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Abstract

Many phenomena in geometry and analysis can be explained via the theory of D-modules, but
this theory explains close to nothing in the non-archimedean case, by the absence of integration
by parts. Hence there is a need to look for alternatives. A central example of a notion based on
the theory of D-modules is the notion of holonomic distributions. We study two recent alternatives
of this notion in the context of distributions on non-archimedean local fields, namely C exp-class
distributions from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean
setting’, Trans. Lond. Math. Soc. 5(1) (2018), 97–131] and WF-holonomicity from Aizenbud and
Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’, Israel J. Math. 207(2)
(2015), 527–580 (English)]. We answer a question from Aizenbud and Drinfeld [‘The wave front set
of the Fourier transform of algebraic measures’, Israel J. Math. 207(2) (2015), 527–580 (English)]
by showing that each distribution of the C exp-class is WF-holonomic and thus provides a framework
of WF-holonomic distributions, which is stable under taking Fourier transforms. This is interesting
because the C exp-class contains many natural distributions, in particular, the distributions studied
by Aizenbud and Drinfeld [‘The wave front set of the Fourier transform of algebraic measures’,
Israel J. Math. 207(2) (2015), 527–580 (English)]. We show also another stability result of this
class, namely, one can regularize distributions without leaving the C exp-class. We strengthen a link
from Cluckers et al. [‘Distributions and wave front sets in the uniform nonarchimedean setting’,
Trans. Lond. Math. Soc. 5(1) (2018), 97–131] between zero loci and smooth loci for functions and
distributions of the C exp-class. A key ingredient is a new resolution result for subanalytic functions
(by alterations), based on embedded resolution for analytic functions and model theory.
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1. Introduction

1.1. A key missing tool in the combination of p-adic geometry and analysis
is the interplay between differentiation and integration. Techniques related to
Bernstein–Sato polynomials and D-modules, which in the reals give a plenitude
of results, seem to break down when one wants to use them in a p-adic context.
In the real and complex setting, one thinks for example of the strong link between
eigenvalues of monodromy with zeros of Bernstein–Sato polynomials, and with
poles of certain real integrals, a link that remains elusive in the p-adic setting; see
for example, the monodromy conjecture [4, Ch. 1, Section 3.4], [17, 27].

Owing to this deficiency, there is a decades-old challenge for developing
alternative theories, and this is a major driver behind motivic integration and non-
archimedean geometry; see for example, [19, 28]. This paper is also driven by this
challenge. In a word, we study holonomicity in the p-adic setting. First, one needs
an alternative notion for holonomicity, not for D-modules but for distributions on
p-adic analytic manifolds. Such an alternative has been provided recently in [1]
by the notion of WF-holonomicity, based on wave front sets [24, 26]. As is evident
from [1], it is not easy to show WF-holonomicity of a given distribution; indeed,
one works hard in [1] to show it for certain forms of distributions. As a good
holonomicity notion needs to do, it brings in geometry and a control of certain
dimensions. However, it is shown in [1] that WF-holonomicity is, in general, not
preserved under Fourier transformation, and the question was raised in [1] to find
a class of distributions with better behavior. Here we bring in the extra geometry
and control from a broad class of distributions, which contain the ones from [1]:
the notion of distributions of the C exp-class from [11]. Our main result provides
a framework of WF-holonomic distributions on Qn

p, which is moreover stable
under Fourier transform: the C exp-class distributions. This is a flexible class of
distributions, which is, for example, stable under regularization as we show in
Theorem 2.8. The stability under Fourier transform is [11, Theorem 3.3.5]; the
holonomicity is shown by Theorem 2.7, the main result of this paper. Let us go
into some more details.

1.2. The notion of WF-holonomicity of a distribution ξ , introduced in [1], is
based on the wave front set WF(ξ) of ξ . So to say, the nicest distributions are the
ones that come from integrating the product of a test function with a smooth (that
is, C∞, that is, locally constant) density function. The wave front set of ξ on a
manifold X is a subset of the cotangent bundle of X , and it sees how far away ξ is
from a smooth density function, roughly by looking at decay when nearing infinity
and after Fourier transformation. If the wave front set WF(ξ) is small enough,
then ξ is called WF-holonomic. In more detail, if WF(ξ) is contained in a finite

https://doi.org/10.1017/fms.2020.27 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2020.27


WF-holonomicity of p-adic distributions 3

union of conormal bundles of submanifolds of X , then ξ is called WF-holonomic;
see Definition 2.2.

1.3. In [11], the notion of distributions of C exp-class on p-adic manifolds is
introduced. The stability of this class is shown under operations like Fourier
transforms, pullbacks, and pushforwards. (The definition of Heifetz [24] for
pullbacks is made precise in [11] by specifying topologies on distributions in
relation to their wave front sets, similar to the real case in [26]. This specification
also applies to [1, Proposition 2.3.10].) In this paper, we show stability in
a new sense, namely under regularization: any distribution of C exp-class on
U can be regularized to a distribution on X , which is still of C exp-class,
where U is open in the p-adic manifold X ; see Theorem 2.8. Not only is
the C exp-class of distributions stable under all these operations but also this class
contains many natural distributions, like the ones studied in [1]. Distributions of
C exp-class have a geometric flavor as reflected by the main result of this paper on
WF-holonomicity, and by their definition based on model theory. Moreover, our
results about C exp-class distributions hold uniformly throughout all p-adic fields,
as we explain in Section 8.

1.4. The notion of distributions of C exp-class is tightly linked to the notion
of C exp-class functions, grosso modo via the continuous wavelet transform. For
functions of C exp-class, the zero loci have played important roles in transfer
principles (to change the characteristic of the local field) and in the description
of geometric and analytic objects; see [7–9, 11]. In [11], it is shown that the
smooth locus (and even the microlocally smooth locus) of a distribution of C exp-
class equals the zero locus of a function of C exp-class. We show the following
converse: for any zero locus Z(g) of a C exp-class function g on a manifold X such
that Z(g) is moreover open and dense in X , there is a distribution of C exp-class
whose smooth locus equals Z(g); see Theorem 2.9. Together with the results [11,
Theorems 3.4.1, 4.1.2], this exhibits yet another complete role played by the zero
loci of C exp-class functions. An analogous converse for the microlocally smooth
locus remains to be discovered in the future.

1.5. A key ingredient in the proofs consists of a (new variant of a) resolution
result for definable functions, which creates monomials times units, but which
allows finite fibers; see Theorem 2.11. However, this variant does not directly
allow a reduction to a Cartesian product situation when proving the WF-
holonomicity from Theorem 2.7. Indeed, an additive character evaluated in a
unit times a quotient of monomials is not at all a Cartesian product situation.
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However, via general properties of distributions and their wave front sets, we
manage to proceed by induction on the dimension. By the finite fibers, our
resolution maps are similar to alterations and remind us of smoothing of real
subanalytic sets as in [2].

1.6. Typically, the results of this paper and of [1, 11] hold uniformly
throughout all p-adic fields and in (definable) family settings. For simplicity of
notation, a large part of the paper will be formulated for a fixed non-archimedean
local field F , which is often assumed to be of characteristic zero, and a fixed
nontrivial additive character ψ on F . We will also state uniformity in the local
field (including local fields of positive but large characteristic) and family aspects
of most of our results. See for example Theorem 8.3 for a family variant of
the regularization result. Very recently, some results of [24] and [11] have been
presented in a motivic framework instead of (uniform) p-adic; see [31].

1.7. The motivation for this line of research lies in part in the search for
p-adic analogues for the strong interplay between real analysis and real geometry.
Another challenge came from more global geometrical aspects than usually dealt
with in model theory. Indeed, wave front sets for distributions on a manifold
X cannot be seen by working piecewise on X (unless the pieces are clopen),
while most results on definable sets and functions are piecewise in nature. This
represented the challenge to this project to combine a global geometric with a
definable viewpoint.

1.8. Structure of the paper. In Section 2, we recall the relevant terminology
and formulate the main result of the paper when working over a fixed local
field of characteristic 0. In Section 3, we explain the main ingredients of all the
proofs in the paper, with all the essential parts and omitting technical details. In
Sections 4–7, we prove all the results for a fixed local field of characteristic 0. In
Section 8, we explain how to deduce uniform versions of those results when we
vary the local field over all p-adic fields and over all local fields of positive (but
high enough) characteristic. Only local fields with a small positive characteristic
fall outside our scope.

2. Wave front sets and holonomicity: definitions and main results

2.1. Let F be any non-archimedean local field, namely, a finite field extension
of Qp or of Fp((t)) for some prime p. Let OF denote the valuation ring of F with
maximal ideal MF and residue field kF with qF elements and characteristic pF .
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We identify the value group of F with Z. We write ord for the valuation map, and
|x | for the norm of x ∈ F , defined as q− ord x

F for nonzero x and with |0| = 0.
Let X be an analytic submanifold of Fn of dimension m for some n > m > 0;

see [3], where this is called F-analytic instead of analytic, and see [11, Section
2.1] for the more general notion of strict C1 submanifolds. As in [11, Section 2.1],
we will always assume that our analytic manifolds are smooth, nonempty, and of
pure dimension, meaning of constant local dimension m for some integer m > 0.
Define the tangent bundle T X and the cotangent T ∗X bundle of X as usual (see
[11, Section 2.1]). That is, T ∗X is the cotangent bundle, which at x ∈ X is the
dual of the tangent space to X at x . By the wave front set WF(ξ) of a distribution
ξ on X , we mean the F×-wave front set in T ∗X r X × {0} in the sense of [11,
2.8.6] (based on Heifetz [24]). (Note that Definition A.0.1 of [1] of wave front
sets is slightly different since it includes the zero section on the support of ξ ; this
is a harmless difference.) Let us recall these definitions. By a Schwartz–Bruhat
function is meant a C-valued locally constant function with compact support.
The C-vector space of Schwartz–Bruhat functions on X is denoted by S(X). A
distribution on X is nothing other than a linear function S(X)→ C (as usual in
the p-adic case, there are no topological requirements). We write S∗(X) for the
C-vector space of distributions on X . The support of a distribution is meant as
usual; see for example, [11, Definition 2.4.3 ].

DEFINITION 2.1 (Wave front sets). Let U ⊂ Fn be open and let ξ be a distribution
on U . Let (x0, y0) be in T ∗UrU×{0} =U×(Fnr{0}). Say that ξ is microlocally
smooth at (x0, y0) if there are open neighborhoods U0 of x0 and V0 of y0 such that
for any Schwartz–Bruhat function ϕ with support contained in U0, there is an
integer N such that for all λ ∈ F× with |λ| > N , one has

F(ϕξ)(λ · y) = 0 for all y in V0. (2.1.1)

Here, the Fourier transform F(ϕξ) of the product of ϕ with ξ is a continuous
function (see [11, Theorem 2.5.2]) and λ · y stands for (λy1, . . . , λyn). The wave
front set of ξ is defined as the complement in T ∗U r U × {0} of the set of
microlocally smooth points of ξ and is denoted by WF(ξ). More generally, for ξ
a distribution on an analytic submanifold X of Fn of dimension m, the wave front
set of ξ is defined by using analytic charts on X (see [11, 2.8.6] with Λ = F×).

Define the conormal bundle

C N X
Y ⊂ T ∗(X)

of an analytic submanifold Y ⊂ X as usual; see [11, Section 2.1]. That is, the
conormal bundle C N X

Y is the dual bundle of the normal bundle N X
Y , where N X

Y
at y ∈ Y is the quotient of the tangent space to X at y by the tangent space
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A. Aizenbud and R. Cluckers 6

to Y at y. Note that the set C N X
Y is an isotropic and even Lagrangian analytic

submanifold of (the symplectic manifold) T ∗X .
The following notions of WF-holonomicity come from [1, Section 3.2], with a

slight generalization of [1, Section 3.2] and [11, Definition 4.1.1] (by relaxing the
smoothness conditions in the algebraic case).

DEFINITION 2.2 (WF-holonomicity). Let X be an analytic submanifold of Fn

and let ξ be a distribution on X . Say that ξ is analytically WF-holonomic if the
wave front set of ξ is contained in a finite union of conormal bundles C N X

Yi
where

each Yi ⊂ X is an analytic submanifold of X . Call ξ algebraically WF-holonomic
if moreover one has dim X = dim X

Zar
and dim Yi = dim Yi

Zar
, with X

Zar
and the

Yi
Zar

the Zariski closure of X and the Yi .
If X and the Yi are merely strict C1 submanifolds (instead of analytic), then we

say that ξ is strict C1 WF-holonomic.

REMARK 2.3. Note that we do not assume smoothness of X
Zar

(neither of the
Yi

Zar
), and that F is allowed to have positive characteristic. In these ways, the

above definition of algebraic WF-holonomicity generalizes the notion of algebraic
WF-holonomicity of [1, Definition 3.2.1] and [11, Definition 4.1.1]. In the case
that X

Zar
is smooth and that F has zero characteristic, all these definitions

of algebraic WF-holonomicity coincide (note that the smoothness condition is
forgotten in the final part of [11, Proposition 4.3.1]; see Remark 6.6).

2.2. Definitions and results for a fixed local field F. From now on and until
the end of Section 7, we fix a local field F of characteristic zero and an additive
character ψ : F → C×, which is trivial on MF and nontrivial on OF . (Thus, F
is a finite field extension of Qp for some prime p.) (An additive character is a
continuous group homomorphism from the additive group on F to C×.)

The advantage of working with fixed F is the ease of presentation both for
definable sets and for the rings of complex valued functions that we integrate
(called functions of C exp-class). Uniformity in F will come at the end of the paper,
in Section 8.

2.3. Languages on F: subanalytic and semialgebraic. For each integer
n > 0, let OF〈x1, . . . , xn〉 be the p-adic completion of OF [x1, . . . , xn] inside
OF [[x1, . . . , xn]], for the Gauss norm. Note that OF〈x1, . . . , xn〉 consists of power
series

∑
i∈Nn ai x i in multi-index notation and with ai ∈ OF such that |ai | goes to

zero when |i | := i1+· · ·+ in goes to infinity. For f in OF〈x1, . . . , xn〉, write f̄ for
the restricted analytic function associated to f , namely, the function f̄ : Fn

→ F
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sending z ∈ On
F to the evaluation f (z) of f at z (that is, the p-adic limit of the

partial sums) and sending all other z to 0.
We use the following two languages (in the first-order sense of model theory).

Let LF be the ring language (namely, having symbols+,−, ·, 0, 1), together with
constant symbols from OF . Let LF

an be LF together with for each f ∈ OF〈x1,

. . . , xn〉 a function symbol for the restricted analytic function f̄ associated to
f . A set X ⊂ Fn is called LF -definable, respectively LF

an-definable, if there is
an LF -formula, respectively an LF

an-formula ϕ(x) with free variables x1, . . . , xn ,
such that X consists of the values for x = (x1, . . . , xn) that make ϕ valid in F .
A function between definable sets is called definable if its graph is a definable
set. (All this is standard in model theory and first-order logic.) These definable
sets and functions are called semialgebraic, respectively subanalytic, for LF ,
respectively LF

an, and have many geometric properties, enabled in the first place
by quantifier elimination results in closely related (slightly bigger) languages; see
for example, [29], [30, Theorem 5.6], and [16, 18, 22].

The dimension of a nonempty LF
an-definable set C ⊂ Fn is defined as the

maximum of the dimensions of analytic submanifolds of Fn contained in C
(see [18, Section 3.15] and Lemma 5.4 for the dimension theory of LF

an-definable
sets). If moreover C is LF -definable, then it is equal to the dimension of the
Zariski closure of C ; see [21] or [23].

2.4. C exp
L -class and L-WF-holonomicity. From now on (and until the end

of Section 7), we fix L to be either LF or LF
an. By an L-manifold we mean an

L-definable set X ⊂ Fn for some n > 0 such that X is moreover an analytic
submanifold of Fn . By an L-analytic map we mean an L-definable, analytic map
between L-manifolds. By an analytic isomorphism we mean an analytic bijection
between analytic manifolds whose inverse is also analytic. We now come to our
key definitions.

DEFINITION 2.4 (Functions of C exp
L -class). Let X ⊂ Fn be an L-definable set.

The C-algebra C exp
L (X) is defined as the sub-C-algebra of all complex valued

functions on X generated by functions X → C of the following forms:

(1) x 7→ | f (x)|;

(2) x 7→ ord g(x);

(3) x 7→ ψ(h(x));

where f : X → F , h : X → F , and g : X → F× are L-definable functions and
where ψ is the additive character fixed above. A function in C exp

L (X) is called a
function of C exp

L -class.

https://doi.org/10.1017/fms.2020.27 Published online by Cambridge University Press
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These algebras of Definition 2.4 are versatile because of their stability under
integration (and thus under Fourier transforms) (see [15, Section 8.6] and
[7, Theorem 3.2.1]), and they inherit geometrical properties from their definable
building blocks; see for example, [9].

For x ∈ Fn and r ∈ Z, write Br (x) for the ball {y ∈ Fn
| ord(y − x) > r},

where the order of a tuple is the minimum of the orders of the entries. We call q−r
F

the (normative) radius of the ball Br (x). Write 1A for the characteristic function
of a subset A ⊂ S (where the superset S is usually implicitly clear).

DEFINITION 2.5 (Distributions of C exp
L -class). We say that a distribution ξ on

an L-submanifold X ⊂ Fn is of class C exp
L if the following condition on the

continuous wavelet transform of ξ is satisfied. The function

Dξ : X × F×→ C

is a C exp-class function, where

Dξ (x, ρ) =

{
ξ(1Bord ρ (x)∩X ) if Bord ρ(x) ∩ X is compact,
0 otherwise.

We call Dξ the B-function of ξ (where the letter B comes from ball).

Proposition 4.2 implies that the condition for a distribution ξ on X to be of
C exp

L -class is independent of the embedding of X into Fn . Note that Dξ is a
continuous wavelet transform of ξ .

DEFINITION 2.6 (L-WF-holonomicity). Let ξ be a distribution of class C exp
L on

an L-manifold X . Then ξ is called L-WF-holonomic if the wave front set of ξ is
contained in a finite union of conormal bundles C N X

Yi
, where each Yi ⊂ X is an

L-submanifold of X .

2.5. Main results for fixed F. Now we can formulate our main results. The
holonomicity result is in fact the key goal of this paper. (Recall that F has
characteristic zero from Section 2.2 until the end of Section 7.)

THEOREM 2.7 (Holonomicity). Let X be an L-manifold and let ξ be a
distribution on X of class C exp

L . Then ξ is L-WF-holonomic.
In particular, ξ is analytically WF-holonomic, and if L is LF , then ξ is

algebraically WF-holonomic.

The following regularization result, allowing us to extend distributions to larger
domains without leaving the C exp

L -class, will be useful to show Theorem 2.7.
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THEOREM 2.8 (Regularization). Consider an L-manifold X. Let U be a
nonempty L-definable open subset of X. Then the restriction map

S∗(X)→ S∗(U )

admits a linear section S∗(U )→ S∗(X) that maps distributions of C exp
L -class to

distributions of C exp
L -class.

With U and X as in the theorem, for any ξ in S∗(U ) and any linear section
κ : S∗(U )→ S∗(X), κ(ξ) is usually called a regularization of ξ .

In [11], Theorem 3.4.1 (respectively Remark 4.3.3), it is shown that the wave
front set of a C exp

L -class distribution equals the complement of the zero locus of
a function of the same class. It would be interesting to find a precise criterion for
such zero loci so that they are the complement of a wave front of some C exp

L -class
distribution; we give a partial answer to this question in Theorem 2.9. The smooth
locus of a distribution ξ on an analytic submanifold X ⊂ Fn is defined as the set of
those x ∈ X that allow an open neighborhood U such that the restriction of ξ to U
is a smooth measure. We know that the smooth locus of a C exp

L -class distribution
ξ on X ⊂ Fn is dense open in X by [11, Theorem 4.1.2]; see Theorem 6.1. The
following result gives the converse to these properties.

THEOREM 2.9 (Correspondence of loci). Let X be an L-manifold and let g be
in C exp

L (X). If the zero locus Z(g) of g is dense open in X, then there exists a
distribution ξ on X which is of C exp

L -class and such that the smooth locus of ξ
equals Z(g).

The result shows that zero loci of C exp
L -class functions are the right objects to

describe smooth loci of C exp
L -class. (For other objects described precisely by loci

of C exp
L -class functions, see [7, 9].)

The following is our resolution result for LF
an-definable functions on LF

an-
definable sets, refining [18, Theorems 2.2 and 2.4] (see also Proposition 5.1). Note
that the resolving maps ϕi have restrictions to U = (OF r {0})m , which are only
locally isomorphisms.

DEFINITION 2.10. An analytic function u : Om
F → OF is called an analytic unit

on Om
F if it is given by a power series that is an invertible element in the ring

OF〈x1, . . . , xm〉. By a monomial on Om
F we mean a function M : Om

F → OF

sending x to d ·
∏m

i=1 xµi
i with exponents µi , which are natural numbers and

with d ∈ OF . By an L-basic differential m-form on an L-manifold O ⊂ On
F of

dimension m we mean an analytic differential form of the form ω = g
∧

i j∈I dxi1 ,
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with g : O → OF analytic and L-definable and with I ⊂ {1, . . . , n} having m
elements.

THEOREM 2.11 (Resolution result for LF
an-definable sets and functions). Let X ⊂

On
F be a closed LF

an-definable set of pure dimension m and let f : X → Ok
F be an

LF
an-definable function for some k and n > m > 0. Consider a dense open O ⊂ X,

which is an LF
an-manifold, and let ω be an LF

an-basic differential m-form on O.
Write U for (OF r {0})m . Then there exist finitely many LF

an-definable functions

φi : Om
F → X

such that each φi is continuous, proper, and the following properties hold for some
positive integers di .

(1) The set Ui := φi(U ) is an open subset of O and thus an LF
an-manifold.

(2) The restriction φi |U is a local analytic isomorphism to Ui with finite fibers
of fixed size di .

(3) There are analytic units ui j on Om
F and monomials Mi j on Om

F such that for
each component f j of f , one has

f j(φi(x)) = ui j(x)Mi j(x) for each x in U and each i, j . (2.5.1)

(4) The Ui are pairwise disjoint, and the union of the Ui is dense open in X.

(5) There are analytic units ui on Om
F and monomials Mi on Om

F such that

(φi |U )
∗(ω|Ui ) = ui Mi

m∧
j=1

dx j for each i , (2.5.2)

where
∧m

j=1 dx j is the standard differential form on U.

(6) For each i , one has either ui1 = 1 or Mi1 = d for some constant d ∈ OF .

The resolution theorem can of course also be applied to other situations, for
example, to F-valued functions f j : X → F instead of OF -valued, by working
on pieces where | f j | 6 1, respectively where | f j | > 1 and replacing f j by 1/ f j

on the latter. Note that a dense open O of X as in the theorem always exists by
[18, Theorem 3.14] and Lemma 5.4.

We will give uniform versions of Theorems 2.7–2.9 below in Section 8.
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3. Sketch of the proofs

We start with proving regularization (Theorem 2.8). By partition of unity, the
question is local, so it is enough to extend a C exp

L -class distribution for an open
definable subset U to a larger open definable subset X in Fn . We can stratify the
complement Z := X r U in definable manifolds. Proceeding by induction on
the strata, we can assume that Z is smooth. Again using locality of the question
and a suitable version of the implicit function theorem, we can assume that Z
is a graph. In this case, we can extend our distribution using a chosen definable
tubular neighborhood of Z in X .

The proof of holonomicity (Theorem 2.7) is more work and is based on a
theorem from [11] stating that any C exp

L -class distribution is smooth on a definable
open dense subset. We use a partition of unity and regularization to reduce to
proving WF-holonomicity of distributions ξ on X = On

F . The next ingredient in
the proof is a key lemma (Lemma 6.2) stating that any smooth (that is, locally
constant) C exp

L function f on a open dense definable set U ⊂ X can be extended
to a C exp

L -class WF-holonomic distribution on X (maybe after restricting it first
to a smaller open dense subset). Note that just extending the function f by zero
outside U does not work in general, since that may not correspond to a distribution
on X as it may not be locally L1 on X . The key lemma and the result from [11]
allow us to replace ξ with a distribution ξ ′ whose support is of smaller dimension.
We resolve (using Theorem 2.11) the support of ξ ′. We then use regularization in
order to construct a distribution on the resolution, which coincides with ξ ′ on an
open dense set. Using the pushforward of that distribution (along the resolving
maps) and the induction assumption, we can replace ξ ′ with another distribution
whose support has even smaller dimension. We continue by induction until we
kill ξ completely.

The proof of the key lemma is based on resolution of singularities for
LF

an-definable functions (Theorem 2.11). Using it, we can reduce to the case that
U = (OF r {0})n and f has an explicit form containing (quotients of) monomials,
units, the absolute value, the valuation, and the additive character ψ . In this case,
we explicitly construct a C exp

L -class distribution on X that extends f and prove
that it is WF-holonomic.

REMARK 3.1.

• Both the holonomicity theorem and the key lemma are proven by induction.
However, the key lemma is less suitable for induction since it only claims
existence of an extension with certain properties. Therefore when we prove the
key lemma, it is more convenient to use the holonomicity theorem for smaller
dimension rather than the key lemma itself. Because of that, we prove both
results together by induction.
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• The proof of the regularization result works uniformly for the algebraic
language and in the analytic one. However, this is not the case for the
holonomicity theorem. The proof of the holonomicity theorem relies on
resolution of singularities for definable functions, which does not (yet) work
so well in the algebraic language. Though resolution of definable sets in the
algebraic language is not a problem (modulo Hironaka’s theorem), resolution
of definable functions seems to be hard to deduce from the existing literature.
Therefore we chose to prove the holonomicity for the analytic language first
and then deduce it for the algebraic language based on [11].

• The resolution result is, in fact, an alteration rather than a modification since
it is only a local isomorphism on an open dense set. An actual modification
cannot resolve a root function to a monomial function. However, it is not a
problem since our use of resolution is for pushing forward distributions, so we
just have to divide by the size of the fiber (which we ensured to be constant) to
get the desired result.

• Although the resolution result is crucial for the key lemma, it does not resolve
it compliantly, and some additional analysis is required. The reason is that
even after the resolution, the explicit form of the function f is not a product
of functions each of which depends on only one coordinate. This is because
composition of an additive character with a quotient of monomials is not such
a function.

The proof of the resolution of singularities of definable sets and functions
(Theorem 2.11) is based on Hironaka’s theorem and results from [22] on
decompositions of definable functions to simpler functions called terms (in the
sense of model theory), of a suitable, slightly bigger language. We first use
Hironaka’s theorem to resolve terms on On

F , similar to that in [18]. We then use
this in order to resolve closed definable subsets of full dimension in On

F . This is
possible since such subsets can be defined (quantifier free) by terms. This is the
first place where we actually need alterations and not just modifications since
definable sets can be of the form {x |∃y such that x = yn

}, which cannot be
resolved just by modification. We next resolve a general definable function f
on a closed definable set X ⊂ On

F of full dimension. For this, we use the results
from [22] and alternate the following two procedures that are possible because of
the previous steps:

• Decompose X to into definable subsets (of full dimension) and deal with (the
closure of) each one separately.

• Resolve any term that we need in order to resolve f .
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Finally, we do the general case by decomposing any definable set to graphs over
definable sets of full dimension. Note that two kinds of terms are used: one
without root functions (which suffices for quantifier elimination) and one with
root functions (in which definable functions become piecewise terms). Some extra
work is done to reduce the resolution of terms in the richer language to terms in
the smaller language (without roots). Also, in this reduction we need alterations
and not just modifications.

In order to prove that any zero locus of a C exp function can be a smooth locus
of a C exp distribution (Theorem 2.9), we first show that a zero locus of a C exp

function is also a zero locus of a bounded C exp function. Then we prove the
theorem using the following statements:

• For any C exp function g on Fn , there is a stratification of Fn by manifolds such
that g is smooth on each strata.

• Any submanifold X of Fn has a canonical measure with full support on X .

The uniform versions of Theorems 2.8 and 2.9 are proved in the same way as
the theorems themselves. We deduce the uniform version of Theorem 2.7 from
results of [11] about the uniform nature of the wave front of a C exp distribution
and Theorem 2.7 itself.

4. Proof of the regularization

To prove Theorem 2.8, we will need to work with C exp
L -families of Schwartz–

Bruhat functions, which we now define and which combine well with distributions
of C exp

L -class by Proposition 4.2.

DEFINITION 4.1. Consider an L-manifold X and let Y be an L-definable set. A
family (ϕy)y∈Y of functions ϕy in S(X) is called a C exp

L -family when the function

(x, y) ∈ X × Y 7→ ϕy(x)

lies in C exp
L (X × Y ).

Theorem 2.8 will follow from the following results.

PROPOSITION 4.2 [11]. Consider an L-manifold X and let Y be an L-definable
set. Let ξ be a distribution on X of C exp

L -class and let (ϕy)y∈Y be a C exp
L -family of

functions ϕy in S(X) for some definable set Y . Then the function sending y ∈ Y
to ξ(ϕy) is of C exp

L -class.
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Proof. This follows from [11, Proposition 3.3.4 and Remark 4.3.3].

LEMMA 4.3 (Definable Urysohn’s Lemma). Let X ⊂ Fn be an L-manifold and
consider L-definable sets Z ⊂ U ⊂ X such that U is open in X and Z is closed
in X. Then there exists an L-definable clopen C ⊂ X such that Z ⊂ C ⊂ U.
(A clopen set is a set that is open and closed.)

Proof. For any x ∈ Z , let Bx be the maximal ball around x satisfying

• Bx is of (normative) radius 6 1;

• Bx ∩ X is compact;

• Bx ∩ X ⊂ U .

Note that such a ball Bx exists for every x ∈ Z . Put

C =
⋃
x∈Z

Bx ∩ X.

We obviously have Z ⊂ C ⊂ U and that C is an L-definable open subset of U .
It remains to prove that C is closed in X . Let αi ∈ C be such that (αi)i∈N is a
converging sequence with limit α in X . It is sufficient to show that α lies inside
C . To this end, it is enough to find a converging subsequence with limit in C . Let
zi ∈ Z such that αi ∈ Bzi for each i . There are two cases to consider.

Case 1: The Bzi become identical to each other when i is large enough.
In this case, we can assume that all αi are in one ball Bzi0

∩ X and the statement
follows from the compactness of Bzi0

∩ X and the fact that Bzi0
∩ X ⊂ C .

Case 2: Up to passing to a subsequence, the Bzi are pairwise different.
Up to replacing by the subsequence and by the ultrametric, the Bzi are pairwise

disjoint. On the other hand, αi forms a Cauchy sequence. Thus, the (normative)
radius of Bzi converges to 0 when i grows. This implies that lim zi = α. Since Z
is closed in X , this implies that α ∈ Z .

PROPOSITION 4.4 (Partition of unity). Let X ⊂ Fn be an L-manifold and let
X =

⋃N
i=1 Ui be a finite cover with L-definable open subsets Ui of X. Then there

exists a finite cover X =
⋃N ′

j=1 U ′j with disjoint L-definable clopen sets refining
the cover X =

⋃N
j=1 Ui . (Refining means that for any j , the set U ′j is contained in

some Ui .)
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Proof. For each i = 1, . . . , N , define U ′i recursively to be an L-definable clopen
set given by the previous lemma (Lemma 4.3) such that(

X \
⋃
j<i

U ′j

)
\

⋃
j>i

U j ⊂ U ′i ⊂ Ui .

This gives the desired refinement with N ′ = N .

The following refines the results [23, Theorem 1.1], [18, Theorem 3.14], and
[6, Proposition 1.5.3] in the sense that our covers are moreover open.

LEMMA 4.5. Let Y ⊂ Fn be an L-submanifold. Then one can find a finite cover
Y =

⋃
Ui by L-definable sets Ui , which are open in Y and such that each Ui is a

graph of an analytic L-definable function from an open subset Vi ⊂ L i of a linear
subspace of Fn of dimension dim Y to a linear complement of this subspace.

Proof. Since the case dim Y = n is obvious, we will assume that dim Y < n.
Since Y is an analytic submanifold of Fn , for each y ∈ Y there exists a coordinate
subspace L such that the differential of the projection p from Y to L at the point y
is an analytic isomorphism and hence p : Y → L is a local analytic isomorphism
around y by the analytic inverse function theorem. Without loss of generality, we
can pass to an open cover and assume that the same subspace L can be used for all
points y ∈ Y . By the existence of L-definable sections and since the cardinality of
the fibers of p : Y → L is bounded (both statements follow, for example, from the
cell decomposition theorems from [5, 16]; indeed, any finite partition into cells
yields in particular definable sections, and the number of occurring cells is an
upper bound on the cardinality of the fibers), we can find finitely many definable
(not necessarily continuous) sections si : p(Y )→ Y such that the images of the
si cover Y .

By [23, Theorem 1.1] and [18, Theorem 3.14] (or [6, Proposition 1.5.3]), we
can partition p(Y ) =

⋃
j S j into finitely many L-manifolds such that for each

i, j , the restriction si |S j is analytic and such that S j is the graph of an L-analytic
function from an open W j ⊂ L j to L ′j , where L = L j ⊕ L ′j as linear spaces.
It suffices to show that, up to refining the partition

⋃
j S j , one can extend si |S j

analytically to an open L-definable neighborhood Vi j of S j in L .
To this end, fix i and j , and for any x ∈ S j , let Bx,i be the maximal ball in

Fn around si(x) and of (normative) radius at most 1 such that p|Bx,i∩Y is injective.
Let νx,i be the inverse of p|Bx,i∩Y : Bx,i ∩ Y → p(Bx,i ∩ Y ) and put Vi j x :=

p(Bx,i∩Y )∩(x+L ′j). We now obtain an extension of si |S j to the open L-definable
set Vi j :=

⋃
x∈S j

Vi j x as needed, namely, sending x + y in Vi j with x ∈ S j and
y ∈ L ′j to νx,i(x + y).
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PROPOSITION 4.6. Consider an L-manifold X. Let U be a nonempty L-definable
open subset of X and write Z for the complement of U inside X. Suppose that Z
is an L-submanifold of X. Then the restriction map

S(X)→ S(Z)

admits a linear section
ν : S(Z)→ S(X)

that maps C exp
L -class families to C exp

L -class families. (Namely, if (ϕy)y∈Y is a
C exp

L -class family of functions ϕy in S(Z), then (ν(ϕy))y∈Y is a C exp
L -class family

of functions ϕy in S(X).)

Proof. Let n be such that X ⊂ Fn .

Case 1: X is open in Fn and Z is a graph of an analytic map φ from an open
V ⊂ F k to Fn−k .

Let p : Fn
→ F k be the coordinate projection so that p(Z) = V . For any

z ∈ V , let Bz be the maximal ball in Fn of (normative) radius at most 1 around
(z, φ(z)) that is contained in X and such that p(Bz) is contained in V . For a
function f ∈ S(Z) and x ∈ X , define

ν( f )(x) :=

{
f (p(x), φ(p(x))) if p(x) ∈ V and x ∈ Bp(x),

0 otherwise.

It is easy to see that ν is a section as desired. (The fact that ν( f ) has compact
support follows from the continuity of φ and thus that the projection Z → V is a
homeomorphism.)

Case 2: X is open in Fn .
By Lemma 4.5, we can find a finite L-definable open cover Z =

⋃
Ui such

that each Ui is a graph of an analytic map from an open subset of L i to L ′i , where
Fn
= L i ⊕ L ′i is a decomposition to vector spaces. We can find L-definable open

sets Vi ⊂ X such that Ui = Vi ∩ Z . Adding the set X r Z , we obtain a finite open
cover of X . Applying partition of unity (Proposition 4.4) to this cover, we reduce
to the previous step.

Case 3: General case.
By Lemma 4.5 again, we can cover X by finitely many open L-sets, each of

which is isomorphic to an open L-definable subset of F k with k the dimension of
X . Again applying partition of unity (Proposition 4.4) to this cover, we reduce to
the previous step.
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Proof of Theorem 2.8. Let Z be the complement of U in X .

Case 1. Z is a closed L-submanifold of X .
Let ν be the section obtained from Proposition 4.6. To ϕ in S(X), we associate

ϕ̃ in S(U ) by defining ϕ̃ as the restriction of ϕ − ν(ϕ|Z ) to U . Now define the
section κ of S∗(X)→ S∗(U ) by sending ξ in S∗(U ) to the distribution κ(ξ)= ξX ,
where ξX (ϕ) for any ϕ in S(X) is defined as ξ(ϕ̃). That ξX is a distribution of
class C exp

L now follows from Proposition 4.2 and the fact that ν maps C exp
L -class

families to C exp
L -class families. Linearity is clear by construction.

Case 2. General case.
By [6, Theorem 4.2.5] (more concisely, by the combination of the frontier

condition for stratifications and [23, Theorem 1.1], [18, Theorem 3.14] as shown
in particular in [6]), there exist definable sets Z i for i = 0, . . . , k for some k > 0
such that Z = Z0 ⊃ Z1 ⊃ · · · ⊃ Zn = ∅ and such that Z i r Z i+1 is a closed
L-submanifold of Z i . Put Ui := X r Z i . By composition, it is enough to prove
that S∗(Ui+1)→ S∗(Ui) admits a section κi as desired, but this follows from the
previous case.

5. Proof of resolution for definable sets and functions

We will prove our variant of resolution of singularities for LF
an-definable sets

and functions. This is a resolution by alterations rather then by modifications
in the sense that finite fibers are allowed. For LF

an-definable functions, which
are moreover compositions of converging power series and restricted division,
similar resolution results have been obtained in [18], using Hironaka’s embedded
resolution of singularities from [25]. Similar to Hironaka’s result, one of our main
purposes is to make the pullback of a definable function a product of a monomial
with a unit, while also controlling the pullback of a top degree differential
form. Since in the p-adic case, fragments of r th root functions are definable for
integers r > 0, we will need to combine power maps and monomialization to
get our resolution result. For us, after monomialization, the unit will still have
an important role since it can in general not be neglected inside the argument of
the additive character ψ . Again because of the argument inside ψ , to prove our
main theorem (Theorem 2.7) will require additional work, even after resolving
singularities, and will not reduce directly to a Cartesian product situation.

Write LF
an,qe for LF

an together with a function symbol for field division sending
nonzero x to x−1 and 0 to 0, and relation symbols Pn for each n > 0 for the
set of nonzero nth powers in F . Similarly, write LF

an,D for the language LF
an

together with a function symbol for restricted division D sending (x, y) ∈ O2
F

to x/y when |x | 6 |y| 6= 0 and to zero otherwise, and relation symbols Pn for
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each n > 0 for the set of nonzero nth powers in OF . By the variant from [22] of
the quantifier elimination result from [18], the structure F , respectively OF , has
quantifier elimination in the language LF

an,qe, respectively LF
an,D.

We will derive Theorem 2.11 from the resolution results (2.2) and (2.4)
from [18], and the piecewise description of definable functions by terms in a
slightly larger language. Recall that a term in a language is a finite composition of
function symbols from the language. Similarly as for quantifier elimination, one
needs an adapted language to ensure that definable functions are piecewise equal
to terms (and to ensure that definable sets are given by quantifier free formulas).
See Definition 2.10 for the notions of analytic units and monomials on Om

F .
First we give a combination of Theorems (2.2) and (2.4) from [18].

PROPOSITION 5.1 [18]. Let f : Om
F → Ok

F be a map whose component functions
are LF

an,D-terms. Then there exist a compact analytic manifold C and an analytic
map h : C → Om

F such that h is an analytic isomorphism on the preimage of
a dense open subset of Om

F and such that for each c ∈ C, there are an open
neighborhood Oc of c in C and an analytic isomorphism ϕc : Om

F → Oc such that
for each i = 1, . . . , k,

fi ◦ h ◦ ϕc = uic Mic

and
(h ◦ ϕc)

∗(dy1 ∧ · · · ∧ dym) = uc Mc · dx1 ∧ · · · ∧ dxm,

where the uc and uic are analytic units on Om
F and the Mc and Mic are monomials

on Om
F , and where the yi and the xi are coordinate functions on Om

F .

Proof. In the special case that f is moreover analytic, the proof goes as the proof
of Theorem 2.2 from [18], where h is even a composition of suitable blowing
up maps, using the excellence result (Theorem 1.2) of [20] and Hironaka’s results
from [25]. The statement about the differential forms follows from the description
of h in [18] in terms of blowing up maps. For general f , in the proof of Theorem
(2.4) of [18], one constructs an analytic map h0 : C0 → Om

F for some compact
analytic manifold C0 such that h0 is an analytic isomorphism on the preimage of
a dense open subset of Om

F , such that h0 is obtained as a finite composition of
blowing up maps with respect to closed analytic submanifolds in codimension at
least 2 and such that f ◦ h0 is analytic. Now apply the previous case to f ◦ h0 ◦ϕc.
(In [18, Theorems 2.2 and 2.4], only F = Qp is considered but the proof applies
for general F as well.)

The following result relates LF
an-definable functions to terms, at the cost of

taking powers.
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PROPOSITION 5.2 [22]. Let fi : X ⊂ Fn
→ F be finitely many LF

an-definable
functions. Then there is an integer M > 0 and there are finitely many disjoint
definable subsets Xs of X and finitely many definable functions fis` on Xs

such that
f M
is`

is given by an LF
an,qe-term for each i , s, ` and such that∑

`

fis` = fi on Xs .

Proof. This follows from [22, Theorem 5.5] and its proof.

We will use Proposition 5.2 only once, namely in Case 3 of the proof of
Theorem 2.11. One can also treat that case in an alternative way and avoid the use
of Proposition 5.2 by proceeding instead by induction on the complexity of terms
based on the weaker result (than Proposition 5.2) that LF

an-definable functions are
piecewise equal to terms in an expansion of LF

an,qe-terms with root functions; see
[14, Theorem 7.5].

The following (basic) lemma states that LF
an,qe-terms correspond piecewise to

LF
an,D-terms. The lemma after this one gives a similar result for definable sets.

LEMMA 5.3. Consider a tuple t (x) of LF
an,qe-terms in n variables xi . Let X ⊂ On

F

be an LF
an,qe-definable set. Assume that t (x) ∈ Os

F for each x ∈ X. Then there
exist finitely many tuples t j of LF

an,D-terms such that for each x ∈ X, one has

t (x) = t j(x)

for some j .

Proof. Since a term by definition is a composition of function symbols in the
language, any LF

an,qe-term can be written as a composition of functions fi : F l
→

F k such that each of the fi satisfies one of the following:

(1) All the components of fi are rational functions of the form p · (q)−1 for
some polynomials p and q .

(2) All the components of fi are restricted analytic functions.

Since a composition of rational functions as in (1) is piecewise equal to a rational
function as in (1) (with definable pieces), we may suppose that

t = a1 ◦ b1 ◦ · · · ◦ aN ◦ bN ◦ aN+1,
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where the ai satisfy (2) and the bi satisfy (1). For any rational function r of the
form p · (q)−1 for some polynomials p and q, write rD for the function D(p, q),
where D stands for restricted division. Likewise, for a tuple r of such rational
functions ri , write rD for the corresponding tuple of the ri,D. Note that a1 ◦ b1(z)
equals a1 ◦ b1,D(z) for any z in Oβ

F with β the arity of b1. The lemma now follows
easily by induction on N , by focusing on the remaining part a2 ◦ b2 ◦ · · · ◦ aN ◦

bN ◦ aN+1.

LEMMA 5.4. Any LF
an,qe-definable set X ⊂ On

F is LF
an,D-definable and vice versa.

Proof. Clearly, any LF
an,D-definable set in On

F is also LF
an,qe-definable. For the other

direction, consider the LF
an,qe-definable embedding i : F → O2

F given by

i(x) =

{
(x, 0) if x ∈ OF ,

(x−1, 1) otherwise.

The assertion now follows from the following simple observations:

• There is an LF
an,D-definable function a : O4

F → O4
F such that for any x, y ∈ F ,

we have a(i(x), i(y)) = i(x + y).

• There is an LF
an,D-definable function m : O4

F → O4
F such that for any x, y ∈ F ,

we have m(i(x), i(y)) = i(xy).

• For any restricted analytic f function on F , there exists an LF
an,D-definable

function A f :O2
F →O2

F such that for any x ∈ F , we have A f (i(x)) = i( f (x)).

• There is an LF
an,D-definable function inv : O2

F → O2
F such that for any x ∈ F ,

we have inv(i(x)) = i(x−1) (recall that x−1 is interpreted as 0 if x = 0).

• For any integer n, there is a LF
an,D-definable set Πn ⊂ O2

F such that for any
x ∈ F , we have i(x) ∈ Πn if and only if x ∈ Pn .

Finally, in order to prove Part (6) of the resolution theorem, we will use the
following standard result.

LEMMA 5.5. Let u be an analytic unit on On
F and M be a monomial on

On
F . Consider the function f = uM on On

F . Then there exist a finite disjoint
L-definable open cover On

F =
⋃N

i=1 Ui and L-definable analytic isomorphisms
φi : On

F → Ui such that
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• φ∗i ( f ) is either a monomial on On
F or a constant times an analytic unit on On

F ;

• for any analytic unit u′ on On
F and any monomial M ′ on On

F , the function
φ∗i (u

′M ′) equals the product of a monomial with an analytic unit on On
F .

Proof. Let us first treat the special case that M(x1, . . . , xn) = x k1
1 · · · x

kn
n for some

natural numbers ki , that k1 > 1, and that there is an analytic unit v on On
F such

that vk1 = u and such that x1v(x) is a special restricted power series in the sense
of [27, Section 2.2]. Consider the map ψ : On

F → On
F given by

ψ(x1, . . . , xn) = (x1v(x1, . . . , xn), x2, . . . , xn).

By [27, Corollary 2.2.1], the map ψ is an analytic isomorphism, say, with inverse
φ. Then φ1 = φ is as desired (with N = 1); in particular, one has φ∗( f ) = M .

Let us now reduce to the conditions of the special case. Fix a = (a1, . . . , an) ∈

On
F . Since any two balls in On

F are either disjoint or contained in one another and
by compactness of On

F , it is enough to find a ball Ba around a and an L-definable
analytic isomorphism φa : On

F → Ba satisfying both conditions of the lemma.
We may assume that there is i with ai = 0 and that the monomial M depends
nontrivially on the coordinate xi . Indeed, otherwise we can take a small enough
ball Ba around a and φ to be a homothety after a translation to make φ∗( f ) an
analytic unit times a constant. Without loss of generality, we may assume that
i = 1. Also, we can assume that a1 = · · · ak = 0 for some k > 1 and ak+1, . . . ,

an 6= 0. Write
M(x1, . . . , xn) = x k1

1 · · · x
kn
n .

Let L := (x1, . . . , xn) := x k1
1 · · · x

km
m and K (x1, . . . , xn) := x km+1

m+1 · · · x
kn
n . We have

M = K L . Note that K is a unit in a small ball B ′ around a. Consider the affine
transformation t , which is a homothety after a translation and which maps 0 to
a and On

F onto B ′. Up to choosing B ′ small enough, the pullback t∗( f ) is of the
form as in our special case, and the lemma now follows from this special case
applied to t∗( f ).

We can now give the complete proof of Theorem 2.11.

Proof of Theorem 2.11. It is enough to prove only statements (1)–(5) since
statement (6) can be deduced from them by Lemma 5.5 (and refining the cover
Ui and changing the maps φi ). Write ω = g

∧
i j∈I dxi j for some g and some I .

Without harm, we may suppose that g appears among the functions fi .

Case 1: X = O = On
F and the fi are LF

an,D-terms.
This case follows from Proposition 5.1. Indeed, the disjointness of the φi(U )

is easily obtained on top of the conclusions of Proposition 5.1 by the total
disconnectedness and compactness.
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Case 2: X and O are of dimension m = n, and the fi are LF
an,D-terms.

By Lemma 5.4 and quantifier elimination in LF
an,D, each of the sets X and O is

defined by a finite Boolean combination of condition of the form ti(x) ∈ Pni for
some LF

an,D-terms ti and some ni > 1. (Note that a condition t = 0 corresponds to
t not being in P1.) Let N be the product of all occurring ni . By the previous case,
applied to the terms ti and fi , we can assume that the terms ti and the terms fi are
analytic units times monomials on On

F . Without loss of generality, we can suppose
that the occurring units have constant coset in F× modulo PN . For any λ = (λ1,

. . . , λn) ∈ (OF r {0})n , define φλ : On
F → On

F by φλ(x1, . . . , xn) = (λ1x N
1 , . . . ,

λn x N
n ). We can find finitely many λ1, . . . λK

∈ On
F such that the images of φλ j

cover the entire On
F and such that the sets φλ j (U ) are disjoint. Thus dimOn

F r⋃
j φλ j (U ) < n. This implies that dim X r

⋃
j φλ j (U ) < n = dim X and thus

(since X has pure dimension)
⋃

j φλ j (U ) ∩ X is dense in X . Note that for any j ,
either φλ j (U ) ⊂ O or φλ j (U ) ∩ O = ∅. We obtained that the collection

{φλ j |φλ j (U ) ⊂ O}

meets the requirements.

Case 3: X and O are of dimension m = n (and the fi are general).
By Lemma 5.3 and Proposition 5.2, each fi is piecewise equal to a sum of

definable roots of LF
an,D-terms ti j . By working piecewise, we may suppose that O

equals the interior of one such piece and that X is its closure. By Case 2, we can
suppose that X = On

F and that O = U , and that the ti j are analytic units times
monomials on On

F . By composing with N th power maps (as the φλ of Case 2)
for some highly divisible N , we reduce to the case that also the occurring roots
of the ti j are LF

an,D-terms (since we have composed with power maps), and hence
also that f is given by a tuple of LF

an,D-terms. Now we end by Case 2 for these
LF

an,D-terms.

Case 4: General case.
Write dim X = m as in the theorem. By Proposition 4.4 and Lemma 4.5, and

up to working piecewise, we may suppose that O equals the graph of an LF
an-

definable function τ : V → On−m
F for some LF

an-definable open V of Om
F and for

some coordinates on affine space. Extend τ by 0 to a function τ̄ on V̄ . Using Case
3 for τ̄ on V̄ , we can assume that V̄ = Om

F and that each component of τ̄ |U equals
the restriction to U of a monomial times an analytic unit on Om

F . This means that
τ can be extended continuously to a function τ̃ on Om

F and thus that X equals the
graph of τ̃ . This gives us an L-definable analytic isomorphism of L-manifolds
i : Om

F → X . The assertion follows now from Case 3 applied to Om
F , U , f ◦ i , and

(i |U )∗ω in the roles of X, O, f, ω.
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It may be interesting to look for a definable, strict C1 variant of Theorem 2.11
that can be shown without using analyticity and without using Hironaka’s
resolution results; see Remark 8.7 about a possible axiomatic approach in which
piecewise analyticity may not hold.

6. Proof of holonomicity

6.1. Proof of the analytic case. In this section, we prove Theorem 2.7 for
L = LF

an.
Consider for any n > 0 the Haar measure |dx | on Fn normalized so that On

F
has measure 1. By a smooth measure on X we mean a distribution on X that is
locally (at any point x ∈ X ) either zero or given by integration against the measure
associated to an analytic volume form on X . Note that the wave front set in a way
describes the nonsmooth aspect of a distribution and, in particular, the wave front
set of a smooth measure is empty. We will deduce Theorem 2.7 from the following
theorem from [11] and our Key Lemma 6.2 by using regularization and induction
on the dimension of X .

THEOREM 6.1 [11]. Let X be an L-submanifold of Fn of dimension m and let
ξ be a distribution on X. If ξ is of class C exp

L , then there exists an L-definable
set C ⊂ X of dimension less than m such that ξ is smooth when restricted to
X r C. Moreover, the locally constant density function on X r C is of class C exp

L
when taken against the measure on X induced from the inclusion in Fn as in [11],
Section 2.3.

Proof of Theorem 6.1. If ξ is of class C exp, then this is a special case of [11,
Theorem 4.1.2]. For the C exp

an -class, one moreover uses [11, Remark 4.3.3].

As mentioned in Section 3, naively extending µ by zero outside U does not
give a distribution on X in general as this extension may not be locally L1 on X .
In fact, the proof of the following key lemma is quite involved and intertwined
with the one for Theorem 2.7.

LEMMA 6.2 (Key Lemma). Suppose that L = LF
an. Let U be an L-definable

dense open subset of a compact L-manifold X. Let µ be a smooth measure of
class C exp

L on U. Then there is an L-definable dense open V ⊂ U such that µ|V
can be extended to an L-WF-holonomic distribution on X of class C exp

L .

Based on the key lemma for dim X 6 n and assuming Theorem 2.7 for
dim X < n and with L = LF

an, we can now prove Theorem 2.7 for X with
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dim X = n and L = LF
an. In Section 6.1.1, we will prove the key lemma for

dim X = n assuming Theorem 2.7 for X with dim X < n. This will complete the
proof of Theorem 2.7 for L = LF

an. In Section 6.2, we will deduce Theorem 2.7
in the general case.

Proof of Theorem 2.7 assuming L = LF
an. Denote by dimSupp(ξ) the minimal

dimension of an L-definable set Y ⊂ X such that Supp(ξ) ⊂ Y . The proof is
by induction on dimSupp(ξ). The base case is trivial.

By Lemma 4.5, we find a finite, open L-definable cover X =
⋃

i Ui together
with open L-definable embeddings Ui → On

F of L-manifolds. (Recall that
dim X = n.) Using partition of unity (Proposition 4.4), we can reduce to the
case that X is an open L-definable set in On

F . Using the regularization result
(Theorem 2.8), we can reduce to the case X = On

F . We proceed by analyzing
the following cases.

Case 1: dimSupp(ξ) = dim(X)
By Theorem 6.1, there is a definable open dense subset V ⊂ X such that the

restriction ξ |V is smooth. By our Key Lemma 6.2, and up to making V smaller if
necessary, we can extend ξ |V to an L-WF-holonomic distribution ξ ′ on X of class
C exp

L . Decompose ξ as the sum ξ = ξ ′ + (ξ − ξ ′). By the induction assumption
(on dimSupp), ξ−ξ ′ is L-WF-holonomic (indeed, its support lies in X \V , which
is of dimension less than dimSupp(ξ) by properties of dimensions of definable
sets). Since the sum of L-WF-holonomic distributions is L-WF-holonomic, the
theorem follows.

Case 2: dimSupp(ξ) < dim(X)
Let Y ⊂ X be a closed L-definable set such that Supp(ξ) ⊂ Y and dim(Y ) =

dimSupp(ξ).
We apply resolution of singularities (Theorem 2.11) for the definable set Y

and the constant function 1 on it. Let U , φi , Ui and di be as in Theorem 2.11.
Let V =

⋃
Ui . Put

ξ ′ := ξ |Xr(YrV ).

The distribution ξ ′ is supported on V and thus can be thought of as a distribution
on V . It is easy to see that as such it is also of C exp

L -class. Put ξi = ξ
′
|Ui . Using

regularization (Theorem 2.8), we can extend φ∗i (ξi) to a C exp
L -class distribution

ξ ′i on Odim Y
F . Each ξ ′i is L-WF-holonomic by the inductive hypothesis (indeed,

dim Y < n). Let

ξ ′′ :=
∑

(φi)∗(ξ
′

i )/di .

Note that ξ ′′|V = ξ |V .
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By [1, Proposition 3.2.7(2)] (see also [24, Theorem 2.9] and [11,
Theorem 2.9.6]) on pushforwards, ξ ′′ is also L-WF-holonomic. Furthermore,
ξ ′′ is of C exp

L -class by the stability under pushforward from [11, Theorem 3.4.5
and Remark 4.3.3]. Decompose

ξ = ξ ′′ + (ξ − ξ ′′).

Again we are done by induction on dimSupp(ξ). Indeed, (ξ − ξ ′′) has a lower
dimensional support than ξ .

6.1.1. Proof of the key lemma. Define a regular triple to be a triple (µ,U, X)
that satisfies the assumptions of the key lemma, namely, µ is a C exp

L -class smooth
measure on an L-definable dense open U of the compact L-manifold X and where
L = LF

an. Call such a regular triple good if the key lemma holds for it. Precisely,
a regular triple (µ,U, X) is called good if there is an L-definable dense open V
of U such that µ|V has an extension to an L-WF-holonomic distribution on X ,
which is of C exp

L -class.
The key lemma will follow from the resolution theorem for definable functions,

the following straightforward proposition and lemma, and an inductive procedure
in tandem with the proof of our main holonomicity result.

PROPOSITION 6.3. Suppose that L = LF
an. Consider a regular triple (µ,U, X).

Then the following properties hold.

(1) If (µ1,U, X) and (µ2,U, X) are good, then so is (µ1 + µ2,U, X).

(2) If (µ1,U1, X1) (µ2,U2, X2) are good, then so is (µ1 � µ2,U1 × U2, X1 ×

X2), with µ1 � µ2 the product measure.

(3) If (µ,U, X) is good and f is a smooth (namely, locally constant) C exp
L -

function on X, then (µ f |U ,U, X) is good.

(4) Assume that (µ1,U1, X1) and (µ2,U2, X2) are regular triples and that ϕ :
X1 → X2 is a proper L-analytic map such that

• ϕ(U1) is open in U2;

• ϕ|U1 is a local isomorphism onto ϕ(U1);

• (ϕ|U1)∗(µ1) = µ2, that is, the pushforward along ϕ|U1 of the distribution
µ1 on U1 equals µ2 (as distributions on U2).

Then, if (µ1,U1, X1) is good, then so is (µ2,U2, X2).
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Proof. Only (4) needs a proof (the other properties follow more easily from the
corresponding properties of wave front sets and analytic manifolds).

For Property (4), take an L-definable dense open V1 of U1 and a good
extension ξ1 on X1 of µ1|V1 (namely, an extension that is of C exp

L -class
and L-WF-holonomic). The pushforward ϕ∗(ξ1) is of C exp

L -class and L-
WF-holonomic. Indeed, the pushforward of an analytically WF-holonomic
distribution under a proper analytic map is again analytically WF-holonomic by
[1, Proposition 3.2.7(2)] (see also [24, Theorem 2.9] and [11, Theorem 2.9.6]),
and the pushforward of a C exp

L -class distribution under a proper L-analytic map
is again of C exp

L -class (see [11, Theorem 3.4.5 and Remark 4.3.3]). Let V2 be the
union of ϕ(V1) with U2 r ϕ(U1), where ϕ(U1) is the closure of ϕ(U1). Now, by
construction and definability properties, V2 is an LF

an-definable dense open in U2,
and ϕ∗(ξ1) extends µ2|V2 . Hence, we are done.

LEMMA 6.4. Consider an L-submanifold X ⊂ Fn . Let U ⊂ X have a finite
complement in X, and let ξ be a distribution of C exp

L -class on U such that ξ is
L-WF-holonomic. Then there is a distribution ξX on X, which is of C exp

L -class,
whose restriction to U equals ξ , and such that ξX is L-WF-holonomic.

Proof. Regularize ξ to a distribution ξX on X using a section as given by
Theorem 2.8. Then ξX is as desired. Indeed, ξX is L-WF-holonomic since U has
a finite complement in X .

We show the following lemma assuming Theorem 2.7 for X of dimension less
than n.

LEMMA 6.5. Suppose that L = LF
an. Let a good triple (µ,U, X) be given with

dim X 6 n. Let ξ be any C exp
L -class distribution on X, which coincides with µ on

a dense open V of U. Then ξ is L-WF-holonomic.

Proof. Let a distribution ξX on X be given by the goodness of the triple. Write
ξ = ξX + (ξ − ξX ). Then, by the argument of Case 2 of the proof of Theorem 2.7
and by our assumption that Theorem 2.7 holds when dim X < n, we find that
ξ − ξX and hence also that ξ are L-WF-holonomic.

We can now prove our key lemma for dim X = n assuming the main
holonomicity theorem (Theorem 2.7) for X with dim X < n and L = LF

an.

Proof of Key Lemma 6.2. Let a regular triple (µ,U, X) be given. We proceed
by induction on dim X , where the one-dimensional case is taken care of by
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Lemma 6.4. By the definition of C exp
L (U ), µ is a finite sum of terms of the

form

x ∈ U 7→ cψ( f1(x))| f2(x)|
k∏

i=3

ord( fi(x)),

where the fi are L-definable F-valued functions and where c ∈ C, and where
fi 6= 0 for i > 2. By (1) of Proposition 6.3, and up to replacing U with a dense
open, we may suppose that µ equals one such term. Indeed, any such term is
locally constant on a dense definable open. By working piecewise on X , we may
suppose for each i that either | fi | > 1 or | fi | 6 1 holds. Apply Theorem 2.11 to
the function whose i th component is fi if | fi | 6 1 on X and 1/ fi otherwise. By (1)
and (4) of Proposition 6.3, this reduces the case to U being (OF r{0})m , X =Om

F ,
and each fi (or 1/ fi ) being of the form (2.5.1). We may thus suppose that µ is
of the form

µ(x) = cψ
(
u(x)M(x)η1

) m∏
i=1

|xi |
η2si ord(xi)

ti ,

where c ∈ C, s and t lie in Nm , η1 and η2 lie in {1,−1}, u is an analytic unit on
Om

F , and M is a monomial on Om
F . By (6) of Theorem 2.11, we may furthermore

suppose that either M(x) is constant or u(x) = 1 for all x in Om
F .

In the first case that M(x) is constant on Om
F , we are done by (2) and (3)

of Proposition 6.3. Indeed, ψ(u(x)) is smooth and nonvanishing on Om
F , and

µ(x)/ψ(u(x)) is a Cartesian product situation with one-dimensional Cartesian
factors, each of which falls under Lemma 6.4. Similarly, one treats the case that
M is nonconstant and η1 = 1. Let us now treat the final case that u(x) = 1 and
M(x) is nonconstant on Om

F , and η1 = −1. We first regularize µ to a C exp
L -class

distribution ξ on Om
F . We will then show, by working locally, that ξ is L-WF-

holonomic. Recall that U is (OF r {0})m and that X is Om
F .

Let p be the function Om
F → Om

F that sends x to (x1, . . . , xi−1, 0, xi+1, . . . , xm),
where i is the minimal number in {1, . . . ,m} such that |xi | is minimal among the
|x j | for j in {1, . . . ,m}. Let ϕ0 be a locally constant function on U c

:= Om
F r U

(with the subset topology) and with compact support. Associate to ϕ0 a function
L(ϕ0) on Om

F by sending x ∈Om
F to ϕ0(p(x)). Clearly L(ϕ0) is a Schwartz–Bruhat

function on Om
F .

For ϕ, a Schwartz–Bruhat function on Om
F , let ϕc be the restriction of ϕ to U c,

and consider the lift L(ϕc). Let ϕ̃ be the restriction to U of ϕ − L(ϕc). Then
by construction, ϕ̃ is a Schwartz–Bruhat function on U . Moreover, the function
sending ϕ to ϕ̃ is a C-linear map from S(Om

F ) to S(U ), which is the identity on
S(U ). Now let ξ be the distribution on Om

F sending a Schwartz–Bruhat function ϕ
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on Om
F to the evaluation of the distribution µ at ϕ̃. Clearly, ξ is of C exp

L -class and
extends µ (use Proposition 4.2). It is only left to show that ξ is L-WF-holonomic,
which is a local property.

Fix a point a in Om
F rU . It is enough to show that the restriction of ξ to a small

neighborhood of a is L-WF-holonomic. By Lemma 6.4, it is sufficient to treat
the case that a 6= 0. Up to reordering the variables, we may suppose that the first
coordinate a1 of a is nonzero. If M(x) does not depend on x1, then we are done
by (2) of Proposition 6.3 and induction on the dimension of X and Lemma 6.5. If
M(x) depends nontrivially on x1 but on no other variable, we can finish similarly.
Now suppose that M(x) depends nontrivially on x1 and, say, also nontrivially
on x2. Write M(x) = x k1

1 · · · x
km
m . Consider the map φ : Om

F → Om
F

(x1, . . . , xn) 7→ (a1x k2
1 , x2x−k1

1 , x3 . . . , xm).

There exists a small ball B around (1, a2, . . . , am) such that φ|B is a proper
analytic isomorphism onto an open neighborhood of a. So, it is enough to prove
that (φ∗(ξ))|B is L-WF-holonomic.

Note that (B, φ−1(U )∩ B, φ∗(µ)) is a good triple by (2) of Proposition 6.3 and
induction on the dimension of X (indeed, the pullback of M along φ does not
involve x1 anymore and hence one can apply (2) of 6.3). By Lemma 6.5, we are
done for (φ∗(ξ))|B .

6.2. Holonomicity: the algebraic case. In this section, we prove Theorem 2.7
for L = LF . We will first treat the case that the Zariski closure of X in An

F is
smooth using Theorem 2.7 with L = LF

an as proved in Section 6 and by [11,
Proposition 4.3.1]. The general case will follow from this smooth case by our
partition of unity result and by reducing to graphs.

The following remark amends [11, Proposition 4.3.1] by making explicit the
smoothness condition.

REMARK 6.6. In [11], the notion of algebraic WF-holonomicity is only defined
for distributions on analytic submanifolds X ⊂ Fn such that the Zariski closure of
X in An

F is smooth. Therefore, the condition that the Zariski closure of WF,y in An
F

is smooth should be added as an extra assumption at the start of the ‘Moreover’
statement of Proposition 4.3.1, for each y and F .

PROPOSITION 6.7. Let X ⊂ Fn be an LF -manifold such that the Zariski closure
of X in An

F is smooth. Let ξ be a distribution on X of C exp
LF -class. Suppose that ξ

is strict C1 WF-holonomic. Then ξ is LF -WF-holonomic and thus algebraically
WF-holonomic (see Definitions 2.2 and 2.6).
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Proof. The result is a special form of [11, Proposition 4.3.1] and Remark 6.6.

Proof of Theorem 2.7 for L = LF . We may suppose that X ⊂ Fn . If the Zariski
closure of X in An

F is smooth, then we are done by Proposition 6.7 and by the
above proved case of Theorem 2.7 for LF

an (which contains LF ). Indeed, LF
an-WF-

holonomicity implies strict C1 WF-holonomicity. Now let X ⊂ Fn be a general
LF -manifold. By Lemma 4.5 and Proposition 4.4, we may suppose that X is of
dimension n. Indeed, the pieces given by Lemma 4.5 can be taken clopen and
disjoint by Proposition 4.4. Hence, we are done by the previous case since the
Zariski closure of X now equals An

F , which is smooth. This finishes the proof of
Theorem 2.7.

7. Smooth loci and zero loci

A zero locus of a C exp
L -class function equals the zero locus of a bounded

function of the same class, as follows.

PROPOSITION 7.1. Let g be in C exp
L (X) for some L-definable set X. Then there

is a function h in C exp
L (X) such that |h(x)|C is bounded on X and such that the

zero locus of h equals the zero locus of g.

Proof. We will construct h by multiplying g with a function f in C exp
L (X) such

that f takes positive real values. Such a product clearly preserves the zero locus.
Write g as a finite sum of products of generators Ti of the forms (1), (2), and (3) of
Definition 2.4. In each generator Ti , there occurs an F-valued definable function,
say, ti . For each x ∈ X , let α(x) be the maximum of 0 and the sum over i of the
values ord ti(x), where i is such that 0 < |ti(x)| 6 1. Now let f (x) be q−α(x)F for
x ∈ X . Then clearly, h = f (x)g(x) is as required.

The following result about local constancy is more simple than Theorem 6.1.

PROPOSITION 7.2 [10]. Let X be an L-definable set and let g be in C exp
L (X).

Then there is a finite partition of X into L-manifolds Di such that the restriction
of g to Di is locally constant for each i .

Proof. Up to partitioning X into finitely many L-manifolds by [6,
Proposition 1.5.3] and restricting g to the pieces, we may suppose that X
is an L-manifold. By Theorem 6.1, it follows that g is locally constant on
the complement of an L-definable set D ⊂ X of dimension less than dim X .
(Alternatively, this follows by the more basic [10, Theorem 4.4.3] and its proof.)
Up to making D larger if necessary, we may suppose that XrD is an L-manifold,
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by the stratification result [6, Proposition 1.5.3]. Now we can finish by induction
on dim X by working with the restriction of g to D.

Propositions 7.1 and 7.2 allow us to prove our result on loci (Theorem 2.9).

Proof of Theorem 2.9. Let X and g satisfy the assumptions of the theorem, with
X ⊂ Fn . By Proposition 7.1, and up to replacing g without changing its zero
locus, we may suppose that the complex norm |g(x)|C is bounded on X . Apply
Proposition 7.2 to g to find L-manifolds Di . For each i , let µDi be the canonical
measure on Di coming from the submanifold structure Di ⊂ Fn; see [11,
Section 2.3]. Note that µDi gives a distribution on X . Now ξ :=

∑
i gµDi is as

desired.

8. Uniformity in the local field and in definable families

In this section, F is no longer fixed and is no longer assumed to be of
characteristic zero. On the contrary, we focus on uniformity over all local fields
with only the restriction that if F has positive characteristic, then F is assumed
to have characteristic at least M for some M , which may become bigger when
needed. Until the end of the paper, we use terminology and notation from [11,
Section 3.1], without recalling that section in full. In particular, this fixes uniform
notions of

• functions of C exp-class;

• definable sets; and

• definable functions;

where uniformity is in all local fields F (with structure from the generalized
Denef–Pas language) of characteristic zero and of positive characteristic at least
M for some M , denoted together by LocM . Furthermore, Loc′M denotes the
collection of pairs (F, ψ) of F in LocM and ψ an additive character on F , which
is trivial on MF and nontrivial on OF . A definable set X is now a collection
(X F)F∈LocM for some M , and VF stands for the definable set (F)F∈LocM .

We use the following notion of C exp-families of distributions.

DEFINITION 8.1 (C exp-families of distributions). Let Y and X ⊂ Y × VFn be
definable sets. Suppose that for each F ∈ Loc′M for some M > 0 and each y ∈ YF ,
the set X F,y ⊂ Fn is an analytic manifold, where X F,y = {x ∈ Fn

| (y, x) ∈ X}.
Let, for each F ∈ Loc′M and each y ∈ YF , a distribution ξF,y be given on X F,y .
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Then we call the collection of distributions ξF,y for F ∈ Loc′M and y ∈ YF a
C exp-family of distributions on X over Y if the collection of B-functions DξF,y is
of C exp-class.

Denote by S∗C exp/Y (X) the space of C exp-families of distributions on X over Y .
Denote by SC exp/Y (X) the space of C exp-functions ϕ on X such that ϕF(y, ·) :

X F,y → C is a Schwartz–Bruhat function on X F,y for each F ∈ Loc′M for some
M and each y ∈ YF .

The following result generalizes Theorem 2.7 to uniformity in the local field F
and in definable families with parameter y in a definable set Y . It gives two results:
the uniform description of witnessing manifolds for the WF-holonomicity (the
Wi ) and algebraic holonomicity also for local fields F of positive characteristic
larger than some M .

THEOREM 8.2 (Uniform holonomicity). Let Y and X ⊂ Y × VFn be definable
sets. Suppose that X F,y is an analytic manifold for each F ∈ Loc′M and each
y ∈ YF . Let ξ be in S∗C exp/Y (X). Then there exist M ′ and finitely many definable
sets Wi ⊂ X, such that Wi,F,y (when nonempty) is an analytic submanifold of X F,y

for each F ∈ Loc′M ′ , each i , and each y ∈ YF , and such that the wave front set of
ξF,y is contained in ⋃

i

C N X F,y
Wi,F,y

.

Hence, ξF,y is algebraically WF-holonomic for each F in Loc′M ′ (see
Definition 2.2).

Proof. This follows from our holonomicity result (Theorem 2.7), from [11,
Section 4], and Remark 6.6 used similarly as in the proof of Theorem 2.7 for
L = LF .

For Wi,F as in Theorem 8.2 but with Y = {0}, see the appendix of [9] to get the
extra information that the Zariski closures of the Wi,F in An

F are defined over a
number field F0 independently from F , in the case that the initial data are defined
over F0 as well.

The following is a family version, uniform in the local field and in definable
families, of our Regularization Theorem 2.8.

THEOREM 8.3 (Uniform regularization). Let Y and U ⊂ X ⊂ Y × VFn be
definable sets. Suppose that X F,y is an analytic submanifold of Fn and that UF,y

is a nonempty open of X F,y for each F ∈ Loc′M for some M and each y ∈ YF .
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Then the restriction map

S∗C exp/Y (X)→ S∗C exp/Y (U )

admits a linear section (in particular, it is onto).

Let us also adapt Proposition 4.6 to the uniform setting.

PROPOSITION 8.4. Let Y and Z ⊂ X ⊂ Y ×VFn be definable sets. Suppose that
X F,y is an analytic manifold and that Z F,y is a closed analytic submanifold of
X F,y for each F ∈ Loc′M and each y ∈ YF , of lower dimension than the dimension
of X F,y . Then the restriction map

SC exp/Y (X)→ SC exp/Y (Z)

admits a linear section.

We also give the following uniform (partial) converse to [11, Theorem 3.4.1].

THEOREM 8.5 (Uniform correspondence of loci). Let Y and X ⊂ Y × VFn be
definable sets. Suppose that X F,y is an analytic manifold for each F ∈ Loc′M and
each y ∈ YF . Let g be in C exp(X). Suppose that for each F ∈ Loc′M and each
y ∈ YF , the zero locus of gF,y is dense open in X F,y . Then there exist M ′ and ξ in
S∗C exp/Y (X) such that for each F ∈ Loc′M ′ and each y ∈ YF , the zero locus of gF,y

equals the smooth locus of ξF,y .

Most proofs above directly apply to the uniform setting. Let us show how
to adapt the statement of Lemma 4.5. It is important that the occurring sets in
the covers form moreover a definable family, in order to generalize the proof
techniques for fixed F above to our uniform setting. Recall from [11, Section 3.1]
that RFN ,F stands for the finite ring OF/NMF for F a local field.

LEMMA 8.6. Let Y and X ⊂ Y × VFn be definable sets. Suppose that X F,y is an
analytic submanifold of Fn of dimension m for each F ∈ Loc′M and each y ∈ YF .
Then there are N and a definable bijection σ : X → σ(X) ⊂ X × RFk

N for some
k, which makes a commutative diagram with the projection p : σ(X)→ X and
such that each nonempty fiber of the projection σ(X)→ Y × RFk

N is an open of
X, which equals the graph of a definable analytic function from an open subset
Vi ⊂ L i of a linear subspace of VFn of dimension m to a linear complement of this
subspace. (Here, analytic means for each F in LocM ′ for some M ′ and each y.)

Proof. This follows by a reasoning as for Lemma 4.5, where one uses [13,
Section 6.3] instead of [23] and [18] for the properties about analyticity.
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Proofs of Theorem 8.3 and Proposition 8.4. Clearly, the proofs of Theorems 2.8
and 4.6 work uniformly in F and in y ∈ YF , using Lemma 8.6 instead of
Lemma 4.5.

Proof of Theorem 8.5. The proofs of Theorem 2.9 and (the statement and the
proof of) Proposition 7.1 adapt naturally to the uniform case.

REMARK 8.7. We leave it to the reader to implement the uniform results also in
the analytic framework, using [11, Remark 4.3.3] and our results above for LF

an
for fixed F . Similarly, we let the (definable) strict C1 analogues to the reader. Let
us also note that within the axiomatic framework of Hensel minimality from [12]
for languages on local fields, one can investigate a generalization of the results
of this paper to that framework, with definable strict C1 manifolds and functions
instead of definable analytic ones.

Acknowledgements

This project was conceived while both authors participated in the Fourth
International Workshop on Zeta Functions in Algebra and Geometry. The authors
thank the organizers of the conference for creating this opportunity. The authors
also thank I. Halupczok and M. Raibaut for interesting discussions on the topics
of this paper, and the referee for useful comments.

AA was partially supported by ISF grant 687/13, ISF grant 249/17, and a
Minerva foundation grant. RC was partially supported by the European Research
Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013) with ERC Grant Agreement number 615722 MOTMELSUM
and KU Leuven IF C14/17/083, and he thanks the Labex CEMPI (ANR-11-
LABX-0007-01).

Conflict of Interest: None.

References

[1] A. Aizenbud and V. Drinfeld, ‘The wave front set of the Fourier transform of algebraic
measures’, Israel J. Math. 207(2) (2015), 527–580. (English).
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