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ERGODIC PROPERTIES OF LAMPERTI OPERATORS
CHARN-HUEN KAN

1. Introduction. We shall assume throughout this paper, unless otherwise
specified, that p is a fixed number, 1 < p < 0.

It is well known that to prove the pointwise ergodic convergence of a con-
traction 7" on an L,-space it is enough to prove a Dominated Ergodic Estimate
(DEE) for 1" (see e.g. [11]). The earliest and simplest nontrivial DEE was
proved by Hardy-Littlewood [10, Theorem 8], where 7" is induced by the
(right) shift on nonnegative integers equipped with the counting measure. The
DEE for general positive L, contractions, for long an open problem, was finally
proved by Akcoglu [1] in 1974. The proof involves several steps, the most
difficult being a dilation that reduces it to the case of positive invertible isome-
tries, first proved by A. lonescu Tulcea [11]. Recently A. de la Torre [8] proved
a DEE for a cyclic group of positive, uniformly norm-bounded L, operators,
using a technique developed by Calderén [4] and extended by Coifman and
Weiss [7], which brings the Hardy-Littlewood theorem into play. This result
generalizes [11], and its proof is considerably simpler, thereby in effect simpli-
fying the proof of Akcoglu’s theorem. Our first aim in this paper is to show, in
§2, that Calderdn’s technique works for positive, not necessarily invertible L,
isometries. In §3 we introduce the concept of Lamperti operators, which in-
clude positive L, isometries, and give sufficient conditions for L, operators to
be Lamperti, showing, in particular, that operators considered in [8] are so.
In §4 we prove some structural theorems for Lamperti operators, which we use
in §5 to prove our main results, the DEE for Lamperti contractions (Theorem
5.1) and the DEE for a class of Lamperti operators (Theorem 5.2), which
generalizes and improves that of [8]. Finally in §6 we show how the dilation
method in [1] can be simplified, using the results that we have proved in §§2, 5.

The author is grateful to Prof. J. R. Choksi, his thesis supervisor, for refer-
ring him to several pertinent references and giving him valuable suggestions
in the writing of this paper.

2. DEE for positive isometries. Let (X, %, u) be a ¢-finite measure space
and L, = L,(X, %, u), 1 £ p = o, the usual (real or complex) Banach
spaces. Statements concerning measurable functions and sets shall be read
modulo p-null sets. The indicator function of a set £ is denoted 1z. The support
of a function f is the setsuppf = {x:f(x) £ 0}. The maximal operator
M(T) = M of an L, operator T is defined by Mf = sup,=1|7,f|, where
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T, = w1323 T, The truncated maximal operator My, N a positive integer, is
defined similarly with the sup taken over n = 1,..., N. 1" is said to have a
Dominated Ergodic Estimate (DEE) with (finite) constant C if

(2.1) ||Mf|| £ Cllf]| forallf € L,

This will be the case if (2.1) holds for all 3y with the same C.

THEOREM 2.1. Suppose T is « positive isometry on L,, 1 < p < o0o. Then
(2.1) holds with C = p/(p — 1).

Proof. First note that 7" maps functions with disjoint supports to functions
with disjoint supports. This follows from the fact that for f, ¢ € L,*, [|f + g||?
= ||f]|* + |lg||” if and only if f and g have disjoint supports.

It suffices to prove (2.1) for all Ay and f € L,*. Now My [ = Sy 1p, T0f
for a family of disjoint subsets 7%y, . .., I£y. Since 7" and so 1%, k=1,2,...,
preserve disjointness of supports, 7%(1,, 1,f), » = 1,..., N, k fixed, have
disjoint supports D,. Hence

N N
(2.2)  T'Myf= 2 1,71 T10f) £ 1, 1T, f £ My(TFf),
1

n=1 n=

and so

(2.3)

Myfll = ||T*Myf]) £ ||My(TEHI, kB =0,1,2,... .

Taking power p and averaging between £ =0 and k=L — 1, L =21, we
have

1=
@4)  (Mfll = 5 f IZ‘) (MyT"f)du.

Now the Hardy-Littlewood DEE says that for a finite sequence of nonnegative
numbers F(0),..., F(N + L — 2),

-1 N+ L2
(25) 2 (MyF(R) =C" 2, (FR)
k=0 k=0
where

n—1

MyI(k) = max 1 > F(k A+ 1),

N>n>1 M =)

Applying (2.5) to [I.(k) = 7%*f(x) for each x fixed, and observing that
MyT* (x) = MyF,(k), we have from (2.4)

o1 (YK e, GNAL—1
e s 0 U8 @ ra = e N EE=

L
which gives us (2.1) for My by letting L — o0.

Remark 2.1. (2.3) is crucial in the proof of Theorem 2.1. More generally if
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1208 CHARN-HUEN KAN

there exist positive numbers H, K so that ||7%|| £ K,#» = 0,1, ..., and
2.3) || Mxfll £ HIMSTHI| forallk =0, N = 1,
then 7" has a DEE with constant HKp/(p — 1).

3. Lamperti operators.

Definition 3.1. A linear operator on a Banach space of functions is said to
separate supports if it maps functions with disjoint supports to the same.

Definition 3.2. A bounded linear operator on an L,-space, 1 < p < o0,
separating supports is called a Lamperti operator.

Lamperti operators include L, isometries, 1 < p < w0, p # 2, and positive
Lo isometries [3; 11; 12]. Their general structure, in the context of L, isometries,
P # 2, was investigated by J. Lamperti [12], but the idea goes back to Banach.
It is interesting to note that the operators considered in [8] also fall into this
category, by the following.

ProrositioN 3.1. Every positive linear operator on L,y 1 < p < o0, that has a
positive inverse separates supports.

Proof. We need only show that such an operator 7' maps every pair f, g € L,*
with min (f, ¢) = 0 to 7, T¢ with min (7f, T¢) = 0. Call this minimum /.
So I £ f, 17 £ ¢, implying supp 7' Csupp f\supp g Thus
I-%h =0and k = 0.

Remarks 3.1. However, as noted by de la Torre himself (oral communica-
tion), the result in [8] extends to an invertible L, operator 7 such that only
T'(or T71) is positive and ||| £ K < 0,n = 0, =1, £2,.... In fact the
inequalities My f < %M (1T7%), f ¢ L,, N = 1, still hold for positive
(negative) k. This yields a DEE with constant K2p/(p — 1) (cf. Remark 2.1).
Such a T is not in general Lamperti (see Lxample 3.1 below) but it is so in the
finite dimensional case.

ProrositioN 3.2, Let 1" be an invertible, nonnegative n X n matrix such that
1% k=0, &1, ..., are uniformly bounded in any (equivalent) malrix norm.
Then T s periodic and separates supports.

Proof. The spectral radius formula shows that »(7°), »(7—') =< 1. This is
possible only if the spectrum ¢ (7") C unit circle. If 7" is irreducible, then by
Frobenius’ Theorem [9, Ch. 13], its elements ¢y, after a congruent change of
rows and columns, arc all 0 except when j = 7 -+ 1, and its characteristic
polynomial N* — a2 . . . «,—1 4,1 is equal to N* — 1. It follows that 7 separates
supports and is n-periodic. If 7" is reducible, then 7" splits, after a congruent
change of rows and columns, into blocks 7°;;, 4,7 = 1, ..., m, such that 17, is
a zero matrix for ;7 > 7, and each 7';; is an irreducible square matrix. Since
a(1';) C o(T), cach T;; separates supports and is periodic, by the first case.
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Let N be the least common multiple of the periods. Then 7V = I 4+ P, P = 0.
™% =2 kP, k=1,2... . The norm condition then implies P = 0. Now
I'=D+ Q,D =diag (I'11,. .., LTum), Q = 0. So

DY =] =1Y = (D + Q)" = D¥ + D¥-1Q,
implying Q = 0. Thus 1" = D, is periodic, and separates supports.

counting measure. Define operators U, E;;, 7,7 any two integers, on [/, by
Ulx,d = {3y v = xpp,and E{x = {z.0,2, = 0if n #£ 4,5, = x,;. Thus U
is a positive invertible isometry. Let 0 < ¢ < land 7" = U + tE_; ;. Then T’
is positive and does not separate supports. 1~ = U~' —{FEq. Routine calcula-
tions show that

Example 3.1. Let [,, 1 < p = o0, be the L,-space on the set of integers with

|7™%| < U'x| + U™ x],

T Z n_lU—llY
forx € 1,,n = 0. Hence ||T7| £ 1+ ¢, and ||[T7] = (1 — §)~L

Next we give a characterization of Lamperti operators. |7 in Theorem 3.1
below is clearly the linear modulus of 7" (see [5]). This theorem is of interest
since the linear modulus of an L, operator, 1 < p < o0, that is not positive
may not exist.

THEOREM 3.1. 4 bounded linear operator 1" on an L,-space, 1 = p =< o0
separates supports if and only if there exists « positive linear operator |T| on L,
such that

B |Tf] =

Proof. Suppose (3.1) holds. Then for every pair f, ¢ € L, with disjoint sup-
ports, |1 + tT¢| is the same for { = 41 (real L,,), ort = =41, 7 (complex
L,). It follows that 7f and 7'¢ have disjoint supports. Conversely suppose 1°
separates supports. Then |T'f| = |7f||, and |T| defined on L,* as |T'|f = |T'f]
is linear. These are easy for simple functions. The general case follows from a
routine approximation process. Then | 7’| extends to a linear operator on L, and
(3.1) is true.

for every f ¢ L,.

4. Structural theorems.

Definition 4.1. A g-endormorphism @ of the measure algebra (X, %, u)isan
endomorphism of # modulo u-null sets as a Boolean g-algebra. This means:

(4.1) <I>( U En) = U ®F,, fordisjoint E, €%,
n=1 n=1

42) &X — E) = &X — ®F, forall EC.Z,and

(4.3) ECZF,uE = 0= udE = 0.
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® induces a unique positive linear operator, also denoted by @, on the space
of (finite-valued or extended) measurable functions such that ®1; = 14z(cf.
[12]). We list here some properties of this operator which we will use later. Each
of the last three is equivalent to positivity in the definition of the operator &.
Let f, ¢ be any measurable functions, and p any positive number. Then

(4.4)  ®f is F -measurable;

(4.5)  supp ®f = ®supp f;

(£6)  [®f] = 2[f];

47)  f.2g = B(fg);

(4.8) @ preserves a.e. convergence, i.e., f, — f a.e. implies ®f, — ®f a.e.

TuroreM 4.1. Every Lamperti operator 1T on L,(X, # , u),1 £ p < w0, is
indiced by « g-endomorphism ® and « measurable function h. Specifically one
such ® (called the associated o-endomorphism of 1°) is defined by I = supp 11y
for £ ¢ F  uli < . Thereis then o uniqueh = > 5y Ty, where {X;:1 = 1}
ts « countable decomposition of X into subsets of fimite measure, with
supp b = ®X, such that

(£.9) E = f i Pdy
o
defines a measure on (X, %), v £ ||T||Pu; and
(4.10) Tf(x) = h(x)®f(x) forallf € L,
Proof. Similar to that of {12, Theorem 3.1].

Remarks 4.1. There is a parallel structural theorem for bounded support-
separating L, operators, with o-endomorphisms replaced by endomorphisms,
a.e. convergence in (4.8) by L, convergence, and (4.9) by [|&|l, = [|T]].

Remark 4.2. In many cases of interest, ® is induced by a non-singular point
transformation ¢, so that ®f = f o ¢; and it is always so in discrete measure
spaces, and, by a theorem of Sikorski, in Borel spaces. (4.10) for non-isometric
Lamperti operators was observed by several authors before; see e.g. [11].

With v given by (4.9) and u, p, ® fixed, we denote dv/du by D (k), i.e.,

vE=j D(h)du forall E ¢ %.
E

It is not difficult to prove the following.

ProrosiTiON 4.1. Let T be as tn Theorem 4.1.

(a) If T is one-to-one, then so is ® and D (h) > 0 a.e.

(b) If T is onto, then so is ® and h # 0 a.e.

(c) The dual T* of T separates supports if and only if ® maps F
onto F M dX.
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THEOREM 4.2. Let T be as in Theorem 4.1. Then

@iy [ ar ppaw = [ 1 Do

for all nonnegative measurable functions f. Hence

(4.12) T ucts isometrically on L,({ D (k) = 1}) and vanishes on L,({D (k) = 0}),
and

(4.13) |[I7]]7 = [ID(W)]l...

Proof. By definition of D (k) and (4.9), (4.11) is true for indicator functions.
The general case then follows. (4.12) is then obvious. For (4.13), observe that

(7ae = [ 1eseipas = [ 115D

by (4.11). Hence

1P = swp (17517 = swp [ 157D = DG

THEOREM 4.3. Let 1" be as in Theorem 4.1. Then
4.14) 1" =6,-S" and 0,=6... 9, n=1,2 ...,

where

(i) S is « positive Lamperti contraction for which there is « decomposition of X
into subsets X1 and X, such that S acts isometrically on L,(X1) and vanishes on
Lp (Xz) N

(ii) 6 is an L, function whose support supp 0 = X and whose modulus 6| is
®F -measurable.

Further,

(4.15) (|77} = [16,]]..,
where equality holds for n = 1 always, and for n = 2 when T* separates sup-

ports.

Proof. X decomposes into disjoint subsets X, X2 such that X is null and @
is one-to-one on ¥ M Xi. By (4.9), D(h) = 0 on X,, and since |k > 0 on
®X, D(h) > 0 on Xi. Let S be the Lamperti operator induced by ® and g,
where g = |k|. (8D (k))~1? on ®X, and 0 on X — ®X. Clearly D(g) = 0 on
X,. Foreach E € % N X,,

L lgdu = f (1D |hPdu = fED(h)‘l.D(h)du = uE,

by (4.11), and so D(g) = 1 on X;. Hence by (4.12) and (4.13), S has the
properties described in (4.14). Put 6 = ®D (k)7 sgn h, where sgn h = h/|h]
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on {k # 0},and O on {A = 0}. Then the equality in (4.14) holds for n = 1, and
hence also for n = 2, by property (4.7) of ®.

Obviously from (4.14), inequality (4.15) holds. Conversely, since |6] is
®F -measurable, given any A < ||0]|., there is E ¢ % N X,;, 0 < pE < o,
such that |#] = 4 on ®E. Then supp Slz = ®F and |71, = |0|S1; = AS1,.
It follows that |[T']| = A4 and therefore equality holds in (4.15) for n = 1. If
T* separates supports, then ® maps.# onto# M ®X, by Prop. 4.1(c), and
hence " maps# onto# M &X. Since

supp 6, = suppf /M ... Nsupp 19 = X N ... N PX = §°X,

it is then clear that [6,| is % -measurable for # = 2. The same argument

above shows that equality now holds in (4.15) for n = 2.

COROLLARY 4.1. Let 1" be a Lamperti operator on L,(X, % ,u), 1 £ p < 0,
with ||T7)] £ K <o0,n=0,1,2,...,such that

(a) T* separates supports, or equivalently,

(b) the associated a-endomorphism ® mapsF onto F M ®X.

Then there exists a positive Lamperti contraction S on L, such that

(4.16) |T"f| < KS"|f| foreachf € Lyyn =20,1,... .

In [2], it is shown that an L, contraction, 1 = p < o0, has a geometric
dilation (as defined in [2]) to an L, isometry, positive when p = 2, only if it
separates supports. Conversely, we have the following.

THEOREM 4.4. Every support-separating L, contraction, 1 < p = o0, has «
geometric dilation to a support-separating L, isometry, which can be chosen posi-
l1e 1f so is the contraction.

Proof. Consider first the case 1 < p < co. With notation as in Theorem
4.1 and 4.2, X decomposes into U = {D(h) = 1} and V = {D(h) < 1}. Define
X1 =X, and X,, n = 2, as disjoint copies of 1, equipped with inherited
o-algebra and measure. Then the L,-direct sum @1 L,(X,) defines an
Ly-space L,(V, % ,\) such that ¥ D X, ¥ D% and \extends u. R, defined as

R(fhf?r' . ) = (Tflv (1 - D(h))l/p, ]-Vflrf21f3r' . .),

is a Lamperti isometry on L,(Y), positive if so is 7. It is easy to check that
T = 1xR",n =0,1,...,forall f € L,(X).

The same proof works through for the case p = o if we read 1 for
(1 — D&Y7, sup {E: ||h - 1agll, <1} for V andinf {E: ||k 1sg|l, = 1}
for U.

5. Ergodic properties.

TrEOREM 5.1. Let 1" be a Lamperti contraction on L,y 1 < p < co. Then T
has a DEE with constant p/(p — 1).
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Proof. From Theorem 3.1 or 4.1, T" has a linear modulus | 7| which is a posi-
tive Lamperti contraction. For all f € L,, M(T)f £ M(|T])|f]. From

Theorem 4.4, the latter equals 1M (R)|f], where R is a positive isometry on a
larger L,-space. Theorem 2.1 then completes the proof.

THEOREM 5.2, Let 1" be « Lamperti L, operator, 1 < p < oo, with ||T7||
S K <ow,n=0,1,2,...,such that

(a) T* separates supports, or equivalently,

(b) the associated a-endomorphism ® maps F onto F M X.
Then T has « DEE with constant Kp/(p — 1).

Proof. This follows from Corollary 4.1 and Theorem 5.1.

COROLLARY b.1. For 1" in Theorem 5.1 or 5.2, the individual ergodic theorem
holds i.e. T',f converges a.e. for all f € L,.

Remarks 5.1. By Propositions 3.1 and 4.1, a cyclic group of positive, uni-
formly bounded L, operators, 1 < p < 0, is generated by a Lamperti opera-
tor satisfying conditions (a) equivalently (b) of Corollary 4.1. Thus Theorem
5.2 generalizes and improves the result of [8], giving a sharper constant

Kp/(p — 1) instead of K2p/(p — 1).

If 7* does not sepdrate supports, we have the following weaker theorem
whose proof is similar to that of Theorem 2.1. (See Remark 2.1).

TurorEM 5.3. Suppose 1T is « Lamperti L, operator, 1 < p < oo, with
1T £ K < w0, n = 0, such that for all f € L, with norm 1,

*) limsup 2 "(||f|[P + ... +

N-00

T"7'f(|") = H” > 0.

Then the DEE holds for T with constant Kp/H (p — 1).

6. Akcoglu’s theorem. A crucial step in the proof of Akcoglu’s theorem [1]
is the dilation of an n-dimensional L,(X,.27, m) operator 1 satisfying || 7| = 1
and 7°;; > 0 to a positive invertible isometry. The same proof shows that by
virtue of Theorem 2.1, it is enough to dilate 7" to a positive isometry. More
generally, because of Theorem 5.1, it is enough to ‘‘super-dilate’”’ 7" to a positive
Lamperti contraction Q on an L,(X, %, m) with & D/ : I*f < EQ,
k = 1,f ¢ L+(Z), where E is the conditional expectation with respect to.oZ.
This will follow if we can prove TEf < EQf, f ¢ L,t(#). The existence of Q
comes up in a very natural way by a simpler adaptation of Akcoglu’s original
construction.

In fact, we can regard X as the union of disjoint intervals Iy, ..., [,, of
lengths my, . . ., m,, &/ as generated by Iy, ..., I, and m as the Lebesgue
measure. Take % = {Borel sub-sets of X}. Then

Ef(x) =;ﬂ;j;.fdm forx € I,.
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By dividing each I, into sub-intervals I;;, j = 1,...,n, and mapping I,
linearly onto I; we get a transformation ¢ of X and a c-endomorphism
d = ¢~ on & such that

m(PF M I1;) = m(F)em/my,

forall ¢ I,N\%, where &;; = m(I,;)/m, Let Q be the Lamperti operator
induced by ® and # = 0, where k(x) = h;; = constant, for x € I,;. Simple
calculations show that £Q = TE if and only if &;; = 1°;;/¢;, and that

D(h)(x) = le—l Z ]li]-pgi]«m,- for x € I]' .

By Theorem 4.2, Q is a contraction if and only if >k, 7&,,m; < m; (equalities
for isometric Q), and if in addition EQ = TE, >, T 7¢;'""m; < m;. A natural
choice for &;; is 1 ;/(Tu); where u = (uy,...,u,) and Tu are positive
vectors. The last relations then become >, 7°;;(Tu)'m; < mup~Y, ie.
T*(Tu)»=1 < u~'. The existence of such a u is easy, and in fact it satisfies
the equality so that Q is an isometry [1, Lemma 2.4].

REFERENCES

—

. M. AL Akcoglu, < pointwise ergodic theorem in L ~spaces, Can. J. Math. 27 (1975), 1975-1982.

2. M. A. Akcoglu and L.. Sucheston, Remarks on dilations in Ly-spaces, Proc. A.M.S. 63 (1975),
80-82.

. S. Banach, Théorie des opérations linéaires, Monogr. Mat., Tom 1, Warsaw, 1932.

4. A. P. Calderdn, Ergodic theory and translation-invariant operators, Proc. N.A.S. 59 (1968),
349-353.

5. R. V. Chacon and U. Krengel, Linear modulus of a linear operator, Proc. A.N.S. 15 (1964),
H53-559.

6. R. V. Chacon and S. A. McGrath, Estimales of positive contractions, Pacific J. Math. 30
(1969), 609-620.

7. R. R. Coifman and G. Weiss, Operators associated with representations of amenable groups,
singular integrals induced by ergodic flows, the rotation method and multipliers, Studia
Math. 47 (1973), 285-303.

8. A. de la Torre, A simple proof of the maximal ergodic theorem, Can. J. Math. 28 (1976),
1073-1075.

9. I°. R. Gantmacher, The theory of matrices, vol. 2 (Chelsea, New York, 1959).

10. G. H. Hardy and J. E. Littlewood, 1 maximal theorem with function-theoretic applications,
Acta Math. 54 (1930), 81-116.

11. A. lonescu Tulcea, Ergodic properties of isometries in Ly-spaces, 1 < p < o, Bull. A.M.S.
70 (1964), 366-371.

12. J. Lamperti, On the isometries of certain function spaces, Pacific J. Math. 8 (1958), 459-466.

w

McGill University,
Montreal, Quebec

https://doi.org/10.4153/CJM-1978-100-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1978-100-x

