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We study the autophoretic motion of a spherical active particle interacting chemically
and hydrodynamically with its fluctuating environment in the limit of rapid diffusion and
slow viscous flow. Then, the chemical and hydrodynamic fields can be expressed in terms
of integrals. The resulting boundary-domain integral equations provide a direct way of
obtaining the traction on the particle, requiring the solution of linear integral equations. An
exact solution for the chemical and hydrodynamic problems is obtained for a particle in an
unbounded domain. For motion near boundaries, we provide corrections to the unbounded
solutions in terms of chemical and hydrodynamic Green’s functions, preserving the
dissipative nature of autophoresis in a viscous fluid for all physical configurations. Using
this, we give the fully stochastic update equations for the Brownian trajectory of an
autophoretic particle in a complex environment. First, we analyse the Brownian dynamics
of particles capable of complex motion in the bulk. We then introduce a chemically
permeable planar surface of two immiscible liquids in the vicinity of the particle and
provide explicit solutions to the chemo-hydrodynamics of this system. Finally, we study
the case of an isotropically phoretic particle hovering above an interface as a function of
interfacial solute permeability and viscosity contrast.
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1. Introduction

Autophoretic motion comprises the propulsion of particles due to self-generated gradients
(Anderson 1989; Paxton et al. 2006; Ebbens & Howse 2010; Moran & Posner 2017),
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typically on an energy scale comparable to that of thermal fluctuations (Batchelor 1976;
Graham 2018). This self-propulsion mechanism allows systems of phoretic particles to
mimic the locomotion of microorganisms (Brennen & Winet 1977; Goldstein 2015),
making them useful in the study of the fundamental principles of motility and collective
behaviour (Palacci et al. 2013; Illien, Golestanian & Sen 2017; Shaebani et al. 2020; Zöttl
& Stark 2023; Kumar et al. 2024). In particular, the study of interactions of autophoretic
particles with nearby boundaries is relevant in micro-fluidics, biophysics and surface
science (Kreuter et al. 2013; Ibrahim & Liverpool 2015; Uspal et al. 2015; Shen, Würger
& Lintuvuori 2018; Thutupalli et al. 2018; Singh, Adhikari & Cates 2019).

Our goal is thus to formulate an effective description in which Brownian motion
and autophoresis of active particles can be studied when suspended in a complex
environment. Models for self-diffusiophoresis typically assume that chemical gradients
generated by the particle induce an osmotic pressure, which is balanced by viscous
stresses driving an effective slip flow confined to a thin layer at the surface of the particle
(Anderson, Lowell & Prieve 1982). This sets the surrounding fluid in motion, with fluid
stresses reacting back on the particle and setting it in motion. To compute the particle
dynamics usually requires solving for the concentration field and the fluid flow in the
bulk, and subsequently obtaining the stresses on the particle by matching all relevant
boundary conditions (Golestanian, Liverpool & Ajdari 2005, 2007). Instead, by using a
boundary-domain integral approach, we directly obtain the concentration distribution and
the resulting traction (force per unit area) on the surface of the particle, obviating the
need for solving the governing equations in the bulk. Compared with more conventional
kinematic approaches (Lighthill 1952; Pak & Lauga 2014), it is then straightforward to
incorporate thermal fluctuations in the surrounding fluid as Brownian stresses on the
particle. The latter have been studied extensively for suspensions of colloidal particles
(Einstein 1905; Zwanzig 1964; Chow 1973; Hinch 1975; Ermak & McCammon 1978;
Ladd 1994; Cichocki et al. 2000; Keaveny 2014; Delmotte & Keaveny 2015; Singh &
Adhikari 2017; Bao et al. 2018; Mozaffari et al. 2018; Elfring & Brady 2022; Turk, Singh
& Adhikari 2022; Westwood, Delmotte & Keaveny 2022), highlighting that any acceptable
approximation of the colloidal diffusion matrix in Brownian dynamics modelling must
remain positive–definite for all physical configurations (Wajnryb, Szymczak & Cichocki
2004; Wajnryb et al. 2013). Based on a Galerkin–Jacobi iterative method, the analytical
expressions we provide naturally satisfy this condition.

The fields generated by and the resulting stresses on autophoretic particles are well
known in an unbounded fluid (Golestanian et al. 2007; Ebbens & Howse 2010; Illien
et al. 2017; Lisicki, Reigh & Lauga 2018), or when confined either by no-slip walls
that are impermeable to the solutes (Crowdy 2013; Ibrahim & Liverpool 2015; Uspal
et al. 2015; Ibrahim & Liverpool 2016; Mozaffari et al. 2016; Daddi-Moussa-Ider et al.
2018; Kanso & Michelin 2019; Singh et al. 2019), or by chemically patterned boundaries
(Uspal et al. 2019). In this paper we formulate a general framework for finding the
full chemo-hydrodynamics of a particle in an arbitrary complex environment in terms
of chemical and hydrodynamic Green’s functions (the fields generated by Dirac delta
function sources; Ladyzhenskaia 1969). Using this, we provide analytically the dynamics
of a phoretic particle in the proximity of a chemically permeable liquid–liquid interface
separating the suspending domain from a second, immiscible liquid phase. Assuming
a large capillary number, we restrict our considerations to a planar interface. This is
particularly relevant for studies on particle aggregation near fluid–fluid interfaces and free
surfaces (Chen et al. 2015; Hokmabad et al. 2022), with a permeable interface being a
plausible model of biofilms and hydrogels (Wichterle & Lím 1960; Berke et al. 2008).
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The rest of the paper is organised as follows. In § 2, we review the chemo-hydrodynamic
problem of autophoresis in a fluctuating environment and its formal solution via the
boundary-domain integral representation of Laplace and Stokes equations. In § 3, we
then use a Galerkin discretisation to project the formal solution onto a basis of tensor
spherical harmonics (TSH), finding an exact and an approximate solution to the full
chemo-hydrodynamic problem far away from and near boundaries, respectively. We
provide the stochastic update equations for thermally agitated autophoresis in complex
environments. In § 4, we apply these equations to the study of three representative
examples. First, we consider systematically patterned particle surfaces, which we confirm
can lead to complex phoretic motion even in the absence of boundaries (Lisicki et al.
2018). We study the effect of thermal fluctuations on the resulting particle motion in a
bulk fluid. In the vicinity of the particle we then introduce the presence of a plane surface
of two immiscible liquids that is permeable to the solutes. For this system, we obtain
explicit forms of the relevant chemical and hydrodynamic connectors. We demonstrate
our analytical results by numerically investigating the chemo-hydrodynamic effects the
interface has on the dynamics of a nearby autophoretic particle. This includes an analysis
of the hovering state of a phoretic particle above an interface as a function of particle
activity, and interfacial properties. We conclude with a brief discussion of our results and
potential future applications thereof in § 5.

2. Chemo-hydrodynamics

We consider a spherical autophoretic particle of radius b, suspended in an incompressible
fluid (∇ · v = 0, where v is the flow field) of viscosity η at low Reynolds number.
Thermal fluctuations of the fluid at equilibrium are modelled by a zero-mean Gaussian
random field ξ , the thermal force acting on the particle, whose variance is given by
a fluctuation–dissipation relation (Zwanzig 1964; Fox & Uhlenbeck 1970; Hauge &
Martin-Löf 1973; Bedeaux & Mazur 1974; Roux 1992). In table 1, we summarise the
differential laws governing the chemo-hydrodynamics of this system. We denote fields
defined on the surface of spherical particles as functions of the radius vector b of the
sphere, where b̂ = b/b is the unit outward normal to the surface, pointing into the fluid
and with b = |b|. We assume a negligibly small Péclet number, thus ignoring distortions
induced by the flow on the solute concentration (Michelin, Lauga & Bartolo 2013;
Morozov & Michelin 2019). Additionally, we assume that solute diffusion takes place on
much shorter time scales than Brownian motion of the autophoretic particle, which in turn
takes place on much shorter time scales than its rigid-body motion. The chemical problem
is then represented by the Laplace equation for the concentration field c, for ideal solutions
equivalent to a divergence-free chemical flux j in (Ia), where D is the solute diffusivity in
the fluid. In (Ic) the normal component of the flux at the surface of the particle jA(b) is
specified.

Surface gradients of the generated concentration field induce a mass transport of solute,
thus driving a fluid flow confined to a thin layer at the surface of the particle. This is
modelled by a slip vA in the chemo-hydrodynamic coupling in (Ig). Here, μc is the
particle-specific phoretic mobility, which incorporates the solute–colloid interactions. We
assume that the solute is uncharged (neutral diffusiophoresis) (Prieve et al. 1984; Velegol
et al. 2016; Yang, Rallabandi & Stone 2019). The slip is incorporated in the velocity
boundary condition in (If), alongside rigid-body motion vD of the particle. Finally, the
particle sets the surrounding fluid in motion (via the slip or rigid-body motion due to
external forces and torques), hydrodynamically interacting with its surroundings via the
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Chemical problem Hydrodynamic problem

∇ · j = 0 (Ia) ∇ · σ + ξ = 0 (Id)
j = −D∇c (Ib) σ = −pI + η(∇v + (∇v)tr) (Ie)

j(R + b) · b̂ = jA(b) (specified) (Ic) v(R + b) = vD(b)+ vA(b) (If)

Chemo-hydrodynamic coupling: vA(b) = χ [c], χ = μc(b)(I − b̂b̂) · ∇ (Ig)

Table 1. Governing differential laws. This table summarises the chemo-hydrodynamic coupling at the surface
of an autophoretic particle, an example of two three-dimensional partial differential equations, namely the
Laplace equation for the concentration field (Ia) and the Stokes equation for the fluid flow and pressure in a
fluid with thermal force density ξ (Id), coupling on a two-dimensional surface only (Melcher & Taylor 1969).
The chemo-hydrodynamic coupling (Ig) leads to the specified active flux jA driving a slip flow vA in a thin
layer at the surface of the particle with specified phoretic mobility μc, finally driving the fluid surrounding
the particle and causing self-propulsion. A passive particle is a rigid sphere of radius b with the boundary
condition: vD(b) = V + Ω × b, where V is the velocity and Ω is the angular velocity of the particle. An
active particle is modelled as a sphere with boundary condition (If), which comprises both slip vA(b) and
rigid-body motion vD(b) (Anderson 1989; Ebbens & Howse 2010).

Stokes equation (Id). Therein, we have defined the Cauchy stress tensor σ , containing
contributions from the isotropic fluid pressure p and from spatial variations in the flow
field. Here I is the identity tensor.

In table 2, we summarise the boundary-domain integral equations (BIEs) corresponding
to the Laplace and Stokes equations, and their formal solution in terms of integral linear
operators. The BIE (IIa) for the concentration at the surface of the particle is given in
terms of a background concentration field c∞(r), the single-layer operator H[ jA] and the
double-layer operator L[c]. This naming convention of the integral operators is by analogy
with potential theory (Jackson 1962; Kim & Karrila 2005). The integral kernels contain
the concentration Green’s function H and its gradient L. Due to linearity of the Laplace
equation, we can find the solution in (IId) for the concentration, containing the operator ζ
for the linear response to a background chemical field and the so-called elastance operator
E . The naming convention of the latter originates from Maxwell, who in his study of the
capacitance of a system of spherical conductors coined the term elastance for the isotropic
part of the tensor E (Maxwell 1881).

The corresponding BIE of fluctuating Stokes flow (IIf) is a sum of the single-layer
operator G[ f ] acting on the surface traction (force per unit area) on the particle, given by
f = σ · b̂, the double-layer operator K[v] (Lorentz 1896; Odqvist 1930; Ladyzhenskaia
1969; Youngren & Acrivos 1975; Zick & Homsy 1982; Pozrikidis 1992; Muldowney &
Higdon 1995; Cheng & Cheng 2005; Leal 2007; Singh, Ghose & Adhikari 2015) and
the Brownian velocity field u[ξ ] (Singh & Adhikari 2017). The integral kernels contain
the Green’s function G of the Stokes equation and the stress tensor K associated with
it. Linearity of the Stokes equation allows us to formally solve the BIE, introducing the
friction operators γ and γ̂ due rigid-body motion and slip, respectively. They can be
distinguished by a non-trivial contribution of the double-layer integral to the latter (Turk
et al. 2022). Finally, the solutions to the chemical and hydrodynamic problems are coupled
via the boundary condition (IIl).

In the following, an autophoretic particle is fully specified by its surface flux jA and
phoretic mobility μc, as indicated in table 1. Our aim is to find its dynamics, governed by
Newton’s laws

mV̇ = F H + F P + F̂ , IΩ̇ = T H + T P + T̂ . (1.1a,b)
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Chemical problem Hydrodynamic problem

1
2 c = c∞ + H[ jA] + L[c] (IIa) 1

2 v = −G[ f ] + K[v] + u[ξ ], (IIf)

H[ jA] = ∫
H(r, r̃)jA(r̃) dS′ (IIb) G[ f ] = ∫

G(r, r̃) · f (r̃) dS′ (IIg)

L[c] = ∫
c(r̃)L(r, r̃) · b̂′ dS′ (IIc) K[v] = ∫

v(r̃) · K(r̃, r) · b̂′ dS′ (IIh)

u[ξ ] = ∫
G(r, r̃) · ξ(r̃) dV ′, (IIi)

c = ( 1
2 − L)−1{[c∞] + H[ jA]} (IId) f = −G−1{[vD] + ( 1

2 I − K)[vA] − u[ξ ]} (IIj)

≡ ζ [c∞] + E[ jA] (IIe) ≡ −γ [vD] − γ̂ [vA] + γ [u[ξ ]] (IIk)

Chemo-hydrodynamic coupling: vA(b) = χ{ζ [c∞] + E[ jA]} (IIl)

Table 2. Governing integral laws. This table summarises the formal solutions to the boundary-domain integral
equations corresponding to the Laplace equation for the concentration c (IIa) and the Stokes equation for
the traction (force per unit area) f (IIf) on the surface of the particle. Here, r, r̃ ∈ S, where r = R + b and
r̃ = R + b′ are the field and source points at the surface S of the particle centred at R, respectively, and

∫
dS′

implies an integration over r̃. In (IId) and (IIj) we give the solutions for the concentration and the traction in
terms of integral linear operators. We have used the fact that rigid-body motion vD lies in the eigenspectrum of
the double-layer operator (IIh) with an eigenvalue −1/2 (Kim 2015). In the formal solutions we have introduced
operators representing the linear response to a background concentration field ζ , the so-called elastance E , the
rigid-body friction γ and the friction due to surface slip γ̂ . Inserting the operator solution for the concentration
in (IIe) into (Ig) in table 1 for the chemo-hydrodynamic coupling at the surface of an autophoretic particle, we
find (IIl) for the surface slip vA(b).

Here, m and I are the particle mass and moment of inertia, respectively, and a dotted
variable implies a time derivative. Body forces and torques are denoted by F P and T P, and
the hydrodynamic and fluctuating contributions are defined in terms of the traction on the
particle

F H =
∫

f H dS, T H =
∫

b × f H dS, F̂ =
∫

f̂ dS, T̂ =
∫

b × f̂ dS, (1.2a–d)

where the total surface traction on the particle is the sum f = f H + f̂ . We define the
hydrodynamic traction due to rigid-body and active interactions as f H and the Brownian
traction due to thermal fluctuations in the fluid as f̂ such that

f H = −γ
[
vD
]

− γ̂
[
vA
]
, f̂ = γ

[
u
[
ξ
]]
. (1.3a,b)

It is known that the latter are zero-mean random variables with variances fixed by a
fluctuation–dissipation relation (Zwanzig 1964; Chow 1973). By linearity of the governing
equations, the hydrodynamic and Brownian contributions can be solved for independently
and the fluid degrees of freedom can be eliminated exactly, yielding the Brownian
dynamics of the active particle.

3. Solution in an irreducible basis

In this section, we write the formal solutions to Laplace and Stokes equations in table 2,
(IIe) and (IIk), in an irreducible basis, thus transforming the integral operator equations
into linear systems, for which we give explicit solutions. We choose a basis of TSH,
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defined by

Y(l)α1...αl
(b̂) = (2l − 1)!!Δ(l)α1...αl,β1...βl

b̂β1 . . . b̂βl = (−1)l bl+1 ∇α1 . . .∇αl

1
b
, (3.1)

where Δ(l) is a rank-2l tensor, which projects a tensor of rank-l onto its symmetric and
traceless part (Hess 2015).

3.1. Chemical problem
To project (IIe) for the concentration at the surface of the particle onto a linear system, we
expand the boundary fields

c(b) =
∞∑

q=0

wqC(q) � Y (q)(b̂), jA(b) =
∞∑

q=0

w̃qJ (q) � Y (q)(b̂). (3.2a,b)

The product denoted by � implies a maximal contraction of Cartesian indices (a q-fold
contraction between a tensor of rank-q and another one of higher rank) and we have defined

wq = 1
q! (2q − 1)!!

, w̃q = 2q + 1
4πb2 . (3.3a,b)

The expansion coefficients C(q) and J (q) are symmetric and traceless tensors of rank-q.
The background concentration field c∞(b) at the surface of the particle is expanded in an
analogous manner to c(b), with coefficients denoted by C∞(q). Linearity of the Laplace
equation implies that the general solution in a basis of TSH can be written as

C(q) = ζ (q,q
′) � C∞(q′) + E(q,q′) � J (q

′), (3.4)

corresponding to (IIe), where the task now is to find the connecting tensors ζ (q,q
′) and

E(q,q′). In Appendix A, starting from the BIE for the surface concentration and using a
Galerkin–Jacobi iterative method, we outline how to find approximate solutions, in leading
powers of distance between the particle and surrounding boundaries, for these tensors in
terms of a given Green’s function H of Laplace equation (Singh et al. 2019).

Any Green’s function H of Laplace equation can be written as the sum

H(R, R̃) = Ho(r)+ H∗(R, R̃), (3.5)

with r = R − R̃, where R and R̃ are the field and the source point, respectively. Here,
Ho(r) = 1/4πDr is the fundamental solution of Laplace equation in an unbounded
domain. On the other hand, H∗ is an extra contribution needed to satisfy additional
boundary conditions in the system. For the unbounded case, where H = Ho(r), the
single-layer and double-layer operators in (IIb) and (IIc) have singular integral kernels.
However, due to translational invariance they can be evaluated using Fourier techniques,
see Appendix A.1. We find that both integral operators diagonalise simultaneously in a
basis of TSH, yielding

ζ (q,q
′) = ζq I(q,q

′), E(q,q′) = Eq I(q,q
′), (3.6a,b)

where

ζq = 2q + 1
q + 1

, Eq = b
D

w̃q

wq

1
q + 1

, (3.7a,b)

and I(q,q
′) is a tensor with elements δqq′ , where the latter denotes a Kronecker delta.

The expression for the elastance Eq is confirmed by previous results obtained by first
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solving the Laplace equation in the fluid volume and subsequently matching the boundary
condition (Ic) for the surface flux (Jackson 1962; Golestanian et al. 2007). If the system
contains additional boundaries, we find corrections to these diagonal expressions in terms
of derivatives of H∗. To leading order, this yields

ζ (q,q
′) = ζq

(
I(q,q

′) + 4πbDwq′
q′

q′ + 1
bq+q′∇(q)∇̃(q′)H∗(R, R̃)

)
, (3.8)

where ∇(q)
α1...αq = ∇α1 . . .∇αq , and where we have introduced the short-hand notation

∇R = ∇ for derivatives with respect to the field point and ∇R̃ = ∇̃ for the source point.
Similarly, we find for the elastance

E(q,q′) = Eq

(
I(q,q

′) + 4πbDwq
2q′ + 1
q′ + 1

bq+q′∇(q)∇̃(q′)H∗(R, R̃)
)
. (3.9)

In these expressions, the point of evaluation, R = R̃, for the one-body problem, is left
implicit for brevity.

3.2. Hydrodynamic problem and Brownian motion
Using the linearity of Stokes flow we solve for the hydrodynamic traction f H in a
basis of TSH. Upon eliminating the hydrodynamic problem, Newton’s equations (1.1a,b)
will reveal the Brownian motion of an active particle. First, to find the linear system
corresponding to (IIk), we expand the slip and the hydrodynamic traction in a basis of
TSH

vA(b) =
∞∑

l=1

wl−1V (l) � Y (l−1)(b̂), f H(b) =
∞∑

l=1

w̃l−1F (l) � Y (l−1)(b̂). (3.10a,b)

The coefficients V (l) and F (l) are rank-l tensors, symmetric and traceless in their last
l − 1 indices. They can be decomposed into irreducible representations, denoted by
V (lσ) (or F (lσ) for the traction moments), where V (ls) (symmetric and traceless), V (la)

(anti-symmetric) and V (lt) (trace) are irreducible tensors of ranks l, l − 1 and l − 2,
respectively (Singh et al. 2015). For slip restricted by mass conservation only, obeying∫

vA · b̂ dS = 0, these irreducible components of V (l) (and F (l)) are independent of each
other. In terms of the common definitions for the velocity and angular velocity of an active
particle in an unbounded domain (Anderson & Prieve 1991; Stone & Samuel 1996; Ghose
& Adhikari 2014)

VA = − 1
4πb2

∫
vA(b) dS, ΩA = − 3

8πb3

∫
b̂ × vA(b) dS, (3.11a,b)

we have V (1s) = −VA and V (2a)/2b = −ΩA. Similarly, we have, for the hydrodynamic
force and torque defined in (1.1a,b), F (1s) = F H and F (2a) = (1/b)T H .

Linearity of the Stokes equation then allows us to write down the deterministic part of
(IIk) in a basis of TSH

F (lσ) = −γ (lσ,1s) · V − γ (lσ,2a) · Ω − γ̂ (lσ,l
′σ ′) � V (l′σ ′), (3.12)

where γ (lσ,l
′σ ′) and γ̂ (lσ,l

′σ ′) are generalised friction tensors for rigid-body motion and
slip, respectively. For the modes corresponding to rigid-body motion, it is known that
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γ (lσ,1s) = γ̂ (lσ,1s) and γ (lσ,2a) = γ̂ (lσ,2a) (Singh & Adhikari 2018; Turk et al. 2022).
Therefore, we can write for the hydrodynamic force and torque

(
F H

T H

)
= −Γ ·

(
V − VA

Ω − ΩA

)
−

∑
lσ=2s

Γ̂ (lσ) � V (lσ),

with Γ =
(

γ TT γ TR

γ RT γ RR

)
, Γ̂ (lσ) =

(
γ̂ (T,lσ)

γ̂ (R,lσ)

)
(3.13)

where the superscripts T and R imply lσ = 1s, 2a, respectively, to confirm with existing
literature (Ladd 1988). The matrix Γ contains the friction on the particle due to rigid-body
motion, and Γ̂ (lσ) contains the friction due to higher modes of slip. This concludes the
solution of the hydrodynamic problem without fluctuations.

In a thermally fluctuating fluid, the Brownian forces and torques obey the
fluctuation–dissipation relations (Einstein 1905; Zwanzig 1964; Chow 1973; Singh &
Adhikari 2017)〈(

F̂ (t)
T̂ (t)

)〉
= 0,

〈(
F̂ (t)
T̂ (t)

)(
F̂ (t′)
T̂ (t′)

)tr〉
= 2kBT Γ δ(t − t′), (3.14a,b)

where angled brackets denote ensemble averages, kB is the Boltzmann constant and T
is the temperature, while the transpose is defined as (Aαβ)tr = Aβα . Inserting the above
equations for the deterministic and stochastic forces and torques into Newton’s equations
(1.1a,b) yields the Langevin equation(

mV̇
IΩ̇

)
=
(

F P

T P

)
− Γ ·

(
V − VA

Ω − ΩA

)
−

∑
lσ=2s

Γ̂ (lσ) � V (lσ) +
√

2kBT Γ ·
(

ξT

ξR

)
. (3.15)

The parameters ξα are random variables with zero mean and unit variance. In the inertial
equation (3.15) the noise is not multiplicative since Γ is configuration dependent, but not
velocity dependent. With the particle centre of mass R and its unit orientation vector e (its
orientation is governed by the rotational dynamics Θ̇ = Ω , where Θ is an arbitrary set of
angles), we can find its Brownian trajectory by integrating

Ṙ = V , ė = Ω × e, (3.16a,b)

over time. In colloidal systems the inertia of both the particles and the fluid are typically
negligible. This corresponds to the Smoluchowski limit of (3.15). Adiabatic elimination
of the momentum variables in phase space then directly leads to the following update
equations in Itô form (Ermak & McCammon 1978; Gardiner 1984; Wajnryb et al. 2004;
Volpe & Wehr 2016):

R(t +	t) = R(t)+	R̂

+
{

VA + μTT · F P + μTR · T P +
∑

lσ=2s

π(T,lσ) � V (lσ) + kBT ∇̃ · μTT
}
	t, (3.17a)

e(t +	t) = e(t)+	ê

+
{
ΩA + μRT · F P + μRR · T P +

∑
lσ=2s

π(R,lσ) � V (lσ) + kBT ∇̃ · μRT
}
	t × e(t),

(3.17b)
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Fluctuating hydrodynamics of an autophoretic particle

with 	ê = 	Θ̂(t)× e(t)+ 1
2	Θ̂(t) · [e(t)	Θ̂(t)−	Θ̂(t)e(t)], while

〈(
	R̂
	Θ̂

)〉
= 0,

〈(
	R̂
	Θ̂

)(
	R̂
	Θ̂

)tr〉
= 2kBT M	t. (3.18a,b)

It is clear that the grand mobility matrix M and the grand propulsion tensor Π(lσ) satisfy

M =
(

μTT μTR

μRT μRR

)
= Γ −1, Π(lσ) =

(
π(T,lσ)

π(R,lσ)

)
= −M · Γ̂ (lσ). (3.19a,b)

Onsager–Casimir symmetry implies symmetry of the mobility matrix, and we can
identify the so-called propulsion tensors as π(α,lσ) = −μαT · γ̂ (T,lσ) − μαR · γ̂ (R,lσ),with
α ∈ {T,R} (Singh & Adhikari 2018). The convective terms in the update equations
constitute the thermal drift, which arises from a simple forward Euler integration scheme
of the Langevin equations. The occurring derivative ∇̃ is the standard spatial gradient
(with respect to the source point). If the mobilities depend on the particle orientation,
additional orientational convective terms must be included. For the spherical particles
considered here, however, these terms do not contribute. The quadratic term in 	Θ in 	ê
is needed to preserve the condition |e| = 1, as discussed in Makino & Doi (2004) and De
Corato et al. (2015).

As the Stokes equation defines a dissipative system, any acceptable approximation of M

must remain positive–definite for all physical configurations, e.g. when a simulated particle
does not overlap with nearby boundaries (Cichocki et al. 2000). In Appendix B, starting
from the BIE of Stokes flow and using a Galerkin–Jacobi iterative method, we outline
how to find such solutions, in principle to arbitrary accuracy in the distance between the
particle and surrounding boundaries, for the mobility and propulsion tensors in terms of
the Green’s function G of Stokes flow. For this, we write the Green’s function as the sum
(Smoluchowski 1911)

G(R, R̃) = Go(r)+ G∗(R, R̃), (3.20)

where r = R − R̃, and Go(r) = (I + r̂r̂)/8πηr is the Oseen tensor for unbounded
Stokes flow (Oseen 1927; Pozrikidis 1992). The term G∗ is the correction necessary
to satisfy additional boundary conditions in the system. In the unbounded domain,
where G = Go(r), the mobility matrix M diagonalises and the propulsion tensors vanish
identically,

μTT = μT I, μR = μR I, μTR = μRT = 0, π(α,lσ) = 0. (3.21a–d)

Here, μT = (6πηb)−1 and μR = (8πηb3)−1 are the well-known mobility coefficients for
translation and rotation of a sphere of radius b in an unbounded fluid of viscosity η (Stokes
1850). For a system containing additional boundaries, we obtain corrections to the above
expressions in terms of derivatives of G∗. As shown in the Appendix, to leading order in
the Jacobi iteration the mobilities are

μTT = μT

(
I + 6πηbF0F̃0G∗

)
, μTR = 1

2F0 ∇̃ × G∗, μRR = μR I + 1
2∇ × μTR,

(3.22a–c)

where we have defined the differential operators F l = (
1 + b2/(4l + 6)∇2) and

F̃ l = (
1 + b2/(4l + 6)∇̃2).
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G. Turk, R. Adhikari and R. Singh

Governed by the particle’s activity, we choose to retain the leading symmetric and
polar modes of the slip. As demonstrated in the next section, this requires the following
propulsion tensors:

π(T,2s) = 10πηb2

3 F0F̃1
[
∇̃G∗ +(∇̃G∗)tr

]
, π(T,3t) = −2πηb3

5 F0∇̃2G∗,

π(T,4t) = −2πηb4

63 F0∇̃∇̃2G∗, (3.23a–c)

given to leading order in the Jacobi iteration. The structure of the problem implies that
π(R,lσ) = 1

2 (∇ × π(T,lσ)). To the given order these have been first obtained in Singh &
Adhikari (2018).

3.3. Chemo-hydrodynamic coupling and resulting propulsion
We now consider the boundary condition (IIl), coupling the hydrodynamic to the chemical
problem. We observe that the differential operator χ defined in (Ig) implies tangential
slip such that b̂ · vA = 0, i.e. chemical gradients at the surface of the particle can only
drive tangential slip flows. Satisfying this condition, we write the tangential modes in the
expansion of the slip in (3.10a,b) with a subscript s as V (lσ)

s . In order to obey the tangential
slip condition, the symmetric and trace modes of the slip expansion coefficients have to
satisfy

V ([l+2]t)
s = −l(2l + 3)V (ls)

s . (3.24)

This means that, whenever a V (ls)
s mode is generated, a V ([l+2]t)

s mode of strength given by
(3.24) will be generated too. For the anti-symmetric modes V (la)

s there is no such condition
as they produce tangential slip flow by definition (Singh et al. 2015).

Finally, to express the boundary condition (Ig) in a basis of TSH, we expand the phoretic
mobility as

μc(b) =
∞∑

q=0

w̃qM (q) � Y (q)(b̂). (3.25)

The coefficients M (q) are symmetric and traceless tensors of rank-q. This yields the linear
system corresponding to (IIl)

V (lσ)
s = χ (lσ,q) � C(q). (3.26)

The coupling tensor χ (lσ,q) is given in Appendix A.3, and satisfies χ (lσ,0) = 0, i.e. a
uniform surface concentration does not induce slip.

In principle, any form of tangential slip can be generated by the chemo-hydrodynamic
coupling in (3.26). Here, we only consider the leading polar (V (3t)

s ), chiral (V (2a)
s ) and

symmetric (V (2s)
s ) modes. Using (3.24), we can identify

VA = −V (1s)
s = 1

5 V (3t)
s , 2bΩA = −V (2a)

s , V (2s)
s = − 1

14 V (4t)
s . (3.27a–c)

In the following, we therefore parametrise polar, chiral and symmetric slip by VA, ΩA
and V (2s)

s , respectively. With this, the propulsion terms in the update equations (3.17) are

∑
lσ=2s

Π(lσ) � V (lσ) = 5
(

π(T,3t)

π(R,3t)

)
· VA +

(
π(T,2s) − 14π(T,4t)

π(R,2s) − 14π(R,4t)

)
: V (2s)

s , (3.28)
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Fluctuating hydrodynamics of an autophoretic particle

for an autophoretic particle, and (3.26) yields

VA = − 1
4πb3

∞∑
q=1

[
q + 1

2q + 1
M (q−1) − q(q + 1)M (q+1)

]
� C(q), (3.29a)

ΩA = − 3
8πb4

∞∑
q=1

qM (q) ×′ C(q), (3.29b)

V (2s)
s = 3

4πb3

∞∑
q=1

[
q + 1

4q2 − 1
M (q−2) + 3q

2q + 3
M (q)

sym − q(q + 1)(q + 2)M (q+2)
]

� C(q).

(3.29c)

For brevity, we have left the solution for C(q) of (3.4) implicit. Here, we have defined
a cross-product for irreducible tensors as (M (q) ×′ C(q))α = εαβγM(q)

β(Q−1)C
(q)
γ (Q−1) and

a symmetric and traceless product contracting (q − 1) indices, (M (q)
sym � C(q))αβ =

Δ
(2)
αβ,α′β ′M

(q)
α′(Q−1)C

(q)
β ′(Q−1), where we have used the short-hand notation Q = γ1γ2 . . . γq for

Cartesian indices (Damour & Iyer 1991).

4. Applications

In this section, we demonstrate the methodology introduced thus far with the help of
three examples. First, we discuss model design to achieve certain types of motion and
the effect of thermal fluctuations in the bulk fluid. With the help of the appropriate
Green’s functions, we then provide the chemical and hydrodynamic connectors necessary
to describe the dynamics of a phoretic particle near a plane, chemically permeable
surface of two immiscible liquids. In a representative example, we investigate some
of the chemo-hydrodynamic effects this interface has on the motion of a self-rotating
autophoretic particle. Finally, we discuss the hovering state of an isotropic chemical source
particle above an interface as a function of particle activity, and the chemo-hydrodynamic
properties of the interface.

We use the following notation for the uniaxial parameterisation of the qth modes of the
phoretic mobility and surface flux:

M (q) = MqY (q)(pq), J (q) = JqY (q)(eq). (4.1a,b)

Here, Mq and Jq are constants representing the strength of the qth mode, while pq and eq
are unit vectors.

4.1. Programmed Brownian motion in the bulk
In the bulk, far away from boundaries, we can simplify (3.17). First, we non-dimensionalise
the equations by rescaling velocities by the speed of a particle with constant phoretic
mobility, namely 4πb2 V = μcJ1/D. Angular velocities are rescaled by V/b. Renaming
rescaled variables such that (3.16a,b) reads the same, we obtain

∂tR = VA +
√

2DT ξT , ∂te =
(
ΩA +

√
2DR ξR

)
× e, (4.2a,b)

where for a spherical body in an unbounded fluid the translational diffusivity
DT = B/6 and the rotational diffusivity DR = B/8 are isotropic and defined in terms of
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the Brown number

B = kBT
πηb2V

, (4.3)

the ratio of Brownian to hydrodynamic forces. Analogously, a particle Péclet number can
be defined by Pe = 1/B (Mozaffari et al. 2018). For a model including modes up to second
order in both the phoretic mobility and the flux expansion, the velocity and angular velocity
read

VA = −e1 + 3m2
[
3p2

(
p2 · e1

)− e1
]− 6m1j2

[
3e2

(
e2 · p1

)− p1
]
, (4.4a)

ΩA = −9
4 m1

(
p1 × e1

)− 270m2j2
(
p2 · e2

) (
p2 × e2

)
, (4.4b)

where mi = Mi/M0 and j2 = J2/J1. As will be convenient later, we define the angles
e1 · pi = cosαi, e1 · e2 = cosβ and e2 · p2 = cos γ . Without loss of generality, we choose
e1 as the orientation of the particle. This constitutes a minimal model capable of modelling
the five distinct types of motion (Lisicki et al. 2018): (i) pure translation, (ii) pure rotation
(spinning), (iii) parallel rotation and translation, (iv) perpendicular rotation and translation
(circular swimming) and (v) helical motion. In the following we briefly discuss particle
designs for each type of motion and analyse how thermal noise affects the dynamics by
computing the mean-squared displacement (MSD)

〈
	r2(t)

〉 = 〈
[r(t)− r(0)]2〉 of selected

examples.
Pure translation is the simplest kind of motion and is achieved by choosing

m1 = m2 = j2 = 0. The update equations are those of an active Brownian particle (ABP)
with swimming direction −e1

R(t +	t) = R(t)− e1	t +
√

2DT	W T , (4.5a)

e1(t +	t) = e1(t)+
√

2DR	W R × e1(t), (4.5b)

where 	W T and 	W R are increments of mutually independent Wiener processes
(Gardiner 1985). In figure 1(a), we show the simulated (markers) and theoretical (dashed
lines) MSDs for such a particle at various temperatures. The MSD for an ABP is known
exactly and is given by (Fodor & Marchetti 2018)〈

	r2(t)
〉
tra

= 6 (DT + DA) t + 2(Vτ)2
(
e−t/τ − 1

)
, (4.6)

where DA = μTV2τ/3 is the active diffusion coefficient and τ−1 = 2DR is the persistence
time due to rotational noise. The persistence time indicates a transition from a ballistic to a
diffusive dynamics, clearly visible in the figure. In the limit of zero temperature, i.e. B = 0,
the MSD reduces to 〈

	r2(t)
〉B=0

tra
= (Vt)2, (4.7)

as indicated in the figure.
A spinning particle (pure rotation) can be modelled by choosing α2 = π/2, m2 = −1/3

and j2 = 0 while sinα1 /= 0. This is captured by the update equations

R(t +	t) = R(t)+
√

2DT	W T , (4.8a)

e1(t +	t) = e1(t)+ 9
4 m1

(
p1(t)− e1(t) cosα1

)
	t +

√
2DR	W R × e1(t). (4.8b)

Additional translation parallel to rotation, on the other hand, occurs for the parameter
values α1 = 0, α2 = β = π/2 and sin(2γ ) /= 0, with e1 as the translation and rotation axis
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Figure 1. Mean-squared displacement of the programmed Brownian motion of an autophoretic particle. In
panels (a–c) we compare the non-dimensionalised MSDs of translational, circular and helical swimming
computed for Brownian simulations with their theoretical predictions (see the main text for the latter) at various
temperatures characterised by a particle Péclet number Pe. We define Pe = ∞ (no noise), Pe = 100 (moderate
noise) and Pe = 10 (strong noise) following Mozaffari et al. (2018). For all three types of motion a diffusive
regime ∼t can be identified above a certain persistence time broadly determined by the amount of rotational
diffusivity. The insets show the respective trajectories over an arbitrary time T in the limit of zero temperature.

of the update equations

R(t +	t) = R(t)− e1
[
1 + 3m2 − 6m1j2

]
	t +

√
2DT	W T , (4.9a)

e1(t +	t) = e1(t)+
√

2DR	W R × e1(t). (4.9b)

Circular swimming (perpendicular rotation and translation) is obtained by choosing
m2 = j2 = 0 and sinα1 /= 0. For such a self-rotating circle swimmer one can compute
the MSD exactly if the Brownian motion is confined to the plane perpendicular to ΩA
(van Teeffelen & Löwen 2008)〈
	r2(t)

〉
circ

= 2λ2
{
Ω2 − D2

R + DR(D2
R +Ω2)t + e−DRt

[
(D2

R −Ω2) cosΩt − 2DRΩ sinΩt
]}

+ 4DTt, (4.10)

where λ = V/(D2
R +Ω2). Here, Ω represents the circular frequency. In the limit of zero

temperature, this reduces to

〈
	r2(t)

〉B=0

circ
= 2

(
V
Ω

)2

(1 − cosΩt), (4.11)

where V/Ω is the radius of the circular motion. Since in this case we can restrict our
attention to the x–z plane, we can define the planar polar angle ϑ such that e1 = cosϑ x̂ +
sinϑ ẑ. The update equations then take the simplified form

x(t +	t) = x(t)− cosϑ	t +
√

2DT	Wx, (4.12a)

z(t +	t) = z(t)− sinϑ	t +
√

2DT	Wz, (4.12b)

ϑ(t +	t) = ϑ(t)+ 9
4 m1 sinα1	t +

√
2DR	Wϑ, (4.12c)

where 	Wx, 	Wz and 	Wϑ are increments of mutually independent Wiener processes.
In figure 1(b) we compare the MSD obtained from simulations with the theoretical
expressions.
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Helical motion occurs for all other parameter values, representing a general
non-axisymmetric phoretic particle. A simple example is given by choosing j2 = 0 and
cosβ /= 0. The corresponding update equations are

R(t +	t) = R(t)+ (
9m2p2 cosβ − e1 (1 + 3m2)

)
	t +

√
2DT	W T , (4.13a)

e1(t +	t) = e1(t)+ 9
4 m1

(
p1(t)− e1(t) cosα1

)
	t +

√
2DR	W R × e1(t). (4.13b)

At zero temperature, the pitch angle ψ of the resulting helix is given by the simple
expression

VA∣∣VA∣∣ · ΩA∣∣ΩA∣∣ = − 9m2 sin(2β)

2
√

1 + m2(6 − cos2 β)+ 3m2
2(3 − 26 cos2 β)

= cosψ. (4.14)

In figure 1(c) we approximate the corresponding MSD by a superposition of translational
and circular Brownian motion discussed in the previous paragraphs such that〈

	r2(t)
〉
hel

=
〈
	r2(t)

〉V⊥

tra
+
〈
	r2(t)

〉V‖

circ
− 4DTt, (4.15)

where the last term is introduced to avoid accounting for translational noise twice. The
superscripts of the MSD terms indicate which component of the velocity enters the
respective terms. Here, V⊥ is the component of the velocity perpendicular to the plane
of the circular motion, and V‖ the component within that plane. Naturally, in the limit of
zero temperature this reduces to the exact deterministic MSD for a helix

〈
	r2(t)

〉det

hel
= (V⊥t)2 + 2

(
V‖
Ω

)2

(1 − cosΩt). (4.16)

There is good agreement between this approximation and the MSD computed from
simulated Brownian trajectories. Compared with the MSD of an ABP in figure 1(a), a
kink indicating the period 2π/Ω of the circular part of the motion is clearly visible.

4.2. Autophoresis near a permeable interface
We now introduce a plane surface of two immiscible liquids of viscosity ratio λ f = η2/η1
and solute diffusivity ratio λc = D2/D1 in the vicinity of the particle, see figure 2.
The interface is characterised by the Green’s functions in table 3. Here, H satisfies the
boundary condition of continuous normal flux ẑ · j(1) = ẑ · j(2) across the interface, and G
arises from the boundary conditions of continuous tangential flow v

(1)
ρ = v

(2)
ρ , vanishing

normal flow v
(1)
z = v

(2)
z = 0 and continuous tangential stress η1σ

(1)
ρz = η2σ

(2)
ρz across the

interface, where the index ρ = x, y lies in the plane of the interface (Jones, Felderhof &
Deutch 1975; Aderogba & Blake 1978). The superscripts label whether the quantity of
interest is above or below the interface, where (1) refers to the positive half-space z > 0.

To discuss the chemo-hydrodynamic effect a plane interface has on autophoresis and
Brownian motion, we choose a simple non-axisymmetric particle model. We truncate
the expansions of the phoretic mobility and surface flux each at linear order and choose
J0/3 = J1 = J, so that the particle has one inert pole (jA = 0) and one active pole (jA > 0
(jA < 0) for J > 0 (J < 0), corresponding to a source (sink) of chemical reactants).
This is a first-order approximation to a Janus swimmer so that for J > 0 we have an
inert-side-forward swimmer. We define e1 · p1 = cosα, where as before, e1 shall serve as
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e1

h

η1, D1

η2, D2

ϑ

x̂, ‖

ẑ, ⊥

b

Figure 2. Half-coated phoretic particle near the surface of two immiscible liquids. Schematic representation of
a half-coated phoretic particle (Janus particle) of radius b and with orientation e1 at a height h above an interface
of viscosity ratio λ f = η2/η1 and diffusivity ratio λc = D2/D1. The latter effectively measures how permeable
the interface is to the solutes, where λc = 0 implies an impermeable and λc = 1 a perfectly permeable interface.
Due to the cylindrical symmetry of the system we can restrict our attention to the x–z plane, where the symbols
‖ and ⊥ imply motion parallel and perpendicular to the interface, respectively.

Region Chemical Green’s function Hydrodynamic Green’s function

z > 0 H(R, R̃) = Ho(r)+ 1 − λc

1 + λc Ho(r∗) Gαβ(R, R̃) = Go
αβ(r)+ M f

βγGo
αγ (r

∗)

−2h
λ f

1 + λ f ∇∗
γGo

αz(r
∗)Mβγ

+h2 λ f

1 + λ f ∇∗2Go
αγ (r

∗)Mβγ

z < 0 H(R, R̃) = 2λc

1 + λc Ho(r) Gαβ(R, R̃) = λ f

1 + λ f [2δβρGo
αρ(r)]

−2h∇βGo
αz(r)− h2∇2Go

αβ(r)]

Table 3. Green’s functions for a plane interface. The Green’s functions for the concentration (Laplace
equation, left) and velocity (Stokes equation, right) fields near a plane, chemically permeable fluid–fluid
interface of solute diffusivity ratio λc = D2/D1 and viscosity ratio λ f = η2/η1 at z = 0 are given. The
particle is in the positive half-space z > 0, where the solute diffusivity is D1 and the fluid viscosity is η1.
We use r = R − R̃ and r∗ = R − R̃∗, with the field point R = (x, y, z)tr , the source point R̃ = (x̃, ỹ, z̃)tr

and the relation R̃∗ = M · R̃ between the physical position vector R̃ and the position vector of the image
singularities R̃∗. The height of the centre of the particle above the interface is z̃ = h. With this, we have
R̃ − R̃∗ = (0, 0, 2h)tr. We define ∇∗ = ∇r∗ , M f

βγ = ((1 − λ f )/(1 + λ f ))δβρδργ − δβzδzγ , the mirroring
operator Mβγ = δβρδργ − δβzδzγ and the index ρ = x, y in the plane of the interface.

the orientation of the particle. For sinα /= 0 the particle is capable of phoretic self-rotation,
see the discussion on circular swimming in the previous section.

We choose to truncate the generated concentration field at the surface of the particle
at second order with the coefficients determined by (3.4). Since slip is proportional to
gradients in the surface concentration we can ignore the terms ζ (0,q), ζ (q,0) and E(0,q).
Cylindrical symmetry of the system can then be used to write the remaining non-zero
chemical tensors in terms of scalar coefficients, which are given in table 4. For simplicity,
we assume the absence of any background concentration field.

The induced slip sets the surrounding fluid in motion. The fluid then reacts back
on the particle and causes rigid-body motion, governed by the equations of motion in
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Tensors Scalar coefficients

ζ (1,1) ζ
(1,1)
‖ = ζ1[1 + 1

16Λ
cĥ−3], ζ

(1,1)
⊥ = ζ1[1 + 1

8Λ
cĥ−3]

E (1,0) E (1,0) = − 1
4E1Λ

cĥ−2

E (1,1) E (1,1)‖ = E1[1 + 3
16Λ

cĥ−3], E (1,1)⊥ = E1[1 + 3
8Λ

cĥ−3]

E (2,0) E (2,0) = − 1
48E2Λ

cĥ−3

E (2,1) E (2,1) = − 3
64E2Λ

cĥ−4

Table 4. Chemical coefficients. Scalar coefficients for the linear response to a background concentration
field and for the elastance tensors with Λc = (1 − λc)/(1 + λc), where λc = D2/D1, and the height above
the interface ĥ = h/b. We have used the exact unbounded coefficients in (3.6a,b) such that ζ1 = 3/2,
E1 = 3/8πbD1 and E2 = 5/2πbD1. Cylindrical symmetry of the system implies, for the coupling to a
linear background concentration field, ζ (1,1) = (I − ẑẑ) ζ (1,1)‖ + ẑẑ ζ (1,1)⊥ . The relevant elastance tensors are

E (1,0) = ẑ E (1,0), E (1,1) = (I − ẑẑ)E (1,1)‖ + ẑẑ E (1,1)⊥ , E (2,0) = −(3ẑẑ − I)E (2,0) and E (2,1)αβγ = E (2,1)[(δγα −
δγ zδαz)δβz + (δγβ − δγ zδβz)δαz + (3δβzδαz − δαβ)δγ z].

(3.17), mediated by mobility and propulsion tensors. Again, the cylindrical symmetry
of the system allows us to write the mobility and propulsion tensors in terms of scalar
coefficients, summarised in table 5.

The full set of mobility coefficients for a wall, a free surface or, indeed, a fluid–fluid
interface have been obtained in the literature to a high degree of accuracy (Brenner 1961;
Goldman, Cox & Brenner 1967; Felderhof 1976; Lee, Chadwick & Leal 1979; Lee & Leal
1980; Perkins & Jones 1990, 1992). In Appendix C we show that, for the plane boundary,
the diffusion terms ∝ √

2kBT M in (3.17) take a particularly simple analytic form and that,
with the coefficients given in table 5, this diffusion matrix is inherently positive–definite
for all physical configurations. The propulsion tensors are a unique feature of active
particles and have not been obtained in this form in the literature before.

Assuming there is no external torque rotating the particle out of plane, i.e. T P · ẑ = 0, we
can once again restrict our attention to the x–z plane for which we define the planar polar
angle ϑ such that e1 = cosϑ x̂ + sinϑ ẑ. Autophoretic particles in typical experiments are
neither force nor torque free due to mismatches between particle and solvent densities and
between gravitational and geometric centres (Drescher et al. 2010; Ebbens & Howse 2010;
Palacci et al. 2010, 2013; Buttinoni et al. 2013). Since the resulting forces and torques
become dominant, at long distances, over active contributions, it is crucial to include their
effects in our analysis. In simulating (3.16a,b) we therefore assume a bottom-heavy Janus
particle (the chemically active coating, blue in figures, is assumed to be slightly heavier
than the inert side, white in figures). Therefore, we have to take into account gravity in
negative z-direction and a gravitational torque given by

F P = −mgẑ, T P = κ(ẑ × e) = κ cosϑ ŷ, (4.17a,b)

with m the buoyancy-corrected mass of the particle, g the gravitational constant and κ a
constant parametrising bottom heaviness. Inserting this into the update equations (3.17)
with R = (x, y, h)tr, where h(t) is the height of the particle above the boundary, we can
now simulate the time evolution of this bottom-heavy, non-axisymmetric phoretic particle.
In figure 3 we show typical trajectories near a free surface (e.g. an air–water surface) and
a fluid–fluid interface of λ f = 50 (e.g. an oil–water interface). We probe the effect of the
nearby boundary on the dynamics of the autophoretic particle by truncating the dynamical
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Tensors Scalar coefficients

μTT μTT
‖ = μT

[
1 + 3(2 − 3λ f )

16(1 + λ f )
ĥ−1 + 1 + 2λ f

16(1 + λ f )
ĥ−3 − λ f

16(1 + λ f )
ĥ−5

]

μTT
⊥ = μT

[
1 − 3(2 + 3λ f )

8(1 + λ f )
ĥ−1 + 1 + 4λ f

8(1 + λ f )
ĥ−3 − λ f

8(1 + λ f )
ĥ−5

]

μRR μRR
‖ = μR

[
1 + 1 − 5λ f

16(1 + λ f )
ĥ−3

]

μRR
⊥ = μR

[
1 + 1 − λ f

8(1 + λ f )
ĥ−3

]

μTR μTR = 1
6πηb2

[
− 3

16(1 + λ f )
ĥ−2 + 3λ f

32(1 + λ f )
ĥ−4

]

π(T,2s) π
(T,2s)
1 = 5λ f

16(1 + λ f )
ĥ−2 − 1 + 3λ f

12(1 + λ f )
ĥ−4 + 5λ f

48(1 + λ f )
ĥ−6

π
(T,2s)
2 = −5(2 + 3λ f )

48(1 + λ f )
ĥ−2 + 4 + 15λ f

48(1 + λ f )
ĥ−4 − 5λ f

48(1 + λ f )
ĥ−6

π(T,3t) π
(T,3t)
‖ = − 1 + 2λ f

80(1 + λ f )
ĥ−3 + λ f

40(1 + λ f )
ĥ−5

π
(T,3t)
⊥ = − 1 + 4λ f

40(1 + λ f )
ĥ−3 + λ f

20(1 + λ f )
ĥ−5

π(T,4t) π
(T,4t)
1 = 1 + 3λ f

672(1 + λ f )
ĥ−4 − 5λ f

1008(1 + λ f )
ĥ−6

π
(T,4t)
2 = − 1 + 5λ f

672(1 + λ f )
ĥ−4 + 5λ f

1008(1 + λ f )
ĥ−6

π(R,2s) π(R,2s) = 1
b

[
5

32
ĥ−3 − λ f

8(1 + λ f )
ĥ−5

]

π(R,3t) π(R,3t) = 1
b

3λ f

80(1 + λ f )
ĥ−4

π(R,4t) π(R,4t) = 1
b

λ f

168(1 + λ f )
ĥ−5

Table 5. Hydrodynamic coefficients. Scalar coefficients for the mobility matrices and the relevant propulsion
tensors with λ f = η2/η1 and the height above the interface ĥ = h/b. Cylindrical symmetry of the system
allows us to write, for the translational mobilities, μTT = (I − ẑẑ)μTT

‖ + ẑẑμTT
⊥ and μTR = (μRT )tr = μTRε · ẑ.

The mobility μRR has the same structure as μTT with the corresponding coefficients μRR
‖ and μRR

⊥ .

The propulsion tensor for the leading symmetric slip mode is π
(T,2s)
αβγ = π

(T,2s)
1 [(δγα − δγ zδαz)δβz + (δβα −

δβzδαz)δγ z] + π
(T,2s)
2 (δγβ − 3δγ zδβz)δαz. The propulsion tensor π(T,4t) is of the same structure as π(T,2s) with

the corresponding coefficients π
(T,4t)
1 and π

(T,4t)
2 . Since π(T,3t) has the same structure as μTT , we adopt an

analogous notation with π
(T,3t)
‖ and π

(T,3t)
⊥ . For the propulsion tensors contributing to the particle’s rotational

dynamics we obtain π
(R,2s)
αβγ = π(R,2s)(δβzεzγα + δγ zεzβα) and π(R,3t) = π(R,3t)ε · ẑ. The propulsion tensor

π(R,4t) is of the same structure as π(R,2s) with the corresponding coefficient π(R,4t).
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Figure 3. Chemo-hydrodynamic effects of a boundary. We compare typical trajectories of a bottom-heavy
non-axisymmetric active particle (see the main text for the chosen particle specifications) near two types
of chemically impermeable (λc = 0) liquid–liquid interfaces. In panels (a,b) the interface is chosen to be a
free air–water surface (λ f = 0) and a water–oil interface (λ f ≈ 50), respectively. The temperature in these
panels is zero and the starting point (orientation) of the particle is indicated by a grey disk (line). In the
upper panels we compare the trajectories of the particle obtained to various orders in the inverse distance to
the wall h−1, thus gradually including more interactions with the wall. Here, ‘simulation’ refers to the full
dynamical system at the accuracy obtained in this paper. The lower panels show the orientational evolution of
the particle in the various approximations in a polar plot, parametrised by the angle ϑ and the distance to the
starting point. There are two main features to be observed when comparing (a,b). First, the particle tends to stay
further away from the water–oil interface when compared with the air–water surface. This is expected as the
particle’s mobility perpendicular to the interface will be reduced with increasing viscosity ratio, see table 5.
Second, the approximations are better for higher viscosity ratios. Again, this can be understood intuitively
when considering the example that fluid flows produced near a wall decay faster in the far field when compared
with fluid flows produced near a free surface (Aderogba & Blake 1978). The slower decay of the latter means
that, to achieve the same quality of approximation as with interfaces of higher viscosity ratios, higher orders
in h−1 are necessary. Panel (c) shows the same system as in panel (b) but with a finite particle Péclet number
of Pe = 100, representing experimentally relevant noise levels. It is clear that the translational as well as the
rotational diffusion is affected by the presence of the interface. Thermal diffusion also induces a net repulsive
effect between the particle and the interface.

system in (3.16a,b) at various orders in h−1 and comparing the results; see Appendix C for
the truncated expressions.

At order h−1 only hydrodynamic interactions with the boundary due to the gravitational
force manifest themselves. It is at the next order, h−2, that the gravitational torque and
active effects become apparent. The latter comprise hydrodynamic interactions from
symmetric propulsion via π(T,2s) and a purely monopolar chemical interaction with the
interface. At this order in the approximation, fore–aft symmetry breaking of the particle
is no longer necessary for self-propulsion near a boundary; see Appendix C. An isotropic
particle with uniform phoretic mobility μc and surface flux jA will get repelled (attracted)
to the interface depending on whether it is a source or sink of chemical reactants and
depending on the diffusivity ratio λc of the interface, see § 4.3 for a detailed discussion.
Furthermore, at this order in the approximation the thermal advective term in (3.17)
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Fluctuating hydrodynamics of an autophoretic particle

proportional to ∇ · M starts to affect the dynamics. It is worth noting that, at order h−3,
our analytical results match those obtained in Ibrahim & Liverpool (2015), using a method
of reflections, for a Janus particle of trivial phoretic mobility near an inert no-slip wall.

The system parameters in figure 3 are chosen as follows. The starting position of
the particle is at a height ĥ0 = h(t = 0)/b = 2 and an angle ϑ0 = −3π/4 to the wall.
For the surface flux of the particle we choose the dimensionless control parameter
j1 = J1/J0 = 1/3, modelling a source particle. Its phoretic mobility distribution is
specified by the dimensionless parameter m1 = M1/M0 = 0.7, implying a significant
non-isotropy (m1 = 0 specifies a trivial phoretic mobility). The angle between the axes of
surface flux and phoretic mobility is chosen such that α = π/2. In figure 3(c) the Brown
number is set to B ∼ 10−2, roughly matching a set of experiments on Janus colloids (Jiang,
Yoshinaga & Sano 2010; Palacci et al. 2013) with a bead size b ∼ 1 μm and speed vs ∼
10 μm s−1. The ratios of gravitational to active forces and torques are chosen such that
mg/FA ∼ 10−1 and κ/TA ∼ 10−2, respectively. Finally, inertial effects decay on the time
scale of momentum relaxation, typically τT = m/6πηb and τR = I/8πηb3 = m/20πηb
for translational and rotational effects, respectively. The time step 	t in our simulation is
chosen such that τT/	t ∼ 10−4 and τR/	t ∼ 10−4, ensuring that the Smoluchowski limit
of the dynamics provides an appropriate description.

4.3. Hovering above a permeable interface
As mentioned in the previous section, if chemo-hydrodynamic particle–boundary
interactions of order h−2 and higher are considered, fore–aft symmetry breaking of the
particle is no longer necessary for self-propulsion near a boundary. Indeed, self-propulsion
of isotropic particles near a boundary has been observed in light-activated phoretic
swimmers (Palacci et al. 2013). We therefore consider a particle that is an isotropic
source of reactants (μc = const. > 0, jA = const. > 0) and investigate how its dynamics
is affected by the viscosity ratio λ f and the diffusivity ratio λc of the nearby interface in the
limit of zero temperature. The particle is assumed to be driven towards the interface due to
gravity. With the rotational dynamics and the translational dynamics parallel to the plane
vanishing by symmetry, the particle is expected to hover above the interface at a height
that can be found by solving ḣ = 0, where ḣ is given in Appendix C. Rescaling heights by
b, mobilities by μT and velocities by μTmg and renaming the thus non-dimensionalised
variables such that they read the same, we obtain the hovering condition

0 = −μTT
⊥ + 1

4Λ
cAG

[
h−2(1 + 5π

(T,3t)
⊥ )− 3h−3(π

(T,2s)
2 − 14π

(T,4t)
2 )

]
. (4.18)

Hovering is thus characterised by only one dimensionless number, AG = μcjA/DμTmg,
defined as the ratio of the speed of a uniformly coated phoretic particle in a uniform
concentration gradient jA/D, namely μcjA/D, to the settling velocity under gravity μTmg.
This is a measure of activity.

In figure 4, we show how in our approximation the hovering height h of the isotropic
particle is affected by its activity, the diffusivity ratio and the viscosity ratio of the
boundary. We limit our results to h > hmin = 1.3. This is because, very close to the
interface, other effects such as electric double-layer and Van der Waals interactions are
expected to dominate (Wu & Bevan 2005; Verweij et al. 2020). As expected, a higher
chemical diffusivity ratio of the interface, and thus decreased chemical repulsion from
it, requires higher particle activities for hovering to remain possible; see figure 5 for an
illustration of this effect using the method of images for the concentration field. It is also
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hh

λc
λ f

(a) (b)

Figure 4. Hovering above an interface. We show the hovering height h (pseudo-colour map) for an active
particle at zero temperature as a function of its activity AG and the diffusivity ratio λc or the viscosity ratio
λ f of the interface. In panel (a) we consider the particle hovering above a wall (λ f → ∞) that is permeable
to the solutes. For a boundary between regions of equal solute diffusivity (λc = 1) there exists no chemical
repulsion, leading to the particle inevitably crashing into the boundary. Therefore, we only consider values
λc ≤ 0.99. The red line shows the particle’s minimum activity to hover at a minimum height of hmin = 1.3 as
a function of the diffusivity ratio. The white region below the red line indicates physics that is not accessible
in our simplified model and we assume that the particle crashes into the boundary due to gravity, i.e. we set
h = 1. The two dashed grey lines indicate the limiting values A1

G ≈ 500 and A2
G ≈ 105 that are required to

hover above an impermeable and a highly permeable wall. In panel (b) we consider the particle hovering above
an impermeable (λc = 0) interface of varying viscosity ratio. The two horizontal dashed grey lines indicate the
limiting values A3

G ≈ 3 and A1
G that are required to hover above a free surface and a solid wall, respectively.

evident that lower levels of activity are sufficient for hovering above a free surface as
compared with a solid wall. This is intuitive when considering that due to increased fluid
internal friction flows near a wall decay faster than near a free surface (Aderogba & Blake
1978) and so it is easier for a particle near a free surface to drive flows that make it hover.
Using the method of images for Stokes flows this is illustrated in figure 6.

5. Discussion

In this paper, we have presented a simultaneous solution of the BIEs describing the
chemical and the fluid flow around an autophoretic particle in a fluctuating environment.
This has been achieved in a basis of TSH. Compared with the common squirmer model
approach to active particles (Lighthill 1952; Blake 1971; Pak & Lauga 2014; Pedley,
Brumley & Goldstein 2016), our boundary-domain integral method offers the distinct
advantage of obtaining the traction on the particle directly in a complete orthonormal
basis. This provides a naturally kinetic approach via Newton’s equations in which thermal
fluctuations manifest themselves as fluctuating stresses. The Brownian motion of an
autophoretic particle is obtained in terms of coupled roto-translational stochastic update
equations containing mobility and propulsion tensors. The latter are found to arise from
chemical activity of the particle and the chemo-hydrodynamic coupling at the particle’s
surface, inducing a coupling of slip modes. We have obtained exact and leading-order
solutions for both the chemical and the fluctuating hydrodynamic problems far away
from and in the vicinity of boundaries, respectively. Studying the Brownian motion of
particles in the bulk, some of the flexibility of our method in particle design has been
demonstrated. In the case of autophoresis near a plane interface, characterised by its
solute diffusivity and viscosity ratios, we have provided analytical expressions for the
chemo-hydrodynamic coupling tensors. The given mobilities ensure a positive–definite
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Figure 5. Solute concentration for a particle hovering above a permeable boundary. The chemical field
generated by a hovering source particle (green) is shown above (z > 0) and below (z < 0) the permeable
(λc = 0.3) boundary as a pseudo-colour map, where contours indicate regions of constant concentration. We
emphasise that the net concentration (right panel) in the region containing the particle is a superposition of the
source without the boundary present (a) and its image below the boundary (b). The net concentration below
the permeable boundary is then generated by the appropriate boundary conditions. To imply a change in the
chemical diffusivity D2 = λcD1 the colour map for the region z < 0 is shown with slightly reduced opacity.
Since source particles want to move down chemical gradients (anti-chemotaxis), it is clear that the image
creates a repulsive concentration field in z > 0, making it possible for the particle to hover above the boundary.
It is worth noting that, for an impermeable boundary (λc = 0), the contour lines meet the boundary at a right
angle and the corresponding vector field (∇c) becomes purely tangential to this ‘no-flux’ boundary. In the limit
of rapid solute diffusion the viscosity ratio of the interface has no influence on the chemical field.

3
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Figure 6. Fluid flow for a particle hovering above a fluid–fluid interface. The fluid flow (laboratory frame)
generated by a hovering source particle (green) is shown above (z > 0) and below (z < 0) a chemically
permeable fluid–fluid interface (λc = 0.3, λ f = 10). The direction of the fluid flow is indicated by black
arrows, while its relative magnitude is implied by the overlaid pseudo-colour map. The net flow (c) in the
region containing the particle is a superposition of the source without the boundary conditions on the fluid
flow and stress (a) and its image below the boundary (b). Note that for the source the chemical boundary
conditions must still be satisfied (see the net chemical field in figure 5), inducing a non-trivial slip on the
otherwise isotropic particle. The net flow below the interface is then driven by the appropriate velocity and
stress boundary conditions. To imply a change in the viscosity η2 = λ f η1 the colour map for the region z < 0
is shown with slightly reduced opacity. It is clear that the image produces an upwards flow in z > 0 which
balances gravity and makes the particle hover away from the interface. In the net flow this creates convection
rolls between the particle and the interface which in turn drive convection rolls below the interface.
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diffusion matrix in stochastic simulations. Finally, we have studied the hovering state
of an isotropic phoretic particle above an interface as a function of particle activity,
and the diffusivity and viscosity ratios of the interface. In doing so, we have provided
numerical results as well as physical insights into the repulsive chemo-hydrodynamic
particle–interface interactions.

We have given the leading-order results for the chemical and hydrodynamic coupling
tensors. In principle, these can be obtained to arbitrary accuracy, and the general iterative
solutions are given in the Appendix. This non-trivial computation will be the topic of
future work. While our results in § 3.2 are guaranteed to provide dissipative motion for
physical configurations, in Brownian simulations, unphysical situations with a non-zero
particle–boundary overlap may occur on occasion (the probability of which can be lowered
by imposing a short-range repulsive potential between the particle and the boundary).
In this case, one can either impose an ad hoc regularisation on the mobility (Wajnryb
et al. 2013; Balboa Usabiaga, Delmotte & Donev 2017; Singh & Adhikari 2017) or use
a bounce-back condition, effectively implementing a reflective boundary condition in the
simulation (Volpe, Gigan & Volpe 2014).

It is helpful to compare our results with previous work on chemical and hydrodynamic
interactions of an active particle in a fluctuating fluid. We have shown that simultaneous
harmonic expansions of the surface fields provide a high degree of flexibility in particle
design, comparable to previous models capable of motion in three dimensions (Lisicki
et al. 2018). Additionally, our framework has been shown to provide a straightforward way
of studying the Brownian dynamics of particles that, even in the limit of zero temperature,
perform complex motion (van Teeffelen & Löwen 2008; Mozaffari et al. 2018; Bailey
et al. 2024). To the best of our knowledge, this is the first work to obtain the elastance
for an active particle near an interface separating two fluids of arbitrary diffusivity ratios.
The corresponding Green’s function, which is given in table 3, does not appear anywhere
in the literature, although its derivation is straightforward given the correct boundary
conditions. This paper is also the first to simultaneously study the chemo-hydrodynamics
of an autophoretic particle near a planar surface of two immiscible fluids of arbitrary
ratio of viscosities and diffusivities. While previous works have studied phoretic particles
hovering above a chemically impermeable solid wall as a function of particle coverage
(Uspal et al. 2015; Ibrahim & Liverpool 2016), we investigated the hovering state as a
function of the properties of the interface, relevant for studies on particle aggregation near
fluid–fluid or free surfaces (Chen et al. 2015; Hokmabad et al. 2022).

We briefly discuss the level of approximation of explicit results provided in this paper.
For a passive particle, the mobility of sedimentation towards a plane interface is known
exactly (Brenner 1961). In the absence of an exact solution for motion parallel to a
boundary, careful examination of the case when the particle–interface gap distance is
much smaller than the particle radius is necessary. In 1967, Goldman et al. (Goldman,
Cox & Brenner 1967) used a lubrication approximation to derive an asymptotic solution
for this case. However, matching the asymptotic solutions for the near- (h/b � 1) and
far-field (h/b � 1) limits can be challenging in dynamic simulations (Brady & Bossis
1988; Ichiki 2002). It has been confirmed experimentally that, for parallel motion, the order
to which the mobilities are given in this paper provides a good approximation even when
the particle–interface gap distance is only a fraction of the particle radius (Choudhury et al.
2017). So while an approach using lubrication theory is appropriate for general motion
very close to a plane (Villa et al. 2020, 2023), the given approximation in the mobilities
arising from a series expansion can still be expected to be of interest to a wide range
of experimental settings in which colloidal particles are studied near a plane boundary.
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Thus, our work also adds to the existing literature on the mobility (Brenner 1961; Goldman
et al. 1967; Felderhof 1976; Lee et al. 1979; Lee & Leal 1980; Perkins & Jones 1990,
1992; Swan & Brady 2007; Michailidou et al. 2009; Daddi-Moussa-Ider et al. 2018) and
diffusion (Ermak & McCammon 1978; Wajnryb et al. 2004; Rogers et al. 2012; Delong,
Balboa Usabiaga & Donev 2015; Lisicki, Cichocki & Wajnryb 2016) of a sedimenting
particle near a boundary. Explicit expressions for propulsion tensors and mobility matrices
are given in table 5, while table 4 contains the corresponding chemical connectors near
an interface. These will be helpful in Langevin simulations of autophoretic particles in
various experimentally realisable settings and for studying fluctuating trajectories of an
active particle including both chemical and hydrodynamic interactions.

Aside from its intrinsic theoretical significance, the single-body solution (exact away
from boundaries and approximate in complex environments) holds potential value in
numerically solving the BIE for multiple particles. This is due to the ability to initiate
numerical iterations with the single-body solution. For problems falling under this
category, discretised versions of the BIEs result in diagonally dominant linear systems.
Notably, the one-body solution serves as the solution in cases where hydrodynamic
interactions are disregarded. This implies that starting iterations from the one-body
solution can lead to rapid convergence towards diagonally dominant numerical solutions
(Singh & Adhikari 2018). In scenarios involving multiple interacting particles, utilising
a basis of TSH for expanding surface fields offers distinct advantages over other bases
like spherical or vector spherical harmonics, including reduced computational cost due to
covariance under rotations (Greengard & Rokhlin 1987; Damour & Iyer 1991; Applequist
2002; Turk 2023). The condition for tangential slip flow in terms of TSH in (3.24) now
connects in a straightforward way the formalism for general slip (restricted by mass
conservation only) used in previous works (Ghose & Adhikari 2014; Singh et al. 2015;
Singh & Adhikari 2018; Singh et al. 2019; Turk et al. 2022) to the present and other
problems in which tangential slip is considered, e.g. active drops.

In future work we will analytically and numerically build upon the theoretical results
contained in this paper. A detailed analysis of the dynamical system in (3.17) governing
autophoresis near an interface might reveal features such as intricate, thermally limited
bound states (Mozaffari et al. 2018; Bolitho, Singh & Adhikari 2020) potentially relevant
to the study of biofilm formation in bacteria (Wilking et al. 2011; Persat et al. 2015).
Removing the assumption of rapid diffusion gives rise to nonlinear advection–diffusion
coupling, uncovering a range of potential applications such as the intricate dynamics of
active droplets (Herminghaus et al. 2014; Michelin 2023). These and more provide exciting
avenues for future research.
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Appendix A. Chemical problem

A.1. Exact solution for integral equations
As discussed in a previous work (Singh et al. 2019) using Galerkin’s method, the BIE (IIa)
can be expressed as the linear system

1
2 C(q) = C∞(q) + H(q,q′) � J (q

′) + L(q,q′) � C(q′), (A1)

with the matrix elements

H(q,q′)(R, R̃) = w̃qw̃q′

∫
Y (q)(b̂)H(R + b, R̃ + b′)Y (q′)(b̂′) dS dS′, (A2a)

L(q,q′)(R, R̃) = w̃qwq′

∫
Y (q)(b̂)b̂′ · L(R + b, R̃ + b′)Y (q′)(b̂′) dS dS′. (A2b)

Here, we evaluate these integrals for an unbounded domain, when H = Ho(r) (see (3.5))
and L = Lo(r), given by Lo(r) = r̂/4πr2. The matrix elements for the unbounded domain
have singular but integrable kernels. Due to their translational invariance they can be
solved using Fourier techniques. The derivation follows analogous steps to the one of the
exact solution for the Stokes traction for an isolated active particle in Turk et al. (2022).
Writing Ho(q,q′) and Lo(q,q′) for the corresponding matrix elements, we find

Ho(q,q′)
QQ′ =

∞∑
n,n′=0

τnn′qq′

∫
dS Y(q)Q (b̂)Y(n)N (b̂)

∫
dS ′Y(q

′)
Q′ (b̂′)Y(n

′)
N′ (b̂′)

×
∫

dk jn(kb)jn′(kb)
∫

dΩk Y(n)N (k̂)k2Ĥo(k)Y(n
′)

N′ (k̂), (A3)

for the single layer and similarly for the double layer

Lo(q,q′)
QQ′ =

∞∑
l,l′=0

τnn′qq′

∫
dS Y(q)Q (b̂)Y(n)N (b̂)

∫
dS′ Y(q

′)
Q′ (b̂′)Y(n

′)
N′ (b̂′)Y (1)(b̂′)

×
∫

dk kjn(kb)jn′(kb)
∫

dΩk Y(n)N (k̂)kL̂o(k)Y(n
′)

N′ (k̂). (A4)

Here, we have defined τnn′qq′ = (2b4/π)in+3n′
w̃qw̃q′wnw̃nwn′w̃n′ and used the Fourier

transforms of the Green’s functions for the unbounded domain

Ĥo(k) = 1
D

1
k2 , L̂o(k) = i

k̂
k
. (A5a,b)

The functions jn(kb) are spherical Bessel functions, b = |b| and i = √−1 is the imaginary
unit. Further,

∫
dS implies an integral over the surface of a sphere with radius b,

∫
dΩ the

integral over the surface of a unit sphere and
∫

dk a scalar definite integral from 0 to ∞.
Evaluating these expressions, we find that the single- and double-layer matrix elements
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diagonalise simultaneously in a basis of TSH such that

Ho(q,q′) � J (q
′) = 1

4πbDwq
J (q), Lo(q,q′) � C(q′) = − 1

2(2q + 1)
C(q). (A6a,b)

The linear system in (A1) can then be solved trivially. We find the exact result, valid for an
arbitrary mode index q

C(q) = ζqC∞(q) + EqJ (q), (A7)

with ζq and Eq given in (A7). In deriving this result, we corrected an error in the
double-layer calculation given in Singh et al. (2019).

For the matrix elements due to additional boundary conditions with the propagator H∗
and the corresponding double layer L∗ it is known that (A2) evaluate to (Singh et al. 2019)

H∗(q,q′) = bq+q′∇(q)∇̃(q′)H∗(R, R̃), L∗(q,q′) = 4πbD
(q′ − 1)!(2q′ + 1)!!

H∗(q,q′),

(A8a,b)

where we have left the point of evaluation, R = R̃ for the one-body problem, implicit for
brevity, and where L∗(q,q′) is defined for q′ ≥ 1.

A.2. Iterative solution in complex environments
The formal solution of the BIE for the concentration field in (IId) in a basis of TSH gives
the following for the linear response to a background concentration field:

ζ (q,q
′) =

[
A−1

](q,q′)
, where A(q,q

′) =
(

1
2 I − L

)(q,q′)
. (A9)

This can be computed using Jacobi’s iterative method of matrix inversion. At the nth
iteration, we find

(
ζ (q,q

′)
)[n] =

(
A(q,q)

)−1 [
I(q,q

′) −
′∑

A(q,q
′′)
(
ζ (q

′′,q′)
)[n−1] ]

,

with
(
ζ (q,q

′)
)[0] = ζqI(q,q

′). (A10)

The primed sum implies that diagonal terms with q = q′′ are not included. Naturally, we
choose the solution in the unbounded domain as the zeroth-order solution. Similarly, it is
known that at the nth iteration the elastance in a basis of TSH is given by (Singh et al.
2019)

(
E (q,q′)

)[n] =
(

A(q,q)
)−1 [H(q,q′) −

′∑
A(q,q

′′)
(
E(q′′,q′)

)[n−1] ]
,

with
(
E(q,q′)

)[0] = EqI(q,q
′). (A11)

To first order in the iteration this yields the expressions given in (3.8) and (3.9), with an
error Oa given in table 7.
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A.3. Chemo-hydrodynamic coupling
The chemo-hydrodynamic coupling tensors in a basis of TSH in (Ih) and (3.26) are in
general given by the surface integral

χ (l,q) = 1
b

w̃l−1

∞∑
q′=0

wqw̃q′M (q′)
∫ {

(q + 1)Y (1)Y (l−1)Y (q′)Y (q) − Y (l−1)Y (q′)Y (q+1)
}

dS.

(A12)

For the leading polar, chiral and symmetric modes of slip we have evaluated them in (3.29).
This corrects a previously erroneous result (Singh et al. 2019).

Appendix B. Hydrodynamic problem and rigid-body motion

In the following we include the rigid-body motion of the particle, vD(b) = V + Ω × b,
in the expansion in (3.10a,b) such that V (1s) = V − VA and V (2a)/2b = Ω − ΩA for
simplicity of notation. As discussed in previous work using a Galerkin method (Singh
et al. 2015), the BIE (IIf) for Stokes flow without thermal fluctuations can be expressed as
the linear system

1
2 V (lσ) = −G(lσ,l′σ ′) � F (l

′σ ′) + K(lσ,l′σ ′) � V (l′σ ′). (B1)

The matrix elements corresponding to the single- and double-layer integrals are

G(l,l′)(R, R̃) = w̃l−1w̃l′−1

∫
Y (l−1)(b̂)G(R + b, R̃ + b′)Y (l′−1)(b̂′) dS dS′, (B2a)

K(l,l′)(R̃,R) = w̃l−1wl′−1

∫
Y (l−1)(b̂)K(R̃ + b′,R + b) · b̂′Y (l′−1)(b̂′) dS dS′. (B2b)

In defining the double-layer matrix element it is worthwhile noting the following. Both
double-layer integrals (IIc) and (IIh) in table 2 are defined as improper integrals when
r ∈ S, usually referred to as the principal value. This definition differs from the Cauchy
principal value of a singular one-dimensional integral. While the latter requires excluding
small intervals around the singularity and taking the limit as their size tends to zero
simultaneously, the double-layer integrals both are weakly singular (given S is a Lyapunov
surface), and so their principal value exists in the usual sense of an improper integral and
is a continuous function in r ∈ S (Pozrikidis 1992; Kim & Karrila 2005).

Writing the matrix elements as a sum of unbounded and correction terms, it is known
that they evaluate to (Singh et al. 2015; Turk et al. 2022)

G(l,l′) = Go(l,l′) + G∗(l,l′) = Go(l,l′) + bl+l′−2F l−1F̃ l′−1∇(l−1)∇̃(l′−1)G∗(R, R̃), (B3a)

K(l,l′) = Ko(l,l′) + K∗(l,l′)

= Ko(l,l′) + 4πbl+l′−1

(l′ − 2)!(2l′ − 1)!!
F l−1F̃ l′−1∇(l−1)∇̃(l′−2)K∗(R̃,R). (B3b)

These expressions are exact for a spherical particle.
Defining the column vectors for the force and torque acting on the particle

F A = (F (1s),F (2a))tr, the higher moments of traction F B = (F (2s),F (3t), . . . )tr, the modes
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corresponding to rigid-body motion V A = (V (1s),V (2a))tr and the higher modes of the slip
V B = (V (2s),V (3t), . . . )tr, we can write the linear system as (Singh et al. 2015)

1
2

(
V A

V B

)
= −

(GAA GAB

GBA GBB

)(
F A

F B

)
+
(KAA KAB

KBA KBB

)(
V A

V B

)
. (B4)

To be able to solve this infinite linear system, we need to truncate the mode expansions
(3.10a,b) at some appropriate order, and fix the gauge freedom in the traction. Taking
care of the latter, we impose

∫
f H · b̂ dS = − ∫

p dS = 0, which is equivalent to imposing
F(2t) = 0. The rationale behind this can be explained as follows. The pressure is a
harmonic function, i.e. ∇2p = 0, and can thus be expanded in a basis constructed from
derivatives of 1/r. The leading mode of such an expansion decays as 1/r and its expansion
coefficient is obtained from the integral

∫
p dS. Further, incompressibility, and the absence

of sinks and sources of fluid render the pressure a non-dynamical quantity, meaning that
the fundamental solution for the fluid flow v is independent of the pressure and decays as
1/r. However, Stokes equation (Id) must still be satisfied, and a pressure term decaying
as 1/r would violate it. We thus impose

∫
p dS = 0, rendering the single-layer operator

invertible. Eliminating the unknown F B, we can directly solve for the rigid-body motion
of the particle

V A = −M · F A + Π � V B, (B5)

where we have defined the grand mobility matrix M and the grand propulsion tensor Π,

M =
[
GAA − GAB

(
GBB

)−1 GBA
]
, Π =

[
KAB + GAB

(
GBB

)−1 (1
2 I − KBB

)]
.

(B6a,b)

In finding this solution, we have used that rigid-body motion lies in the eigenspace of the
double layer matrix element with a uniform eigenvalue of −1/2, and that no exterior flows
are produced for the rigid-body component of the motion such that

KAAV A = −1
2 V A, KBAV A = 0. (B7a,b)

Equation (B6a,b) guarantees a positive–definite mobility matrix given that every principal
sub-matrix of a positive–definite matrix (here, G(lσ,l′σ ′)) is positive–definite itself.
Comparing (3.17) and (B6a,b) we can directly identify the mobility and propulsion tensors
in terms of the matrix elements in (B2). For the mobilities we find

μαβ = 1
cαqβ

[
G(lσ,l′σ ′) −

∑
l′′σ ′′=2s

G(lσ,l′′σ ′′)Υ (l′′σ ′′,l′σ ′)
]
, (B8)

with α = T,R implying lσ = 1s, 2a and β = T,R implying l′σ ′ = 1s, 2a, respectively.
The scalar pre-factors cα and qβ can be found in table 6. Similarly, we find for the
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α, β T R

cα 1 2b
qβ 1 b

Table 6. Coefficients cα and qβ in the mobility and propulsion tensors.

propulsion tensors

π(α,l
′σ ′) = 1

cα

[
K(lσ,l′σ ′) +

∑
l′′σ ′′=2s

G(lσ,l′′σ ′′)Φ(l′′σ ′′,l′σ ′)
]
. (B9)

The propulsion tensors are defined for l′σ ′ ≥ 2s as follows directly from the equations of
motion (3.17). In (B8) and (B9) we have defined

Υ (lσ,l′σ ′) =
∑

l′′σ ′′=2s

(
G(lσ,l′′σ ′′)

)−1 G(l′′σ ′′,l′σ ′), (B10a)

Φ(lσ,l′σ ′) =
∑

l′′σ ′′=2s

(
G(lσ,l′′σ ′′)

)−1
(

1
2

I − K
)(l′′σ ′′,l′σ ′)

=
∑

l′′σ ′′=2s

(
G(lσ,l′′σ ′′)

)−1
B(l

′′σ ′′,l′σ ′). (B10b)

Using Jacobi’s method of matrix inversion, we find iterative solutions for the mobility
and propulsion tensors. At the nth iteration we obtain

(
μαβ

)[n] = 1
cαqβ

[
G(lσ,l′σ ′) −

∑
l′′σ ′′=2s

G(lσ,l′′σ ′′)
(
Υ (l′′σ ′′,l′σ ′)

)[n]
]
, (B11a)

(
π(α,l

′σ ′)
)[n] = 1

cα

[
K(lσ,l′σ ′) +

∑
l′′σ ′′=2s

G(lσ,l′′σ ′′)
(
Φ(l′′σ ′′,l′σ ′)

)[n]
]
, (B11b)

with(
Υ (lσ,l′σ ′)

)[n] =
(
G(lσ,lσ)

)−1
[
G(lσ,l′σ ′) −

′∑
l′′σ ′′=2s

G(lσ,l′′σ ′′)
(
Υ (l′′σ ′′,l′σ ′)

)[n−1]
]
,

(B12a)

(
Φ(lσ,l

′σ ′)
)[n] =

(
G(lσ,lσ)

)−1
[
B(lσ,l′σ ′) −

′∑
l′′σ ′′=2s

G(lσ,l′′σ ′′)
(
Φ(l′′σ ′′,l′σ ′)

)[n−1]
]
.

(B12b)

The primed sum implies that the diagonal terms with lσ = l′′σ ′′ are not included. Without
loss of generality, we choose the zeroth-order solutions to be(

Υ (lσ,l′σ ′)
)[0] = 0,

(
Φ(lσ,l′σ ′)

)[0] = γ̂lσ I(lσ,l
′σ ′), (B13a,b)

where the scalar friction coefficients γ̂lσ are given in Turk et al. (2022) and I(lσ,l
′σ ′)

is the identity tensor with elements δll′δσσ ′ . It is worthwhile to note that, with this
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Oa Ob Oc

O(L∗(q,q′′) � H∗(q′′,q′)) O(∇2(∇̃G∗) : (∇G∗)) O(∇2(∇̃G∗) : (∇(∇̃ × G∗)))

Od Oe Of

O(∇2(∇̃G∗) : (∇∇̃G∗)) O((∇̃G∗) : (∇∇̃(2) · G∗)) O((∇̃G∗) : (∇∇̃(3) · G∗))

Table 7. Big O notation for errors in the linear response to elastance, mobility and propulsion tensors.

choice, the iteration at zeroth order for the mobility and propulsion tensors corresponds
to a superposition approximation, ignoring higher-order hydrodynamic interactions. This
yields the expressions in (3.22) and (3.23). Evaluated for a plane interface, they correspond
to the mobility and propulsion coefficients given in table 5.

For the exact mobilities and propulsion tensors we can write

μαβ = (
μαβ

)[0] +	μαβ, π(α,lσ) =
(
π(α,lσ)

)[0] +	π(α,lσ), (B14a,b)

where the zeroth-order terms are given in the main text and, explicit to leading order, the
corrections are

	μTT = −10πηb3

3

[
∇̃G∗ + (∇̃G∗)tr

]
: ∇G∗ + Ob,

	μTR = −5πηb3

3

[
∇̃G∗ + (∇̃G∗)tr

]
: ∇(∇̃ × G∗)+ Oc, (B15)

for the mobilities and

	π(T,2s) = −b
(

10πηb2

3

)2 [
∇̃G∗ + (∇̃G∗)tr

]
: ∇

[
∇̃G∗ + (∇̃G∗)tr

]
+ Od,

	π(T,3t) = Oe, 	π(T,4t) = Of ,

⎫⎪⎬
⎪⎭ (B16)

for the propulsion tensors. Here, a colon indicates a contraction of two pairs of indices.
The higher-order corrections denoted by O are specified in table 7. Using (B11) these
higher-order terms can be computed to arbitrary accuracy. However, this is a non-trivial
computation and will be the topic of future work. Evaluated for a plane interface, the
leading-order correction to the mobilities contain the order-ĥ−4 terms

	μTT
‖
(

ĥ−4
)

= − 45λ f 2

256
(
1 + λ f

)2 , 	μTT
⊥
(

ĥ−4
)

= −15
(
2 + 3λ f )2

256
(
1 + λ f

)2 , (B17a,b)

matching previous results in the literature for the special cases of a wall and a free
surface (Goldman et al. 1967; Perkins & Jones 1990, 1992). While it might be tempting to
include these next-to-leading-order coefficients in the results for the mobilities in table 5,
one sacrifices positive–definiteness of the mobility matrix M if doing so and Brownian
simulations can no longer be guaranteed to work correctly. Positive–definiteness beyond
the zeroth iteration can only be guaranteed at the full first-order Jacobi iteration. In the
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case of the propulsion tensors, at order ĥ−5 the following terms arise:

	π
(T,2s)
1

(
ĥ−5

)
= 25 λ f (1 + 3λ f )

256
(
1 + λ f

)2 , 	π
(T,2s)
2

(
ĥ−5

)
= −25

(
2 + 7λ f + 6λ f 2)
384

(
1 + λ f

)2 .

(B18a,b)

Appendix C. Coupling to an interface

Here, we give a detailed account of the simulation of (3.17) presented in § 4.2 for a
bottom-heavy Brownian Janus particle near a plane interface. Using the mobilities for
a spherical particle near a plane boundary in table 5, we find the only non-vanishing
convective term to be proportional to

∂zμ
TT
⊥ = 1

6πηb2

[
3(2 + 3λ f )

16(1 + λ f )
ĥ−2 − 3

(
1 + 4λ f )

16(1 + λ f )
ĥ−4 + 5λ f

16(1 + λ f )
ĥ−6

]
, (C1)

contributing to the dynamics of the particle in the z-direction which is to be included in
the spurious drift.

Next, we give an expression for the noise strength ∝ √
2kBT M in the update equations

(3.17) for a Brownian particle close to a plane interface, for which the diffusion matrix
takes a particularly simple form. Using the definitions for the scalar mobility coefficients
from table 5 we define the following coefficients:

√
μ2

‖ ≡
√(
μRR

‖ − μTT
‖
)2 + 4

(
μTR

)2
,

√
μ+

‖ ≡
√
μRR

‖ + μTT
‖ +

√
μ2

‖,

√
μ−

‖ ≡
√
μRR

‖ + μTT
‖ −

√
μ2

‖.

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(C2)

Using these we define the further coefficients

√
μxx ≡ 1

√
8
√
μ2

‖

[√
μ−

‖
(
μRR

‖ − μTT
‖ +

√
μ2

‖
)

+
√
μ+

‖
(
μTT

‖ − μRR
‖ +

√
μ2

‖
)]
, (C3)

√
μxe ≡ 1

√
2
√
μ2

‖
μTR

(√
μ+

‖ −
√
μ−

‖
)
, (C4)

√
μexex ≡ 1

√
8
√
μ2

‖

[
μTT

‖
(√
μ−

‖ −
√
μ+

‖
)

+ μRR
‖
(√
μ+

‖ −
√
μ−

‖
)

+
√
μ2

‖
(√
μ+

‖ +
√
μ−

‖
)]
. (C5)
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Finally, we have

√
M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
μxx 0 0 0

√
μxe 0

0
√
μxx 0 −√

μxe 0 0

0 0
√
μTT

⊥ 0 0 0

0 0 −√
μxe

√
μexex 0 0

√
μxe 0 0 0 √

μexex 0

0 0 0 0 0
√
μRR

⊥

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (C6)

which is straightforward to compute.

C.1. Parameterisation
The update equations can be simplified further by uniaxially parametrising the slip modes
in the propulsion terms in (3.28). We write

VA = VAeV, ΩA = ΩAeΩ, V (2s)
s = V(2s)

s (3eSeS − I) , (C7a–c)

where the strengths VA,ΩA and V(2s)
s of the modes and their respective orientations eV , eΩ

and eS are obtained from (3.29) and given below. The leading symmetric mode is defined
as V (2s)

s = (3/8πb2)
∫ {b̂vA + (b̂vA)tr} dS. For the polar and symmetric modes we define

the polar angle ϑα , where α = V, S, such that

eα = cosϑα x̂ + sinϑα ẑ, (C8)

while for motion in the x–z plane it follows that eΩ = ŷ. Far away from the interface
(h/b � 1) we have ϑV = ϑS = ϑ . We assume that the particle is in the positive half-space
above the interface such that z = h. This yields the mean translational dynamics in the x–z
plane (with no mean translation in the y-direction)

(〈ẋ〉
〈ḣ〉
)

=
(

μTRκ cosϑ

−μTT
⊥ mg + kBT∂zμ

TT
⊥

)
+ VA

(
(1 + 5π

(T,3t)
‖ ) cosϑV

(1 + 5π
(T,3t)
⊥ ) sinϑV

)

+ 3V(2s)
s

(
(π
(T,2s)
1 − 14π

(T,4t)
1 ) sin (2ϑS)

(π
(T,2s)
2 − 14π

(T,4t)
2 )(1 − 3 sin2 ϑS)

)
, (C9)

where the thermal contribution arises from the convective term in the positional update
equation (3.17a) and is given in (C1). The mean orientational dynamics is governed by the
angular velocity (with ϑ̇ = −Ωy)〈
Ωy
〉 = μRR

‖ κ cosϑ +ΩA + 5VAπ(R,3t) cosϑV + 3V(2s)
s

(
π(R,2s) − 14π(R,4t)

)
sin (2ϑS) .

(C10)

It is important to note that the brackets 〈·〉 simply imply that we are not explicitly writing
down the noise terms proportional to (C6). To find the true average trajectory at finite
temperature one has to extract it from the full positional and orientational probability
distribution functions of the particle. This is beyond the scope of this paper.
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We now define the coefficients in the dynamical system governing autophoresis in (C9)
and (C10) in terms of the phoretic model parameters of (4.1a,b). We write the vectorial
part of the phoretic mobility and the generated concentration field components as

M(1)
x = M1 cos (ϑ + ψ) , M(1)

z = M1 sin (ϑ + ψ) ,

C(1)x = E (1,1)‖ J1 cosϑ, C(1)z = E (1,0)J0 + E (1,1)⊥ J1 sinϑ. (C11)

Comparing the parameterisations in (C7a–c) with the definition of VA in (3.29), and
ΩA = ΩAŷ for the angular speed, we obtain for the corresponding terms in the dynamical
system

VA cosϑV = − 1
6πb3 M0C(1)x

− 3
20πb3

(
M(1)

x

(
E (2,0)J0 − E (2,1)J1 sinϑ

)
+ E (2,1)M(1)

z J1 cosϑ
)
, (C12)

VA sinϑV = − 1
6πb3 M0C(1)z

− 3
20πb3

(
E (2,1)M(1)

x J1 cosϑ + 2M(1)
z

(
E (2,1)J1 sinϑ − E (2,0)J0

))
,

(C13)

ΩA = − 3
8πb4

(
M(1)

z C(1)x − M(1)
x C(1)z

)
. (C14)

Finally, using the definition of V (2s)
s in (3.29), we find

V(2s)
s sin 2ϑS = 1

20πb3

(
3
(

M(1)
x C(1)z + M(1)

z C(1)x

)
+ 2E (2,1)M0J1 cosϑ

)
, (C15)

V(2s)
s

(
1 − 3 sin2 ϑS

)
= 3

20πb3

[
M(1)

x C(1)x − 2M(1)
z C(1)z + 2M0

(
E (2,0)J0 − E (2,1)J1 sinϑ

)]
.

(C16)

C.2. Approximations

C.2.1. Unbounded domain
In the unbounded domain the mean dynamics simplifies to

〈ẋ〉 = − 1
6πb3E1M0J1 cosϑ, 〈ḣ〉 = −μT mg − 1

6πb3E1M0J1 sinϑ,

〈ϑ̇〉 = −μRκ cosϑ + 3
8πb4E1M1J1 sinψ,

⎫⎪⎪⎬
⎪⎪⎭ (C17a–c)

with E1 = 3/8πbD1. It is clear that, even for a force- and torque-free particle (g = κ = 0)
in an unbounded fluid, autophoretic motion takes place for the model considered in
(4.1a,b). Neglecting bottom heaviness of the particle, the average self-propulsion and
self-rotation speeds in an unbounded fluid are

VA = 1
6πb3E1M0J1, ΩA = 3

8πb4E1M1J1 sin (ψ) . (C18a,b)
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C.2.2. Far from the interface – leading-order effects
Considering terms up to order ĥ−1, hydrodynamic interactions with the boundary are the
first to manifest themselves by altering the unbounded equations (C17) as follows:

μT → μT

(
1 −Λ

f
T ĥ−1

)
, with Λ f

T = 3(2 + 3λ f )

8(1 + λ f )
. (C19)

At this order, chemical interactions with the interface do not yet appear. Compared with
the unbounded equations, the orientational and parallel dynamics are unaffected.

C.2.3. Far from the interface – next-to-leading-order effects
Considering terms up to ĥ−2 leads to further hydrodynamic interactions with the boundary,
with the mobility

μTR ≈ −Λ f
TRĥ−2, with Λ f

TR = 1
32πηb2

1
1 + λ f , (C20)

and the propulsion coefficients of the symmetric dipole

π
(T,2s)
1 ≈ Λ

f
1 ĥ−2, π

(T,2s)
2 ≈ −Λ f

2 ĥ−2,

with Λ
f
1 = 5λ f

16
(
1 + λ f

) , Λ
f
2 = 5

(
2 + 3λ f )

48
(
1 + λ f

) . (C21)

At this order the mean trajectory starts to be affected by the thermal fluctuations via the
convective term

kBT∂zμ
TT
⊥ ≈ Λ̂ĥ−2, with Λ̂ = kBT

32πηb2
2 + 3λ f

(1 + λ f )
. (C22)

Chemically, the effect of the flux monopole J0 becomes apparent with

E (1,0) ≈ −E1Λ
c
1ĥ−2, with Λc

1 = 1 − λc

4(1 + λc)
. (C23)

This leads to the mean dynamics

〈ẋ〉 = −Λ f
TRκ cosϑ ĥ−2 − 1

6πb3E1M0J1 cosϑ + 9
20πb3E1M1J1 sin(2ϑ + ψ)Λ

f
1 ĥ−2,

〈ḣ〉 = −μT

(
1 −Λ

f
T ĥ−1

)
mg + Λ̂ĥ−2 − 1

6πb3E1M0

(
J1 sinϑ −Λc

1J0ĥ−2
)

− 9
40πb3E1M1J1 (3 cos(2ϑ + ψ)− cosψ)Λ f

2 ĥ−2,

〈ϑ̇〉 = −μRκ cosϑ + 3
8πb4 M1

(
J1 sinψ + cos (ϑ + ψ)Λc

1J0ĥ−2
)
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(C24)

Finally, at this order in the approximation both the parallel motion and the orientation
couple to the interface. It is evident that, at this order, fore–aft symmetry breaking of
the chemical properties of the particle is no longer necessary for self-propulsion near a
boundary.
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