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ERGODIC PROPERTIES OF LAMPERTI OPERATORS 

CHARN-HUEN KAN 

1. I n t r o d u c t i o n . We shall assume throughout this paper, unless otherwise 
specified, t ha t p is a fixed number , 1 < p < GO . 

I t is well known tha t to prove the poin.twise ergodic convergence of a con
traction T on an L / ;-space it is enough to prove a Dominated Ergodic Es t imate 
( D E E ) for T (see e.g. [.11]). The earliest and simplest non trivial D E E was 
proved by I Iardy-Li t t lewood [10, Theorem 8], where T is induced by the 
(right) shift on nonnegative integers equipped with the counting measure. The 
D E E for general positive Lp contractions, for long an open problem, was finally 
proved by Akcoglu [1] in 1974. T h e proof involves several steps, the most 
difficult being a dilation tha t reduces it to the case of positive invertible isome-
tries, first proved by A. Ionescu Tulcea [11]. Recently A. de la Torre [8] proved 
a D E E for a cyclic group of positive, uniformly norm-bounded Lp operators , 
using a technique developed by Calderôn [4] and extended by Coifman and 
Weiss [7], which brings the I Ia rdy-Li t t lewood theorem into play. This result 
generalizes [11], and its proof is considerably simpler, thereby in effect simpli
fying the proof of Akcoglu's theorem. Our first aim in this paper is to show, in 
§2, t ha t Calderôn's technique works for positive, not necessarily invertible Lp 

isometries. In §3 we introduce the concept of Lamper t i operators , which in
clude positive Lp isometries, and give sufficient conditions for Lp operators to 
be Lamper t i , showing, in part icular, t ha t operators considered in [8] are so. 
In §4 we prove some structural theorems for Lamper t i operators, which wre use 
in §5 to prove our main results, the D E E for Lamper t i contract ions (Theorem 
o. l ) and the D E E for a class of Lamper t i operators (Theorem 5.2), which 
generalizes and improves t ha t of [8]. Finally in §6 we show how the dilation 
method in [1] can be simplified, using the results t ha t we have proved in §§2, 5. 

The author is grateful to Prof. J. R. Choksi, his thesis supervisor, for refer
ring him to several per t inent references and giving him valuable suggestions 
in the writing of this paper. 

2. DEE for pos i t ive i s o m e t r i e s . Let (X, &~, \x) be a cr-finite measure space 
and Lp = LV(X,&~, JU), 1 ^ p ^ co, the usual (real or complex) Banach 
spaces. S ta tements concerning measurable functions and sets shall be read 
modulo ju-null sets. T h e indicator function of a set E is denoted lE. T h e support 
of a function / is the set s u p p / = {x : f(x) ^ 0}. T h e maximal operator 
M(T) = AI of an Lv operator T is defined by Mf = sup^i | jT„ / | , where 
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LAMPERTI OPERATORS 1207 

Tn = n~1YA=o ll- The truncated maximal operator AIN, N a positive integer, is 
defined similarly with the sup taken over n = 1, . . . , N. T is said to have a 
Dominated Ergodic Estimate (DEE) with (finite) constant C if 

(2.1) HM/II ^ C\\j\\ for a l l / G L,. 

This will be the case if (2.1) holds for all MN with the same C. 

THEOREM 2.1. Suppose T is a positive isometry on Lp, 1 < p < GO . Then 
(2.1) holds with C = p/(p - 1). 

Proof. First note that 7" maps functions with disjoint supports to functions 
with disjoint supports. This follows from the fact that for/, g Ç Lp

+, \\f + g\\v 

= \\j\\v + ||g||p if and only if/ and g have disjoint supports. 
It suffices to prove (2.1) for all MN a n d / G L,+. Now Af„/ = Z l i 1*„ Tnf 

for a family of disjoint subsets Eu . . . , 7^v. Since T and so 7"A", k = 1 , 2 , . . . , 
preserve disjointness of supports, Tk(lEn Tnf), n = 1, . . . , TV, k fixed, have 
disjoint supports Dn. Hence 

(2.2) TkMNf= £ lDnT\lEnTnf) S Z lDnTkTnf£MN(7*f), 
n=l n=\ 

and so 

(2.3) ||MW/|| = \\TkMNj\\ è | | i l ^ ( r* / ) | | , * = 0, 1, 2, . . . . 

Taking power p and averaging between k = 0 and & = L — 1, L ^ 1, we 
have 

(2.4) \\M„f\\' ^ j f £ (M„T*fyd». 

Now the Hardy-Littlewood DEE says that for a finite sequence of nonnegative 
numbers F(0), . . . , E(N + 7 . - 2 ) , 

L-l N+L-2 

(2.5) Z (MNF(k)Y g C L (F(*))> 
A:=0 fc=0 

where 

lfv7<X&) = max -1- Z ^ (* + *). 

Applying (2.5) to Fx(k) = Tkf(x) for each x fixed, and observing that 
MNTkf(x) = MNFx(k), we have from (2.4) 

iiMv/ir ^ ? j i N+i~2 (Thfyd» = c ^ - t f - - 1 n/ir, 
^ •/ A;=0 L 

which gives us (2.1) for MN by letting L —» oo. 

Remark 2.1. (2.3) is crucial in the proof of Theorem 2.1. More generally if 
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there exist positive numbers H, K so t h a t | | r w | | ^ K, n = 0, 1, . . . , and 

(2.3 /) \\MNf\\ S H\\MNTkf\\ for all k ^ 0, N ^ 1, 

then T has a D E E with constant HKp/(p — 1). 

3. Lamperti operators. 

Definition 3.1. A linear operator on a Banach space of functions is said to 
separate supports if it maps functions with disjoint supports to the same. 

Definition 3.2. A bounded linear operator on an Lp-space, 1 ^ p < co , 
separat ing supports is called a Lamperti operator. 

Lamper t i operators include Lp isometries, 1 ^ p < co , p ^ 2, and positive 
L 2 isometries [3; 11; 12]. Their general s t ructure , in the context of Lp isometries, 
p ^ 2, was investigated by J. Lamper t i [12], bu t the idea goes back to Banach. 
I t is interesting to note t ha t the operators considered in [8] also fall into this 
category, by the following. 

PROPOSITION 3.1. Every positive linear operator on Lv, 1 ^ p ^ co , that has a 

positive inverse separates supports. 

Proof. W e need only show t h a t such an operator T maps every p a i r / , g Ç Lp
+ 

with min (/, g) = 0 to Tf, Tg with min (Tf, Tg) = 0. Call this minimum h. 
So T~xh ^ / , T~lh g g, implying supp T~lh C supp / C\ supp g. T h u s 
T-% = 0 and /z = 0. 

Remarks 3.1. However, as noted by de la Torre himself (oral communica
t ion) , the result in [8] extends to an invertible Lp operator T such t ha t only 
T(or T~l) is positive and | | r n | | g K < co , n = 0, ± 1 , ± 2 , . . . . In fact the 
inequalities MNf g TkMN(T-*f), f £ Lp, N ^ 1, still hold for positive 
(negative) &. This yields a D E E with constant K2p/ (p — 1) (cf. Remark 2.1). 
Such a r is not in general Lamper t i (see Example 3.1 below) bu t it is so in the 
finite dimensional case. 

PROPOSITION 3.2. Let T be an invertible, nonnegative n X n matrix such that 
Tk, k = 0, dbl, . . . , are uniformly bounded in any (equivalent) matrix norm. 
Then T is periodic and separates supports. 

Proof. The spectral radius formula shows t h a t r(T), r(T~l) rg 1. This is 
possible only if the spectrum a(T) C uni t circle. If T is irreducible, then by 
Frobenius ' Theorem [9, Ch. 13], its elements aih after a congruent change of 
rows and columns, are all 0 except when j = i + 1, and its characterist ic 
polynomial \n — an . . . av-\tnani is equal to \n — 1. I t follows t ha t T separates 
supports and is ^-periodic. If T is reducible, then T splits, after a congruent 
change of rows and columns, into blocks Tijy i, j = 1, . . . , m, such t h a t T^ is 
a zero matr ix for j > i, and each Tu is an irreducible square matr ix . Since 
v{Tiv) C <r(T), each Tu separates suppor ts and is periodic, by the first case. 
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Let N be the least common multiple of the periods. Then Tx = I + P, P ^ 0. 
TNk g; kP, fe = 1, 2 . . . . The norm condition then implies P = 0. Now 
T = D + Q,D = diag (Tn, . . . , r w w ) , G ^ 0. So 

DN = j = TN = (D + Q)N ^ £>^ + D^-'Q, 

implying Q = 0. Thus 7" = 72, is periodic, and separates supports . 

Example 3.1. Let /p, 1 ^ £ ^ GO , be the 7^-space on the set of integers with 
counting measure. Define operators U, Eih i,j any two integers, on lp by 
U{x„} = {yn}, yn = x„+i, and E,:j{xn} = {zn), zn = 0 if n ^ i, zf = xjt Thus £/ 
is a positive invertible isometry. Let 0 < t < 1 and 7" = £/ + tE-\t\. Then 7' 
is positive and does not separate supports . T~l = U~1 —tE^. Rout ine calcula
tions show tha t 

\Tnx\ rg Un\x\ + tUn+1\x\, \T-nx\ £ £ t^lT'lx], 

iorx £ lp,n ^ 0. Hence | | r n | | g 1 + /, and | | r - w | | ^ (1 - 0 " 1 . 

Next we give a characterization of Lamper t i operators. \T\ in Theorem 3.1 
below is clearly the linear modulus of T (see [5]). This theorem is of interest 
since the linear modulus of an Lv operator, 1 < p < oo , t ha t is not positive 
may not exist. 

T H E O R E M 3.1. A bounded linear operator T on an Lp-space, 1 rg p ^ oo , 
separates supports if and only if there exists a positive linear operator \T\ on Lp 

such that 

(3.1) 17y| = | r | | / | for every f e Lp. 

Proof. Suppose (3.1) holds. Then for every p a i r / , g £ LP with disjoint sup
ports , \Tf + tTg\ is the same for t = ± 1 (real Lp), or t = ± 1 , i (complex 
Lp). I t follows t ha t If and Tg have disjoint supports . Conversely suppose T 
separates supports . Then \Tf\ = | r | / | | , and \T\ defined on Lp

+ as \T\f = \Tf\ 
is linear. These are easy for simple functions. T h e general case follows from a 
routine approximation process. Then |7"| extends to a linear operator on Lp and 
(3.1) is true. 

4. Structural theorems. 

Definition 4 .1. A cr-endormorphism $ of the measure algebra (X, J^, JJL) is an 
endomorphism of J ^ modulo /x-null sets as a Boolean (7-algebra. This means : 

(4.1) $ ( U En) = U $E„, for disjoint £ n G J F , 
\ n = l / n=l 

(4.2) $ ( X - E) = $X - $ £ , for all £ Ç J % and 

(4.3) E e &~, [iE = 0 => M * £ = 0. 
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$ induces a unique positive linear operator, also denoted by <£, on the space 
of (finite-valued or extended) measurable functions such that §>1E = l$#(cf. 
[12]). We list here some properties of this operator which we will use later. Each 
of the last three is equivalent to positivity in the definition of the operator 3>. 
Le t / , g be any measurable functions, and p any positive number. Then 

(4.4) <£/is «^immeasurable ; 

(4.5) supp $/ = $ s u p p / ; 

(4.6) \*f\* = * | /h 

(4.7) S/.Sg = * ( / . g ) ; 

(4.8) <£ preserves a.e. convergence, i.e., fn —>f a.e. implies $fn —» <£>/ a.e. 

THEOREM 4.1. Every Lamperti operator T on LV(X,^~, \i),\ ^ p < co , ?\v 
induced by a a-endomorphism <ï> and a- measurable function h. Specifically one 
such $ (called the associated a-endomorphism of rT) is defined by &E = supp T1E 

for E Ç Ĵ ~, \iE < oo. There is then a unique h = X)?=i ^lx;> w ^ l ^ i : ^ ^ 1} 
is a countable decomposition of X into subsets of finite measure, with 
supp A = $X, swcfe //za£ 

(4.9) vE = I |A|pd/x 

defines a measure on (X, J r ) , */ ^ | | r | | V ; awd 

(4.10) Tf{x) = h(x)m*) for allf G L„. 

Proof. Similar to that of [12, Theorem 3.1]. 

Remarks 4.1. There is a parallel structural theorem for bounded support-
separating Lœ operators, with o--endomorphisms replaced by endomorphisms, 
a.e. convergence in (4.8) by Lœ convergence, and (4.9) by \\h\\œ = \\T\\. 

Remark 4.2. In many cases of interest, <£ is induced by a non-singular point 
transformation (/>, so that <£/ = f o 4>; and it is always so in discrete measure 
spaces, and, by a theorem of Sikorski, in Borel spaces. (4.10) for non-isometric 
Lamperti operators was observed by several authors before; see e.g. [11]. 

With v given by (4.9) and \x, p, $ fixed, we denote dv/d\x by D(h), i.e., 

vE = I D(h)dfi for all E £ &. 
J E 

It is not difficult to prove the following. 

PROPOSITION 4.1. Let T be as in Theorem 4.1. 
(a) If T is one-to-one, then so is $ and D(h) > 0 a.e. 
(b) If T is onto, then so is $ and h ^ 0 a.e. 
(c) The dual JT* of T separates supports if and only if $ maps &~ 

onto^ C\ $X. 
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THEOREM 4.2. Let T be as in Theorem 4.1. Then 

(4.11) f $f • \h\>d» = f'f-D(h)dr 

for all nonnegative measurable functions f. Hence 

(4.12) T acts isometrically on LP({D (h) = 1}) and vanishes on LP({D (h) = 0}), 

and 

(4.13) | | r | | " = ||2?(A)|L 

Proof. By definition of D(h) and (4.9), (4.11) is true for indicator functions. 
The general case then follows. (4.12) is then obvious. For (4.13), observe that 

117711'= / | * / I W M = flfl'DW», 
by (4.11). Hence 

| | r | r= sup | |r/ | |p= sup f\f\>D(h)dn= \\D(h)|U 
11/11^1 11/11^1 J 

THEOREM 4.3. Let T be as in Theorem 4.1. Then 

(4.14) Tn = 6n • Sn and dn = 6 . . . &>-% « = 1 , 2 , . . . , 

(i) S is a positive Tamperti contraction for which there is a decomposition of X 
into subsets X\ and X2, such that S acts isometrically on L.P(X\) and vanishes on 
L„{X,); _ 

(ii) 6 is an Lœ function whose support supp 6 = <&X and whose modulus \d\ is 
$Jf~'-measurable. 

Further y 

(4.15) ||r-|| = \\eH\l, 

where equality holds for n = 1 always, and for n = 2 when T* separates sup
ports. 

Proof. X decomposes into disjoint subsets Xi, X2 such that $X2 is null and <£ 
is one-to-one on fF C\XX. By (4.9), D(h) = 0 on X2, and since \h\ > 0 on 
$X, D(h) > 0 on Xi. Let S be the Lamperti operator induced by <ï> and g, 
where g = \h\. (^D(h))~1/P on $X, and 0 on X - $X. Clearly D(g) = 0 on 
X2. For each £ £#~ C\XU 

\ \g\
pd» = r ^a^c*)- 1 ) !*!^ = r D(h)-i-D(h)dpL=»E, 

by (4.11), and so D(g) = 1 on Xi. Hence by (4.12) and (4.13), S has the 
properties described in (4.14). Put 6 = $D(h)1/p. sgn h, where sgn A = h/\h\ 
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on [h 9^ 0}, and 0 on {h = 0}. Then the equality in (4.14) holds for n = 1, and 
hence also for n ^ 2, by property (4.7) of $. 

Obviously from (4.14), inequality (4.15) holds. Conversely, since |0| is 
^immeasurable, given any A < \\6\\œ, there is E £ ^ C\ Xu 0 < \xE < oo , 
such that |0| ^ A on $E. Then supp SI* = $ £ and | n * | = \6\S1E è 4SI*. 
It follows that | |L| | ^ 4̂ and therefore equality holds in (4.15) for n = 1. If 
r* separates supports, then $ maps J ^ onto i^~ H 4>X, by Prop. 4.1(c), and 
hence $n maps £F onto#~ C\ $nX. Since 

supp 0W = supp e n . . . n supp ^ - ^ = $x n . . . n $*x = $wx, 

it is then clear that \0n\ is $1^"-measurable for n è 2. The same argument 
above shows that equality now holds in (4.15) for n ^ 2. 

COROLLARY 4.1. Le/ T be a Lamperti operator on LP(X,#~, /x), 1 ^ £> < oo , 
wi/fe | |rw | | ^ i£ < oo, n = 0, 1, 2, . . . , such that 

(a) L* separates supports, or equivalently, 
(b) /fee associated a-endomorphism $ mapsS^ ontoS^ C\ $X. 
Then there exists a positive Lamperti contraction S on Lv such that 

(4.16) \Tnf\ ^ KSn\f\ for eachf £ Lp, n = 0, 1, . . . . 

In [2], it is shown that an Lp contraction, \ ~ p < oo , has a geometric 
dilation (as defined in [2]) to an Lp isometry, positive when p = 2, only if it 
separates supports. Conversely, we have the following. 

THEOREM 4.4. Every support-separating Lp contraction, 1 S p ^ co, has a 
geometric dilation to a s up port-separating Lp isometry, which can be chosen posi
tive if so is the contraction. 

Proof. Consider first the case 1 ^ p < oo . With notation as in Theorem 
4.1 and 4.2, X decomposes into U = \D(h) = 1} and V = \D(h) < 1}. Define 
Xi = X, and Xn, n ^ 2, as disjoint copies of F, equipped with inherited 
ex-algebra and measure. Then the Lp-direct sum @™=i Lp(Xn) defines an 
L^-space Lp ( F, ^ ,X) such that F D I , Ŝ  D ^ and X extends JU. I?, defined as 

7 ? ( f i , / 2 , . . . ) = ( r / l f (1 - f l ( i ) ) 1 / p ' l r / i , / 2 , / 3 , . . . ) , 

is a Lamperti isometry on LP(Y), positive if so is T. It is easy to check that 
Tnf = lxR

nf, n = 0, 1, . . . , for a l l / G L,(X). 

The same proof works through for the case p = oo if we read 1 for 
(1 - D(h)Y'v, sup {£: ||fe • 1^|U < 1} for F and inf {£: ||fe • l^ | | œ = 1} 
for IT. 

5. Ergodic properties. 

THEOREM 5.1. Let T be a Lamperti contraction on Lp, 1 < p < GO. Lfem 7' 
feas a DEE with constant p/(p — 1 ). 
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Proof. From Theorem 3.1 or 4.1, T has a linear modulus \T\ which is a posi
tive Lamperti contraction. For all / G Lp, M(T)f ^ M ( | r | ) | / | . From 
Theorem 4.4, the latter equals lxM(R)\f\, where R is a positive isometry on a 
larger L^-space. Theorem 2.1 then completes the proof. 

THEOREM 5.2. Let T be a Lamperti Lp operator, 1 < p < GO , with \\Tn\\ 
^ K < co, n = 0, 1,2, . . . , such that 

(a) T* separates supports, or equivalently, 
(b) the associated a-endomorphism $ mapsSF ontoSF' C\ $X. 

Then T has a DEE with constant Kp/ (p — 1 ). 

Proof. This follows from Corollary 4.1 and Theorem 5.1. 

COROLLARY 5.1. For T in Theorem 5.1 or 5.2, the individual ergodic theorem 
holds i.e. Tnf converges a.e. for all f G Lp. 

Remarks 5.1. By Propositions 3.1 and 4.1, a cyclic group of positive, uni
formly bounded Lp operators, 1 < p < oo , is generated by a Lamperti opera
tor satisfying conditions (a) equivalently (b) of Corollary 4.1. Thus Theorem 
5.2 generalizes and improves the result of [8], giving a sharper constant 
Kp/(p - 1) instead of K2p/(p - 1). 

If T* does not separate supports, we have the following weaker theorem 
whose proof is similar to that of Theorem 2.1. (See Remark 2.1). 

THEOREM 5.3. Suppose T is a Lamperti Lp operator, 1 < p < oo, with 
\\Tn\\ g K < oo, n ^ 0, such that for a l l / G Lp with norm 1, 

(*) l imsup^ - 1 ( | | / | r + . . . + l l ^ ' V l H '^Hp>0. 
n-yco 

Then the DEE holds for T with constant Kp/H(p — 1). 

6. Akcoglu's theorem. A crucial step in the proof of Akcoglu's theorem [1] 
is the dilation of an ̂ -dimensional Lp(X,s/, m) operator T satisfying | | r | | = 1 
and Ttj > 0 to a positive invertible isometry. The same proof shows that by 
virtue of Theorem 2.1, it is enough to dilate T to a positive isometry. More 
generally, because of Theorem 5.1, it is enough to "super-dilate" T to a positive 
Lamperti contraction Q on an LP(X, Se, m) with Se D^ : Tkf ^ EQkf, 
k ^ 1 , / (z Lp

+(s/), where E is the conditional expectation with respect tos/. 
This will follow if we can prove TEf ^ EQf, f G LP

+(S3). The existence of Q 
comes up in a very natural way by a simpler adaptation of Akcoglu's original 
construction. 

In fact, we can regard X as the union of disjoint intervals Ii, . . . , In, of 
lengths mi, . . . , mn, s/ as generated by I\, . . . , In, and m as the Lebesgue 
measure. Take SS = {Borel sub-sets of X}. Then 
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By dividing each 11 into sub-intervals I i h j = 1, . . . , n, and mapping Ii} 

linearly onto I j , we get a t ransformation (/> of X and a c-endomorphism 

$ = 0- i on J* such t ha t 

m($F C\ It) = m(F)^ijmi/mj, 

for all F G Is C\ 38, where £^- = m ( / 0 ) / m ^ . Let Q be the Lamper t i operator 

induced by <J> and A ^ 0, where h(x) = / ^ = constant , for x G I a. Simple 

calculations show tha t EQ = TE if and only if htj = 7 \y /£o and t h a t 

D(h)(x) = m f 2 3 ^ifiijmi for x G / ^ . 

By Theorem 4.2, Q is a contract ion if and only if J2i^ijP^ijmi = mj (equalities 

for isometric Q), and if in addit ion EQ = TE, Yli^\]P%al~Vmi è mj- A natura l 

choice for ^tj is Ti}iijj(Tu) j where u = (itu . . . , un) and Tu are positive 

vectors. The last relations then become J2J\j(Tu)i
v~1mi ^ m ^ / - 1 , i.e. 

T*(Tu)p~l ^ np _ 1 . The existence of such a u is easy, and in fact it satisfies 

the equali ty so tha t Q is an isometry [1, Lemma 2.4]. 
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