = J - r P ( M ) ? ( e ' ( , - V 

^ - - - f P(r,0*.(c<<'-'>)(ft. 

d , je, 
jfnAe ) 
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Since P(r, t) ^ (1 - r2)[(l - r)2 + rt2]~l and 

(1 - r2)[(l - r)2 + rt\xdt = i r - 1 / 2( l + r), JL f 
2TT J _ ; 

the first inequality of the lemma follows easily. The second inequality is a 
consequence of the first. 

Proof of Theorem 3.3. It follows easily from Lemma 3.4 and the second 
inequality of Lemma 3.5 that every outer function F = exp( —G), where <p 
satisfies (3.2)-(3.4), belongs to ^4°°. Moreover, F vanishes exactly on E and 
all its derivatives vanish there too. We will construct our sequence Fk in the 
form Fk(z) = exp( — G(z, <pk)) by selecting suitable functions <pk. 

To this end, introduce the following slight modification of p(eid). Let 
{(eian, eibn): an < bn) be the complementary arcs of the Carleson set E and 
define 

m = 
Note that 

<\d - a„ bn-e/ ' 

I o, 

€ (an,bn), 
te € E. 

const • p{eid) ^ p(0) ^ const • p(eie). 

Therefore logp(0) is integrable on [ — -zr, ir\. 
Choose a positive, increasing, infinitely differentiable function co(x), 

— oo < x < +co, such that 

(3.6) x~co(x)—>+oo as x—>+oo; 

(3.7) u(n\x) S Cn'(l + |x|2), n = 0, 1, 2, . . . ; 

(3.8) J co(-log p(6)) dd < +co. 

It is easy to obtain an increasing function coi satisfying (3.6) and (3.8). Then 
co may be obtained as the convolution 

co(x) = (coi * x)(x) = I w(t)x(x — t) dt 

of coi with a non-negative infinitely differentiable function x with compact 
support in x ^ 0 and JtZ x(0 dt = 1. Next, let?/'be an infinitely differentiable 
function defined for —oo < x < +oo, with 0 ^ \p(x) ^ 1, ^(x) = 0 for 
x ^ 1, and ^(x) = 1 for x ^ 2. Define co^x) = \[/(x/k)œ(x) and <pk(e

id) = 
co&( —logp(0)). We assert that the associated Fk are suitable functions. 

To prove this, first note that the <pk satisfy (3.2)-(3.4) uniformly in k. That 
is, the constants M, Cn, pn may be chosen independent of k, as is routinely 
verified. Consequently, Lemma 3.4 implies the existence of constants Dn, qn 

such that 

(3.9) \G^(z, <pk)\ ^ Dnp(z)-'», n = 0, 1, 2, . . . , 

for all z £ D and k = 1, 2, . . . . 
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Let h € Aœ with Zm(h) D E. To prove Fkh -> h in ^ œ , it suffices to show 
that Fkh —> h pointwise and that 

sup —^Fk(z)h(z) z£D, k = 1,2, . . . 

is finite for every m = 0, 1, 2, . . . . For eid $ E, l im*^ <pk(e
ie) = 0 and 

(Pk(eid) S co( —logp(0)). Because of (3.8) and the dominated convergence 
theorem, it follows that l im^œ G(z, (pk) = 0 for each z Ç D; hence 

Fk(z)h(z)-*h(z) 

for each z ^ D. The uniform boundedness of the rath derivatives of the Fkh 
follows from (3.9) and the fact that for all positive integers n and /, 

|fc(n)(*)l = O ( P ( S ) 0 a s p ( s ) - ^ 0 . 

(This estimate for h follows immediately by writing an appropriate Taylor 
series expansion with remainder about points of E. (See Proposition 4.4.)) 

The proof of the theorem is now complete. 

4. Factorization. Every function/ Ç A has a factorization/ = S F into an 
inner function S and an outer function F. Moreover, [{ S = Si • S2y where 
Si and S2 are inner functions, then S2F £ A (see e.g. [7, pp. 69, 70]). Here 
we establish the same result for 4̂°° functions. 

When we say that an inner function 5 divides an H1 function / , we mean 
that the quotient of the inner part of / by 5 is an inner function. 

4.1. THEOREM. If f = S F £ Aœ, where S is an inner function dividing / , then 
F £ Aœ. In particular, the outer part of an A°° function is an Aœ function. 
Moreover, the set {F £ Aœ: f = SF, S inner} is a bounded subset of Aœ. 

Proof. Represent / and S with their Taylor series expansions 

oo oo 

/(«) = E a*«* and S(z) = £ b,z\ 
k=0 j=0 

Since \S(eie)\ = 1 a.e. on 3D, S^9)-1 = S(eie) a.e. on dD. Because F £ A, 
it is defined on dP, and we have F{eid) = f(eie)S(eie) a.e. on dP. Let 
F(eie) = J^n=o cne

ind be the Fourier series of F on dD. The Fourier series of/ 
and S are ^k=o ake

m and J2™=obje~ijd, respectively. Hence 

oo 

cn = ^2 akbk-n, n = 0, 1, 2, . . . . 
k=n 

Since S is bounded by 1, the Cauchy inequalities imply that \bj\ S 1, 
7 = 0, 1, 2, . . . . Choose any integer m > 0 and, using the assumption/ £ ^4°°, 
choose M > 0 such that |a*| ^ Mk~m-2, k = 1,2, . . . . Then 

k»l ^ Ë kÂ-nl ^ E ^~m~2 ^ ^ ~ W Z * 2 
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for n = 1, 2, . . . . Hence F G A has a C°° boundary function; thus F G ^4°°. 
The last assertion of the theorem follows immediately from the above 
inequality. 

In the discussion that follows we will make use of the following two results. 

4.2. THEOREM (Rudin). If S is the singular inner function determined by the 
positive singular measure /x, then S is analytic everywhere in C except on the 
support of fi in dD and \S\ cannot be extended continuously from D to any point 
in the support of ju. 

4.3. THEOREM (Caughran). If f G A and f G Hv for some p > 1, then the 
singular inner part of f divides / ' . 

A proof of Theorem 4.2 may be found in [7, p. 68] and a proof of Theorem 4.3 
may be found in [3]. 

Next we state three simple propositions concerning the zeros of Aœ functions. 
If / G Am and a, z G D, we have the Taylor expansion 

n=o^! (w — 1)! J(2 

where the path of integration in the remainder term is the straight line from 
a to z. The first two propositions follow easily from this representation. We 
omit their proofs. 

4.4. PROPOSITION. / / / G Aœ, then for n = 0, 1, 2, . . . , 

|/(2)| = 0(p(z, Z?(j))n+1) ™ Pfe Zn(f)) -* 0. 

4.5. PROPOSITION. Iff G Aœ, the following are equivalent for w = 0 , l , 2 , . . . : 
(i) a G Z»(/), 

(ii) | / ( z ) | = 0 ( | z - a\n+1), a ^ - > a , 
(iii) / ( * ) ( * - a ) - 1 - 1 G ^ œ . 

4.6. PROPOSITION. If f = SF G ^4œ, w/z£fe 5 is an inner function dividing f, 
then Zn(f) C\dD = Zn(F) H dD for n = 0, 1, 2, . . . . ,4/so, Zœ( /0 = Z°°(/). 

Proof. By Theorem 4.1, F G 4̂°° and so Zn(F) is defined. Writing 

f(z)(z-a)~n =S(z)F(z)(z-a)-n, 

the proposition follows immediately from Proposition 4.5 and the fact that 
\S\ = 1 a.e. on dD. 

The following theorem clarifies the role of singular inner functions in the 
ideal structure of ^4°°. 

4.7. THEOREM. Let S be a singular inner function with \x as its associated 
positive singular measure on dD. The set &(S) = {/ G ^4°°: Sf G 4̂°°} is equal 
to the closed set {/ G Aœ: support ju C Zœ(f)\. The operation of multiplication 
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by S is a continuous linear one-to-one operator from £& (S) into Aœ with range 
equal to the closed set {/ Ç ^4°°: S\f) C @(S). The inverse of multiplication by 
S is continuous. 

Proof. Suppose t h a t / 6 &(S); that is, b o t h / and g = Sf belong to Aœ. It 
is clear from Theorem 4.2 that a function of class A vanishes on the support 
of the measure associated with its singular inner part. By Theorem 4.3, 
S\g{n) for n = 0, 1, 2, . . . . Since g(n) £ A, the support of /JL is contained in 
Zn(g). It follows from Proposition 4.6 that the support of /x is contained in 
Zn\f) for n = 0, 1,2, . . . . Thus, 

9{S) C {/ € ^4œ: support M C Z œ ( / )} . 

Now suppose t h a t / Ç 4̂°° and the support of /x is contained in Z°°(/). To 
show that 5 / Ç 400, it suffices, by Theorem 4.2, to show that {SfYn){z) -> 0 
as s approaches a point in the support of /x. Now 

5/(a) = f(z) e x p [ - J ^ T T ^ o ] • 

On taking the wth derivative of Sf, one obtains a finite sum of terms, each of 
which is obviously bounded by a function of the form 

\f(k)(z)\p(z, support n)~3, z £ D ~ support /x, 

where 0 ^ k ^ n and 0 ^ 7 ^ 2w. It follows from the estimate of Pro­
position 4.4 that (£/)<*> £ A. Thus 

^ ( 5 ) = {/ G Aœ: support M C Z œ ( / )} . 

Now it is clear that & (S) is closed; and, since convergence in Aœ implies 
pointwise convergence, the operation of multiplication by S has a closed 
graph. By the closed graph theorem, this operator is continuous. 

That the range of the operator of multiplication by S is {/ Ç -4°°: 5|/} is 
clear from Theorem 4.1. It is known [7, p. 84] that if a sequence of functions 
fn(zA with S\fn, S an inner function, converges uniformly t o / G A, then S\f. 
Therefore, {/ £ ^4°°: S\f} is closed in A°°. By the open mapping theorem, the 
operation of multiplication by 1/5 is continuous on {/ £ -4°°: S\f}. The fact 
that {/ 6 -4°°: S\f} C @(S) follows from Proposition 4.6. 

4.8. COROLLARY. A singular inner function S divides some non-trivial Aœ 

function if and only if the support of the singular measure associated with S is a 
Carles on set. 

4.9. COROLLARY. If I is a closed ideal in Aœ and the singular inner function S 
divides the g.c.d. of the inner factors of the non-zero elements of I, then 
{f £ Aœ: Sf £ 1} is a closed ideal in Aœ. 

4.10. Remark. Several other mathematicians have made contributions to the 
types of problems considered in this section. In particular, we wish to point 
out the papers [3; 4] of Caughran and the paper [14] of Wells. 
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5. Closed ideals in Aœ. In this section we present the main result of the 
paper, the characterization of the closed ideals of ^4°°. 

5.1. Definition. If I C Aœ is an ideal, let Zn(I) = D{Zn(f): f £ / } , 
n = 0, 1, 2, . . . . LetZ»(I) = n{Z°° ( / ) : / G /} andZ(I) = {Z°(I),Zl(I), . . .}. 

Each Zn(I) is closed, Zn+l(I) C Zn(I), and Zœ(I) = n»-oZ*CO. 

5.2. Definition. For Z = {Z° D Z1 D . . .}, a family of closed subsets of D, 
define 

I(Z) = {/ G ^4œ: Z»(/) D Z*, n = 0, 1, . . .}. 

Clearly I(Z) is a closed ideal. 

5.3. THEOREM. Let I be a closed ideal in Aœ. If S is the g.c.d. of the singular 
inner factors of the non-zero functions in / , then I = S • I(Z(I)). 

5.4. Remark. It is an immediate consequence of Theorem 4.7 that S • I(Z(I)) 
is a closed ideal in ^4°°. Proposition 4.6 implies that 

S-I(Z(I)) = {fel(Z{I)):S\f}. 

Before giving the proof of the ideal theorem we collect some lemmas. 
In studying a closed ideal / in Aœ, we will want to consider the subspace 

I1- C Bf which annihilates / . We will regard the elements of B' as functions 
analytic in C ~ D with distribution boundary values as discussed in § 2. 

5.5. LEMMA. Let I be an ideal in Aœ. If T £ B' and (/, T) = 0 for all f £ / , 
then T(£) can be continued analytically to the complement of Z°(I). 

Proof. Consider T £ IL C B' with the Fourier series J2n=o bne~ine on dD. 
We wish to show that T(Ç) = Y,n=oKÇ~n can be continued analytically to 
the complement of Z°(I). For f(z) = ^2n=oan^

n Ç / , fT is a well-defined 
element of 3?'(3D) with the Fourier series fT(eid) = Sr=-oo cne

ine, where 
cn = Er=o akbk_n for n < 0 and cn = T,k=n akbk_n for n ^ 0. However, since I 
is an ideal and f (z I, (g,fT) = (gf, T) = 0 for all g £ ^4°°; in particular, fT 
has vanishing negative Fourier coefficients. Now choose a positive integer m 
such that bn = 0(nm). For any positive integer j , \an\ = 0(n~j). Take an 
integer p > 0 and set j = m + p + 2. Then 

oo / oo \ 

\CK\ =g E l«*| %-n\ = 0[ £ *"'(* - »)" ) 

= 0( Ë &m-J') = of Ê k-2-p) = 0(n~p) 
\ k=n / \ k=n / 

for » = 1,2, . . . . H e n c e / r £ 400. 
Let |Va, eifi] C dZ> lie in a complementary interval of Z°(/) r\ 3D. Choose 

0 < ro < 1 such that f(reie) ^ 0 for r0 ^ r < 1 and 0 G [e**, e*-/3], and choose 
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a function \[/ G Cœ(dD) which is equal to one on a neighbourhood of [eia, ei0] 
and equal to zero on a neighbourhood of Z°(/) H 3D. For r0 ^ r < 1, let 

and for s > 1, let Ts(e
ie) = T(seie). The functions T r and Ts are to be 

regarded as elements of £?'(3D). If it can be shown that for all <p G Cœ(dD) 
with support in (eia, e^), 

(5.1) lim O, 7\) = O, T) = lim (p, Ts), 

then it follows from a well-known theorem (see e.g. [1]) that r ( s ) , \z\ > 1, 
and fT(z)/f(z), \z\ < 1, are analytic continuations of each other across 

Suppose that <p(eie) = J2n = -ooOine
ine. Clearly 

CO CO 

lim (cp, Ts) = lim X) anb-ns~n = X «»&-» = (<p, T). 

The other half of (5.1) is immediate since fT G ^4°°. 
We conclude that T and fT/f are continuations of each other to the com­

plement of Z°(/) . S ince / was an arbitrary function of 7, it follows that T 
can be continued analytically to the complement of Z°(7). 

5.6. Remark. Let I and T be as in the above lemma. If 

a G [ ^ ( / j - ^ H / l i n A 

it is clear from the representations T(z) = fT(z)/f(z), f (z I, that T has at 
worst a pole of order n + 1 at a. Suppose that 

Then JT has an isolated singularity at a and it can be shown that it has at 
worst a pole of order n + 1. We argue as follows. Proposition 4.5 implies that 
I1= {g £ Aœ: g(z) = f{z)zn+l(z - a)~n-\f G 1} is a closed ideal in Aœ with 
a G Z°(/ i) . Now (1 - ae-id)n+l G C°(dD), and so 

E/(e") = (1 - ae-i6)n+1T(eie) 

is a distribution on 3D. It is easy to check that U G B' and its continuation 
to the exterior of D is U(z) = T(z)(z — a)n+lz~n~l. For g G 7i write g(2) = 
/ ( « y + K * - a)~n~\ f £ I. Then 0 = (/, T) = (g, £/). Thus C/ G A-1. Since 
a G Z°(/ i) , Z7 is analytic at a; and therefore, T has at worst a pole of order 
» + 1 at a. 

In the exterior of Z), any T £ Br ol order iV satisfies the growth condition 

TOI = oa\z\ - i)-*-i) 
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as \z\ —» 1 + . Given an ideal / in 4̂°° with Z°(I) C dD, the following four 
lemmas are used to establish a growth restriction on T G IL as p(z, Z°(I)) —> 0, 

z e c~ (D\JZ°(I)). 

5.7. LEMMA. Let I be an ideal in Aœ with ZQ(I) C dD. Let T G I1 C B' 

and let S be the g.c.d. of the singular inner parts of the non-zero functions in I. 
Then for every e > 0, there exists a constant Ce such that 

(5.2) log\S(z)T(z)\ ^ e( l - H ) - 1 + C€, z G D. 

Proof. I t suffices to prove (5.2) locally; t ha t is, to prove t h a t for each 
e > 0 and each a G dD there is a constant Ce,a such tha t 

(5.3) \og\S{z)T{z)\ =£ e ( l - | s | ) - i + C€,a 

for z £ D and in some neighbourhood of a. Then (5.2) follows by a s tandard 
compactness argument . 

T o establish (5.3) we use the representation T(z) = (fT)(z)/f(z), z G D, 
f (z I, t h a t was derived in the proof of Lemma 5.5. I t is no loss of generality 
to assume tha t a = 1. C h o o s e / G / as follows. Let v be the positive singular 
measure on dD associated with 5 . Given e > 0, there exist fi £ I and TJ > 0 
such t h a t if ju is the singular measure associated with the singular inner pa r t 
of fif then 

(5.4) fi{eid G dD: |0| < v} < e + *>{e?™ G d£>: |0| < 77}. 

This is because the g.c.d. of the singular inner par ts of the non-zero functions 
in I being 5 is equivalent to the g.c.d. of the set of all the associated positive 
singular measures being v, the lat ter g.c.d. being taken in the latt ice of 
positive measures [7, p . 85]. 

Wri te fi = BSiF, where B is the Blaschke factor of / 1 , S± is the singular 
inner factor o f / 1 , and F is the outer factor of/ . Next, note t h a t / = SLF = 
fi/B G / . T o prove this, it is enough to show tha t fi/BN G / , where BN is 
the Nth. part ial product of B. For, by Theorem 4.1 the sequence fi/BN is 
bounded in ^4°°. Also,fi/BN converges t o / uniformly on compact subsets of D. 
Therefore, fi/BN converges t o / in ^4°°, and I is closed; t h u s / G I if fi/BN G / 
for all N. T o see t h a t / i / 5 ^ € I, observe t h a t each factor of BN is of the form 
z — a t imes a uni t in Aœ. Thus , it suffices to show t h a t if g G I, g (a) = 0, 
then g(z)/(z — a) G / . T h e following a rgument for this was shown to us by 
L. A. Rubel (see [12, p . 456]). Choose h G / with h (a) 7* 0. Then 

g(z)/(z -a) = -h{a)-^[g{z){{h{z) - h(a))/(z - a)) - h(z)g{z)/(z - a)] G / 

since h, g £ I. 
Thus , we h a v e / = SiF G I with ^ satisfying (5.4). Wi th t h i s / , represent 

T(z) = (fT)(z)/f(z). Then 

l og |S (* ) r (* ) | = log | /T(*) | - loglSxto/SC*)! - log\F(z)\. 
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As was shown in the proof of L e m m a 5.5, fT G -4°°; hence log|jfT| is bounded 
above. Choose 5 = ry/2 and r0 such t h a t 

P ( r , / ) = ( ! _ r2) (! _ 2r cos / + r 2 ) " 1 ^ 2TT for |/| ^ , r 0 < r < l . 

Then for s = re**, r0 < r < 1 and |0| < 8, 

|log|5i(2)/5(«)|| = ^ - f P (M - *)<*G* ~ "HO 
| Z 7 T C/-7T I 

^ U- f P(r ,(?-Od0x-")(/) 

+ \~ f P(r,6-t)d(jL-v)(t)\ . 

From the trivial es t imate 0 S P(r, t) S 2 / ( 1 — r) and (5.4), the first term 
does not exceed 2 e / ( l — r). T h e second term does not exceed ||/x — v\\ since 
r0 < r < 1 and \d - t\ ^ <5. T h u s 

| l og |S i ( s ) /S00 | | ^ 2 e / ( l - r) + ||/t - HI, r0 < r < 1, |0| < 5. 

Similarly we can derive the es t imate 

|log|F(™")ll ^ r ^ + ^ £ |log|P(e")|| d(9 

for r0 < r < 1, |0| < 6, possibly with different r0 and d. W e jus t have to replace 
(5.4) by an analogous est imate based on the absolute cont inui ty of the integral 
of \og\F(eid)\. This completes the proof of the lemma. 

L e m m a 5.8 below is a consequence of results of Domar [5] and Beurling. 
However, for the case in question here, i t is technically simpler to reprove 
Domar ' s results, using the a rgument of [5], t han to deduce it from the theorems 
s ta ted in [5]. W e wish to t hank Professor H. S. Shapiro for calling our a t ten t ion 
to these results. 

5.8. LEMMA. Let E be a closed subset of dD and let G = C ~ E. If u is sub-
harmonic on G and satisfies u(z) S \\z\ — 1 |_ 1 , then u{z) ^ const • p(z, E)~l, 
z G G. 

Proof. For technical reasons which will become apparen t in the proof, we 
prove the lemma with E replaced by EKJ {0}, which involves no loss of 
generali ty. T h e first observation in the a rgument is essentially a special case 
of [5, p . 434, L e m m a 2]. We assert t h a t 

(*) If Zo Ç G, |zo| ^ J, and u(z0) ^ ev, then each disk of radius 
R > (4:e3e~v/(e — 1)) contains either a point z with u(z) > ev+l or a 
point of the complement of G. 

For, if {\z - *o| ^ R} CG and u(z) ^ ev+\ then 

ev ^ u(zo) ^ - ~ 2 f u(z0 + f) dX(£), 
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by the mean-value property for subharmonic functions (X represents Lebesgue 
measure). Break this last integral up into the sum of integrals over the sets 
where u ^ ev~l and u > ev~l. The first of these is dominated by ev~l, and 
the second is dominated by 

ev+1 

^-2\{z:u(z) > ev~\ | s - 2 o | £ R] 

f£ ~ 2 \{z = rete: \z - z0\ ^ R, |1 - r |_ 1 > e""1} 
TTK 

^ ev . ) te I-, i ^ ~ ( » - i ) in i ^ - - i R 

= ~E2^)Z = re : \l — r\ ^ e K , \6 — arg z0\ è sin i—, 
irK \ \Zo\ 

since R ^ |so| (this is why we replaced E by E KJ {0}). The measure of this 
last set is no larger than 2e~^v~l) RTT / \z^\. Consequently, ev ^ ev~l + 2e2/(R\zQ\), 
or 

R^ Ze 

(e-l)\zo\' 

The assertion (*) follows from this. 
It follows from (*) that u(z0) ^ ev implies 

p(so, E) S const T^ e~k = const e-*', 

and the lemma follows from this. 

5.9. LEMMA. Let E be a closed subset of 3D and let T be analytic on C ^ E. 
If there exist constants N > 0, C > 0, and K > 0 s^c/̂  JÂatf 

(5.5) | r (* ) | = 0((|«| - 1)-*), | 2 | - » 1 + , 

and 

(5.6) log|r(s) | ^ Cp(2, E)" 1 + X, 2 £ C - £ , 

then 

\T(z)\ = 0(j>(z, E)-™), \*\ > 1, Pfe £ ) -> 0. 

Proof. Consider one of the complementary intervals of 3D ~ E. Without 
loss of generality we may assume that the interval is of the form (e~u, eu) 
where 0 < 3 < TT/12. The case in which ô is larger requires only trivial modifi­
cations. Let 0 be the domain in C bounded by segments of the straight lines 

I \ : arg(z - e~u) = TT/3, T2: arg(s - eu) = TT/6, 

T3: Re[(e~u + z)(e~u - z)~l] = - 1 , T4: Re[(eu + z)(eu - z)'1] = - 1 . 

Note that T3 and T4 are tangent to 3D at e~n and eiô, respectively. 
Observe that the lemma follows if we prove the desired estimate for z £ 12, 

\z\ > 1. For, if V is the union of all such 12 over all the complementary intervals 
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of dD~E, then clearly (\z\ - l ) " 1 - 0(P(z, E)~2) as p(z,E)-+0 in 
C~ (DU V). 

To prove the estimate in 12 for \z\ > 1 we use an argument of Phragmén-
Lindelôf type. Consider the subharmonic function 

u(z) = l o g | 7 » | - 2Nlog\e-u - z]'1 - 2Nlog\eiô - z\ 

r ~ib j -

- 2 C R e ' ^ + 2 

where C is a constant to be chosen. From (5.6), 

+ + z 
e — z. 

-c, 

-n , 
log|r(«) | S Cp{ji,E)-1 + K ^2CRQ-=I-^ + K 

e — z 
for z G Ti H d!2. From (5.5) there exist constants C\ and C2, independent 
of <5, such that for z Ç T3 H <912, 

l o g | 7 » | g Ci +JVlog( |Z | - I ) " 1 

^ Ci+ C2 + N\og\e-iô - z\~\ 

Similar inequalities hold on T2 P\ d!2 and T4 P\ d!2. Thus, C can be chosen 
independently of ô so that u(z) ^ 0 for z £ d!2, s ^ e*'5. 

We now claim that u(z) S 0 for s 6 12. To see this consider the function 

h(z) = Re 
Ue^-zY (* 

— i S \ 2 

• e ) J 

For z £ 0, 

zr 2cos(2arg(e i S - z)) - \z - e " ^ " 2 cos(2 arg(z - e~i5)). 

A (z) S; |(|e«'s 

+ 1* _ -m-2 I-2)-
Now h is harmonic in 12, and so for every e > 0, ve = u — eh is subharmonic 
in 12. We have ve(z) ^ 0 for z £ 612, z ^ £±z'5; and by (5.6), ve is bounded in 12. 
Thus ve ^ 0 for 2 G 12 and for all e > 0. Hence w(s) ^ 0 for s G 12, and the 
lemma follows immediately from this. 

5.10. LEMMA. Let I and T be as in Lemma 5.7 and let N be the order of T. 
Then for \z\ > 1, 

\T{z)\ = 0 ( p ( z , Z ° ( / ) ) - ^ ) , 

Proof. Since T is of order N, 

\T(z)\ = 0(Qz\ - l ) - " - i ) , 

p ( s ,Z0 ( / ) ) ->0 . 

1+. 

By Lemma 5.7 and the obvious estimate on log|5|, there is a constant C0 > 0 
such that 

login*)i ^ Co(i - izi)-i, 2 € £>. 
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Applying Lemma 5.8 to log|r(z)| , there exist constants C, K > 0 such that T 
satisfies (5.6). Application of Lemma 5.9 completes the proof. 

The next lemma (plus Theorem 4.1, Proposition 4.4, and the Hahn-Banach 
Theorem) actually suffices to establish Theorem 5.3 in the case Z°(I) = Zœ(I). 

5.11. LEMMA. Let T G B' have order N. Assume that E, the set of singularities 
of Ty lies in dD. Let I be an ideal in Aœ which is orthogonal to T', and let S be 
the g.c.d. of the singular inner factors of the non-zero functions in I. If 
f = gF £ Aœ, where g G H2, S divides g, F G Aœ, and 

(5.7) \F(z)\ = 0(p(z, £ ) 2 ^ 2 ) , z G D, P(z, E) -> 0, 

then (/, T) = 0. 

Proof. Let G be any function in 4̂°° satisfying (5.7). Then 

(G, T) = lim - - f G(ei6)T(reie) dd = - - f G(eid)T(eid) dd 
r^l+ Z7T t/_7T AIT J-TT 

by the bounded convergence theorem since, by Lemma 5.10, 

\G(eie)T(reie)\ = 0(P(eid, E)2^+2p(reid
y E)-^~2) = 0(1) as r -> 1+. 

By Beurling's invariant subspace theorem [7, p. 99], there exists a sequence 
of functions gn (z I such that gn —> g in H2. Therefore 

(/, T) = (gF, T) = f gFT = lim f gnFT = lim (gnF, T) = 0. 
*J—IT 71 *J — 7T fi 

5.12. Remark. I t is possible to avoid the appeal to Beurling's theorem by 
studying the structure of T(z) in more detail. 

Proof of Theorem 5.3. Let I be a closed ideal in ^4ra and let I0 = S • 7(Z( / ) ) , 
where 5 is the g.c.d. of the singular inner factors of the non-zero functions 
in I. We must show that I = IQ. 

Let 
J = [J0:7] = | / U r a : / I o C / i . 

Now J is a closed ideal; for, if {fn) C J,fn —»/ in Aœ, and g G 70, then/wg G / 
and fng —>fg in ^4°°. Since / is closed, fg G / ; t h u s / G / . 

We claim that Z°(J) C Zœ(7). To show this, choose a G Zn(J) ~ Zn+l{I) 
and take f £ I such that a G Zw(/) ~ Zw+1(/). Let giz) = f(z)(z - a)-n~K 
By Proposition 4.5, g G ^4°°. For h £ I we have, again by Proposition 4.5, 
A(z) = (z - a)n+1H(z), where ff G ,4œ. Hence gh = fH £ I, and so g G / . 
Since g (a) ^ 0, a g Z°(J). 

We also claim that 5j , the g.c.d. of the inner factors of the non-zero functions 
in J, is 1. To see this consider a function / = S F G / . By Theorem 4.1, 
F G Aœ. Let h = SH be a function in J0. Now FA = FSH = fH G J; thus 
F Ç 7. It follows that Sj = 1. 
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Following Theorem 3.3, let {Fn} C. Aœ be a sequence of outer functions 
such that for each n, ZQ(Fn) = Zœ(Fn) = Zœ(I) and for each g G Aœ with 
Zœ(g) D Zœ(I), Fng-+g in Aœ. If we show that Fn G 7, then the theorem 
is proved. For, if jf £ h, then Fnf £ I and Fnf~^f in Aœ which implies that 
f (z I since / is closed. 

To see that Fn £ / , we will apply the Hahn-Banach theorem. Let T belong 
to J1-. Proposition 4.4 implies that each Fn satisfies the hypothesis of 
Lemma 5.11 with respect to T. Therefore (Fn, T) = 0. By the Hahn-Banach 
Theorem, Fn £ J. This completes the proof. 

6. Remarks on the A m case. In this section we point out what our methods 
yield concerning the ideal structure of Am. The analogues of all the lemmas 
of § 5 may be established and, consequently, the structure of the closed ideals 
of Am could be given if an approximation theorem analogous to Theorem 3.3 
could be proved. We do not know how to do this. 

Note that for the algebras Am the zero sets Zn(f), Zn(I) must be defined in 
a slightly different way than for ^4°°. The zero sets Zn(J) may be defined as 
before when n ^ m but for n > m we may only talk about f(n) (z) when 
\z\ < 1. Thus, Zn(f) = {z G D: f^(z) = 0, 0 ^ k g n) is a subset of D, with 
a similar modification for Zn(I), when n > m. 

Our methods then enable us to prove the following. 

6.1. THEOREM. Let I be a closed ideal in Am. If S is the g.c.d. of the singular 
inner factors of the non-zero functions in / , then I contains 

{/ É A'": S\f, f € I(Z(I)), and | / « ( z ) | = 0(p(z, Z»(/))"+»)}. 

As a corollary of Theorem 6.1, we can obtain the following. 

6.2. THEOREM. If I is a closed ideal in Am with Zm(I) f~\ 3D a finite set, then 
I = {/ G Am: S\f and f G I{Z{I))\. 

To prove these theorems, we basically repeat the steps of § 5. There are, 
however, several technical problems which arise and require fairly straight­
forward but lengthy modifications. 
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