LEFT ORDERS IN REGULAR *%*-SEMIGROUPS II by VICTORIA GOULD[†]

(Received 31 October, 1988)

1. Introduction. We make the convention that if a is an element of a semigroup Q then by writing a^{-1} it is implicit that a lies in a subgroup of Q and has inverse a^{-1} in this subgroup; equivalently, $a \mathcal{H}a^2$ and a^{-1} is the inverse of a in H_a .

A subsemigroup S of a semigroup Q is a left order in Q and Q is a semigroup of left quotients of S if every element of Q can be written as $a^{-1}b$ where $a, b \in S$ and, in addition, every element of S satisfying a weak cancellation condition which we call square-cancellable lies in a subgroup of Q. The notions of right order and semigroup of right quotients are defined dually; if S is both a left order and a right order in Q then S is an order in Q and Q is a semigroup of quotients of S.

This concept of order was introduced by Fountain and Petrich in [4] and has been studied in a number of subsequent papers. Those semigroups that are orders in the following classes have been characterized:

- (i) completely 0-simple semigroups [4],
- (ii) normal band of groups [6],

as have left orders in semigroups in the classes:

- (iii) Clifford semigroups [7],
- (iv) absolutely flat completely 0-simple semigroups [10],
- (v) Brandt semigroups [5],
- (vi) simple inverse ω -semigroups [9].

It is easy to see that a regular semigroup is an order in itself. The classes $(i), \ldots, (vi)$ contain only regular semigroups and each has a satisfactory structure theorem. Thus a description of (left) orders in one of these classes yields a larger class of semigroups, for which no structure theorem is given, but such that each semigroup in the class may be embedded in a closely prescribed manner in a semigroup whose structure is well determined.

We define an \mathcal{H} -semigroup to be a semigroup on which Green's relation \mathcal{H} is a congruence. The classes (i), ..., (vi) have the common property that they contain only regular \mathcal{H} -semigroups. In a previous paper [11] we offer several characterizations of left orders in regular \mathcal{H} -semigroups. Here we show how the results of [11] can be applied to obtain descriptions of orders and left orders in the classes (i), ..., (vi). In addition we give a characterization of left orders in bands of groups, a class not previously considered as semigroups of left quotients.

The generalisations \mathcal{L}^* and \mathcal{R}^* of Green's relations \mathcal{L} and \mathcal{R} play an important role in our theory. We recall that a semigroup S is *abundant* if every \mathcal{L}^* -class and every

Glasgow Math. J. 32 (1990) 95-108.

[†] This work was carried out whilst the author was a guest at the Technische Hochschule Darmstadt, whose kind hospitality is gratefully acknowledged. The author also wishes to thank the Royal Society for their generous financial support.

VICTORIA GOULD

 \Re^* -class of S contains an idempotent. The last part of this paper concentrates on characterizing abundant semigroups that are left orders in regular \mathscr{H} -semigroups and in addition are full subsemigroups of their semigroup of left quotients. Here the cancellation conditions involved in the description of left orders in regular \mathscr{H} -semigroups may be dropped. If we specialise still further by insisting that the left orders be stratified, an even simpler characterization is obtained.

2. Preliminaries. We assume a basic knowledge of semigroup theory, such as may be found in [2] or [12]. This paper, although intended to be self-contained, is a sequel to [11], where more details of some of the ideas set out in this preliminary section can be found. Where possible, we follow the notation and terminology of [12]. We deviate slightly in denoting by \mathcal{X}_S (rather that \mathcal{X}^S) a relation \mathcal{X} on a semigroup S, where to avoid ambiguity we wish to emphasize that S is the semigroup in question.

The relation \mathcal{L}^* is defined on a semigroup S by the rule that if $a, b \in S$ then $a \mathcal{L}^* b$ if and only if $a \mathcal{L} b$ in some oversemigroup of S. The relation \mathcal{R}^* is defined dually and we denote by \mathcal{H}^* the intersection of \mathcal{L}^* and \mathcal{R}^* . The following alternative characterization of \mathcal{L}^* and \mathcal{R}^* is taken from [3].

LEMMA 2.1. Let S be a semigroup and let a, $b \in S$. Then a $\mathcal{L}^* b(a \mathcal{R}^* b)$ if and only if for all x, $y \in S^1$,

ax = ay if and only if bx = by(xa = ya if and only if xb = yb).

In view of Lemma 2.1 it is clear that \mathscr{L}^* is a right congruence, \mathscr{R}^* is a left congruence and \mathscr{H}^* is an equivalence relation on any semigroup. An element *a* of a semigroup *S* is square-cancellable if $a \mathscr{H}^* a^2$. If *S* is a regular semigroup it is easily seen that $\mathscr{L} = \mathscr{L}^*$, $\mathscr{R} = \mathscr{R}^*$ and $\mathscr{H} = \mathscr{H}^*$ on *S*. Thus, in this case, $a \in S$ is square-cancellable if and only if it lies in a subgroup of *S*. Square-cancellation is a necessary condition for an element of a semigroup *S* to lie in a subgroup of an oversemigroup—by definition we insist that all such elements must lie in subgroups of any semigroup of (left, right) quotients.

A semigroup T is right (left) reversible if given any elements a, b of T there are elements c, d of T with ca = db (ac = bd). If T is both left and right reversible, then T is reversible. A classical result of Ore and Dubreil [2] states that a semigroup T is a left order in a group if and only if T is right reversible and cancellative.

Let S be a left order in Q. Then S is *straight* in Q if given any $q \in Q$, $q = a^{-1}b$ for some $a, b \in S$ with $a \mathcal{R} b$ in Q. We say that S is *local* in Q if $S \cap H$ is a left order in H, for all group \mathcal{H} -classes H of Q. Straight right orders and local right orders are defined dually.

PROPOSITION 2.2 [8]. Let S be a left order in a regular H-semigroup. Then S is a straight, local left order in Q. Further, if $q \in Q$ and $q = a^{-1}b$ where $a, b \in S$ and $a \mathcal{R} b$ in Q, then $q \mathcal{H} b$ in Q, so that S has non-empty intersection with every H-class of Q.

If S is a semigroup, then a *suitable pair* for S is an ordered pair $(\mathcal{L}', \mathcal{R}')$ of equivalence relations on S such that \mathcal{L}' is a right congruence contained in $\mathcal{L}^*, \mathcal{R}'$ is a left

congruence contained in \mathcal{R}^* and for any $a \in S$

 $a \mathcal{H}^* a^2$ if and only if $a \mathcal{H}' a^2$,

where $\mathscr{H}' = \mathscr{L}' \cap \mathscr{R}'$. Clearly $(\mathscr{L}^*, \mathscr{R}^*)$ is always a suitable pair for S. Moreover it is straightforward to show that if S is a left (right) order in a semigroup Q, then $(\mathscr{L}_Q \cap (S \times S), \mathscr{R}_Q \cap (S \times S))$ is a suitable pair for S; if S is a straight left (right) order in Q and $(\mathscr{L}_Q \cap (S \times S), \mathscr{R}_Q \cap (S \times S)) = (\mathscr{L}^*, \mathscr{R}^*)$ then S is said to be *stratified*.

Given a suitable pair $(\mathcal{L}', \mathcal{R}')$ for a semigroup S, we denote by L'_a , R'_a and H'_a respectively the \mathcal{L}' -class, \mathcal{R}' -class and \mathcal{H}' -class of an element a of S. We remark that throughout the paper we define and use conditions on a semigroup relating to a given suitable pair. For such a condition (X), we consistently omit the phrase "with respect to the given suitable pair $(\mathcal{L}', \mathcal{R}')$ " when writing, for example, "S satisfies condition (X) with respect to the given suitable pair $(\mathcal{L}', \mathcal{R}')$ ".

We can now state the theorems from [11] on which this paper is based.

THEOREM 2.3 [11]. Let S be a semigroup and let $(\mathcal{L}', \mathcal{R}')$ be a suitable pair for S. The following conditions are equivalent:

- (i) S is a left order in a regular \mathcal{H} -semigroup Q such that $\mathcal{L}_Q \cap (S \times S) = \mathcal{L}'$ and $\mathcal{R}_Q \cap (S \times S) = \mathcal{R}'$;
- (ii) S satisfies conditions (A), (B), (C), (D), (E) and the left-right duals (C)', (D)' and (E)' of (C), (D) and (E):
 - (A) \mathcal{H}' is a congruence on S and S/\mathcal{H}' is regular,
 - (B) if $a \in S$ is square-cancellable, then H'_a is right reversible,
 - (C) if a, b, $c \in S$, a is square-cancellable, a $\mathcal{R}' b \mathcal{R}' c$ and ab = ac, then b = c,
 - (D) if $a, b \in S$ are square-cancellable and $a \mathcal{R}' b$, then $ab \mathcal{H}' b$,
 - (E) if $a, b, c \in S$ and $a \mathcal{R}' abc$, then $a \mathcal{R}' ab$;
- (iii) S satisfies conditions (A), (B), (C) and (C)'; moreover, any onto homomorphism $\varphi: S \to S/\mathcal{H}' = T$ with ker $\varphi = \mathcal{H}'$ (equivalently, the natural homomorphism) is such that for any $a, b \in S$,

 $a \mathcal{L}' b \text{ in } S$ if and only if $\varphi(a) \mathcal{L} \varphi(b)$ in T

and

 $a \mathcal{R}' b$ in S if and only if $\varphi(a) \mathcal{R} \varphi(b)$ in T.

THEOREM 2.4 [11]. The following conditions are equivalent for a semigroup S:

- (i) S is a stratified left order in a regular *H*-semigroup;
- (ii) S satisfies conditions (A), (B), (C), (D), (C)' and (D)';
- (iii) S satisfies conditions (A), (B), (C) and (C)'; moreover any onto homomorphism $\varphi: S \to S/\mathcal{H}^* = T$ with ker $\varphi = \mathcal{H}^*$ is such that for any $a, b \in S$,

 $a \mathcal{L}^* b$ in S if and only if $\varphi(a) \mathcal{L} \varphi(b)$ in T

and

$$a \ \mathfrak{R}^* b$$
 in S if and only if $\varphi(a) \ \mathfrak{R} \ \varphi(b)$ in T ;

- (iv) S satisfies conditions (A), (B), (F) and the left-right dual (F)' of (F):
 - (F) if a, b, $c \in S$ where ab = ac, a is square-cancellable, b = b'u, c = c'v for some b', $c' \in S$ with a $\Re^* b' \Re^* c'$ and $u, v \in S^1$, then b = c.

In this paper we do not concern ourselves with the question of the uniqueness of a

VICTORIA GOULD

semigroup of (left) quotients of a given semigroup. However we comment that in view of Proposition 2.2 and Theorem 3.1 of [8], if S is a left order in regular \mathcal{H} -semigroups P and Q, then P is isomorphic to Q under an isomorphism whose restriction to S is the identity mapping if and only if $\mathcal{L}_P \cap (S \times S) = \mathcal{L}_Q \cap (S \times S)$ and $\mathcal{R}_P \cap (S \times S) = \mathcal{R}_Q \cap (S \times S)$; that is, P and Q induce the same suitable pair for S.

We end this section with four straightforward results we shall call upon later.

PROPOSITION 2.5. [11]. Let Q be a regular \mathcal{H} -semigroup and let S be a left order in Q. Then $\mathcal{H}'' = \mathcal{H}_O \cap (S \times S)$ is a congruence on S and $S/\mathcal{H}'' \cong Q/\mathcal{H}$.

PROPOSITION 2.6. Let S be a semigroup on which the equivalence relation \mathcal{H}^* is a congruence. Let $T \cong S/\mathcal{H}^*$ and let $\varphi: S \to T$ be any onto homomorphism with ker $\varphi = \mathcal{H}^*$. Then for any $a, b \in S$, if $\varphi(a) \mathcal{L} \varphi(b)$ then a $\mathcal{L}^* b$ and if $\varphi(a) \mathcal{R} \varphi(b)$ then a $\mathcal{R}^* b$. Further T is \mathcal{H} -trivial.

Proof. Suppose that $\varphi(a) \mathcal{L} \varphi(b)$, where $a, b \in S$. Then either $\varphi(a) = \varphi(b)$, in which case certainly $a \mathcal{L}^* b$, or $\varphi(c)\varphi(a) = \varphi(b)$, $\varphi(d)\varphi(b) = \varphi(a)$ for some $c, d \in S$. This gives that $ca \mathcal{H}^* b$ and $db \mathcal{H}^* a$. Let $x, y \in S^1$. Then

 $ax = ay \Rightarrow cax = cay \Rightarrow bx = by \Rightarrow dbx = dby \Rightarrow ax = ay$,

so that $a \mathcal{L}^* b$. The proof for the relations \mathcal{R} and \mathcal{R}^* is dual. Now if $\varphi(a) \mathcal{H} \varphi(b)$ in T then $a \mathcal{H}^* b$ in S, so that $\varphi(a) = \varphi(b)$ and T is \mathcal{H} -trivial.

COROLLARY 2.7. Let Q be a regular \mathcal{H} -semigroup. Let $T \cong Q/\mathcal{H}$ and let $\varphi: Q \to T$ be an onto homomorphism with ker $\varphi = \mathcal{H}$. Then for all $a, b \in Q$,

a
$$\mathcal{L}b$$
 if and only if $\varphi(a) \mathcal{L}\varphi(b)$,
a $\mathcal{R}b$ if and only if $\varphi(a) \mathcal{R}\varphi(b)$,

and T is \mathcal{H} -trivial.

Proof. Since Q is regular, $\mathcal{L}^* = \mathcal{L}$, $\mathcal{R}^* = \mathcal{R}$ and $\mathcal{H}^* = \mathcal{H}$ on Q. By Proposition 2.6 it is only necessary to show that if $a, b \in Q$ and $a \mathcal{L} b (a \mathcal{R} b)$ then $\varphi(a) \mathcal{L} \varphi(b)(\varphi(a) \mathcal{R} \varphi(b))$. But this is so since the relations \mathcal{L} and \mathcal{R} are always preserved by homomorphism.

PROPOSITION 2.8. Let S be a semigroup with a zero, 0_s . If S is a left order in Q then 0_s is the zero of Q.

Proof. Let $a \in S$ be square-cancellable, so that a^{-1} exists in Q and $aa^{-1} = a^{-1}a$ is idempotent. Then

$$0_{S}Q^{1} = a0_{S}Q^{1} \subseteq aQ^{1} = a^{-1}aQ^{1},$$

so that $0_S = a^{-1}a0_S = a^{-1}0_S$. Dually, one obtains that $0_S = 0_Saa^{-1} = 0_Sa^{-1}$. Thus for any element $h^{-1}k \in Q$ where $h, k \in S$, we have that $0_Sh^{-1}k = 0_Sk = 0_S$ and $h^{-1}k0_S = h^{-1}0_S = 0_S$, as required.

3. Clifford semigroups. A Clifford semigroup is a regular semigroup with central idempotents. We recall from Theorem IV 2.1 of [12] that a semigroup is a Clifford semigroup if and only if it is a semilattice of groups; further, \mathcal{H} is always a congruence on a Clifford semigroup.

It is shown in [7] that if a semigroup S is a left order in a Clifford semigroup Q, then S is not necessarily stratified in Q, but there is some Clifford semigroup Q' in which S is a

stratified left order. Thus we concentrate on stratified left orders in Clifford semigroups. Certainly Clifford semigroups are regular \mathcal{H} -semigroups and so we may apply Theorem 2.4 to obtain the following.

COROLLARY 3.1 [7]. A semigroup S is a stratified left order in a Clifford semigroup if and only if \mathcal{H}^* is a semilattice congruence on S and the \mathcal{H}^* -classes of S are right reversible and cancellative.

Proof. Suppose first that S is a stratified left order in a Clifford semigroup Q. Since \mathcal{H} is a congruence on Q, we can apply Proposition 2.5 to obtain that $\mathcal{H}_S^* = \mathcal{H}_Q \cap (S \times S)$ is a congruence on S and $S/\mathcal{H}^* \cong Q/\mathcal{H}$, so that S/\mathcal{H}^* is a semilattice. It follows that every element of S is square-cancellable. From Theorem 2.4, S satisfies conditions (B), (C) and (C)', so that for any $a \in S$, \mathcal{H}_a^* is right reversible and cancellative.

Conversely, suppose that \mathcal{H}^* is a semilattice congruence on S and the \mathcal{H}^* -classes of S are right reversible and cancellative. Let $a, b \in S$ and suppose that $a \mathcal{R}^* b$ and ax = ay for some $x, y \in S^1$. Then xaxa = xaya and since \mathcal{H}^* is a semilattice congruence, $xa \mathcal{H}^* ax = ay \mathcal{H}^* ya$. But H^*_{xa} is cancellative, which gives that xa = ya, and so, as $a \mathcal{R}^* b$, xb = yb. But then bxbx = bybx and $bx \mathcal{H}^* xb = yb \mathcal{H}^* by$, so that bx = by. Dually, if bx = by then ax = ay and so $a \mathcal{L}^* b$. Similarly one obtains that if $a, b \in S$ and $a \mathcal{L}^* b$ then $a \mathcal{R}^* b$, so that $\mathcal{R}^* = \mathcal{L}^* = \mathcal{H}^*$ on S. That S satisfies conditions (A), (B), (C), (C)', (D) and (D)' is now immediate. From Theorem 2.4, S is a stratified left order in a regular \mathcal{H} -semigroup Q. Proposition 2.5 gives that $Q/\mathcal{H} \cong S/\mathcal{H}^*$, so that Q/\mathcal{H} is a semilattice. Hence if $a \in Q$, $a \mathcal{H}a^2$, so that H_a is a subgroup and Q is a semilattice of groups, as required.

4. Simple inverse ω -semigroups. Munn proves in [13] that \mathcal{H} is a congruence on any inverse ω -semigroup. Thus inverse ω -semigroups are regular \mathcal{H} -semigroups and so we can use Theorems 2.3 and 2.4 to characterize left orders in inverse ω -semigroups. We concentrate here on simple inverse ω -semigroups. A similar situation holds to that of the previous section—it is shown in [9] that if S is a left order in a simple inverse ω -semigroup with $d\mathcal{D}$ -classes, then it is a stratified left order in some simple inverse ω -semigroup having no more than $d\mathcal{D}$ -classes. In particular, any left order in a bisimple inverse ω -semigroup must be stratified. Thus it is sufficient to characterize stratified left orders in simple inverse ω -semigroups.

We recall that for $d \in \mathbb{N}$, B_d is the subsemigroup of the bicyclic semigroup B given by $B_d = \{(m, n) \in B : m \equiv n \pmod{d}\}$. It is shown in [13] that B_d is the unique simple inverse ω -semigroup with $d \mathcal{D}$ -classes and trivial \mathcal{H} -classes.

COROLLARY 4.1 [9]. A semigroup S is a stratified left order in a simple inverse ω -semigroup which has $d \mathcal{D}$ -classes if and only if S satisfies conditions (A), (B), (C) and (C)' and $S/\mathcal{H}^* \cong B_d$.

Proof. Suppose first that S is a stratified left order in a simple inverse ω -semigroup Q, where Q has $d\mathcal{D}$ -classes. By Proposition 2.5, \mathcal{H}^* is a congruence on S and $S/\mathcal{H}^* \cong Q/\mathcal{H} \cong B_d$. From Theorem 2.4, certainly S satisfies conditions (A), (B), (C) and (C)'.

Conversely, suppose that S satisfies conditions (A), (B), (C) and (C)' and $S/\mathscr{H}^* \cong B_d$. We must show that, in addition, (D) and (D)' hold for S. Let $\varphi: S \to B_d$ be

an onto homomorphism with ker $\varphi = \mathcal{H}^*$. Note that $a \in S$ is square-cancellable if and only if $\varphi(a) = (n, n)$ for some $n \in \mathbb{N}$.

Let $a, b \in S$ be square-cancellable and suppose that $a \mathcal{R}^* b$. Further, suppose that $\bar{x}, \bar{y} \in S^1$ and $a\bar{x} = a\bar{y}$. We have $\varphi(a) = (n, n)$ and $\varphi(b) = (m, m)$ for some $n, m \in \mathbb{N}$ and we may certainly choose $c \in S$ with $\varphi(c) = (0, 0)$ so that ax = ay where $x = \bar{x}c, y = \bar{y}c \in S$. Denote $\varphi(x)$ by (p, q) and $\varphi(y)$ by (h, k). From ax = ay we obtain that $\max\{n, p\} = \max\{n, h\}$ and q - p = k - h. Without loss of generality suppose that $q \ge k$. Pick $z \in S$ with $\varphi(z) = (k, h)$; this is possible since $h \equiv k \pmod{d}$. Then $\varphi(yz) = (h, h), \varphi(xz) = (p, p)$ and axz = ayz. Now

$$\varphi(xza) = \varphi(axz) = \varphi(ayz) = \varphi(yza),$$

so from xzaxza = xzayza and condition (C) we have that xza = yza. But $a \mathcal{R}^* b$, so that xzb = yzb. It follows that $\max\{p, m\} = \max\{h, m\}$ and $\varphi(bx) = \varphi(by)$. From bxzbxz = byzbxz and (C)' we have that bxz = byz, and so bxzy = byzy and $\varphi(zy) = (k, k)$. Choose $w \in S$ with $\varphi(w) = (k - h + \max\{m, h\}, k - h + \max\{m, h\})$ so that $\varphi(zyw) = \varphi(w)$ and bx(zyw) = by(zyw). But $\varphi(bx) = \varphi(by) = (\max\{m, h\}, k - h + \max\{m, h\}) \pounds \varphi(zyw)$. From Proposition 2.6, $bx \mathcal{H}^* by \mathcal{L}^* zyw$ in S, and as zyw is square-cancellable, (C)' gives that bx = by. Thus $b\bar{x}c = b\bar{y}c$ and one obtains that $\varphi(b\bar{x}) = \varphi(b\bar{y}) = (u, v)$ for some $u, v \in \mathbb{N}$ with $u \equiv v \pmod{d}$. Pick $d \in S$ with $\varphi(d) = (v, v)$. Then $b\bar{x}(cd) = b\bar{y}(cd)$ and $\varphi(b\bar{x}) = \varphi(b\bar{y})$, $\varphi(cd) = \varphi(d)$ so that in S, $b\bar{x} \mathcal{H}^* b\bar{y} \mathcal{L}^* cd$ and cd is square-cancellable. Another application of (C)' gives that $b\bar{x} = b\bar{y}$. It follows that $a \mathcal{L}^* b$ and so $a \mathcal{H}^* b$. But H_a^* is a subsemigroup so that certainly $ab \mathcal{H}^* b$ and (D) holds. Dually, (D)' holds for S. By Theorem 2.4, S is a stratified left order in a regular semigroup Q on which \mathcal{H} is a congruence. But Proposition 2.5 gives that $Q/\mathcal{H} \cong S/\mathcal{H}^* \equiv B_d$. It is then easy to deduce from Corollary 2.7 that Q is a simple inverse ω -semigroup with $d \mathcal{D}$ -classes.

5. Completely 0-simple semigroups. Orders in completely 0-simple semigroups are characterized in [4]. The authors of that paper concentrate on the two-sided case, for, as they show, a semigroup can have non-isomorphic completely 0-simple semigroups of left quotients, whereas it is an order in at most one completely 0-simple semigroup. However, in view of Theorem 2.3 it is straightforward to deduce a characterization of left orders in completely 0-simple semigroups, from which the description given in [4] of two-sided orders follows.

It is useful at this point to recall some definitions given for any semigroup S with 0. The set of non-zero elements of S is denoted by S^* . One says that 0 is a prime ideal of S, or S is prime, if for any $a, b \in S^*$, $aSb \neq 0$. The semigroup S is categorical at zero if for any $a, b, c \in S$, if $ab \neq 0$ and $bc \neq 0$, then $abc \neq 0$. The relations ρ, λ on S are defined by the rule that for any $a, b \in S$,

 $a \lambda b$ if and only if a = b = 0 or $Sa \cap Sb \neq 0$

and

 $a \rho b$ if and only if a = b = 0 or $aS \cap bS \neq 0$.

If $a \in S$ then $l(a) = \{s \in S : sa = 0\}$ is a left ideal of S, the left annihilator ideal of a. The right annihilator ideal r(a) of a is defined dually.

COROLLARY 5.1. Let S be a semigroup with 0 and let $(\mathcal{L}', \mathcal{R}')$ be a suitable pair for S. Then the following are equivalent:

- (i) S is a left order in a completely 0-simple semigroup Q such that $\mathcal{L}_Q \cap (S \times S) = \mathcal{L}'$ and $\mathcal{R}_Q \cap (S \times S) = \mathcal{R}'$;
- (ii) S satisfies conditions (A), (B), (C), (C)', (E) and (E)' and S/H' is a rectangular 0-band;
- (iii) S satisfies conditions (G), (H), (I), (J) and the left-right dual (I)' of (I):
 (G) 0 is a prime ideal of S,
 - (H) $\lambda = \mathcal{L}'$,
 - (I) for any $a, b, c \in S$, if $a \mathcal{R}' b$ and $ca = cb \neq 0$, then a = b,
 - (J) if $a, b \in S$ and $ab \neq 0$, then $ab \mathcal{R}' a$.

Proof. (ii) \Rightarrow (i). Let a, b be square-cancellable elements of S and suppose that $a \mathcal{R}' b$. Since $\mathcal{R}' \subseteq \mathcal{R}^*$, we have that a = b = 0, and so $ab \mathcal{H}' b$ or $a, b \in S^*$. In the latter case we use the fact that \mathcal{R}' is a left congruence to obtain $ab \mathcal{R}' a^2 \mathcal{H}' a \mathcal{R}' b$ so that $ab \mathcal{R}' b$; further, $bab \mathcal{R}' b^2 \mathcal{H}' b$ and so $bab \neq 0$. It follows from the fact that S/\mathcal{H}' is a rectangular 0-band that $bab \mathcal{H}' b$ and so by condition (E)', $b \mathcal{L}' ab$, giving that $b \mathcal{H}' ab$. Thus (D), and dually (D)', hold for S.

By Theorem 2.3, S is a left order in a regular semigroup Q such that \mathcal{H} is a congruence on Q and $\mathcal{L}_Q \cap (S \times S) = \mathcal{L}'$, $\mathcal{R}_Q \cap (S \times S) = \mathcal{R}'$. Thus $\mathcal{H}' = \mathcal{H}_Q \cap (S \times S)$ and, by Proposition 2.5, $Q/\mathcal{H} \cong S/\mathcal{H}'$, so that Q/\mathcal{H} is a rectangular 0-band.

In view of Proposition 2.8, Q is a semigroup with a 0. Let $v: Q \to Q/\mathcal{H}$ be the natural homomorphism. If $a, b \in Q^*$ then $v(a), v(b) \in (Q/\mathcal{H})^*$ so that $v(a)v(c)v(b) \neq 0$ for some $c \in Q^*$, which gives that $acb \neq 0$ and Q is prime. Further, if e and f are non-zero idempotents of Q and $e \leq f$, so that e = ef = fe, then v(e) and v(f) are non-zero idempotents in Q/\mathcal{H} with $v(e) \leq v(f)$. But Q/\mathcal{H} is primitive; thus v(e) = v(f) and $e\mathcal{H}f$. Hence e = f and Q is primitive. By Theorem III.3.5 of [12], Q is a completely 0-simple semigroup.

(i) \Rightarrow (iii). Since S intersects every \mathcal{H} -class of Q it is easy to see that S is prime and categorical at zero. Let $a, b \in S$ and suppose that $a \lambda b$. If a = b = 0 then certainly $a \mathcal{L}' b$; otherwise, $Sa \cap Sb \neq 0$. In this case, $a \mathcal{L} b$ in Q and so by assumption $a \mathcal{L}' b$ in S. Thus $\lambda \subseteq \mathcal{L}'$. Conversely, if $a, b \in S$ and $a \mathcal{L}' b$, then $a \mathcal{L} b$ in Q so that $a = h^{-1}kb$, $b = u^{-1}va$ for some $h, k, u, v \in S$ with $h \mathcal{R}' k, u \mathcal{R}' v$ in S. Thus either a = b = 0 or $a, b \in S^*$ and $ha = kb \neq 0$ so that $a \lambda b$.

To see that condition (I) holds, let $a, b, c \in S$ where $a \mathcal{R}' b$ and $ca = cb \neq 0$. In Q, $a \mathcal{R} b$, and from $ca = cb \neq 0$ we also have that $a \mathcal{L} b$. It is then easy to see from the expression of Q as a Rees matrix semigroup that a = b.

It remains to show that (J) holds. Let $a, b \in S$ and suppose that $ab \neq 0$. Then in Q, $ab \mathcal{R} a$ so that $ab \mathcal{R}' a$ in S.

(iii) \Rightarrow (ii). We note first that the dual (J)' of (J) is true. For if $ba \neq 0$ then, as S is prime, $tba \neq 0$ for some $t \in S$. Thus $a \lambda ba$ and by (H), $a \mathcal{L}' ba$ as required. We aim to show that \mathcal{H}' is a congruence on S. Since $\mathcal{H}' \subseteq \mathcal{H}^*$, \mathcal{H}' is 0-restricted, that is 0 is an \mathcal{H}' -class. Thus it is enough to show that if $a, b \in S^*$, $c \in S$ and $a \mathcal{H}' b$, then $ca \mathcal{H}' cb$ and $ac \mathcal{H}' bc$. So let a, b, c be as given. Then $ca \mathcal{R}' cb$ so that as $\mathcal{R}' \subseteq \mathcal{R}^*$ we have ca = cb = 0

or $ca, cb \in S^*$. Assume the latter is true. By the remark above, $a \mathcal{L}' ca$ and $b \mathcal{L}' cb$. This gives that $ca \mathcal{L}' a \mathcal{L}' b \mathcal{L}' cb$ and so $ca \mathcal{H}' cb$. Similarly, using the fact that \mathcal{L}' is a right congruence contained in \mathcal{L}^* we obtain that $ac \mathcal{L}' bc$ and so ac = bc = 0 or $ac, bc \in S^*$. But in the latter case, condition (J) gives that $ac \mathcal{R}' a \mathcal{R}' b \mathcal{R}' bc$ and so $ac \mathcal{H}' bc$ as required. Thus \mathcal{H}' is a (0-restricted) congruence on S.

Let $v: S \to S/\mathcal{H}'$ be the natural homomorphism. Since S is prime, it is clear that so also is S/\mathcal{H}' . Suppose that $v(a) \neq 0$; now $aba \neq 0$ for some $b \in S^*$ and, as above, $a \mathcal{L}' aba \mathcal{R}' a$, so that $a \mathcal{H}' aba$ and S/\mathcal{H}' is regular. If v(a) and v(b) are non-zero idempotents of S/\mathcal{H}' with $v(a) \leq v(b)$, then $a \mathcal{H}' ab \mathcal{H}' ba$ so that $a \mathcal{H}' b$ and v(a) =v(b). Again by Theorem III.3.5 of [12], S/\mathcal{H}' is completely 0-simple. Suppose that $v(a) \mathcal{H} v(b)$ where $a, b \in S^*$. Then there are elements c, d, u, v in S with $a \mathcal{H}' bc$, $b \mathcal{H}' ad$, $a \mathcal{H}' ub$ and $b \mathcal{H}' va$. Thus $a \mathcal{R}' b c \mathcal{R}' b$ and $a \mathcal{L}' ub \mathcal{L}' b$, so that $a \mathcal{H}' b$ and v(a) = v(b). It follows that S/\mathcal{H}' is a rectangular 0-band.

Since $H'_0 = \{0\}$, it is clear that H'_0 is right reversible. Suppose that $a \in S^*$ is square-cancellable. Then H'_a is a subsemigroup, so that if $b, c \in H'_a$ then so are *ab* and *ac*. But *ab* $\mathcal{L}' ac$ so that $pab = qac \neq 0$ for some $p, q \in S$ and, as S is prime, $arpab = arqac \neq 0$ for some $r \in S$. But $a \mathcal{H}' arpa \mathcal{H}' arqa$ so that H'_a is right reversible and (B) holds.

To see that Condition (C) is satisfied, let $a, b, c \in S$ where a is square-cancellable, $a \mathcal{R}' b \mathcal{R}' c$ and ab = ac. We may suppose that $a, b, c \in S^*$. Then $ab \mathcal{R}' a^2 \mathcal{H}' a$ so that $ab \neq 0$. Directly from (I) we now have that a = b. Dually, (C)' follows from (I)'.

Let $a, b, c \in S$ where $a \mathcal{R}' abc$. If $ab \neq 0$ then $ab \mathcal{R}' a$ by (J); if ab = 0 then, as $a \mathcal{R}' abc = 0$, a = 0 so that $a \mathcal{R}' ab$. Thus (E) and dually (E)' are true of S.

We recall from [1] that a completely 0-simple semigroup Q is absolutely flat if for any elements a, b of Q,

$$a \mathcal{L} b$$
 if and if $r(a) = r(b)$

and

 $a \mathcal{R} b$ if and only if l(a) = l(b).

COROLLARY 5.2 [10]. Let S be a semigroup with 0. Then S is a left order in an absolutely flat completely 0-simple semigroup if and only if S satisfies the following conditions:

- (i) 0 is a prime ideal of S;
- (ii) for any $a, b \in S$,

 $a \mathcal{R}^* b$ if and only if l(a) = l(b)

and

 $a \lambda b$ if and only if r(a) = r(b);

(iii) for any $a, b, c \in S$ where $a \mathcal{R}^* b$, $ca = cb \neq 0$ implies that a = b; (iii)' left-right dual of (iii).

Proof. Suppose first that S is a left order in Q, where Q is an absolutely flat completely 0-simple semigroup. Let $a, b \in S$ and suppose that $a \mathcal{R}^* b$. Certainly $l_S(a) = l_S(b)$ where $l_S(a)(l_S(b))$ is the left annihilator ideal of a(b) in S. Let $q \in Q$ and suppose that qa = 0. Now $q \mathcal{H}c$ for some $c \in S$ so that $0 = qa \mathcal{H}ca$. Thus ca = 0 and, as $l_S(a) = l_S(b)$, we have that cb = 0. Then $0 = cb \mathcal{H}qb$, giving that qb = 0. It follows that with the obvious notation, $l_O(a) = l_O(b)$ and as by assumption Q is absolutely flat, we have that $a \mathcal{R} b$ in Q.

A dual argument shows that if $a, b \in S$ and $a \mathcal{L}^* b$, then $a \mathcal{L} b$ in Q. Thus S is a stratified left order in Q. By Corollary 5.1, (i), (iii) and (iii)' hold for S. Further, $\lambda = \mathcal{L}^*$.

If $a, b \in S$ and $l_S(a) = l_S(b)$ then, as shown above, $a \mathcal{R} b$ in Q so that $a \mathcal{R}^* b$ in S. Thus $a \mathcal{R}^* b$ if and only if $l_S(a) = l_S(b)$ and dually, $c \mathcal{L}^* d$ if and only if $r_S(c) = r_S(d)$, for any $c, d \in S$. Since $\lambda = \mathcal{L}^*$ this gives that (ii) holds.

Conversely, suppose that S satisfies conditions (i), (ii), (iii) and (iii)'. If $a, b, c \in S$ and $ab, bc \in S^*$ then from (i) we have that $ab \lambda b$, so that r(ab) = r(b), using (ii). Thus $abc \neq 0$, since $c \notin r(b)$. Hence S is categorical at 0. Thus if $a, b \in S$ and $ab \neq 0$, l(ab) = l(a) and so by (ii) we have that $ab \mathcal{R}^* a$.

One needs to show that $\lambda = \mathcal{L}^*$. If $a, b \in S$ and $a \mathcal{L}^* b$ then r(a) = r(b), so by (ii), $a \lambda b$. Conversely, if $a \lambda b$ then either a = b = 0, so that $a \mathcal{L}^* b$, or $ca = db \neq 0$ for some $c, d \in S$. Suppose the latter is true and ax = ay for some $x, y \in S^1$. As S is categorical at zero we have that r(a) = r(ca) = r(db) = r(b) and so ax = ay = 0 if and only if bx = by =0. If $ax = ay \neq 0$ then bx, $by \in S^*$ and $dbx = dby \neq 0$ by categoricity at zero. But then $b \mathcal{R}^* bx \mathcal{R}^* by$ so that (iii) gives bx = by. It follows that $a \mathcal{L}^* b$ and so $\lambda = \mathcal{L}^*$.

[§] We may now apply Corollary 5.1 to obtain that S is a stratified left order in a completely 0-simple semigroup Q. Let $p, q \in Q$, where $p \mathcal{H}_Q a$ and $q \mathcal{H}_Q b$ for some $a, b \in S$. Suppose that $l_Q(p) = l_Q(q)$; certainly then $l_Q(a) = l_Q(b)$ and $l_S(a) = l_S(b)$. Thus $a \mathcal{R}^* b$ in S and, as S is stratified in Q, $p \mathcal{H}_Q a \mathcal{R}_Q b \mathcal{H}_Q q$. Dually, if $r_Q(p) = r_Q(q)$ then $r_S(a) = r_S(b)$, so that $a \lambda b$, and hence $a \mathcal{L}^* b$ in S. Thus $p \mathcal{H}_Q a \mathcal{L}_Q b \mathcal{H}_Q q$ and Q is by definition absolutely flat.

It is shown in [1] that inverse semigroups are absolutely flat. Certainly then Brandt semigroups, that is, inverse completely 0-simple semigroups, are absolutely flat. On the other hand it is easy to see directly from the representation of a Brandt semigroup Q as a Rees matrix semigroup $B(G, I) = \mathcal{M}^{\circ}(I, G, I; P)$, where P is the $I \times I$ identity matrix, that for any $a, b \in Q$, $a \mathcal{L}b$ ($a \mathcal{R}b$) if and only if r(a) = r(b)(l(a) = l(b)).

Left orders in Brandt semigroups were first characterized in [5]; some alternative descriptions are given in [10]. As noted in Corollary 5.2, any left order in an absolutely flat completely 0-simple semigroup is stratified, thus is any left order in a Brandt semigroup. Rather than specialising Corollary 5.2 to the case of Brandt semigroups we deduce the following result from Theorem 2.4.

First we recall that a semigroup S with 0 is 0-cancellative if $xa = xb \neq 0$ ($ax = bx \neq 0$) implies that a = b, for all x, a, $b \in S$.

COROLLARY 5.3 [5]. Let S be a semigroup with 0. Then S is a left order in a Brandt semigroup if and only if S is 0-cancellative, the relation \mathcal{H}^* is a congruence on S, S/ \mathcal{H}^* is a Brandt semigroup and the \mathcal{H}^* -class of any square-cancellable element of S is right reversible.

Proof. If S is a left order in a Brandt semigroup Q = B(G, I), then since S must be stratified in Q, Theorem 2.4 gives that \mathcal{H}^* is a congruence on S and the \mathcal{H}^* -class of any square-cancellable element of S is right reversible. But from Proposition 2.5, $S/\mathcal{H}^* \cong Q/\mathcal{H}$, so that S/\mathcal{H}^* is a Brandt semigroup. It is easy to check directly that B(G, I) is 0-cancellative; certainly then so is S.

Conversely we suppose that \mathcal{H}^* is a congruence on S, S/\mathcal{H}^* is a Brandt semigroup, the \mathcal{H}^* -class of any square-cancellable element of S is right reversible and S is

0-cancellative. The latter property gives immediately that (C) and (C)' hold for S. To see that (D) holds, suppose that $a, b \in S$ are non-zero square-cancellable elements where $a \mathcal{R}^* b$. Certainly $ab \mathcal{R}^* b$, so that $ab \neq 0$. But it follows from the fact that 0 is an \mathcal{H}^* -class and S/\mathcal{H}^* is categorical at 0 that S is categorical at 0: thus r(ab) = r(b). Let $x, y \in S^1$. Then abx = aby = 0 if and only if bx = by = 0. If $abx = aby \neq 0$ then bx = by by 0-cancellation. Hence $ab \mathcal{H}^* b$ and (D) holds; dually, so does (D)'.

By Theorem 2.4, S is a stratified left order in a regular \mathcal{H} -semigroup Q. But it is easy to deduce from Proposition 2.5 and Corollary 2.7 that Q is a Brandt semigroup.

We now turn our attention to two-sided orders in completely 0-simple semigroups.

COROLLARY 5.4 [4]. Let S be a semigroup with 0. Then S is an order in a completely 0-simple semigroup if and only if S satisfies conditions (i), (ii), (iii), (iv) and the left-right duals (ii)' and (iii)' of (ii) and (iii):

(i) 0 is a prime ideal of S;

(ii) if $a \rho b$, $au \neq 0$ and $bv \neq 0$, then $au \rho bv$;

(iii) if $a \rho b$ and $ca = cb \neq 0$, then a = b;

(iv) S is categorical at 0.

Proof. Let S be an order in a completely 0-simple semigroup Q, that is, S is both a left order and a right order in Q. By Corollary 5.1 and its dual, 0 is a prime ideal of S, $\lambda = \mathscr{L}_Q \cap (S \times S)$ and $\rho = \mathscr{R}_Q \cap (S \times S)$. It is then immediate that (iii) and (iii)' hold. Further, if $a \rho b$, $au \neq 0$ and $bv \neq 0$, then in Q, $au \mathscr{R} a \mathscr{R} b \mathscr{R} bv$, so that $au \rho bv$ in S. Dually, (ii)' holds. Finally, it is clear that S is categorical at 0, since Q has this property.

Conversely, suppose that S satisfies conditions (i), (ii), (iii), (iv), (ii)' and (iii)'. Let $a, b \in S$ and suppose that $a \rho b$. Thus a = b = 0 and $a \mathcal{R}^* b$, or $ac = bd \neq 0$ for some $c, d \in S$. Assume the latter is true and xa = ya for some $x, y \in S^1$. Since S is categorical at 0, l(a) = l(ac) = l(bd) = l(b) so that xa = ya = 0 if and only if xb = yb = 0. Suppose therefore that $xa = ya \neq 0$. Then $xbd = ybd \neq 0$, by categoricity at zero. Further, using (ii)' and the fact that 0 is a prime ideal of S, $xb \lambda yb$ so that (iii)' gives xb = yb. Thus $a \mathcal{R}^* b$ and we have shown that $\rho \subseteq \mathcal{R}^*$.

Since S is prime it is clear that the relation ρ is reflexive and symmetric. Further, if $a \rho b \rho c$ then either a = b = c = 0 or $au = bv \neq 0$, $bh = ck \neq 0$ for some $u, v, h, k \in S$. In the latter case one has by (ii) that $bv \rho bh$, so that $au \rho ck$. Thus $aus = ckt \neq 0$ for some $s, t \in S$ and so $a \rho c$ and ρ is an equivalence relation. To see that ρ is a left congruence, suppose that $a\rho b$ and $c \in S$. If a = b = 0 certainly $ca \rho cb$. If $a, b \in S^*$ then $ah = bk \neq 0$ for some $h, k \in S$ and it follows from (iv) that ca = 0 if and only if cb = 0. Suppose therefore that $ca, cb \in S^*$. Then again by (iv), $cah = cbk \neq 0$, so that $ca \rho cb$ and ρ is a left congruence.

The dual argument gives that λ is a right congruence contained in \mathscr{L}^* . To complete the proof that (λ, ρ) is a suitable pair, we must show that if $a \mathscr{H}^* a^2$ then $a \tau a^2$, where $\tau = \lambda \cap \rho$. If $a \in S$ and $a \mathscr{H}^* a^2$, then either a = 0, in which case $a \tau a^2$, or $a, a^2 \in S^*$. But then, as S is prime, $a \lambda a^2$ and $a \rho a^2$, so that $a \tau a^2$.

We may now apply Corollary 5.1 and its dual to obtain that S is a left (right) order in a completely 0-simple semigroup P(Q) such that $\mathscr{L}_P \cap (S \times S) = \mathscr{L}_Q \cap (S \times S) = \lambda$ and $\mathscr{R}_Q \cap (S \times S) = \mathscr{R}_Q \cap (S \times S) = \rho$. By Proposition 2.2, S is straight in both P and Q. Then Proposition 2.5 of [11] says that P and Q are isomorphic semigroups of quotients of S.

104

6. Bands of groups. A semigroup is completely regular if it is a union of groups. We note that the relation \mathcal{H} is not a congruence on an arbitrary completely regular semigroup. If Q is a completely regular semigroup and \mathcal{H} is a congruence on Q, then clearly Q/\mathcal{H} is a band. Conversely, if \mathcal{H} is a band congruence on a semigroup Q, then given any $a \in Q$, $a \mathcal{H} a^2$, so that Q is completely regular. Thus the class of completely regular semigroups on which \mathcal{H} is a congruence. If $Q \in \mathcal{CRH}$ then certainly Q is a band of groups. On the other hand, suppose that a semigroup Q is a band of groups, that is, there is a band congruence θ on Q all of whose classes are groups. Let $v: Q \to Q/\theta$ be the natural homomorphism. Then if $a, b \in Q$ and $a \mathcal{H} b$, we have that $v(a) \mathcal{H} v(b)$ in Q/θ ; but Q/θ is a band so that v(a) = v(b) and $a \theta b$. Since it is clear that $\theta \subseteq \mathcal{H}$ it follows that $\theta = \mathcal{H}$, so that \mathcal{H} is a band congruence on Q and $Q \in \mathcal{CRH}$.

Before considering left orders and orders in semigroups in CRH we prove the following technical lemma.

LEMMA 6.1. Let S be a semigroup on which there is a band congruence θ all of whose classes are right reversible, cancellative semigroups. If $\varphi: S \to S/\theta$ is an onto homomorphism with kernel θ , then given $a, b \in S$, if $\varphi(a) \mathcal{L}\varphi(b)$ in S/θ , then $a \mathcal{L}^* b$.

Proof. Let S, θ and φ be as given and denote S/θ by T. Suppose that $a, b \in S$ and $\varphi(a) \mathscr{L} \varphi(b)$ in T, and we are given $x, y \in S^1$ with ax = ay. Thus $\varphi(a)\varphi(x) = \varphi(a)\varphi(y)$ (where $\varphi(1) = 1$) and, as $\varphi(a) \mathscr{L} \varphi(b)$ in T, certainly $\varphi(a) \mathscr{L}^* \varphi(b)$ in T, so that $\varphi(b)\varphi(x) = \varphi(b)\varphi(y)$ and $bx \, \theta \, by$. Further, since T is a band, $\varphi(ba) = \varphi(b)$, so that $ba \, \theta \, b$ and, as $[b]_{\theta}$ is right reversible, there are elements $p, q \in [b]_{\theta}$ with pba = qb. This gives that qbx = pbax = pbay = qby and so bxqbxq = bxqbyq. But $bxq \, \theta \, byq$, so we can cancel to obtain bxq = byq. Then bxqx = byqx and $bx \, \theta \, by \, \theta \, qx$ so that bx = by. It follows that $a \mathscr{L}^* b$.

COROLLARY 6.2. A semigroup S is a left order in a band B of groups if and only if S is a band B of right reversible, cancellative semigroups and, if $\varphi: S \to B$ is the natural homomorphism and $a, b \in S$, then $\varphi(a) \Re \varphi(b)$ in B implies that $a \Re^* b$ in S.

Proof. Let S be a left order in Q, where Q is a band B of groups, that is, $Q/\mathcal{H} \cong B$. Put $\mathcal{L}' = \mathcal{L}_Q \cap (S \times S)$ and $\mathcal{R}' = \mathcal{R}_Q \cap (S \times S)$, so that $(\mathcal{L}', \mathcal{R}')$ is a suitable pair for S. By Theorem 2.3, $\mathcal{H}' = \mathcal{L}' \cap \mathcal{R}' = \mathcal{H}_Q \cap (S \times S)$ is a congruence on S and S/\mathcal{H}' is regular; indeed, by Proposition 2.5, $S/\mathcal{H}' \cong Q/\mathcal{H} \cong B$. Since S satisfies conditions (B), (C) and (C)', the \mathcal{H}' -class of any square-cancellable element is a right reversible, cancellative semigroup. But S/\mathcal{H}' is a band, so every element of S is \mathcal{H}' -related to its square and so is square-cancellable. Thus S is a band B of right reversible, cancellative semigroups.

Let $\varphi: S \to B$ be the natural homomorphism and suppose that $\varphi(a) \mathcal{R} \varphi(b)$ in B where $a, b \in S$. Then there are elements c, d in S with $ac \mathcal{H}' b$ and $bd \mathcal{H}' a$. Thus $ac \mathcal{H} b$ and $bd \mathcal{H} a$ in Q, which gives that $a \mathcal{R} b$ in Q and so $a \mathcal{R}^* b$ in S.

Conversely, suppose that S is a band B of right reversible, cancellative semigroups and the natural homomorphism $\varphi: S \to B$ has the given property. We define relations \mathscr{L}' and \mathscr{R}' on S by

 $a \mathcal{L}' b$ if and only if $\varphi(a) \mathcal{L} \varphi(b)$

and

 $a \mathcal{R}' b$ if and only if $\varphi(a) \mathcal{R} \varphi(b)$,

105

where $a, b \in S$. It is easy to see that \mathscr{L}' is a right congruence and \mathscr{R}' is a left congruence. We show that $(\mathscr{L}', \mathscr{R}')$ is a suitable pair for S.

If $a, b \in S$ and $a \mathcal{L}' b$ then $\varphi(a) \mathcal{L} \varphi(b)$ in B, so, by Lemma 6.1, $a \mathcal{L}^* b$ in S. On the other hand, if $a \mathcal{R}' b$ then $\varphi(a) \mathcal{R} \varphi(b)$ in B, so by assumption we have that $a \mathcal{R}^* b$ in S.

Since \mathcal{H} is the trivial relation on *B* it is immediate that $\mathcal{H}' \equiv \mathcal{L}' \cap \mathcal{R}' = \ker \varphi$. Clearly $a \mathcal{H}' a^2$ for all $a \in S$, for ker φ is a band congruence. Suppose now that $a \in S$ and $a^2x = a^2y$ for some $x, y \in S^1$. Thus $ax \mathcal{H}' a^2x = a^2y \mathcal{H}' ay$ and so $axa \mathcal{H}' aya$. But axaaxa = axaaya; cancelling in H'_{axa} (the \mathcal{H}' -class of axa) yields axa = aya. But then axax = ayax, so one can cancel in H'_{ax} to obtain ax = ay. Together with its dual, this argument shows that every element of S is square-cancellable. Thus $(\mathcal{L}', \mathcal{R}')$ is a suitable pair for S.

Clearly S satisfies conditions (A) and (B) with respect to the suitable pair $(\mathcal{L}', \mathcal{R}')$. Let $a, b, c \in S$ where $a \mathcal{R}' b \mathcal{R}' c$ and suppose that ab = ac. In B, $\varphi(a) \mathcal{R} \varphi(b) \mathcal{R} \varphi(c)$, so that $b \mathcal{H}' ab = ac \mathcal{H}' c$. Now baba = baca and $ba \mathcal{H}' ca$, so that ba = ca. But then bab = cab and so cancelling in H'_b gives that b = c. Thus (C) and dually (C)' hold for S. It is straightforward to show from the definition of \mathcal{L}' and \mathcal{R}' that conditions (D) and (E) and their duals hold.

We can now apply Theorem 2.3 to obtain that S is a left order in a regular \mathscr{H} -semigroup Q such that $\mathscr{L}_Q \cap (S \times S) = \mathscr{L}'$ and $\mathscr{R}_Q \cap (S \times S) = \mathscr{R}'$. Then $\mathscr{H}' = \mathscr{H}_Q \cap (S \times S)$ so that by Proposition 2.5, $Q/\mathscr{H} \cong S/\mathscr{H}' = S/\ker \varphi \cong B$. In view of the comments at the beginning of this section, Q is a band B of groups.

Orders in bands of groups have an even simpler characterization.

COROLLARY 6.3. A semigroup S is an order in a band B of groups if and only if S is a band B of reversible, cancellative semigroups.

Proof. If S is an order in a band B of groups then one obtains exactly as in Corollary 6.2 that S is a band B of reversible, cancellative semigroups.

Conversely, suppose that S is a band B of reversible, cancellative semigroups and let $\varphi: S \to B$ be the natural homomorphism. Using Lemma 6.1, Corollary 6.2 and their left-right duals, we obtain that S is a left (right) order in bands B of groups P(Q) such that $\mathcal{L}_P \cap (S \times S) = \mathcal{L}_Q \cap (S \times S) = \mathcal{L}'$ and $\mathcal{R}_P \cap (S \times S) = \mathcal{R}_Q \cap (S \times S) = \mathcal{R}'$, where for any $a, b \in S$,

and

 $a \mathcal{R}' b$ if and only if $\varphi(a) \mathcal{R} \varphi(b)$.

 $a \mathcal{L}' b$ if and only if $\varphi(a) \mathcal{L} \varphi(b)$

By Proposition 2.5 of [11], P and Q are isomorphic semigroups of quotients of S.

Orders in normal bands of groups are considered in [6], where the authors make heavy use of the characterization of a normal band of groups as a strong semilattice of completely simple semigroups. They show in addition that if S is an order in a normal band of groups, then S is a 'canonical' order in some normal band of groups. Unlike the situation for Clifford semigroups or simple inverse ω -semigroups, the word 'canonical' cannot be replaced by 'stratified'. We refer the reader to [6] for its precise meaning in this context. However we may deduce here

COROLLARY 6.4 [6]. A semigroup S is an order in a normal band of groups if and only if S is a normal band of reversible, cancellative semigroups.

Proof. This follows immediately from Corollary 6.3.

7. Abundant orders. We recall that a semigroup S is *abundant* if every \mathcal{L}^* -class and every \mathcal{R}^* -class of S contains an idempotent. In view of the importance held by the relations \mathcal{L}^* and \mathcal{R}^* in the theory of semigroups of quotients, it seems interesting to consider abundant orders.

Abundant (left) orders in particular classes of semigroups have been considered in several papers, for example [5] and [9]. Here we offer two results as corollaries of Theorem 2.3.

A subsemigroup S of a semigroup T is full if S contains all the idempotents of T.

COROLLARY 7.1. Let S be an abundant semigroup and let $(\mathcal{L}', \mathcal{R}')$ be a suitable pair for S. The following are equivalent:

- (i) S is a full left order in a regular \mathcal{H} -semigroup Q, $\mathcal{L}_Q \cap (S \times S) = \mathcal{L}'$ and $\mathcal{R}_O \cap (S \times S) = \mathcal{R}'$;
- (ii) S satisfies conditions (A), (B), (E) and (E)' and every square-cancellable element of S is H'-related to an idempotent.

Proof. (i) \Rightarrow (ii). In view of Theorem 2.3 it is only necessary to show that given $a \in S$ with $a \mathcal{H}^* a^2$, then $a \mathcal{H}' e$ for some idempotent e of S. Now $a \mathcal{H}_Q e$ for some idempotent e of Q, since S is a left order in Q. But S is full in Q so that $e \in S$ and $a \mathcal{H}' e$ as required.

(ii) \Rightarrow (i). Let a, b, $c \in S$ where a is square-cancellable, $a \mathcal{R}' b \mathcal{R}' c$ and ab = ac. Then $a \mathcal{H}' e$ for some $e = e^2 \in S$ so that $a \mathcal{H}^* e \mathcal{R}^* b \mathcal{R}^* c$. Since $a \mathcal{L}^* e$, eb = ec and so as $e \mathcal{R}^* b \mathcal{R}^* c$ we have b = c. This shows that Condition (C) holds; dually, so does (C)'.

Suppose now that $a, b \in S$ are square-cancellable and $a \mathcal{R}' b$. Then $e \mathcal{H}' a \mathcal{R}' b$ for some idempotent $e \in S$ so that from $e \mathcal{R}^* b$ we have b = eb and then using the fact that \mathcal{H}' is a congruence, $b \mathcal{H}' ab$. Thus (D), and similarly (D)', hold for S.

Theorem 2.3 may now be applied to obtain that S is a left order in a regular semigroup Q on which \mathcal{H} is a congruence such that $\mathcal{L}_Q \cap (S \times S) = \mathcal{L}'$ and $\mathcal{R}_Q \cap (S \times S) = \mathcal{R}'$. Let $e \in Q$ be idempotent. Since S is straight in Q, S intersects every \mathcal{H} -class of Q so that $e = a^{-1}a$ for some $a \in S$. As a is square-cancellable we have by assumption that $a \mathcal{H}' f$ for some $f = f^2 \in S$. Thus in Q, $e \mathcal{H} a \mathcal{H} f$ so that $e = f \in S$ and S is a full subsemigroup of Q.

COROLLARY 7.2. Let S be an abundant semigroup. Then S is a full stratified left order in a regular \mathcal{H} -semigroup Q if and only if \mathcal{H}^* is a congruence on S, S/ \mathcal{H}^* is regular and the \mathcal{H}^* -class of any square-cancellable element is a right reversible monoid.

Proof. As remarked in Section 2, $(\mathcal{L}^*, \mathcal{R}^*)$ is a suitable pair for S.

Suppose that S is a full stratified left order in a regular \mathcal{H} -semigroup Q. By Corollary 7.1, \mathcal{H}^* is a congruence on S and S/\mathcal{H}^* is regular. Certainly the \mathcal{H}^* -class of any square cancellable element must be a subsemigroup and, again by Corollary 7.1, it is right reversible and contains an idempotent, which must therefore be an identity for the \mathcal{H}^* -class.

Conversely, suppose that \mathscr{H}^* is a congruence on S, S/\mathscr{H}^* is regular and the \mathscr{H}^* -class of any square-cancellable element is a right reversible monoid. Certainly S satisfies (A), (B), (E) and (E)'. Further, if a is square-cancellable then $a \mathscr{H}^* e$ for some idempotent e. Thus, by Corollary 7.1, S is a full left order in a regular semigroup Q such that \mathscr{H} is a congruence on Q, $\mathscr{L}_Q \cap (S \times S) = \mathscr{L}^*$ and $\mathscr{R}_Q \cap (S \times S) = \mathscr{R}^*$. Since S must be straight in Q, S is stratified in Q.

VICTORIA GOULD

REFERENCES

1. S. Bulman-Fleming and K. McDowell, Absolutely flat semigroups, Pacific. J. Math. 107 (1983), 319-333.

2. A. H. Clifford and G. B. Preston, *The algebraic theory of semigroups*, Mathematical Surveys 7, Vols 1 and 2 (American Math. Soc., 1961).

3. J. B. Fountain, Abundant semigroups, Proc. London Math. Soc. (3) 44 (1982), 103-129.

4. J. B. Fountain and M. Petrich, Completely 0-simple semigroups of quotients, J. Algebra 101 (1986), 365-402.

5. J. B. Fountain and M. Petrich, Brandt semigroups of quotients, Math. Proc. Cambridge Philos. Soc. 98 (1985), 413-426.

6. J. B. Fountain and M. Petrich, Orders in normal bands of groups, in preparation.

7. V. A. R. Gould, Clifford semigroups of left quotients, Glasgow Math J. 28 (1986), 181-191.

8. V. A. R. Gould, Orders in semigroups, Contributions to General Algebra 5 (Verlag Hölder-Pichler-Tempsky, 1987), 163-169.

9. V. A. R. Gould, Left orders in inverse ω -semigroups, Quart. J. Math. Oxford Ser. (2), to appear.

10. V. A. R. Gould, Absolutely flat completely 0-simple semigroups of left quotients, J. Pure Appl. Algebra 55 (1988), 261–288.

11. V. A. R. Gould, Left orders in regular *H*-semigroups I, J. Algebra, to appear.

12. J. M. Howie, An introduction to semigroup theory (Academic Press, 1976).

13. W. D. Munn, Regular ω-semigroups, Glasgow Math. J. 9 (1968), 46-66.

DEPARTMENT OF MATHEMATICS UNIVERSITY OF YORK HESLINGTON YORK Y01 5DD