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Abstract

Let G be a finite group with normal subgroup N . A subgroup K of G is a partial complement of N in G
if N and K intersect trivially. We study the partial complements of N in the following case: G is soluble,
N is a product of minimal normal subgroups of G, N has a complement in G, and all such complements
are G-conjugate.
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1. Introduction

Let G be a finite soluble group with a normal subgroup N . A subgroup H of G is a
complement of N in G if H intersects N trivially and G = NH . We define K to be a
partial complement of N in G if K is a subgroup of G and K and N intersect trivially.
Consider the following question: if G is a finite soluble group, when is each partial
complement of N in G contained in a complement of N in G? Hall [4] proved that
if G = NH , where N is a p-group (p a prime) and p does not divide the order of H ,
then each partial complement of N in G is contained in a complement of N in G.

Rose considered related problems in [6]. Assume that p is a prime, N is an abelian
normal p-subgroup of G and P is a Sylow p-subgroup of G. He proves in [6,
Theorem 4] that P splits over N and all the complements of N in P form a single
conjugacy class in P if and only if the following conditions hold: G splits over N ;
all the complements of N in G form a single conjugacy class in G; and each partial
complement of N in G is contained in some complement of N in G. If G is a finite
primitive soluble group, then it splits over N and all the complements of N form a
single conjugacy class in G. Rose gives examples of such groups G where:

(i) each partial complement of N is contained in a complement of N [6,
Theorem 11];
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(ii) a partial complement of N is not contained in a complement of N [6,
Example 16].

The problem was again raised by Doerk and Hawkes in [2] (see the discussion
between Propositions 15.9 and 15.10). Like Rose, they provide an example [2,
Example VIII, 2, 19] of a finite soluble primitive group G where there is a partial
complement of N in G that is not contained in any complement of N in G.

Assume that G is a finite soluble group, N is a product of minimal normal
subgroups of G, N has a complement in G and all its complements are conjugate.
In this paper we give a necessary and sufficient condition for each partial complement
of N in G to be contained in a complement of N in G. Let GF(p) denote the field with
p elements.

THEOREM 1. Let G be a finite soluble group. Let N be a product of minimal normal
subgroups of G where N is complemented in G and all its complements are conjugate
in G. Let p be a prime and let Np be the Sylow p-subgroup of N. Then each partial
complement of N in G is contained in some complement of N in G if and only if, for
each prime p dividing the order of N , Np is projective as a GF(p)(G/N )-module.

2. Preliminaries

In this section we collect a number of results required in the proof of Theorem 1.
Notation is mostly standard; in general, we use the same notation as [2]. We assume
throughout the paper that p is a prime number.

LEMMA 2 [6, Lemma 9(i)]. Suppose G is a finite group. Let N be a normal subgroup
of G and let H be a complement of N in G. Then the number of conjugates of H in G
is |N |/|CN (H)|.

Let F be a field of characteristic p and let K be a group of order p. We define an
FK -module U to be uniserial if the successive quotients of the radical series of U are
simple.

The following lemma is a consequence of [5, Theorem VII, 5.3] and its proof.

LEMMA 3. Let F be a field of characteristic p and let K be a group of order p. Then
the following hold.

(i) The regular FK -module is uniserial.
(ii) An FK -module generated by a single element is indecomposable.
(iii) Radp−1(FK ) 6= 0 and Radp(FK )= 0.
(iv) Radi (FK )/Radi+1(FK ) is simple, so Radi (FK )/Radi+1(FK ) has order |F |.

LEMMA 4. Let F be a field of characteristic p where p is a prime. Let K be a group
of order p. Let the FK -module V be the direct sum of W1 and W2 where W1 contains
no free submodule and W2 is a free submodule or W2 = 0. Then Radp−1(V )= 0 if
and only if W2 = 0.
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PROOF. If W2 = 0 then V =W1. Let U be an indecomposable submodule of W1.
By [5, Theorem VII, 5.3], there exists 0 < i < p such that U ∼= FK/Radi (FK ).
Therefore Radp−1(U )= 0. Since the radical of the direct sum of submodules is the
sum of the radicals of each submodule, Radp−1(V )= 0.

If W2 6= 0 then Radp−1(W2) 6= 0 since W2 is free and Radp−1(FK ) 6= 0. Therefore
Radp−1(V ) 6= 0. Note that in both cases, Radp(V )= 0. 2

In the following, we will deal with the semidirect product G = VK where K is a
group of order p and V is an elementary abelian p-subgroup of G. Of course V is
a GF(p)K -module, and we will denote by Rad(V ) the radical of V as a GF(p)K -
module so that we can apply the previous results; observe that V is now viewed as a
multiplicative group.

The next result is similar to [6, Lemma 9(ii)].

LEMMA 5. Let G be the semidirect product of a normal elementary abelian subgroup
V and a cyclic subgroup K of order p. Assume that V =W1 ×W2 is the direct product
of two GF(p)K -submodules of V such that W1 contains no free submodule and W2 is
a free submodule. Then the elements of order p in G but not in V are those of the form
kw, where w ∈W1 × Rad(W2) and 1 6= k ∈ K .

PROOF. Let k ∈ K and w ∈ V . Define r1 = [w, k] and ri+1 = [ri , k]. By induction,

(kw)p
= k pw pr s1

1 · · · r
sp−2
p−2 rp−1 where si =

(
p

i + 1

)
for every 1≤ j ≤ p − 2. Note that if w ∈W1 × Rad j (W2) for any 0≤ j ≤ p then
ri ∈ Rad(W1)× Rad j+i (W2). Moreover, k p

= v p
= 1. On the other hand, since

ri ∈ V and p divides all the exponents si , then r s1
1 · · · r

sp−2
p−2 = 1. Observe that rp−1 = 1

if and only if w ∈W1 × Rad(W2) (by Lemma 4). The result follows. 2

COROLLARY 6. Let K be a group of order p where p is a prime. Let the GF(p)K -
module V be the direct product of W1 and W2. Assume that W1 has order ps and does
not contain any free module and that W2 is a free module of rank l. Then the number
of subgroups of order p in VK that intersect V trivially is ps+l(p−1).

PROOF. First we apply Lemma 5 to find the number of elements of order p that are in
VK but not in V . Since any indecomposable module of V is uniserial,

|W1 × Rad(W2)| = pspl(p−1)
= pl(p−1)+s .

So there are (pl(p−1)+s)(p − 1) elements of order p in VK but not in V . Then the
number of subgroups of order p in VK that intersect V trivially is

(pl(p−1)+s)(p − 1)

p − 1
= pl(p−1)+s .

This concludes the proof. 2
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COROLLARY 7. Let G be the semidirect product NK , where K is a subgroup of order
p and N is an elementary abelian p-subgroup of G. Then the number of subgroups of
order p in G that intersect N trivially is equal to the number of conjugates of K in G
if and only if N is free as a GF(p)K -module.

PROOF. Let the GF(p)K -module N be the direct product of W1 and W2, where W1
has order ps and does not contain any free module, and W2 is a free module of
rank l. By Corollary 6, the number of subgroups of order p in NK that intersect
N trivially is ps+l(p−1). Let W1 =U1 × · · · ×Ur , where Ui are indecomposable
submodules. Observe that Si , the minimal submodule of Ui , is in the centralizer
CUi (K ) and if w ∈Ui is not contained in Si , then w is not centralized by K . Therefore
|CUi (K )| = |Si | = p. Hence |CW1(K )| = pr .

Similarly, |CW2(K )| = pl . Hence |CN (K )| = prpl
= pl+r .

So, by Lemma 2, we obtain that the number of conjugates of K in NK is

|N |

|CN (K )|
=

ps+pl

pr+l = ps+l(p−1)−r .

Comparing this result with that of Corollary 6, we see that the number of subgroups
of order p in NK that intersect N trivially is the same as the number of conjugates
of K in NK if and only if r = 0; that is, if and only if N is free as a GF(p)K -
module. 2

LEMMA 8. Let G be a finite soluble group. Let N be a product of minimal normal
p-subgroups of G where p is a prime. Assume that H is a complement of N in G and
that all the complements of N in G are conjugates of H. Let H0 be a subgroup of H of
order p. Then each subgroup of order p in NH0 (the semidirect product) but not in N
is contained in a complement of N in G if and only if the number of conjugates of H0
in NH0 is equal to the number of subgroups of order p that are in NH0 but not in N.

PROOF. Let L be a subgroup of order p in NH0 but not in N . Then L is contained
in a complement of N in G if and only if there exists an element n in N such that
L ⊆ NH0 ∩ Hn . Observe that NH0 = (NH0)

n for each n ∈ N . Hence L ⊆ NH0 ∩ Hn

if and only if
L ⊆ (NH0)

n
∩ Hn

= (NH0 ∩ H)n.

However,

(NH0 ∩ H)n ∼= N n(NH0 ∩ H)n/N n ∼= (NH0 ∩ NH)n/N n
= (NH0)

n/N n ∼= Hn
0 .

Hence |(NH0 ∩ H)n
| = |Hn

0 | = p. Therefore L ⊆ (NH0 ∩ H)n if and only if L = Hn
0 .

Hence each subgroup of order p in NH0 but not in N is contained in some complement
of N in G if and only if the number of conjugates of H0 in NH0 is equal to the number
of subgroups of order p that are in NH0 but not in N . 2
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Before we prove Lemma 9, we first note a result needed in the proof. Let H be
a group, let F be a finite field of prime characteristic p and let E be its algebraic
closure. Let VE denote the EH -module E ⊗F V [5, Definition VII, 1.1]. By [5,
Exercise VII. 7. 19], the FH -module V is projective if and only if the EH -module VE
is projective.

LEMMA 9. Let F be a field of prime characteristic p. Let H be a soluble group and
let V be a semisimple FH-module. Then V restricted to each subgroup C of H of
order p is projective as a FC-module if and only if V is projective.

PROOF. If V is projective as a GF(p)H -module, then its restriction to a subgroup of
H is also projective [5, Theorem VII. 7.11(a)].

To prove the other direction, we use the main theorem from [1] which shows that,
for a soluble group H and an algebraically closed field E , an EH -module is primitive
if and only if it is quasi-primitive.

Assume that V is not projective. Since V is not projective, VE is not projective.
On the other hand, since V is semisimple and the semisimplicity of V is retained
when changing fields (by [5, Theorem VII, 1.8]), VE is semisimple. Since VE is not
projective, there exists a simple direct summand U of VE which is not projective.
Furthermore, since H is soluble and U is a simple EH -module, applying [1, main
theorem], we deduce that there is a primitive E A-module W where A ≤ H and
U ∼=W H (A is called a stabilizer limit for U ). We have that W is simple as an
A-module by definition, because it is primitive.

First we show that if X is a subgroup of A having order p, then WX is projective.
Let X be a subgroup of A of order p. Since U ∼=W H , we have UX ∼= (W H )X . On the
other hand, let {1, g2, . . . , gm} be a full set of (A, X )-double coset representatives
of H . Applying Mackey’s theorem [2, Theorem B. 6.20], we see that (W H )X is
isomorphic to the tensor product

((W ⊗ 1)A∩X )X
⊕

[ m⊕
i=2

((W ⊗ gi )Agi ∩X )X
]
.

But observe that
((W ⊗ 1)A∩X )X

= (WX )X
=WX .

As UX ∼= (W H )X is projective by assumption, WX is also projective by [2,
Proposition B. 2.4]. Since WX is projective, it has dimension divisible by p. By [7,
note after Theorem 12], the dimension of W is coprime to p. Therefore A does
not contain any subgroup of order p and so W is projective as an E A-module.
By [2, Proposition B, 6.12], W H is projective. Hence, U is projective since U ∼=
W H . Therefore VE is projective and V is also projective, which gives the final
contradiction. 2

3. Proof of main theorem

Suppose that G = NH where N is a p-group. Suppose first that N is not projective
as a GF(p)H -module. By Lemma 9, there exists a subgroup H0 of H of order p such
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that N is not projective as a GF(p)H0-module. By [2, Theorem B. 4.12] and since NH0

is not projective, we know that NH0 is not free. Now by Corollary 7, the number of
subgroups of order p in NH0 that intersect N trivially is different from the number of
conjugates of H0 in NH0. Therefore by Lemma 8, there exists a partial complement
of N in G of order p which is not contained in a complement of N in G.

We now suppose that N is projective as a GF(p)H -module. Let K be a partial
complement of N in G. We find a subgroup H0 ≤ H such that K and H0 are both
complements of N in NK . By Dedekind’s lemma [2, Lemma A. 1.3],

N (NK ∩ H)∼= (NK ∩ NH)= NK .

Observe that, by the isomorphism theorems,

(NK ∩ H)∼= N (NK ∩ H)/N ∼= NK/N ∼= K ,

since K and N have trivial intersection. Hence (NK ∩ H)= H0 for some H0 ≤ H
where K ∼= H0.

By [5, Theorem VII. 7.11(a)], N as a GF(p)H0-module is projective. Furthermore,
by [3, Section 2.2], all cohomologies (in particular, the first) vanish. On the other
hand, by [2, Theorem A. 15.10], the number of conjugacy classes of complements of
NH0 is the order of the first cohomology group and so all complements are conjugate.
Now H0 and K are both partial complements of N in NH0 so K = Hn

0 for some n in
N . As a consequence, K = Hn

0 ≤ Hn . That is, K is in a complement of N in G. Thus
we have proved the theorem when N is a p-group.

Now let N = Np′Np and G = NH . Observe that H is a complement of N in G
if and only if Np′H is a complement of Np in G. Firstly, all subgroups Np′Hn are
complements of Np in G. Secondly, assume that C is any complement of Np in G. Let
q be a prime which divides the order of Np′ . Since the index of C is prime to q , there
is a Sylow q-subgroup of G in C , and as a consequence Nq ≤ C . Since this holds for
any prime q that divides the order of Np′ , Np′ ≤ C . Now we have to show that all the
complements of Np are conjugate. First observe that

C = C ∩ Np′Np H = Np′(C ∩ Np H) and Np′ ∩ (C ∩ Np H)= 1.

Therefore C ∩ Np H is a complement of Np′ in C and so C ∩ Np H is a complement
of Np Np′ in G. Therefore C ∩ Np H is a conjugate of H , and as a consequence all the
complements of Np in G are conjugates of Np′H .

By [2, Theorem B, 4.11] if Np is projective as a GF(p)H -module then Np is
projective as a GF(p)Np′H -module. By [5, Theorem VII. 7.11(a)] if Np is projective
as a GF(p)Np′H -module then Np is projective as a GF(p)H -module. Therefore Np is
projective as a GF(p)H -module if and only if Np is projective as a GF(p)Np′H -
module. Hence G and Np satisfy the hypothesis of the theorem.

Now suppose that, for each prime p that divides the order of N , the Sylow p-
subgroup Np is projective as a GF(p)N ′p H -module (that is, Np is projective as a
GF(p)H -module). By [6, Corollary 5] and the p-group case, every partial complement
of N in G is contained in a complement of N in G.

https://doi.org/10.1017/S1446788710000248 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000248


[7] Partial complements in finite groups 7

Now suppose that there exists a prime p that divides the order of N such that the
Sylow p-subgroup Np is not projective as a GF(p)N ′p H -module and so Np is not
projective as a GF(p)H -module. By [6, Corollary 5] and the p-group case, there
exists a partial complement of N in G that is not contained in a complement of N
in G. We have thus proved Theorem 1.

References

[1] T. R. Berger, ‘Primitive solvable groups’, J. Algebra 33 (1975), 9–21.
[2] K. Doerk and T. Hawkes, Finite Soluble Groups (Walter de Gruyter, Berlin, 1992).
[3] K. W. Gruenberg, Cohomological Topics in Group Theory, Vol. 143 (Springer, Berlin, 1970).
[4] P. Hall, ‘Theorems like Sylow’s’, Proc. London Math. Soc. (3) 6 (1956), 286–304.
[5] B. Huppert and N. Blackburn, Finite Groups II (Springer, Berlin, 1982).
[6] J. S. Rose, ‘Conjugacy of complements in relative holomorphs of finite abelian groups’, J. Lond.

Math. Soc. (2) 16 (1977), 437–448.
[7] D. Suprunenko, Soluble and Nilpotent Linear Groups (American Mathematical Society,

Providence, RI, 1963).

INGRID CHEN, Mathematical Sciences Institute, The Australian National University,
Canberra, ACT 0200, Australia
e-mail: ingrid.chen@anu.edu.au

https://doi.org/10.1017/S1446788710000248 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788710000248

