ERGODIC PROPERTIES OF LAMPERTI OPERATORS

CHARN-HUEN KAN

1. Introduction. We shall assume throughout this paper, unless otherwise specified, that p is a fixed number, $1<p<\infty$.

It is well known that to prove the pointwise ergodic convergence of a contraction T on an L_{p}-space it is enough to prove a Dominated Ergodic Estimate (DEE) for T (see e.g. [11]). The earliest and simplest nontrivial DEE was proved by Hardy-Littlewood [10, Theorem 8], where T is induced by the (right) shift on nonnegative integers equipped with the counting measure. The DEE for general positive L_{p} contractions, for long an open problem, was finally proved by Akcoglu [1] in 1974. The proof involves several steps, the most difficult being a dilation that reduces it to the case of positive invertible isometries, first proved by A. Ionescu Tulcea [11]. Recently A. de la Torre [8] proved a DEE for a cyclic group of positive, uniformly norm-bounded L_{p} operators, using a technique developed by Calderón [4] and extended by Coifman and Weiss [7], which brings the Hardy-Littlewood theorem into play. This result generalizes [11], and its proof is considerably simpler, thereby in effect simplifying the proof of Akcoglu's theorem. Our first aim in this paper is to show, in $\S 2$, that Calderón's technique works for positive, not necessarily invertible L_{p} isometries. In $\S 3$ we introduce the concept of Lamperti operators, which include positive L_{p} isometries, and give sufficient conditions for L_{p} operators to be Lamperti, showing, in particular, that operators considered in $[\mathbf{8}]$ are so. In $\S 4$ we prove some structural theorems for Lamperti operators, which we use in $\S 5$ to prove our main results, the DEE for Lamperti contractions (Theorem 5.1) and the DEE for a class of Lamperti operators (Theorem 5.2), which generalizes and improves that of [8]. Finally in $\S 6$ we show how the dilation method in $[\mathbf{1}]$ can be simplified, using the results that we have proved in $\S \S 2,5$.

The author is grateful to Prof. J. R. Choksi, his thesis supervisor, for referring him to several pertinent references and giving him valuable suggestions in the writing of this paper.
2. DEE for positive isometries. Let (X, \mathscr{F}, μ) be a σ-finite measure space and $L_{p}=L_{p}(X, \mathscr{F}, \mu), 1 \leqq p \leqq \infty$, the usual (real or complex) Banach spaces. Statements concerning measurable functions and sets shall be read modulo μ-null sets. The indicator function of a set E is denoted 1_{E}. The support of a function f is the set $\operatorname{supp} f=\{x: f(x) \neq 0\}$. The maximal operator $M(T) \equiv M$ of an L_{p} operator T is defined by $M f=\sup _{n \geqq 1}\left|T_{n} f\right|$, where

[^0]$T_{n}=n^{-1} \sum_{i=0}^{n-1} T^{i}$. The truncated maximal operator M_{N}, N a positive integer, is defined similarly with the sup taken over $n=1, \ldots, N . T$ is said to have a Dominated Ergodic Estimate (DEE) with (finite) constant C if
\[

$$
\begin{equation*}
\|M f\| \leqq C\|f\| \quad \text { for all } f \in L_{p} \tag{2.1}
\end{equation*}
$$

\]

This will be the case if (2.1) holds for all M_{N} with the same C.
Theorem 2.1. Suppose T is a positive isometry on $L_{p}, 1<p<\infty$. Then (2.1) holds with $C=p /(p-1)$.

Proof. First note that T maps functions with disjoint supports to functions with disjoint supports. This follows from the fact that for $f, g \in L_{p}{ }^{+},\|f+g\|^{p}$ $=\|f\|^{p}+\|g\|^{p}$ if and only if f and g have disjoint supports.

It suffices to prove (2.1) for all M_{N} and $f \in L_{p}{ }^{+}$. Now $M_{N} f=\sum_{n=1}^{N} 1_{E_{n}} T_{n} f$ for a family of disjoint subsets E_{1}, \ldots, E_{N}. Since T and so $T^{k}, k=1,2, \ldots$, preserve disjointness of supports, $T^{k}\left(1_{E_{n}} T_{n} f\right), n=1, \ldots, N, k$ fixed, have disjoint supports D_{n}. Hence

$$
\begin{equation*}
T^{k} M_{N} f=\sum_{n=1}^{N} 1_{D_{n}} T^{k}\left(1_{E_{n}} T_{n} f\right) \leqq \sum_{n=1}^{N} 1_{D_{n}} T^{k} T_{n} f \leqq M_{N}\left(T^{k} f\right), \tag{2.2}
\end{equation*}
$$

and so

$$
\begin{equation*}
\left\|M_{N} f\right\|=\left\|T^{k} M_{N} f\right\| \leqq\left\|M_{N}\left(T^{k} f\right)\right\|, \quad k=0,1,2, \ldots . \tag{2.3}
\end{equation*}
$$

Taking power p and averaging between $k=0$ and $k=L-1, L \geqq 1$, we have

$$
\begin{equation*}
\left\|M_{N} f\right\|^{p} \leqq \frac{1}{L} \int \sum_{k=0}^{L-1}\left(M_{N} T^{k} f\right)^{p} d \mu \tag{2.4}
\end{equation*}
$$

Now the Hardy-Littlewood DEE says that for a finite sequence of nonnegative numbers $F(0), \ldots, F(N+L-2)$,

$$
\begin{equation*}
\sum_{k=0}^{L-1}\left(M_{N} F(k)\right)^{p} \leqq C^{p} \sum_{k=0}^{N+L-2}(F(k))^{p} \tag{2.5}
\end{equation*}
$$

where

$$
M_{N} F(k)=\max _{N \geqq n \geq 1} \frac{1}{n} \sum_{i=0}^{n-1} F(k+i) .
$$

Applying (2.5) to $F_{x}(k)=T^{k} f(x)$ for each x fixed, and observing that $M_{N} T^{k} f(x)=M I_{N} F_{x}(k)$, we have from (2.4)

$$
\left\|M_{N} f\right\|^{p} \leqq C^{p} \frac{1}{L} \int \sum_{k=0}^{N+L-2}\left(T^{k} f\right)^{p} d \mu=C^{p} \frac{N+L-1}{L}\|f\|^{p}
$$

which gives us (2.1) for M_{N} by letting $L \rightarrow \infty$.
Remark 2.1. (2.3) is crucial in the proof of Theorem 2.1. More generally if
there exist positive numbers H, K so that $\left\|T^{n}\right\| \leqq K, n=0,1, \ldots$, and (2.3') $\left\|M_{N} f\right\| \leqq H\left\|M_{N} T^{k} f\right\|$ for all $k \geqq 0, N \geqq 1$, then T has a DEE with constant $H K p /(p-1)$.

3. Lamperti operators.

Definition 3.1. A linear operator on a Banach space of functions is said to separate supports if it maps functions with disjoint supports to the same.

Definition 3.2. A bounded linear operator on an L_{p}-space, $1 \leqq p<\infty$, separating supports is called a Lamperti operator.

Lamperti operators include L_{p} isometries, $1 \leqq p<\infty, p \neq 2$, and positive L_{2} isometries $[\mathbf{3} ; \mathbf{1 1} ; \mathbf{1 2}]$. Their general structure, in the context of L_{p} isometries, $p \neq 2$, was investigated by J. Lamperti [12], but the idea goes back to Banach. It is interesting to note that the operators considered in [8] also fall into this category, by the following.

Proposition 3.1. Every positive linear operator on $L_{p}, 1 \leqq p \leqq \infty$, that has a positive inverse separates supports.

Proof. We need only show that such an operator T maps every pair $f, g \in L_{p}{ }^{+}$ with $\min (f, g)=0$ to $T f, T g$ with $\min (T f, T g)=0$. Call this minimum h. So $T^{-1} h \leqq f, T^{-1} h \leqq g$, implying supp $T^{-1} h \subset \operatorname{supp} f \cap$ supp g. Thus $T^{-1} h=0$ and $h=0$.

Remarks 3.1. However, as noted by de la Torre himself (oral communication), the result in $[\mathbf{8}]$ extends to an invertible L_{p} operator T such that only T (or T^{-1}) is positive and $\left\|T^{n}\right\| \leqq K<\infty, n=0, \pm 1, \pm 2, \ldots$ In fact the inequalities $M_{N} f \leqq T^{k} M_{N}\left(T^{-k} f\right), f \in L_{p}, N \geqq 1$, still hold for positive (negative) k. This yields a DEE with constant $K^{2} p /(p-1)$ (cf. Remark 2.1). Such a T is not in general Lamperti (see Example 3.1 below) but it is so in the finite dimensional case.

Proposition 3.2. Let T be an invertible, nonnegative $n \times n$ matrix such that $T^{k}, k=0, \pm 1, \ldots$, are uniformly bounded in any (equivalent) matrix norm. Then T is periodic and separates supports.

Proof. The spectral radius formula shows that $r(T), r\left(T^{-1}\right) \leqq 1$. This is possible only if the spectrum $\sigma(T) \subset$ unit circle. If T is irreducible, then by Frobenius' Theorem [9, Ch. 13], its elements $a_{i j}$, after a congruent change of rows and columns, are all 0 except when $j=i+1$, and its characteristic polynomial $\lambda^{n}-a_{12} \ldots a_{n-1, n} a_{n 1}$ is equal to $\lambda^{n}-1$. It follows that T separates supports and is n-periodic. If T is reducible, then T splits, after a congruent change of rows and columns, into blocks $T_{i j}, i, j=1, \ldots, m$, such that $T_{i j}$ is a zero matrix for $j>i$, and each $T_{i i}$ is an irreducible square matrix. Since $\sigma\left(T_{i i}\right) \subset \sigma(T)$, each $T_{i i}$ separates supports and is periodic, by the first case.

Let N be the least common multiple of the periods. Then $T^{v}=I+P, P \geqq 0$. $T^{x k} \geqq k P, k=1,2 \ldots$. The norm condition then implies $P=0$. Now $T=D+Q, D=\operatorname{diag}\left(T_{11}, \ldots, T_{m m}\right), Q \geqq 0$. So

$$
D^{N}=I=T^{N}=(D+Q)^{N} \geqq D^{N}+D^{N-1} Q,
$$

implying $Q=0$. Thus $T=D$, is periodic, and separates supports.
Example 3.1. Let $l_{p}, 1 \leqq p \leqq \infty$, be the L_{p}-space on the set of integers with counting measure. Define operators $U, E_{i j}, i, j$ any two integers, on l_{p} by $U\left\{x_{n}\right\}=\left\{y_{n}\right\}, y_{n}=x_{n+1}$, and $E_{i j}\left\{x_{n}\right\}=\left\{z_{n}\right\}, z_{n}=0$ if $n \neq i, z_{i}=x_{j}$. Thus U is a positive invertible isometry. Let $0<t<1$ and $T=U+t E_{-1,1}$. Then T is positive and does not separate supports. $T^{-1}=U^{-1}-t E_{00}$. Routine calculations show that

$$
\left|T^{n} x\right| \leqq U^{n}|x|+t U^{n+1}|x|, \quad\left|T^{-n} x\right| \leqq \sum_{i=0}^{n} t^{n-i} U^{-i}|x|
$$

for $x \in l_{p}, n \geqq 0$. Hence $\left\|T^{n}\right\| \leqq 1+t$, and $\left\|T^{-n}\right\| \leqq(1-t)^{-1}$.
Next we give a characterization of Lamperti operators. $|T|$ in Theorem 3.1 below is clearly the linear modulus of T (see [5]). This theorem is of interest since the linear modulus of an L_{ν} operator, $1<p<\infty$, that is not positive may not exist.

Theorem 3.1. A bounded linear operator T on an L_{p}-space, $1 \leqq p \leqq \infty$, separates supports if and only if there exists a positive linear operator $|T|$ on L_{p} such that

$$
\begin{equation*}
|T f|=|T||f| \quad \text { for every } f \in L_{p} \tag{3.1}
\end{equation*}
$$

Proof. Suppose (3.1) holds. Then for every pair $f, g \in L_{p}$ with disjoint supports, $|T f+t T g|$ is the same for $t= \pm 1$ (real L_{p}), or $t= \pm 1, i$ (complex L_{p}). It follows that $T f$ and $T g$ have disjoint supports. Conversely suppose T separates supports. Then $|T f|=|T| f| |$, and $|T|$ defined on $L_{p}{ }^{+}$as $|T| f=|T f|$ is linear. These are easy for simple functions. The general case follows from a routine approximation process. Then $|T|$ extends to a linear operator on L_{p} and (3.1) is true.

4. Structural theorems.

Definition 4.1. A σ-endormorphism Φ of the measure algebra (X, \mathscr{F}, μ) is an endomorphism of \mathscr{F} modulo μ-null sets as a Boolean σ-algebra. This means:

$$
\begin{align*}
& \Phi\left(\bigcup_{n=1}^{\infty} E_{n}\right)=\bigcup_{n=1}^{\infty} \Phi E_{n}, \quad \text { for disjoint } E_{n} \in \mathscr{F}, \tag{4.1}\\
& \Phi(X-E)=\Phi X-\Phi E, \quad \text { for all } E \in \mathscr{F}, \text { and } \tag{4.2}\\
& E \in \mathscr{F}, \mu E=0 \Rightarrow \mu \Phi E=0 \tag{4.3}
\end{align*}
$$

Φ induces a unique positive linear operator, also denoted by Φ, on the space of (finite-valued or extended) measurable functions such that $\Phi 1_{E}=1_{\Phi E}$ (cf. $[12])$. We list here some properties of this operator which we will use later. Each of the last three is equivalent to positivity in the definition of the operator Φ. Let f, g be any measurable functions, and p any positive number. Then

$$
\begin{align*}
& \Phi f \text { is } \Phi \mathscr{F} \text {-measurable; } \tag{4.4}\\
& \text { supp } \Phi f=\Phi \operatorname{supp} f \tag{4.5}
\end{align*}
$$

$$
\begin{equation*}
|\Phi f|^{p}=\Phi|f|^{p} ; \tag{4.6}
\end{equation*}
$$

$$
\begin{equation*}
\Phi f . \Phi g=\Phi(f . g) ; \tag{4.7}
\end{equation*}
$$

(4.8) Φ preserves a.e. convergence, i.e., $f_{n} \rightarrow f$ a.e. implies $\Phi f_{n} \rightarrow \Phi f$ a.e.

Theorem 4.1. Every Lamperti operator T on $L_{p}(X, \mathscr{F}, \mu), 1 \leqq p<\infty$, is induced by " σ-endomorphism Φ and " measurable function h. Specifically one such Φ (called the associated σ-endomorphism of $T)$ is defined by $\Phi E=\operatorname{supp} T 1_{E}$ for $E \in \mathscr{F}, \mu E<\infty$. There is then a unique $h=\sum_{i=1}^{\infty} T 1_{X_{i}}$, where $\left\{X_{i}: i \geqq 1\right\}$ is a countable decomposition of X into subsets of finite measure, with supp $h=\Phi X$, such that

$$
\begin{equation*}
\nu E=\int_{\Phi_{E}}|h|^{p} d \mu \tag{4.9}
\end{equation*}
$$

defines a measure on $(X, \mathscr{F}), \nu \leqq\|T\|^{p} \mu$; and

$$
\begin{equation*}
T f(x)=h(x) \Phi f(x) \quad \text { for all } f \in L_{p} \tag{4.10}
\end{equation*}
$$

Proof. Similar to that of [12, Theorem 3.1].
Remarks 4.1. There is a parallel structural theorem for bounded supportseparating L_{∞} operators, with σ-endomorphisms replaced by endomorphisms, a.e. convergence in (4.8) by L_{∞} convergence, and (4.9) by $\|h\|_{\infty}=\|T\|$.

Remark 4.2. In many cases of interest, Φ is induced by a non-singular point transformation ϕ, so that $\Phi f=f \circ \phi$; and it is always so in discrete measure spaces, and, by a theorem of Sikorski, in Borel spaces. (4.10) for non-isometric Lamperti operators was observed by several authors before; see e.g. [11].

With ν given by (4.9) and μ, p, Φ fixed, we denote $d \nu / d \mu$ by $D(h)$, i.e.,

$$
\nu E=\int_{E} D(h) d \mu \quad \text { for all } E \in \mathscr{F} .
$$

It is not difficult to prove the following.
Proposition 4.1. Let T be as in Theorem 4.1.
(a) If T is one-to-one, then so is Φ and $D(h)>0$ a.e.
(b) If T is onto, then so is Φ and $h \neq 0$ a.e.
(c) The dual T^{*} of T separates supports if and only if Φ maps \mathscr{F} onto $\mathscr{F} \cap \Phi X$.

Theorem 4.2. Let T be as in Theorem 4.1. Then

$$
\begin{equation*}
\int \Phi f \cdot|h|^{p} d \mu=\int f \cdot D(h) d \mu \tag{4.11}
\end{equation*}
$$

for all nonnegative measurable functions f. Hence
(4.12) T acts isometrically on $L_{p}(\{D(h)=1\})$ and vanishes on $L_{p}(\{D(h)=0\})$, and

$$
\begin{equation*}
\|T\|^{p}=\|D(h)\|_{\infty} . \tag{4.13}
\end{equation*}
$$

Proof. By definition of $D(h)$ and (4.9), (4.11) is true for indicator functions. The general case then follows. (4.12) is then obvious. For (4.13), observe that

$$
\|\left. T f\right|^{p}=\int|\Phi f|^{p}|h|^{p} d \mu=\int|f|^{p} D(h) d \mu,
$$

by (4.11). Hence

$$
\|T\|^{p}=\sup _{\|f\| \leqq 1}\|T f\|^{p}=\sup _{\|f\| \leqq 1} \int|f|^{p} D(h) d \mu=\|D(h)\|_{\infty} .
$$

Theorem 4.3. Let T be as in Theorem 4.1. Then

$$
\begin{equation*}
T^{n}=\theta_{n} \cdot S^{n} \quad \text { and } \quad \theta_{n}=\theta \ldots \Phi^{n-1} \theta, n=1,2, \ldots \tag{4.14}
\end{equation*}
$$

where
(i) S is a positive Lamperti contraction for which there is a decomposition of X into subsets X_{1} and X_{2}, such that S acts isometrically on $L_{p}\left(X_{1}\right)$ and vanishes on $L_{p}\left(X_{2}\right)$;
(ii) θ is an L_{∞} function whose support $\operatorname{supp} \theta=\Phi X$ and whose modulus $|\theta|$ is $\Phi \mathscr{F}$-measurable.

Further,

$$
\begin{equation*}
\left\|T^{n}\right\| \leqq\left\|\theta_{n}\right\|_{\infty} \tag{4.15}
\end{equation*}
$$

where equality holds for $n=1$ always, and for $n \geqq 2$ when T^{*} separates supports.

Proof. X decomposes into disjoint subsets X_{1}, X_{2} such that ΦX_{2} is null and Φ is one-to-one on $\mathscr{F} \cap X_{1}$. By (4.9), $D(h)=0$ on X_{2}, and since $|h|>0$ on $\Phi X, D(h)>0$ on X_{1}. Let S be the Lamperti operator induced by Φ and g, where $g=|h|$. $(\Phi D(h))^{-1 / p}$ on ΦX, and 0 on $X-\Phi X$. Clearly $D(g)=0$ on X_{2}. For each $E \in \mathscr{F} \cap X_{1}$,

$$
\int_{\Phi E}|g|^{p} d \mu=\int \Phi\left(1_{E} D(h)^{-1}\right)|h|^{p} d \mu=\int_{E} D(h)^{-1} \cdot D(h) d \mu=\mu E,
$$

by (4.11), and so $D(g)=1$ on X_{1}. Hence by (4.12) and (4.13), S has the properties described in (4.14). Put $\theta=\Phi D(h)^{1 / p}$. sgn h, where $\operatorname{sgn} h=h /|h|$
on $\{h \neq 0\}$, and 0 on $\{h=0\}$. Then the equality in (4.14) holds for $n=1$, and hence also for $n \geqq 2$, by property (4.7) of Φ.

Obviously from (4.14), inequality (4.15) holds. Conversely, since $|\theta|$ is $\Phi \mathscr{F}$-measurable, given any $A<\|\theta\|_{\infty}$, there is $E \in \mathscr{F} \cap X_{1}, 0<\mu E<\infty$, such that $|\theta| \geqq A$ on ΦE. Then supp $S 1_{E}=\Phi E$ and $\left|T 1_{E}\right|=|\theta| S 1_{E} \geqq A S 1_{E}$. It follows that $\|T\| \geqq A$ and therefore equality holds in (4.15) for $n=1$. If T^{*} separates supports, then Φ maps \mathscr{F} onto $\mathscr{F} \cap \Phi X$, by Prop. 4.1(c), and hence Φ^{n} maps \mathscr{F} onto $\mathscr{F} \cap \Phi^{n} X$. Since

$$
\operatorname{supp} \theta_{n}=\operatorname{supp} \theta \cap \ldots \cap \operatorname{supp} \Phi^{n-1} \theta=\Phi X \cap \ldots \cap \Phi^{n} X=\Phi^{n} X
$$

it is then clear that $\left|\theta_{n}\right|$ is $\Phi^{n} \mathscr{F}^{2}$-measurable for $n \geqq 2$. The same argument above shows that equality now holds in (4.15) for $n \geqq 2$.

Corollary 4.1. Let T be a Lamperti operator on $L_{p}(X, \mathscr{F}, \mu), 1 \leqq p<\infty$, with $\left\|T^{n}\right\| \leqq K<\infty, n=0,1,2, \ldots$, such that
(a) T^{*} separates supports, or equivalently,
(b) the associated σ-endomorphism Φ maps \mathscr{F} onto $\mathscr{F} \cap \Phi X$.

Then there exists a positive Lamperti contraction S on L_{p} such that

$$
\begin{equation*}
\left|T^{n} f\right| \leqq K S^{n}|f| \quad \text { for each } f \in L_{p}, n=0,1, \ldots \tag{4.16}
\end{equation*}
$$

In [2], it is shown that an L_{p} contraction, $1 \leqq p<\infty$, has a geometric dilation (as defined in [2]) to an L_{p} isometry, positive when $p=2$, only if it separates supports. Conversely, we have the following.

Theorem 4.4. Every support-separating L_{p} contraction, $1 \leqq p \leqq \infty$, has a geometric dilation to a support-separating L_{p} isometry, which can be chosen positive if so is the contraction.

Proof. Consider first the case $1 \leqq p<\infty$. With notation as in Theorem 4.1 and $4.2, X$ decomposes into $U=\{D(h)=1\}$ and $V=\{D(h)<1\}$. Define $X_{1}=X$, and $X_{n}, n \geqq 2$, as disjoint copies of V, equipped with inherited σ-algebra and measure. Then the L_{p}-direct sum $\oplus_{n=1}^{\infty} L_{p}\left(X_{n}\right)$ defines an L_{p}-space $L_{p}(Y, \mathscr{G}, \lambda)$ such that $Y \supset X, \mathscr{G} \supset \mathscr{F}$ and λ extends $\mu . R$, defined as

$$
R\left(f_{1}, f_{2}, \ldots\right)=\left(T f_{1},(1-D(h))^{1 / p} \cdot 1_{v} f_{1}, f_{2}, f_{3}, \ldots\right)
$$

is a Lamperti isometry on $L_{p}(Y)$, positive if so is T. It is easy to check that $T^{n} f=1_{X} R^{n} f, n=0,1, \ldots$, for all $f \in L_{p}(X)$.

The same proof works through for the case $p=\infty$ if we read 1 for $(1-D(h))^{1 / p}, \sup \left\{E:\left\|h \cdot 1_{\Phi E}\right\|_{\infty}<1\right\}$ for V and $\inf \left\{E:\left\|h \cdot 1_{\Phi E}\right\|_{\infty}=1\right\}$ for U.

5. Ergodic properties.

Theorem 5.1. Let T be a Lamperti contraction on $L_{p}, 1<p<\infty$. Then T has a DEE with constant $p /(p-1)$.

Proof. From Theorem 3.1 or $4.1, T$ has a linear modulus $|T|$ which is a positive Lamperti contraction. For all $f \in L_{p}, M(T) f \leqq M(|T|)|f|$. From Theorem 4.4, the latter equals $1_{X} M(R)|f|$, where R is a positive isometry on a larger L_{p}-space. Theorem 2.1 then completes the proof.

Theorem 5.2. Let T be a Lamperti L_{p} operator, $1<p<\infty$, with $\left\|T^{n}\right\|$ $\leqq K<\infty, n=0,1,2, \ldots$, such that
(a) T^{*} separates supports, or equivalently,
(b) the associated σ-endomorphism Φ maps \mathscr{F} onto $\mathscr{F} \cap \Phi X$.

Then T has a DEE with constant $K p /(p-1)$.
Proof. This follows from Corollary 4.1 and Theorem 5.1.
Corollary 5.1. For T in Theorem 5.1 or 5.2 , the individual ergodic theorem holds i.e. $T_{n} f$ converges a.e. for all $f \in L_{p}$.

Remarks 5.1. By Propositions 3.1 and 4.1, a cyclic group of positive, uniformly bounded L_{p} operators, $1<p<\infty$, is generated by a Lamperti operator satisfying conditions (a) equivalently (b) of Corollary 4.1. Thus Theorem 5.2 generalizes and improves the result of [8], giving a sharper constant $K p /(p-1)$ instead of $K^{2} p /(p-1)$.

If T^{*} does not separate supports, we have the following weaker theorem whose proof is similar to that of Theorem 2.1. (See Remark 2.1).

Theorem 5.3. Suppose T is a Lamperti L_{p} operator, $1<p<\infty$, with $\left\|T^{n}\right\| \leqq K<\infty, n \geqq 0$, such that for all $f \in L_{p}$ with norm 1 ,
$\left.{ }^{*}\right) \quad \quad \lim \sup n^{-1}\left(\|f\|^{p}+\ldots+\left\|T^{n-1} f\right\|^{p}\right) \geqq H^{p}>0$.
Then the DEE holds for T with constant $K p / H(p-1)$.
6. Akcoglu's theorem. A crucial step in the proof of Akcoglu's theorem [1] is the dilation of an n-dimensional $L_{p}(X, \mathscr{A}, m)$ operator T satisfying $\|T\|=1$ and $T_{t j}>0$ to a positive invertible isometry. The same proof shows that by virtue of Theorem 2.1, it is enough to dilate T to a positive isometry. More generally, because of Theorem 5.1, it is enough to "super-dilate" T to a positive Lamperti contraction Q on an $L_{p}(X, \mathscr{B}, m)$ with $\mathscr{B} \supset \mathscr{A}: T^{k} f \leqq E Q^{k} f$, $k \geqq 1, f \in L_{p}^{+}(\mathscr{A})$, where E is the conditional expectation with respect to \mathscr{A}. This will follow if we can prove $T E f \leqq E Q f, f \in L_{r}{ }^{+}(\mathscr{B})$. The existence of Q comes up in a very natural way by a simpler adaptation of Akcoglu's original construction.

In fact, we can regard X as the union of disjoint intervals I_{1}, \ldots, I_{n}, of lengths $m_{1}, \ldots, m_{n}, \mathscr{A}$ as generated by I_{1}, \ldots, I_{n}, and m as the Lebesgue measure. Take $\mathscr{B}=\{$ Borel sub-sets of $X\}$. Then

$$
E f(x)=\frac{1}{m_{i}} \int_{I_{i}} f d m \quad \text { for } x \in I_{i}
$$

By dividing each I_{i} into sub-intervals $I_{i j}, j=1, \ldots, n$, and mapping $I_{i j}$ linearly onto I_{j}, we get a transformation ϕ of X and a σ-endomorphism $\Phi=\phi^{-1}$ on \mathscr{B} such that

$$
m\left(\Phi F \cap I_{i}\right)=m(F) \xi_{i j} m_{i} / m_{j}
$$

for all $F \in I_{j} \cap \mathscr{B}$, where $\xi_{i j}=m\left(I_{i j}\right) / m_{i}$. Let Q be the Lamperti operator induced by Φ and $h \geqq 0$, where $h(x)=h_{i j}=$ constant, for $x \in I_{i j}$. Simple calculations show that $E Q=T E$ if and only if $h_{i j}=T_{i j} / \xi_{i j}$ and that

$$
D(h)(x)=m_{j}^{-1} \sum_{i} h_{i j}^{p} \xi_{i j} m_{i} \quad \text { for } x \in I_{j}
$$

By Theorem 4.2, Q is a contraction if and only if $\sum_{i} h_{i j}{ }^{p} \xi_{i j} m_{i} \leqq m_{j}$ (equalities for isometric Q), and if in addition $E Q=T E, \sum_{i} T_{i j}{ }^{p} \xi_{i j}{ }^{1-p} m_{i} \leqq m_{j}$. A natural choice for $\xi_{i j}$ is $T_{i j} u_{j} /(T u)_{i}$ where $u=\left(u_{1}, \ldots, u_{n}\right)$ and $T u$ are positive vectors. The last relations then become $\sum_{i} T_{i j}(T u)_{i}{ }^{p-1} m_{i} \leqq m_{j} u_{j}{ }^{p-1}$, i.e. $T^{*}(T u)^{p-1} \leqq u^{p-1}$. The existence of such a u is easy, and in fact it satisfies the equality so that Q is an isometry [1, Lemma 2.4].

References

1. M. A. Akcoglu, A pointwise ergodic theorem in L_{p}-spaces, Can. J. Math. 27 (1975), 1975-1982.
2. M. A. Akcoglu and L. Sucheston, Remarks on dilations in L_{p}-spaces, Proc. A.M.S. 53 (1975), 80-82.
3. S. Banach, Théorie des opérations linéaires, Monogr. Mat., Tom 1, Warsaw, 1932.
4. A. P. Calderón, Ergodic theory and translation-iniariant operators, Proc. N.A.S. 59 (1968), 349-353.
5. R. V. Chacon and U. Krengel, Linear modulus of a linear operator, Proc. A.M.S. 15 (1964), 553-559.
6. R. V. Chacon and S. A. McGrath, Estimates of positive contractions, Pacific J. Math. 30 (1969), 609-620.
7. R. R. Coifman and G. Weiss, Operators associated with representations of amenable groups, singular integrals induced by ergodic flows, the rotation method and multipliers, Studia Math. 47 (1973), 285-303.
8. A. de la Torre, 4 simple proof of the maximal ergodic theorem, Can. J. Math. 28 (1976), 1073-1075.
9. F. R. Gantmacher, The theory of matrices, zol. 2 (Chelsea, New Vork, 1959).
10. G. H. Hardy and J. E. Littlewood, A maximal theorem with function-theoretic applications, Acta Math. 54 (1930), 81-116.
11. A. Ionescu Tulcea, Ergodic properties of isometries in L_{p}-spaces, $1<p<\infty$, Bull. A.M.S. TO (1964), 366-371.
12. J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466.

McGill University,
Montreal, Quebec

[^0]: Received June 30, 1977 and in revised form, March 13, 1978. This work was partially supported by an FCAC Grant from the Government of Quebec.

