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Abstract
We obtain a sparse domination principle for an arbitrary family of functions 𝑓 (𝑥, 𝑄), where 𝑥 ∈ R𝑛 and Q is a
cube in R𝑛. When applied to operators, this result recovers our recent works [37, 39]. On the other hand, our sparse
domination principle can be also applied to non-operator objects. In particular, we show applications to generalised
Poincaré–Sobolev inequalities, tent spaces and general dyadic sums. Moreover, the flexibility of our result allows
us to treat operators that are not localisable in the sense of [39], as we will demonstrate in an application to vector-
valued square functions.
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1. Introduction

Sparse domination is a recent technique allowing one to estimate (in norm, pointwise or dually) many
operators in harmonic analysis by simple expressions of the form∑

𝑄∈S
〈 𝑓 〉𝑝,𝑄𝜒𝑄,

where 〈 𝑓 〉𝑝,𝑄 =
( 1
|𝑄 |

∫
𝑄
| 𝑓 |𝑝

)1/𝑝 for 𝑝 ∈ (0,∞) and S is a sparse family of cubes in R𝑛.
Primarily motivated by sharp quantitative weighted norm inequalities, sparse domination has quickly

transformed into a very active area, dealing with various operators within and beyond the Calderón–
Zygmund theory. During the last five years, a number of sparse domination principles (that is, general
results establishing sparse domination for a given class of operators) have appeared, for example, in the
works [2, 5, 6, 8, 13, 14, 34, 35, 37, 39].

Let us consider a particular line of research in this direction, for which the starting point is the
so-called local mean oscillation estimate (see [23, 31])

| 𝑓 − 𝑚 𝑓 (𝑄) |𝜒𝑄 �
∑
𝑃∈S

𝜔𝜆 ( 𝑓 ; 𝑃)𝜒𝑃 , (1.1)

where f is an arbitrary measurable function and 𝑚 𝑓 (𝑄) and 𝜔𝜆( 𝑓 ;𝑄) denote a median value and the
local mean oscillation of f on the cube Q, respectively.

The local mean oscillation estimate can be regarded as the first operator-free sparse domination result,
but its main application was to operators. Specifically, this estimate was applied by the first author in
[32] to a Calderón–Zygmund operator T, using 𝑇 𝑓 instead of f in (1.1). This provided norm sparse
domination for T and, as a result, an alternative proof of the 𝐴2-theorem, which was first proven by
Hytönen [22]. Later, this norm sparse domination result was improved to pointwise sparse domination
simultaneously by Conde-Alonso–Rey and the first author and Nazarov in [15, 36].

The methods in [15, 36] still depended on (1.1). The drawback of this approach is that it necessitates
estimating local mean oscillations of T, although T is not a well-localised operator. For this reason,
the results in [15, 36] hold under the log-Dini assumption on the kernel of the Calderón–Zygmund
operator T.

The next step was taken by Lacey in [30], where pointwise sparse domination for T was obtained
under the usual Dini assumption on the kernel of T. The main new realisation in [30] was that it suffices
to estimate suitable truncations of T, which can be done without the use of (1.1). The proof of the
pointwise sparse domination result for T was subsequently simplified by the first author in [34] and the
first and third authors in [37], in which a general sparse domination principle was established, allowing
one to deal with a vast number of ‘smooth’ operators. The main result of [37] was then extended by the
second author [39] into several directions, including the setting of vector-valued functions on spaces of
homogeneous type, along with the concept of ℓ𝑟 -sparse domination.

The development we have so far described can be summarised in the following diagram:

(1.1) → [32] → [15, 36] → [30] → [34] → [37] → [39] .

Starting from [30], the local mean oscillation estimate (1.1) has not played a role in the obtained sparse
domination results. Therefore, this development can be viewed as an evolution from sparse domination
for arbitrary functions (expressed in (1.1)) to sparse domination for operators.

In the present article, we return sparse domination to its roots, using functions rather than operators.
We will essentially use the techniques developed in [37, 39]. Our key novel point is the language in which
our main results are written. This language unifies (1.1) with all of the results contained in [37, 39]. More
important, it allows us to deal with many non-operator objects, which have not yet been investigated using
sparse domination techniques. This development can be seen in analogy to the development of Rubio
de Francia extrapolation, which was first proven for operators but was later realised to be much more
versatile and applicable in a formulation for functions (see [16] for a discussion on this development).
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Let us give a flavour of our language. Precise definitions and statements will be given in subsequent
sections. We shall deal with functions 𝑓 (𝑥, 𝑄) of two ‘variables’, being the points 𝑥 ∈ R𝑛 and the cubes
𝑄 ⊂ R𝑛. For brevity we denote such functions by 𝑓𝑄 (𝑥). Observe that the role of the cubes Q may vary.
For example, one can define 𝑓𝑄 (𝑥) := 𝑇 ( 𝑓 𝜒𝛼𝑄) (𝑥), where T is a given operator. On the other hand, in
the theory of tent spaces, a typical definition will be 𝑓𝑄 (𝑥) :=

∫
Γℓ𝑄 (𝑥) 𝑓 (𝑦, 𝑡) d𝜇(𝑦, 𝑡), where Γℓ𝑄 (𝑥) is

a cone in R𝑛+1
+ , truncated according to the side length of Q.

Our main result, Theorem 3.2, provides pointwise sparse domination for | 𝑓𝑄 | for a fixed cube𝑄 ⊂ R𝑛.
The dominating sparse object is expressed in terms of 𝑓𝑃 for dyadic subcubes P of Q and a certain family
of functions 𝑓𝑃,𝑄, which connects 𝑓𝑃 and 𝑓𝑄 in a natural way. A typical example is 𝑓𝑃,𝑄 := 𝑓𝑄 − 𝑓𝑃
but, depending on the context, one can make more clever choices of 𝑓𝑃,𝑄.

The article is organised as follows. Section 2 contains the main definitions. In particular, our language
is introduced there. Section 3 contains our main results, which are pointwise and bilinear form operator-
free sparse domination principles, expressed in Theorems 3.2 and 3.4. In Section 4 we show that our
new results contain a vast number of previously known sparse domination results as particular cases.

Sections 5–8 present new applications. Section 5 is devoted to generalised Poincaré–Sobolev in-
equalities. In a recent work on this topic [44], Pérez and Rela obtained a weighted self-improving result,
assuming the 𝐴∞-condition on the weight. They asked whether the 𝐴∞-condition can be removed. Using
our sparse domination principle, we give an affirmative answer to this question.

In Section 6, we give a ‘sparse’ proof of the theorem of Coifman–Meyer–Stein [11] on the main
relation between two basic operators in the theory of tent spaces. In particular, this improves the good-𝜆
inequality for these operators established in [11]. We also obtain similar results for vector-valued tent
spaces.

In Section 7 we give a simplified proof of a recent result by Xu [48] about sharp bounds for the
vector-valued vertical square function, which was an important ingredient in his answer to a question
by Naor and Young [43] about sharp bounds for the heat semigroup on R𝑛.

In Section 8 we obtain a simple sufficient condition allowing one, when dealing with the dyadic sums∑
𝛼𝑄𝜒𝑄, to replace the summation over all dyadic subcubes of a given cube by the summation over a

sparse family. As an application, we will generalise and provide a new proof of a result by Honzík and
Jaye [21] on a sharp good-𝜆 inequality for the nonlinear dyadic potential.

Throughout the article we use the notation 𝐴 � 𝐵 if 𝐴 ≤ 𝐶𝐵 with some independent constant C. We
write 𝐴 � 𝐵 if 𝐴 � 𝐵 and 𝐵 � 𝐴.

2. Main definitions

2.1. Dyadic cubes

Denote by Q the set of all cubes 𝑄 ⊂ R𝑛 with sides parallel to the axes. Given a cube 𝑄 ∈ Q, denote by
D(𝑄) the set of all dyadic cubes with respect to Q; that is, the cubes obtained by repeated subdivision
of Q and each of its descendants into 2𝑛 congruent subcubes.

Following [36, Def. 2.1], a dyadic lattice 𝒟 in R𝑛 is any collection of cubes such that

(i) any child of 𝑄 ∈ 𝒟 is in 𝒟 as well; that is, D(𝑄) ⊆ 𝒟,
(ii) any 𝑄 ′, 𝑄 ′′ ∈ 𝒟 have a common ancestor; that is, there exists a 𝑄 ∈ 𝒟 such that 𝑄 ′, 𝑄 ′′ ∈ D(𝑄),

(iii) for every compact set 𝐾 ⊂ R𝑛, there exists a cube 𝑄 ∈ 𝒟 containing K.

Let 𝑄 ∈ Q. We say that a family of dyadic cubes F ⊂ D(𝑄) is contracting if F = ∪∞
𝑘=0F𝑘 , where

F0 = {𝑄}, each F𝑘 is a family of pairwise disjoint cubes and for Ω𝑘 = ∪𝑃∈F𝑘𝑃 we have Ω𝑘+1 ⊂ Ω𝑘 and
|Ω𝑘 | → 0 as 𝑘 → ∞. Given a contracting family F ⊂ D(𝑄), for 𝑃 ∈ F𝑘 with 𝑘 ∈ N ∪ {0}, we denote

𝐸𝑃 := 𝑃 \
⋃

𝑃′ ∈F𝑘+1

𝑃′ = 𝑃 \Ω𝑘+1.

Observe that the sets {𝐸𝑃}𝑃∈F are pairwise disjoint.
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Definition 2.1. Let 𝜂 ∈ (0, 1) and 𝑄 ∈ Q. We say that a family F ⊂ D(𝑄) is 𝜂-sparse if it is contracting
and |𝐸𝑃 | ≥ 𝜂 |𝑃 | for all 𝑃 ∈ F.

Note that our definition of a sparse family of cubes is slightly more restrictive than the usual definition
in the literature. In particular, we assume a sparse family of cubes to have exactly one maximal cube,
the cube Q.

2.2. The ℓ𝑟 -condition

Consider a family of measurable functions { 𝑓𝑄, 𝑓𝑃,𝑄} : R𝑛 → R, where 𝑄 ∈ Q, 𝑃 ∈ D(𝑄). We note
that our choice ofR as the scalar field is inconsequential; that is, all subsequent results hold for complex-
valued functions as well.

We introduce a compatibility condition on such a family of functions, which is implicitly contained
in [39]. We will elaborate on the connection to [39] in Subsection 4.2.

Definition 2.2. Let 𝑟 ∈ (0,∞). We say that the family

{ 𝑓𝑄, 𝑓𝑃,𝑄}𝑄∈Q,𝑃∈D(𝑄)

satisfies the ℓ𝑟 -condition if there exists a𝐶𝑟 > 0 such that for every𝑄 ∈ Q and every 𝑃1, . . . , 𝑃𝑚 ∈ D(𝑄)
with 𝑃𝑚 ⊂ · · · ⊂ 𝑃1, we have for a.e. 𝑥 ∈ 𝑃𝑚,

| 𝑓𝑃1 (𝑥) | ≤ 𝐶𝑟

( 𝑚−1∑
𝑘=1

| 𝑓𝑃𝑘+1 ,𝑃𝑘 (𝑥) |𝑟 + | 𝑓𝑃𝑚 (𝑥) |𝑟
)1/𝑟

.

Given an arbitrary family of measurable functions 𝑓𝑄 : R𝑛 → R, a canonical choice for 𝑓𝑃,𝑄 is
given by

𝑓𝑃,𝑄 := 𝑓𝑄 − 𝑓𝑃 , (2.1)

for which the ℓ𝑟 -condition holds trivially with 𝐶𝑟 = 1 for 0 < 𝑟 ≤ 1.

2.3. Sharp maximal operators

For a measurable function 𝑓 : R𝑛 → R, we define its standard oscillation over a cube 𝑄 ∈ Q by

osc( 𝑓 ;𝑄) = ess sup
𝑥′,𝑥′′ ∈𝑄

| 𝑓 (𝑥 ′) − 𝑓 (𝑥 ′′) |.

Furthermore, for 𝑞 ∈ (0,∞), we define its q-oscillation over a cube 𝑄 ∈ Q by

osc𝑞 ( 𝑓 ;𝑄) =
( 1
|𝑄 |2

∫
𝑄×𝑄

| 𝑓 (𝑥 ′) − 𝑓 (𝑥 ′′) |𝑞 d𝑥 ′ d𝑥 ′′
)1/𝑞

.

Using these oscillations, we can now define sharp maximal operators associated to a family { 𝑓𝑃,𝑄},
of which precursors can be found in [37, 39].

Definition 2.3. Given a family { 𝑓𝑃,𝑄}𝑄∈Q,𝑃∈D(𝑄) , define the sharp maximal function 𝑚#
𝑄 𝑓 for 𝑄 ∈ Q

by

𝑚#
𝑄 𝑓 (𝑥) = sup

𝑃∈D(𝑄):𝑥∈𝑃
osc( 𝑓𝑃,𝑄; 𝑃), 𝑥 ∈ 𝑄,
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and for 𝑞 ∈ (0,∞) define the sharp q-maximal function by

𝑚#
𝑄,𝑞 𝑓 (𝑥) = sup

𝑃∈D(𝑄):𝑥∈𝑃
osc𝑞 ( 𝑓𝑃,𝑄; 𝑃)), 𝑥 ∈ 𝑄.

2.4. Nonincreasing rearrangements

The nonincreasing rearrangement of a measurable function 𝑓 : R𝑛 → R is defined by

𝑓 ∗(𝑡) = inf
{
𝛼 > 0 : |{𝑥 ∈ R𝑛 : | 𝑓 (𝑥) | > 𝛼}| ≤ 𝑡

}
, 𝑡 ∈ R+.

Observe that (| 𝑓 | 𝛿)∗(𝑡) = 𝑓 ∗(𝑡) 𝛿 for every 𝛿 > 0. This, along with Chebyshev’s inequality 𝑓 ∗(𝑡) ≤
1
𝑡 ‖ 𝑓 ‖𝐿1 (R𝑛) , implies that

𝑓 ∗(𝑡) ≤ 1
𝑡

1
𝛿

‖ 𝑓 ‖𝐿𝛿 (R𝑛) . (2.2)

We also have
{𝑥 ∈ R𝑛 : | 𝑓 (𝑥) | > 𝑓 ∗(𝑡)}

 ≤ 𝑡, (2.3)

which is a consequence of the fact that the distribution function is right-continuous.

3. Main results

3.1. A toy domination principle

We start our analysis by observing that the ℓ𝑟 -condition allows us to bound 𝑓𝑄 for every 𝑄 ∈ Q by a sum
over an arbitrary contracting family of cubes. In particular, we note that we do not need a sparseness
assumption in the following statement.

Proposition 3.1. Let 𝑟 ∈ (0,∞) and let { 𝑓𝑄, 𝑓𝑃,𝑄}𝑄∈Q,𝑃∈D(𝑄) satisfy the ℓ𝑟 -condition. Let 𝑄 ∈ Q and
let F ⊂ D(𝑄) be a contracting family of cubes. Then for a.e. 𝑥 ∈ 𝑄,

| 𝑓𝑄 (𝑥) |𝑟 ≤ 𝐶𝑟𝑟

∞∑
𝑘=0

∑
𝑃∈F𝑘

(
| 𝑓𝑃 (𝑥) |𝑟 𝜒𝐸𝑃 (𝑥) +

∑
𝑃′ ∈F𝑘+1:𝑃′ ⊂𝑃

| 𝑓𝑃′,𝑃 (𝑥) |𝑟 𝜒𝑃′ (𝑥)
)
.

Proof. Since |Ω𝑘 | → 0, there is a set 𝑁 ⊂ 𝑄 of measure 0 such that, for every 𝑥 ∈ 𝑄 \ 𝑁 , there are only
finitely many 𝑘 ∈ N with 𝑥 ∈ Ω𝑘 .

Fix 𝑥 ∈ 𝑄 \ 𝑁 . Then there exist 𝑃𝑘 ∈ F𝑘 for 𝑘 = 0, . . . , 𝑚 such that

𝑥 ∈ 𝑃𝑚 ⊂ 𝑃𝑚−1 ⊂ · · · ⊂ 𝑃0 = 𝑄

and 𝑥 ∉ Ω𝑚+1. Hence, by the ℓ𝑟 -condition,

| 𝑓𝑄 (𝑥) |𝑟 ≤ 𝐶𝑟𝑟

(
| 𝑓𝑃𝑚 (𝑥) |𝑟 +

𝑚−1∑
𝑘=0

| 𝑓𝑃𝑘+1 ,𝑃𝑘 (𝑥) |𝑟
)

= 𝐶𝑟𝑟

(
| 𝑓𝑃𝑚 (𝑥) |𝑟 𝜒𝐸𝑃𝑚

(𝑥) +
𝑚−1∑
𝑘=0

| 𝑓𝑃𝑘+1 ,𝑃𝑘 (𝑥) |𝑟 𝜒𝑃𝑘+1 (𝑥)
)
.
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In order to make this expression independent of the particular choice of 𝑃𝑘 , we add zero terms. This
allows us to write

| 𝑓𝑃𝑚 (𝑥) |𝑟 𝜒𝐸𝑃𝑚
(𝑥) =

∞∑
𝑘=0

∑
𝑃∈F𝑘

| 𝑓𝑃 (𝑥) |𝑟 𝜒𝐸𝑃 (𝑥)

and
𝑚−1∑
𝑘=0

| 𝑓𝑃𝑘+1 ,𝑃𝑘 (𝑥) |𝑟 𝜒𝑃𝑘+1 (𝑥) =
∞∑
𝑘=0

∑
𝑃∈F𝑘

∑
𝑃′ ∈F𝑘+1:𝑃′⊂𝑃

| 𝑓𝑃′,𝑃 (𝑥) |𝑟 𝜒𝑃′ (𝑥),

which completes the proof. �

3.2. A pointwise sparse domination principle

In order to estimate the terms 𝑓𝑃′,𝑃 in Proposition 3.1 effectively, we make an additional assumption on
the family { 𝑓𝑃,𝑄}𝑄∈Q,𝑃∈D(𝑄) . Indeed, we will assume for 𝑄 ∈ Q and 𝑃 ∈ D(𝑄) that

| 𝑓𝑃,𝑄 | ≤ | 𝑓𝑃 | + | 𝑓𝑄 |. (3.1)

Observe that this assumption is not really restrictive. In particular, for the main example in (2.1), (3.1)
holds trivially.

Our first main result is the following.

Theorem 3.2. Let 𝑟 ∈ (0,∞) and let { 𝑓𝑄, 𝑓𝑃,𝑄}𝑄∈Q,𝑃∈D(𝑄) satisfy the ℓ𝑟 -condition and (3.1). For any
𝑄 ∈ Q and 𝜂 ∈ (0, 1) there exists an 𝜂-sparse family F ⊂ D(𝑄) such that for a.e. 𝑥 ∈ 𝑄,

| 𝑓𝑄 (𝑥) | � 𝐶𝑟

( ∑
𝑃∈F

𝛾𝑟𝑃𝜒𝑃 (𝑥)
)1/𝑟

,

where

𝛾𝑃 := ( 𝑓𝑃𝜒𝑃)∗
(
|𝑃 | 1−𝜂

2𝑛+2

)
+ (𝑚#

𝑃 𝑓 )∗
(
|𝑃 | 1−𝜂

2𝑛+2

)
.

Proof. We construct the family F ⊂ D(𝑄) inductively. Set F0 = {𝑄}. Next, given a collection of
pairwise disjoint cubes F𝑘 , let us describe how to construct F𝑘+1.

Fix a cube 𝑃 ∈ F𝑘 . Consider the sets

Ω1(𝑃) :=
{
𝑥 ∈ 𝑃 : | 𝑓𝑃 (𝑥) | > ( 𝑓𝑃𝜒𝑃)∗

(
|𝑃 | 1−𝜂

2𝑛+2

)}
,

Ω2(𝑃) :=
{
𝑥 ∈ 𝑃 : 𝑚#

𝑃 𝑓 (𝑥) >
(
𝑚#
𝑃 𝑓

)∗ (|𝑃 | 1−𝜂
2𝑛+2

)}
,

and denote Ω(𝑃) := Ω1(𝑃) ∪Ω2(𝑃). Then, by (2.3), we know that |Ω(𝑃) | ≤ 1−𝜂
2𝑛+1 |𝑃 |.

Apply the local Calderón–Zygmund decomposition to 𝜒Ω(𝑃) at height 1
2𝑛+1 . We obtain a family of

pairwise disjoint cubes S𝑃 = {𝑃 𝑗 }, dyadic with respect to P, such that for 𝑁𝑃 = Ω(𝑃) \ ∪ 𝑗𝑃 𝑗 we have
that |𝑁𝑃 | = 0 and for every 𝑃 𝑗 ∈ S𝑃 ,

1
2𝑛+1 |𝑃 𝑗 | ≤ |𝑃 𝑗 ∩Ω(𝑃) | ≤ 1

2
|𝑃 𝑗 |. (3.2)

In particular, it follows from this that∑
𝑗

|𝑃 𝑗 | ≤ 2𝑛+1 |Ω(𝑃) | ≤ (1 − 𝜂) |𝑃 |. (3.3)
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We define F𝑘+1 = ∪𝑃∈F𝑘S𝑃 . Setting F = ∪∞
𝑘=0F𝑘 , we note by (3.3) that F is 𝜂-sparse.

Let us now prepare to apply Proposition 3.1 with the constructed family F. Fix 𝑃 ∈ F𝑘 for some
𝑘 ∈ N ∪ {0}. Since |𝑁𝑃 | = 0, almost every point of the set Ω1(𝑃) is covered by a cube 𝑃′ ∈ F𝑘+1.
Therefore, we have

| 𝑓𝑃 (𝑥) | ≤ ( 𝑓𝑃𝜒𝑃)∗
(
|𝑃 | 1−𝜂

2𝑛+2

)
, 𝑥 ∈ 𝐸𝑃 . (3.4)

It remains to estimate | 𝑓𝑃′,𝑃 |𝜒𝑃′ for 𝑃 ∈ F𝑘 and 𝑃′ ∈ F𝑘+1 with 𝑃′ ⊂ 𝑃. Denote 𝐺𝑃′ = 𝑃′ \ Ω(𝑃).
Then, by (3.2), we have

|𝐺𝑃′ | ≥ |𝑃′ | − |𝑃′ ∩Ω(𝑃) | ≥ 1
2
|𝑃′ |.

Therefore, |𝐺𝑃′ \Ω(𝑃′) | > 0 and hence, fixing

𝑦 ∈ 𝐺𝑃′ \Ω(𝑃′) ⊂ 𝑃′ \
(
Ω1(𝑃) ∪Ω1(𝑃′)

)
and applying (3.1), we obtain for a.e. 𝑥 ∈ 𝑃′

| 𝑓𝑃′,𝑃 (𝑥) | ≤ inf
𝑥′ ∈𝑃′

𝑚#
𝑃 𝑓 (𝑥 ′) + | 𝑓𝑃′,𝑃 (𝑦) |

≤
(
𝑚#
𝑃 𝑓

)∗ (|𝑃 | 1−𝜂
2𝑛+2

)
+ | 𝑓𝑃 (𝑦) | + | 𝑓𝑃′ (𝑦) |

≤ 𝛾𝑃 + ( 𝑓𝑃′𝜒𝑃′ )∗
(
|𝑃′ | 1−𝜂

2𝑛+2

)
.

Combining this estimate with (3.4) and Proposition 3.1 yields for a.e. 𝑥 ∈ 𝑄 that

| 𝑓𝑄 (𝑥) |𝑟 ≤ 𝐶𝑟𝑟

∞∑
𝑘=0

∑
𝑃∈F𝑘

(
( 𝑓𝑃𝜒𝑃)∗

(
|𝑃 | 1−𝜂

2𝑛+2

)𝑟
𝜒𝐸𝑃 (𝑥)

+
∑

𝑃′ ∈F𝑘+1:𝑃′⊂𝑃

(
𝛾𝑃 + ( 𝑓𝑃′𝜒𝑃′ )∗

(
|𝑃′ | 1−𝜂

2𝑛+2

) )𝑟
𝜒𝑃′ (𝑥)

)

≤ 2(2𝐶𝑟 )𝑟
∞∑
𝑘=0

∑
𝑃∈F𝑘

𝛾𝑟𝑃𝜒𝑃 + (2𝐶𝑟 )𝑟
∞∑
𝑘=0

∑
𝑃∈F𝑘

∑
𝑃′ ∈F𝑘+1:𝑃′⊂𝑃

𝛾𝑟𝑃′𝜒𝑃′

≤ 3(2𝐶𝑟 )𝑟
∑
𝑃∈F

𝛾𝑟𝑃𝜒𝑃 ,

which completes the proof. �

Remark 3.3. It is easily seen from the proof that Theorem 3.2 can be stated in a (formally stronger)
local version. Namely, fix a cube 𝑄0 ∈ Q, and assume that the ℓ𝑟 -condition and (3.1) hold for a family of
functions { 𝑓𝑄, 𝑓𝑃,𝑄}, where 𝑃,𝑄 ∈ D(𝑄0) and 𝑃 ⊆ 𝑄. Then for any 𝜂 ∈ (0, 1) there exists an 𝜂-sparse
family F ⊂ D(𝑄0) such that for a.e. 𝑥 ∈ 𝑄0,

| 𝑓𝑄0 (𝑥) | � 𝐶𝑟

( ∑
𝑃∈F

𝛾𝑟𝑃𝜒𝑃 (𝑥)
)1/𝑟

with the same 𝛾𝑃 as in Theorem 3.2. In particular, the family of all cubes Q in Theorem 3.2 can be
replaced by an arbitrary subfamily; for example, by a dyadic lattice 𝒟.

3.3. A bilinear form sparse domination principle

In certain applications the 𝑚#
𝑄 𝑓 -term in the definition of 𝛾𝑄 in Theorem 3.2 is too large to be efficiently

estimated. We will therefore also prove a variant of Theorem 3.2, dominating | 𝑓𝑄 | dually by a sparse
form involving the smaller term 𝑚#

𝑄,𝑞 𝑓 for 𝑞 ∈ (0,∞).
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Theorem 3.4. Let 𝑟 ∈ (0,∞) and let { 𝑓𝑄, 𝑓𝑃,𝑄}𝑄∈Q,𝑃∈D(𝑄) satisfy the ℓ𝑟 -condition and (3.1) and let
𝑞 ∈ (𝑟,∞). For any 𝑄 ∈ Q and 𝜂 ∈ (0, 1) there exists an 𝜂-sparse family F ⊂ D(𝑄) such that for every
measurable 𝑔 : R𝑛 → R+, ∫

𝑄
| 𝑓𝑄 |𝑟𝑔 � 𝐶𝑟

∑
𝑃∈F

𝛼𝑟𝑃 〈𝑔〉(𝑞/𝑟 )′,𝑃 |𝑃 |,

where

𝛼𝑃 = ( 𝑓𝑃𝜒𝑃)∗
(
|𝑃 | 1−𝜂

2𝑛+2

)
+ (𝑚#

𝑃,𝑞 𝑓 )
∗ (|𝑃 | 1−𝜂

2𝑛+2

)
.

Proof. The proof is similar to the proof of Theorem 3.2 and hence some details are omitted. Construct
the 𝜂-sparse family F exactly as in the proof of Theorem 3.2, only replacing 𝑚#

𝑃 𝑓 by 𝑚#
𝑃,𝑞 𝑓 in the

definition of Ω2(𝑃).
By Proposition 3.1 we have

∫
𝑄
| 𝑓𝑄 |𝑟𝑔 ≤ 𝐶𝑟𝑟

∞∑
𝑘=0

∑
𝑃∈F𝑘

( ∫
𝐸𝑃

| 𝑓𝑃 |𝑟𝑔 +
∑

𝑃′ ∈F𝑘+1:
𝑃′ ⊂𝑃

∫
𝑃′

| 𝑓𝑃′,𝑃 |𝑟𝑔
)
, (3.5)

and by (3.4) ∫
𝐸𝑃

| 𝑓𝑃 |𝑟𝑔 ≤ 𝛼𝑟𝑃

∫
𝑃
𝑔. (3.6)

It remains to estimate the second term on the right-hand side of (3.5). As in the proof of Theorem
3.2, we introduce the set 𝐺𝑃′ = 𝑃′ \Ω(𝑃) and observe that

|𝐺𝑃′ \Ω(𝑃′) | ≥
(1
2
− 1

2𝑛+3

)
|𝑃′ | ≥ 1

4
|𝑃′ |. (3.7)

For a.e. 𝑦 ∈ 𝐺𝑃′ \Ω(𝑃′) ⊂ 𝑃′ \
(
Ω1(𝑃) ∪Ω1(𝑃′)

)
we have∫

𝑃′
| 𝑓𝑃′,𝑃 |𝑟𝑔 ≤ 2𝑟

∫
𝑃′

| 𝑓𝑃′,𝑃 (𝑥) − 𝑓𝑃′,𝑃 (𝑦) |𝑟𝑔(𝑥) d𝑥 + 4𝑟 (𝛼𝑟𝑃′ + 𝛼𝑟𝑃)
∫
𝑃′
𝑔.

Integrating over 𝐺𝑃′ \Ω(𝑃′) and using (3.7), we obtain∫
𝑃′

| 𝑓𝑃′,𝑃 |𝑟𝑔 ≤ 4 · 2𝑟
1
|𝑃′ |

∫
𝑃′

∫
𝑃′

| 𝑓𝑃′,𝑃 (𝑥) − 𝑓𝑃′,𝑃 (𝑦) |𝑟𝑔(𝑥) d𝑥 d𝑦

+ 4𝑟 (𝛼𝑟𝑃′ + 𝛼𝑟𝑃)
∫
𝑃′
𝑔.

By Hölder’s inequality,

1
|𝑃′ |

∫
𝑃′

∫
𝑃′

| 𝑓𝑃′,𝑃 (𝑥) − 𝑓𝑃′,𝑃 (𝑦) |𝑟𝑔(𝑥)𝑑𝑥𝑑𝑦 ≤ osc𝑞 ( 𝑓𝑃′,𝑃; 𝑃′)𝑟 · 〈𝑔〉(𝑞/𝑟 )′,𝑃′ |𝑃′ |

≤ inf
𝑥′ ∈𝑃′

(𝑚#
𝑃,𝑞 𝑓 ) (𝑥

′)𝑟 〈𝑔〉(𝑞/𝑟 )′,𝑃′ |𝑃′ |

≤ 𝛼𝑟𝑃 〈𝑔〉(𝑞/𝑟 )′,𝑃′ |𝑃′ |,

which, along with the previous estimate, implies∫
𝑃′

| 𝑓𝑃′,𝑃 |𝑟𝑔 ≤ 5 · 4𝑟
(
𝛼𝑟𝑃 〈𝑔〉(𝑞/𝑟 )′,𝑃′ |𝑃′ | + (𝛼𝑟𝑃′ + 𝛼𝑟𝑃)

∫
𝑃′
𝑔
)
. (3.8)
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Now note that, by Hölder’s inequality, we have

∑
𝑃′ ∈F𝑘+1:
𝑃′ ⊂𝑃

𝛼𝑟𝑃 〈𝑔〉(𝑞/𝑟 )′,𝑃′ |𝑃′ | ≤ 𝛼𝑟𝑃

( ∑
𝑃′ ∈F𝑘+1:
𝑃′ ⊂𝑃

∫
𝑃′
𝑔 (𝑞/𝑟 )′

) 1
(𝑞/𝑟 )′ ·

( ∑
𝑃′ ∈F𝑘+1:
𝑃′⊂𝑃

|𝑃′ |
) 𝑟

𝑞

≤ 𝛼𝑟𝑃 〈𝑔〉(𝑞/𝑟 )′,𝑃 |𝑃 |.

Combining this estimate with (3.5), (3.6) and (3.8), we obtain

∫
𝑄
| 𝑓𝑄 |𝑟𝑔 ≤ 6 · 4𝑟 · 𝐶𝑟

( ∞∑
𝑘=0

∑
𝑃∈F𝑘

(
𝛼𝑟𝑃

∫
𝑃
𝑔 +

∑
𝑃′ ∈F𝑘+1:𝑃′⊂𝑃

𝛼𝑟𝑃′

∫
𝑃′
𝑔
)
+

∞∑
𝑘=0

∑
𝑃∈F𝑘

𝛼𝑟𝑃 〈𝑔〉(𝑞/𝑟 )′,𝑃 |𝑃 |
)

≤ 18 · 4𝑟 · 𝐶𝑟
∑
𝑃∈F

𝛼𝑟𝑃 〈𝑔〉(𝑞/𝑟 )′,𝑃 |𝑃 |,

which completes the proof. �

3.4. Sparse domination in spaces of homogeneous type

A space of homogeneous type (𝑆, 𝑑, 𝜇), originally introduced by Coifman and Weiss in [12], is a set S
equipped with a quasi-metric d and a doubling Borel measure 𝜇. That is, a metric d which, instead of
the triangle inequality, satisfies

𝑑 (𝑠, 𝑡) ≤ 𝑐𝑑
(
𝑑 (𝑠, 𝑢) + 𝑑 (𝑢, 𝑡)

)
, 𝑠, 𝑡, 𝑢 ∈ 𝑆

for some 𝑐𝑑 ≥ 1 and a Borel measure 𝜇 that satisfies the doubling ball property

𝜇
(
𝐵(𝑠, 2𝜌)

)
≤ 𝑐𝜇 𝜇

(
𝐵(𝑠, 𝜌)

)
, 𝑠 ∈ 𝑆, 𝜌 > 0

for some 𝑐𝜇 ≥ 1.
It was shown by Anderson and Vagharshakyan [1] that the sparse domination principle based on

the median oscillation estimate (1.1) could be generalised from the Euclidean space R𝑛 equipped with
the Lebesgue measure to a space of homogeneous type. Later, in [39], it was shown by the second
author that the sparse domination principle for operators in [34, 37] also generalises directly to spaces
of homogeneous type. Doing similar adaptations as in [39], Theorems 3.2 and 3.4 also generalise to this
setting.

4. Previous known results from our sparse domination principles

In this section we will show that Theorems 3.2 and 3.4 imply a number of the previously known results.

4.1. The local mean oscillation estimate

Let us start by showing that Theorem 3.2 implies (1.1) or, more generally, its vector-valued variant by
Hänninen and Hytönen [18].

Let X be a Banach space and 𝑓 : R𝑛 → 𝑋 be a strongly measurable function. Given 0 < 𝜆 < 1, the
local mean oscillation of f on 𝑄 ∈ Q is defined by

𝜔𝜆 ( 𝑓 ;𝑄) = inf
𝑐∈𝑋

(
‖ 𝑓 − 𝑐‖𝑋 𝜒𝑄

)∗ (
𝜆 |𝑄 |

)
.
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Moreover, for 0 < 𝜆 < 1
2 , we define the quasi-optimal center of oscillation 𝑐𝜆 ( 𝑓 ;𝑄) as any vector 𝑐 ∈ 𝑋

such that

(
‖ 𝑓 − 𝑐‖𝑋 𝜒𝑄

)∗ (
𝜆 |𝑄 |

)
≤ 2𝜔𝜆 ( 𝑓 ;𝑄);

see [18, Section 4] for an introduction. We will use the following property of this object: for 0 < 𝜆 ≤
𝜅 < 1

2 , we have for any quasi-optimal center of oscillation 𝑐𝜅 ( 𝑓 ;𝑄) that

(
‖ 𝑓 − 𝑐𝜅 ( 𝑓 ;𝑄)‖𝑋 𝜒𝑄

)∗ (
𝜆 |𝑄 |

)
≤ 4𝜔𝜆 ( 𝑓 ;𝑄); (4.1)

see [18, Lemma 4.10].

Theorem 4.1 ([18]). Let X be a Banach space and let 𝑓 : R𝑛 → 𝑋 be strongly measurable. For every
cube 𝑄 ∈ Q and 𝜂 ∈ (0, 1), there exists an 𝜂-sparse family F ⊂ D(𝑄) such that for any 𝑐1/4 ( 𝑓 ;𝑄) and
for a.e. 𝑥 ∈ 𝑄,

‖ 𝑓 (𝑥) − 𝑐1/4 ( 𝑓 ;𝑄)‖𝑋 �
∑
𝑃∈F

𝜔 1−𝜂
2𝑛+2

( 𝑓 ; 𝑃)𝜒𝑃 (𝑥).

Proof. For 𝑄 ∈ Q and 𝑃 ∈ D(𝑄) define

𝑓𝑄 := ‖ 𝑓 − 𝑐1/4 ( 𝑓 ;𝑄)‖𝑋 ,
𝑓𝑃,𝑄 := ‖𝑐1/4 ( 𝑓 ; 𝑃) − 𝑐1/4 ( 𝑓 ;𝑄)‖,

where for any cube 𝑄 ∈ Q we fix a quasi-optimal center of oscillation 𝑐1/4 ( 𝑓 ;𝑄).
The family { 𝑓𝑄, 𝑓𝑃,𝑄}𝑄∈Q,𝑃∈D(𝑄) satisfies the ℓ1-condition with 𝐶1 = 1 by the triangle inequality

and (3.1) holds as well. Therefore, by Theorem 3.2, there exists an 𝜂-sparse family F ⊂ D(𝑄) such that
for a.e. 𝑥 ∈ 𝑄,

‖ 𝑓 (𝑥) − 𝑐1/4( 𝑓 ;𝑄)‖𝑋 �
∑
𝑃∈F

𝛾𝑃𝜒𝑃 (𝑥).

The function 𝑓𝑃′,𝑃 is a constant for every 𝑃′ ∈ D(𝑃) and therefore 𝑚#
𝑃 𝑓 = 0. Hence, by (4.1),

𝛾𝑃 =
(
‖ 𝑓 − 𝑐1/4( 𝑓 ; 𝑃)‖𝑋 𝜒𝑃

)∗ (|𝑃 | 1−𝜂
2𝑛+2

)
≤ 4𝜔 1−𝜂

2𝑛+2
( 𝑓 ; 𝑃),

which completes the proof. �

4.2. The ℓ𝑟 -sparse domination principle for operators

Next we show that Theorem 3.2 implies the main result of the second author in [39, Theorem 3.2] on
pointwise ℓ𝑟 -sparse domination for a bounded operator 𝑇 : 𝐿𝑝 → 𝐿 𝑝,∞. Moreover, due to our flexible
setup, we also obtain the pointwise ℓ𝑟 -sparse domination result for bounded operators 𝑇 : 𝐿𝑝 → 𝐿𝑞,∞

in [39, Theorem 3.4] without any additional effort.
Let us first introduce some notation. Let 𝒟 be a dyadic lattice and let 𝑋,𝑌 be Banach spaces,

𝑝, 𝑞 ∈ (0,∞) and 𝛼 ≥ 1. For a bounded operator

𝑇 : 𝐿𝑝 (R𝑛; 𝑋) → 𝐿𝑞,∞(R𝑛;𝑌 ),

https://doi.org/10.1017/fms.2022.8 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2022.8


Forum of Mathematics, Sigma 11

we say that a family of operators {𝑇𝑄}𝑄∈𝒟 from 𝐿 𝑝 (R𝑛; 𝑋) to 𝐿𝑞,∞(𝑄;𝑌 ) is an 𝛼-localisation family
of T if for all 𝑄 ∈ 𝒟 and 𝑓 ∈ 𝐿𝑝 (R𝑛; 𝑋) we have

𝑇𝑄 ( 𝑓 𝜒𝛼𝑄) (𝑥) = 𝑇𝑄 𝑓 (𝑥), 𝑥 ∈ 𝑄,

‖𝑇𝑄 ( 𝑓 𝜒𝛼𝑄) (𝑥)‖𝑌 ≤ ‖𝑇 ( 𝑓 𝜒𝛼𝑄) (𝑥)‖𝑌 , 𝑥 ∈ 𝑄.

The canonical example is, of course, 𝑇𝑄 𝑓 := 𝑇𝑄 ( 𝑓 𝜒𝛼𝑄) for all 𝑄 ∈ 𝒟.
Using an 𝛼-localisation family of T, we can define operator variants of the ℓ𝑟 -condition and the

sharp maximal function 𝑚#
𝑄 𝑓 . Indeed, set 𝑇𝑃,𝑄 := 𝑇𝑄 − 𝑇𝑃 and let 𝑟 ∈ (0,∞). We say that T satisfies

a localised ℓ𝑟 -estimate if for every 𝑄 ∈ Q and every 𝑃1, . . . , 𝑃𝑚 ∈ D(𝑄) with 𝑃𝑚 ⊂ · · · ⊂ 𝑃1 and
𝑓 ∈ 𝐿𝑝 (R𝑛; 𝑋), we have for a.e. 𝑥 ∈ 𝑃𝑚

‖𝑇𝑃1 𝑓 (𝑥)‖𝑌 ≤ 𝐶𝑟

( 𝑚−1∑
𝑘=1

‖𝑇𝑃𝑘+1 ,𝑃𝑘 𝑓 (𝑥)‖𝑟𝑌 + ‖𝑇𝑃𝑚 𝑓 (𝑥)‖𝑟𝑌
)1/𝑟

.

Observe that if 𝑟 ∈ (0, 1] and 𝑇𝑄 𝑓 = 𝑇 ( 𝑓 𝜒𝛼𝑄) for some 𝛼 ≥ 1, then this estimate holds trivially for
every (sub)linear operator T with 𝐶𝑟 = 1. If T satisfies a localised ℓ𝑟 -estimate, then, setting

𝑓𝑄 (𝑥) := ‖𝑇𝑄 𝑓 (𝑥)‖𝑌 𝑥 ∈ R𝑛 (4.2)

𝑓𝑃,𝑄 (𝑥) := ‖𝑇𝑃,𝑄 𝑓 (𝑥)‖𝑌 , 𝑥 ∈ R𝑛 (4.3)

for 𝑄 ∈ 𝒟 and 𝑃 ∈ D(𝑄), we obtain that the ℓ𝑟 -condition holds.
Next, the operator analogue of the sharp maximal function 𝑚#

𝑄 𝑓 for a cube 𝑄 ∈ Q is given by

M#
𝑇 ,𝑄 𝑓 (𝑥) = sup

𝑃∈D(𝑄):𝑥∈𝑃
ess sup
𝑥′,𝑥′′ ∈𝑃

��𝑇𝑃,𝑄 𝑓 (𝑥 ′) − 𝑇𝑃,𝑄 𝑓 (𝑥 ′′)
��
𝑌
, 𝑥 ∈ R𝑛.

For 𝑓𝑃,𝑄 as in (4.3), we have

| 𝑓𝑃,𝑄 (𝑥 ′) − 𝑓𝑃,𝑄 (𝑥 ′′) | ≤ ‖𝑇𝑃,𝑄 𝑓 (𝑥 ′) − 𝑇𝑃,𝑄 𝑓 (𝑥 ′′)‖𝑌 , 𝑥 ′, 𝑥 ′′ ∈ 𝑃

and therefore

𝑚#
𝑄 𝑓 (𝑥) ≤ M#

𝑇 ,𝑄 𝑓 (𝑥), 𝑥 ∈ R𝑛. (4.4)

We are now ready to prove the announced result from [39], which in the diagonal case 𝑝 = 𝑞
generalises the main result of [37].

Theorem 4.2 ([39]). Let 𝒟 be a dyadic lattice, let X and Y be Banach space, take 𝑝, 𝑞, 𝑟 ∈ (0,∞) and
let 𝛼 ≥ 1. Suppose that

◦ T is a bounded operator from 𝐿 𝑝 (R𝑛; 𝑋) to 𝐿𝑞,∞(R𝑛;𝑌 ) with 𝛼-localisation family {𝑇𝑄}𝑄∈𝒟.
◦ M#

𝑇 ,𝑄 is bounded from 𝐿 𝑝 (R𝑛; 𝑋) to 𝐿𝑞,∞(R𝑛) uniformly in 𝑄 ∈ 𝒟.
◦ T satisfies a localised ℓ𝑟 -estimate.

Then for any 𝑓 ∈ 𝐿 𝑝 (R𝑛; 𝑋) and 𝑄 ∈ 𝒟, there exists a 1
2 -sparse family F ⊂ D(𝑄) such that for a.e.

𝑥 ∈ 𝑄,

‖𝑇𝑄 𝑓 (𝑥)‖𝑌 � 𝐶𝑇 𝐶𝑟

( ∑
𝑃∈F

|𝛼𝑃 |
𝑟
𝑝−

𝑟
𝑞 〈‖ 𝑓 ‖𝑋 〉𝑟𝑝,𝛼𝑃𝜒𝑃 (𝑥)

)1/𝑟
,

with 𝐶𝑇 := ‖𝑇 ‖𝐿𝑝→𝐿𝑞,∞ + sup𝑄∈𝒟‖M𝑇 ,𝑄 ‖𝐿𝑝→𝐿𝑞,∞ .
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Proof. The essence of the proof is already contained in the discussion preceding the theorem. Indeed,
let { 𝑓𝑄, 𝑓𝑃,𝑄}𝑄∈𝒟,𝑃∈D(𝑄) be as in (4.2) and (4.3), which satisfies the ℓ𝑟 -condition and also (3.1) holds.
Hence, we are in position to apply Theorem 3.2 with 𝜂 = 1

2 (see also Remark 3.3). It remains to estimate
𝛾𝑃 provided by this theorem.

By the assumption on T we have

( 𝑓𝑃𝜒𝑃)∗(|𝑃 |/2𝑛+3) � ‖𝑇 ‖𝐿𝑝→𝐿𝑞,∞ · |𝛼𝑃 |
1
𝑝−

1
𝑞 〈‖ 𝑓 ‖𝑋 〉𝑝,𝛼𝑃 .

Moreover, by the assumption on M#
𝑇 ,𝑃 and (4.4), we have

(𝑚#
𝑃𝜒𝑃)

∗(|𝑃 |/2𝑛+3) � ‖M𝑇 ,𝑄 ‖𝐿𝑝→𝐿𝑞,∞ · |𝛼𝑃 |
1
𝑝−

1
𝑞 〈‖ 𝑓 ‖𝑋 〉𝑝,𝛼𝑃 ,

which completes the proof. �

Remark 4.3. In [39, Theorem 3.5] a sparse form domination principle was shown for operators. Analo-
gous to the proof of Theorem 4.2, one can deduce [39, Theorem 3.5] from our sparse form domination
principle in Theorem 3.4.

Remark 4.4. Both papers [37] and [39] contain a list of known sparse domination results for operators
that fit our setting. For the reader’s convenience, we include a unified and extended list below.

◦ Calderón–Zygmund operators [37] with operator-valued kernel [39].
◦ Maximally modulated Calderón–Zygmund operators [3].
◦ Variational truncations of Calderón–Zygmund operators [41, 50].
◦ Multilinear singular integral operators with 𝐿𝑟 -Hörmander condition [38].
◦ Fractional integral operators with Hormänder kernel [28].
◦ A class of pseudo-differential operators [4].
◦ The Rademacher [39] and the lattice Hardy–Littlewood [19] maximal operators.
◦ The intrinsic Littlewood–Paley square function [40].
◦ Nonintegral operators falling outside the scope of Calderón–Zygmund theory [8] and the associated

square functions [2].
◦ Rough homogeneous singular integrals [35].
◦ The Marcinkiewicz integral with rough kernel [45].

Let us note that the boundedness of the corresponding sharp maximal operator is not explicitly
contained in all of the above cited works and, in particular, sparse domination is obtained in a self-
contained way in many of these citations. However, the presented arguments often imply the boundedness
of the corresponding sharp maximal operator in our setting. For more details, we refer to [37, Section 5]
and [39, Section 9].

The three last items from the list fit the setting of bilinear form sparse domination expressed in
Theorem 3.4.

5. Generalised Poincaré–Sobolev inequalities

As a first new application of our operator-free sparse domination principle, we will study generalised
Poincaré–Sobolev inequalities as in [10, 44]. In particular, we will extend and improve [44, Theorem
1.5 and 1.24] by Pérez and Rela.

Let us introduce some notation. Let 𝑝, 𝑠 ∈ [1,∞). For a functional 𝑎 : Q → R+ and a weight w, we
say that a satisfies the 𝑆𝐷𝑠

𝑝 (𝑤)-condition and write 𝑎 ∈ 𝑆𝐷𝑠
𝑝 (𝑤), if for any cube 𝑄 ∈ Q and any family

of pairwise disjoint {𝑄 𝑗 } ⊂ D(𝑄) we have

( 1
𝑤(𝑄)

∑
𝑗

𝑎(𝑄 𝑗 ) 𝑝𝑤(𝑄 𝑗 )
)1/𝑝

≤ 𝐶
(∑

𝑗 |𝑄 𝑗 |
|𝑄 |

)1/𝑠
𝑎(𝑄).
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The least admissible constant 𝐶 ≥ 1 is denoted by ‖𝑎‖𝑆𝐷𝑠
𝑝 (𝑤) . We note that the 𝑆𝐷𝑠

𝑝 (𝑤)-condition can
be thought of as an s-smallness preserving condition, and for examples of functionals 𝑎 ∈ 𝑆𝐷𝑠

𝑝 (𝑤) we
refer to [44].

Fix a cube 𝑄 ∈ Q and 𝑓 ∈ 𝐿1
loc (R

𝑛). For 𝑚 ∈ N∪{0}, we denote by 𝑃𝑄 𝑓 the projection of f onto the
space of polynomials of degree at most m in n variables on Q. We refer to [44, Section 8] for a proper
introduction of this projection. Here we just note the following two properties that we will use of 𝑃𝑄 𝑓 :

◦ There is a 𝐶𝑚 > 0 such that

‖𝑃𝑄 𝑓 ‖𝐿∞ (𝑄) ≤ 𝐶𝑚
1
|𝑄 |

∫
𝑄
| 𝑓 |. (5.1)

◦ For any polynomial 𝜋 of degree at most m in n variables, we have 𝑃𝑄 (𝜋) = 𝜋 on Q.

Furthermore, we note that when 𝑚 = 0, we have 𝑃𝑄 𝑓 = 1
|𝑄 |

∫
𝑄

𝑓 .
In this language, the main result of Pérez and Rela reads as follows.

Theorem 5.1 ([44]). Let 𝑝, 𝑠 ∈ [1,∞) and let 𝑤 ∈ 𝐴∞. Assume that 𝑎 ∈ 𝑆𝐷𝑠
𝑝 (𝑤). Let 𝑓 ∈ 𝐿1

loc (R
𝑛) be

such that for all 𝑄 ∈ Q,

1
|𝑄 |

∫
𝑄
| 𝑓 − 𝑃𝑄 𝑓 | ≤ 𝑎(𝑄).

Then, there is a constant 𝐶𝑛,𝑚 > 0 such that for any 𝑄 ∈ Q,

( 1
𝑤(𝑄)

∫
𝑄
| 𝑓 − 𝑃𝑄 𝑓 |𝑝𝑤

) 1
𝑝 ≤ 𝐶𝑛,𝑚 𝑠 ‖𝑎‖𝑠𝑆𝐷𝑠

𝑝 (𝑤) 𝑎(𝑄). (5.2)

Note that when 𝑚 ≥ 1, the result of Pérez and Rela has an additional factor 2
𝑠+1
𝑝′ in the conclusion,

but it was observed in [10, Theorem 2.1] that this factor can be omitted.
It was asked in [44, Remark 1.6] whether the 𝐴∞ assumption in Theorem 5.1 can be removed. A

partial result in this direction was provided by Martínez-Perales [42].
In order to state our main result, we will replace 𝐿𝑝 (𝑤)-averages by arbitrary Banach function norms

(see, e.g., [7, 49]). First we define a more general smallness preserving condition with respect to a
Banach function norm. Note that the following condition with

‖ 𝑓 ‖𝑋𝑄 :=
( 1
𝑤(𝑄)

∫
𝑄
| 𝑓 |𝑝𝑤

)1/𝑝
, 𝑄 ∈ Q,

𝜑(𝑡) := ‖𝑎‖𝑆𝐷𝑠
𝑝
· 𝑡

1
𝑠 , 𝑡 ∈ [0, 1],

(5.3)

coincides with the definition of the 𝑆𝐷𝑠
𝑝 (𝑤)-condition.

Definition 5.2. For 𝑄 ∈ Q let ‖ · ‖𝑋𝑄 be a Banach function norm and let 𝜑 : [0, 1] → R+ be increasing.
For a functional 𝑎 : Q → R+ we say that a satisfies the 𝜑-smallness preserving condition if for any
𝑄 ∈ Q and any family of pairwise disjoint {𝑄 𝑗 } ⊂ D(𝑄) we have

��∑
𝑗

𝑎(𝑄 𝑗 )𝜒𝑄 𝑗

��
𝑋𝑄

≤ 𝜑
(∑

𝑗 |𝑄 𝑗 |
|𝑄 |

)
· 𝑎(𝑄). (5.4)

We are now ready to state the main result of this section.
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Theorem 5.3. Fix 𝑓 ∈ 𝐿1
loc(R

𝑛). For 𝑄 ∈ Q let ‖ · ‖𝑋𝑄 be a Banach function norm and let 𝑎 : Q → R+
satisfy both the 𝜑-smallness preserving condition and for all 𝑄 ∈ Q,

1
|𝑄 |

∫
𝑄
| 𝑓 − 𝑃𝑄 𝑓 | ≤ 𝑎(𝑄).

Then there is a 𝐶𝑛,𝑚 > 0 such that for all 𝑄 ∈ Q,

‖( 𝑓 − 𝑃𝑄 𝑓 )𝜒𝑄 ‖𝑋𝑄 ≤ 𝐶𝑛,𝑚 𝑎(𝑄) ·
( ∫ 1

0
𝜑(𝑡) d𝑡

𝑡 + 𝜑(1)
)
. (5.5)

Taking 𝑋𝑄 and 𝜑 as in (5.3), we have

∫ 1

0
𝜑(𝑡) d𝑡

𝑡 + 𝜑(1) = (𝑠 + 1) ‖𝑎‖𝑆𝐷𝑠
𝑝
.

Thus, we obtain an extension of Theorem 5.1 to arbitrary weights, which provides an affirmative answer
to the question posed in [44, Remark 1.6]. Moreover, we have a quantitative improvement over Theorem
5.1, even in the case 𝑚 = 0 and 𝑠 > 1, since (5.5) holds with linear dependence on ‖𝑎‖𝑆𝐷𝑠

𝑝 (𝑤) , whereas
one has ‖𝑎‖𝑠

𝑆𝐷𝑠
𝑝 (𝑤) in (5.2).

The key ingredient in our proof of Theorem 5.3 is the following sparse domination result in the spirit
of Theorem 4.1.

Proposition 5.4. Let 𝑓 ∈ 𝐿1
loc(R

𝑛). For any 𝑄 ∈ Q and 𝜂 ∈ (0, 1) there exists an 𝜂-sparse family
F ⊂ D(𝑄) such that

| 𝑓 − 𝑃𝑄 𝑓 |𝜒𝑄 ≤ 𝐶𝑛,𝑚
1

1 − 𝜂

∑
𝑅∈F

(
1
|𝑅 |

∫
𝑅
| 𝑓 − 𝑃𝑅 𝑓 |

)
𝜒𝑅 .

Proof. For 𝑄 ∈ Q and 𝑅 ∈ D(𝑄), define

𝑓𝑄 := 𝑓 − 𝑃𝑄 𝑓

𝑓𝑅,𝑄 := 𝑃𝑅 𝑓 − 𝑃𝑄 𝑓 .

The family { 𝑓𝑄, 𝑓𝑅,𝑄}𝑄∈Q,𝑅∈D(𝑄) trivially satisfies the ℓ1-condition with 𝐶𝑟 = 1 and (3.1) holds.
For any 𝑅′ ∈ D(𝑅), we have by (5.1)

‖ 𝑓𝑅′,𝑅 ‖𝐿∞ (𝑅′) = ‖𝑃𝑅′ ( 𝑓 − 𝑃𝑅 𝑓 )‖𝐿∞ (𝑅′) ≤ 𝐶𝑚
1
|𝑅′ |

∫
𝑅′
| 𝑓 − 𝑃𝑅 𝑓 |,

which implies

𝑚#
𝑅 𝑓 (𝑥) ≤ 2𝐶𝑚𝑀

(
( 𝑓 − 𝑃𝑅 𝑓 )𝜒𝑅

)
(𝑥), 𝑥 ∈ R𝑛.

Therefore, by Chebyshev’s inequality and the weak 𝐿1-boundedness of M, we have for any 𝜂 ∈ (0, 1),

( 𝑓𝑅𝜒𝑅)∗
(
|𝑅 | 1−𝜂

2𝑛+2

)
+ (𝑚#

𝑅 𝑓 )
∗ (|𝑅 | 1−𝜂

2𝑛+2

)
≤ 𝐶𝑛,𝑚

1
1 − 𝜂

· 1
|𝑅 |

∫
𝑅
| 𝑓 − 𝑃𝑅 𝑓 |,

which, by Theorem 3.2, completes the proof. �
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Proof of Theorem 5.3. Fix a cube 𝑄 ∈ Q. By the main hypothesis of Theorem 5.3 combined with
Proposition 5.4, there exists a 1

2 -sparse family F ⊂ D(𝑄) such that

| 𝑓 − 𝑃𝑄 𝑓 | ≤ 𝐶𝑛,𝑚
∑
𝑅∈F

𝑎(𝑅)𝜒𝑅 . (5.6)

Write F =
⋃∞
𝑘=0 F𝑘 , where F𝑘 is as in the definition of a contracting family of dyadic cubes. Since

F is 1
2 -sparse, we have for any 𝑘 ∈ N ∪ {0},

∑
𝑅∈F𝑘

|𝑅 | ≤ 1
2𝑘

|𝑄 |,

which, along with the 𝜑-smallness preserving condition, implies

�� ∑
𝑅∈F

𝑎(𝑅)𝜒𝑅
��
𝑋𝑄

≤
∞∑
𝑘=0

�� ∑
𝑅∈F𝑘

𝑎(𝑅)𝜒𝑅
��
𝑋𝑄

≤ 𝑎(𝑄)
∞∑
𝑘=0

𝜑(2−𝑘 ).

Combined with (5.6), this implies

‖( 𝑓 − 𝑃𝑄 𝑓 )𝜒𝑄 ‖𝑋𝑄 ≤ 𝐶𝑛,𝑚 𝑎(𝑄)
∞∑
𝑘=0

𝜑(2−𝑘 ).

The result now follows by noting
∑∞
𝑘=1 𝜑(2−𝑘 ) ≤

∫ 1
0 𝜑(𝑡) d𝑡

𝑡 . �

Remark 5.5. Theorem 5.3 remains true for quasi-Banach function norms. In this case, one has to replace∫ 1
0 𝜑(𝑡) d𝑡

𝑡 by
( ∫ 1

0 𝜑(𝑡)𝑟 d𝑡
𝑡

)1/𝑟 , where 𝑟 ∈ (0, 1) is the exponent in the Aoki–Rolewicz theorem (see
[29]).

Remark 5.6. One can replace ‖( 𝑓 − 𝑃𝑄 𝑓 )𝜒𝑄 ‖𝑋𝑄 in the left-hand side of the conclusion of Theorem
5.3 by ‖𝑀𝑄 ( 𝑓 − 𝑃𝑄 𝑓 )‖𝑋𝑄 , where 𝑀𝑄 is the local maximal operator given by

𝑀𝑄 𝑓 := sup
𝑃∈D(𝑄)

〈 𝑓 〉1,𝑃𝜒𝑃 .

Indeed, one can make a similar change in Proposition 5.4 by using

𝑓𝑄 := 𝑀𝑄 ( 𝑓 − 𝑃𝑄 𝑓 ),
𝑓𝑅,𝑄 := 𝑓𝑅 − 𝑓𝑄

in the proof. The usage of Chebyshev’s inequality is in this case replaced by the weak 𝐿1-boundedness
of 𝑀𝑄.

Using Remark 5.6, one can recover, for example, the first main result of [9]. For a weight w, a cube
𝑄 ∈ Q and 𝑟 > 0, denote

𝑤𝑟 (𝑄) := |𝑄 |1/𝑟 ′
( ∫

𝑄
𝑤𝑟

)1/𝑟
.

Furthermore, for 𝑓 ∈ 𝐿1
loc (R

𝑛), define the polynomial sharp maximal function as

𝑀♯
𝑚 𝑓 (𝑥) := sup

𝑄�𝑥

1
|𝑄 |

∫
𝑄
| 𝑓 − 𝑃𝑄 𝑓 |.
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Corollary 5.7 ([9]). Let 𝑓 ∈ 𝐿1
loc (R

𝑛), let w be a weight and take 𝑝 ∈ [1,∞) and 𝑟 ∈ (1,∞). For any
cube 𝑄 ∈ Q we have ( 1

𝑤𝑟 (𝑄)

∫
𝑄

(𝑀𝑄 ( 𝑓 − 𝑃𝑄 𝑓 )

𝑀♯
𝑚 𝑓

) 𝑝
𝑤
)1/𝑝

≤ 𝐶𝑛,𝑚 𝑝𝑟 ′.

Proof. This follows directly from Theorem 5.3 combined with Remark 5.6 using the choices

𝑎(𝑄) = 1
|𝑄 |

∫
𝑄
| 𝑓 − 𝑃𝑄 𝑓 |,

‖𝑔‖𝑋𝑄 =
( 1
𝑤𝑟 (𝑄)

∫
𝑄

( |𝑔 |
𝑀♯
𝑚 𝑓

) 𝑝
𝑤
)1/𝑝

· 𝑎(𝑄).

Indeed, for any𝑄 ∈ Q and any family of pairwise disjoint {𝑄 𝑗 } ⊂ D(𝑄), we have by Hölder’s inequality
��∑

𝑗

𝑎(𝑄 𝑗 )𝜒𝑄 𝑗

��
𝑋𝑄

≤
( 1
𝑤𝑟 (𝑄)

∑
𝑗

∫
𝑄 𝑗

𝑤
)1/𝑝

· 𝑎(𝑄)

≤
(∑

𝑗 |𝑄 𝑗 |
|𝑄 |

) 1
𝑝𝑟′ · 𝑎(𝑄),

so a satisfies the 𝜑-smallness preserving condition with 𝜑(𝑡) = 𝑡
1

𝑝𝑟′ . �

6. Tent spaces

As our second new application, we will use our sparse domination principle to prove the main relation
between two basic operators in the theory of tent spaces.

Let R𝑛+1
+ = {(𝑦, 𝑡) : 𝑦 ∈ R𝑛, 𝑡 > 0} and, given 𝛼 > 0, let Γ𝛼 (𝑥) denote the cone in R𝑛+1

+ with vertex
in 𝑥 ∈ R𝑛 of aperture 𝛼; that is,

Γ𝛼 (𝑥) = {(𝑦, 𝑡) ∈ R𝑛+1
+ : |𝑥 − 𝑦 | < 𝛼𝑡}.

Given a ball 𝐵 = 𝐵(𝑥, 𝑟) in R𝑛, denote the tent over B by

𝐵 = {(𝑦, 𝑡) ∈ R𝑛+1
+ : |𝑥 − 𝑦 | + 𝑡 < 𝑟}.

For a measurable function 𝑓 : R𝑛+1
+ → R, define

𝐴(𝛼) ( 𝑓 ) (𝑥) :=
( ∫

Γ𝛼 (𝑥)
| 𝑓 (𝑦, 𝑡) |2 d𝑦d𝑡

𝑡𝑛+1

)1/2
, 𝑥 ∈ R𝑛,

𝐶 ( 𝑓 ) (𝑥) := sup
𝐵�𝑥

( 1
|𝐵 |

∫
𝐵
| 𝑓 (𝑦, 𝑡) |2 d𝑦d𝑡

𝑡

)1/2
, 𝑥 ∈ R𝑛,

where the supremum is taken over all balls 𝐵 ⊂ R𝑛 containing x.
In [11], Coifman, Meyer and Stein defined the tent space 𝑇 𝑝𝛼 for 𝑝 ∈ (0,∞) and 𝛼 > 0 as the space

of all measurable 𝑓 : R𝑛+1
+ → R such that

‖ 𝑓 ‖𝑇 𝑝
𝛼

:= ‖𝐴(𝛼) ( 𝑓 )‖𝐿𝑝 (R𝑛) < ∞.

It was shown in [11] that 𝑇 𝑝𝛼 = 𝑇 𝑝𝛽 for 𝛼, 𝛽 > 0, and thus it suffices to study 𝑇 𝑝 := 𝑇 𝑝1 . Furthermore,
they deduced

‖ 𝑓 ‖𝑇 𝑝 � ‖𝐶 ( 𝑓 )‖𝐿𝑝 (R𝑛) 𝑝 ∈ (0,∞), (6.1)

‖𝐶 ( 𝑓 )‖𝐿𝑝 (R𝑛) � ‖ 𝑓 ‖𝑇 𝑝 𝑝 ∈ (2,∞). (6.2)
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To prove these inequalities, it is useful to define a truncated version of 𝐴(𝛼) ; that is, for ℎ > 0, set

𝐴(𝛼)
ℎ ( 𝑓 ) (𝑥) :=

( ∫ ℎ

0

∫
|𝑥−𝑦 |<𝛼𝑡

| 𝑓 (𝑦, 𝑡) |2 d𝑦d𝑡
𝑡𝑛+1

)1/2
, 𝑥 ∈ R𝑛,

and note that, using Fubini’s theorem, we can reformulate 𝐶 ( 𝑓 ) (𝑥) for 𝑥 ∈ R𝑛 as follows:

𝐶 ( 𝑓 ) (𝑥) � sup
𝑥�𝐵

( 1
|𝐵 |

∫ 𝑟 (𝐵)

0

∫
𝐵
| 𝑓 (𝑦, 𝑡) |2 |𝐵(𝑦, 𝛼𝑡) |

𝑡𝑛
d𝑦d𝑡
𝑡

)

� sup
𝑥�𝐵

( 1
|𝐵 |

∫
𝐵

∫ 𝑟 (𝐵)

0

∫
|𝑦−𝑧 | ≤𝛼𝑡

| 𝑓 (𝑦, 𝑡) |2 d𝑦d𝑡
𝑡𝑛+1 d𝑧

)1/2
(6.3)

= sup
𝑥�𝐵

( 1
|𝐵 |

∫
𝐵
𝐴(𝛼)
𝑟 (𝐵) ( 𝑓 ) (𝑧)

2 d𝑧
)1/2

,

where 𝑟 (𝐵) denotes the radius of the ball B and the implicit constants depend on 𝛼 > 0.
From (6.3) it is clear that 𝐶 ( 𝑓 )2 � 𝑀 (𝐴( 𝑓 )2), which directly implies (6.2) by the boundedness of

the maximal operator. We will give a ‘sparse’ proof of the converse in (6.1).

Theorem 6.1. Take 𝛼 > 0 and let 𝑓 : R𝑛+1
+ → R be measurable. For every cube 𝑄 ∈ Q there exists a

1
2 -sparse family F ⊂ D(𝑄) such that for a.e. 𝑥 ∈ 𝑄,

𝐴(𝛼)
ℓ𝑄

( 𝑓 ) (𝑥) �
( ∑
𝑃∈F

1
|𝑃 |

∫
𝑃
𝐴
(4𝛼+

√
𝑛)

ℓ𝑃
( 𝑓 )2 · 𝜒𝑃 (𝑥)

)1/2
.

Combining Theorem 6.1 with (6.3), we obtain for 𝛿 ∈ (0, 2] and 𝑔 ∈ 𝐿𝑝
′ (R𝑛),∫

𝑄
𝐴(1)
ℓ𝑄

( 𝑓 ) 𝛿𝑔 �
∑
𝑃∈F

( 1
|𝑃 |

∫
𝑃
𝐴
(4+

√
𝑛)

ℓ𝑃
( 𝑓 )2

) 𝛿/2 ∫
𝑃
𝑔

�
∑
𝑃∈F

∫
𝐸𝑃

(𝐶 ( 𝑓 )) 𝛿 · 𝑀𝑔

� ‖𝐶 ( 𝑓 ) 𝛿 ‖𝐿𝑝 (R𝑛) ‖𝑔‖𝐿𝑝′ (R𝑛) .

By duality and the monotone convergence theorem, this yields (6.1).

Proof of Theorem 6.1. Let Φ be a smooth function such that 𝜒𝐵 (0,1) ≤ Φ ≤ 𝜒𝐵 (0,2) and for 𝑄 ∈ Q
define

𝑓𝑄 (𝑥) :=
( ∫ ℓ𝑄

0

∫
R𝑛

| 𝑓 (𝑦, 𝑡) |2 · Φ
( 𝑥−𝑦
𝛼𝑡

)2 d𝑦d𝑡
𝑡𝑛+1

)1/2
, 𝑥 ∈ 𝑄.

Observe that 𝐴(𝛼)
ℓ𝑄

( 𝑓 ) ≤ 𝑓𝑄 ≤ 𝐴(2𝛼)
ℓ𝑄

( 𝑓 ). For 𝑃 ∈ D(𝑄), set

𝑓𝑃,𝑄 (𝑥) :=
( ∫ ℓ𝑄

ℓ𝑃

∫
R𝑛

| 𝑓 (𝑦, 𝑡) |2 · Φ
( 𝑥−𝑦
𝛼𝑡

)2 d𝑦d𝑡
𝑡𝑛+1

)1/2
, 𝑥 ∈ 𝑃.

The family { 𝑓𝑄, 𝑓𝑃,𝑄}𝑄∈Q,𝑃∈D(𝑄) trivially satisfies the ℓ2-condition with 𝐶2 = 1, and condition (3.1)
holds as well. Therefore, by Theorem 3.2, there exists a 1

2 -sparse family F ⊂ D(𝑄) such that for a.e.
𝑥 ∈ 𝑄,

𝐴(𝛼)
ℓ𝑄

( 𝑓 ) (𝑥) ≤ 𝑓𝑄 (𝑥) �
( ∑
𝑃∈F

𝛾2
𝑃𝜒𝑃 (𝑥)

)1/2
, (6.4)
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where

𝛾𝑃 = ( 𝑓𝑃𝜒𝑃)∗(|𝑃 |/2𝑛+3) + (𝑚#
𝑃 𝑓 )∗(|𝑃 |/2𝑛+3).

We start by analysing 𝑚#
𝑃 𝑓 . Fix 𝑃 ∈ F and 𝑥 ∈ 𝑃. Let 𝑅 ∈ D(𝑃) be such that 𝑥 ∈ R and take 𝑁 ∈ N

such that 2𝑁 ℓ𝑅 = ℓ𝑃 . We have for 𝜉, 𝜂 ∈ 𝑅,

| 𝑓𝑅,𝑃 (𝜉) − 𝑓𝑅,𝑃 (𝜂) | ≤
( ∫ ℓ𝑃

ℓ𝑅

∫
R𝑛

| 𝑓 (𝑦, 𝑡) |2 ·
(
Φ
( 𝜉−𝑦
𝛼𝑡

)
−Φ

( 𝜂−𝑦
𝛼𝑡

) )2 d𝑦d𝑡
𝑡𝑛+1

)1/2

≤
𝑁∑
𝑘=1

( ∫ 2𝑘ℓ𝑅

2𝑘−1ℓ𝑅

∫
R𝑛

| 𝑓 (𝑦, 𝑡) |2 ·
(
Φ
( 𝜉−𝑦
𝛼𝑡

)
−Φ

( 𝜂−𝑦
𝛼𝑡

) )2 d𝑦d𝑡
𝑡𝑛+1

)1/2

�
𝑁∑
𝑘=1

|𝜉 − 𝜂 |
𝛼2𝑘ℓ𝑅

( ∫ 2𝑘ℓ𝑅

2𝑘−1ℓ𝑅

∫
|𝑥−𝑦 | ≤4𝛼𝑡+

√
𝑛ℓ𝑅

| 𝑓 (𝑦, 𝑡) |2 d𝑦d𝑡
𝑡𝑛+1

)1/2

�
𝑁∑
𝑘=1

1
2𝑘

( ∫ ℓ𝑃

0

∫
|𝑥−𝑦 |< (4𝛼+

√
𝑛)𝑡

| 𝑓 (𝑦, 𝑡) |2 d𝑦d𝑡
𝑡𝑛+1

)1/2

≤ 𝐴
(4𝛼+

√
𝑛)

ℓ𝑃
𝑓 (𝑥).

Therefore, 𝑚#
𝑃 𝑓 (𝑥) � 𝐴

(4𝛼+
√
𝑛)

ℓ𝑃
𝑓 (𝑥) for 𝑥 ∈ 𝑃. Since we already noted that 𝑓𝑃 ≤ 𝐴(2𝛼)

ℓ𝑃
𝑓 , we obtain by

(2.2),

𝛾𝑃 ≤
(2𝑛+3

|𝑃 |

∫
𝑃
𝑓𝑃 (𝑧)2 d𝑧

)1/2
+
(2𝑛+3

|𝑃 |

∫
𝑃
𝑚#
𝑃 𝑓 (𝑧)2 d𝑧

)1/2

�
( 1
|𝑃 |

∫
𝑃
𝐴
(4𝛼+

√
𝑛)

ℓ𝑃
( 𝑓 ) (𝑧)2 d𝑧

)1/2
.

Combined with (6.4), this finishes the proof. �

6.1. An improved good-𝜆 inequality

The estimate (6.1) was shown in [11] using the equivalence of tent spaces with different apertures and
the following good-𝜆 estimate: there exists a fixed 𝛼 > 1 and a constant 𝑐 > 0 so that for all 𝜆 > 0 and
0 < 𝛾 ≤ 1,{𝑥 ∈ R𝑛 : 𝐴( 𝑓 ) (𝑥) > 2𝜆, 𝐶 ( 𝑓 ) (𝑥) ≤ 𝛾𝜆}

 ≤ 𝑐 𝛾2{𝑥 ∈ R𝑛 : 𝐴(𝛼) ( 𝑓 ) (𝑥) > 𝜆}
, (6.5)

where we abbreviated 𝐴( 𝑓 ) := 𝐴(1) ( 𝑓 ). Using Theorem 6.1, we can show that the quadratic dependence
on 𝛾 in (6.5) can be improved to quadratic exponential dependence.

Theorem 6.2. Let 𝑓 : R𝑛+1
+ → R be measurable. There exist constants 𝛼 > 1 and 𝑐 > 0 so that for all

𝜆 > 0 and 0 < 𝛾 ≤ 1,{𝑥 ∈ R𝑛 : 𝐴( 𝑓 ) (𝑥) > 2𝜆, 𝐶 ( 𝑓 ) (𝑥) ≤ 𝛾𝜆}
 ≤ 2𝑒−𝑐/𝛾

2 {𝑥 ∈ R𝑛 : 𝐴(𝛼) 𝑓 (𝑥) > 𝜆}
.

Before proving this lemma, we establish the following simple proposition.

Proposition 6.3. Let 𝑄 ∈ Q and let F ⊂ D(𝑄) be an 𝜂-sparse family. Then we have for any 𝛼 > 0

{𝑥 ∈ 𝑄 :
∑
𝑃∈F

𝜒𝑃 (𝑥) > 𝛼
} ≤ 1

1 − 𝜂
𝑒−(log 1

1−𝜂 )𝛼 |𝑄 |.
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Proof. Write F = ∪∞
𝑘=0F𝑘 as in the definition of a contracting family of cubes. By 𝜂-sparseness, we

have |Ω𝑘 | ≤ (1 − 𝜂)𝑘 |𝑄 |. Thus, it follows that

{𝑥 ∈ 𝑄 :
∑
𝑃∈F

𝜒𝑃 (𝑥) > 𝛼
} = ∞∑

𝑘=1
|Ω𝑘−1 |𝜒(𝑘−1,𝑘 ] (𝛼)

≤ |𝑄 |
∞∑
𝑘=1

(1 − 𝜂)𝑘−1𝜒(𝑘−1,𝑘 ] (𝛼) ≤ (1 − 𝜂)𝛼−1 |𝑄 |,

which completes the proof. �

Proof of Theorem 6.2. As in [11], we consider a Whitney decomposition {𝑄 𝑗 } 𝑗 of the open set

{𝑥 ∈ R𝑛 : 𝐴(𝛼) ( 𝑓 ) (𝑥) > 𝜆},

where 𝛼 > 1 will be chosen later on. Then it suffices to prove that for every 𝑄 𝑗 ,{𝑥 ∈ 𝑄 𝑗 : 𝐴( 𝑓 ) (𝑥) > 2𝜆, 𝐶 𝑓 (𝑥) ≤ 𝛾𝜆}
 ≤ 𝑐1𝑒

−𝑐2/𝛾2 |𝑄 𝑗 |. (6.6)

Define 𝑓𝑄 𝑗 (𝑦, 𝑡) := 𝑓 (𝑦, 𝑡)𝜒(ℓ𝑄𝑗 ,∞) (𝑡) and note that

𝐴( 𝑓 ) ≤ 𝐴( 𝑓𝑄 𝑗 ) + 𝐴ℓ𝑄𝑗
( 𝑓 ).

Consider 𝐴( 𝑓𝑄 𝑗 ) (𝑥) for 𝑥 ∈ 𝑄 𝑗 . By the properties of the Whitney cubes, there exist 𝑧 ∈ 𝑄 𝑗 and 𝑥 𝑗 ∈ R𝑛
such that |𝑧−𝑥 𝑗 | ≤ 4

√
𝑛ℓ𝑄 𝑗 and 𝐴(𝛼) ( 𝑓 ) (𝑥 𝑗 ) ≤ 𝜆. Hence, for (𝑦, 𝑡) ∈ R𝑛+1

+ with |𝑦−𝑥 | < 𝑡 and 𝑡 ≥ ℓ𝑄 𝑗 ,
we obtain

|𝑦 − 𝑥 𝑗 | ≤ |𝑦 − 𝑥 | + |𝑥 − 𝑧 | + |𝑧 − 𝑥 𝑗 | < 𝑡 + 5
√
𝑛ℓ𝑄 𝑗 ≤ (5

√
𝑛 + 1)𝑡.

Therefore, if 𝛼 = 5
√
𝑛 + 1, then 𝐴( 𝑓𝑄 𝑗 ) (𝑥) ≤ 𝐴(𝛼) ( 𝑓 ) (𝑥 𝑗 ) ≤ 𝜆 for all 𝑥 ∈ 𝑄 𝑗 . It follows that the

left-hand side of (6.6) is bounded by{𝑥 ∈ 𝑄 𝑗 : 𝐴ℓ𝑄𝑗
( 𝑓 ) (𝑥) > 𝜆, 𝐶 ( 𝑓 ) (𝑥) ≤ 𝛾𝜆}

. (6.7)

By Theorem 6.1 and (6.3), there exists a 1
2 -sparse family F 𝑗 ⊂ D(𝑄 𝑗 ) such that

𝐴ℓ𝑄𝑗
( 𝑓 ) (𝑥)2 � 𝐶 ( 𝑓 ) (𝑥)2

∑
𝑃∈F 𝑗

𝜒𝑃 (𝑥), 𝑥 ∈ 𝑄 𝑗 .

Combined with Proposition 6.3, this implies that the expression in (6.7) is at most
{𝑥 ∈ 𝑄 𝑗 :

∑
𝑃∈F 𝑗

𝜒𝑃 (𝑥) � 1/𝛾2}
 ≤ 2𝑒−𝑐/𝛾

2 |𝑄 𝑗 |,

which completes the proof of (6.6) and therefore of the theorem. �

6.2. Vector-valued tent spaces

Reinterpreting and extending the formulation of tent spaces by Harboure, Torrea and Viviani in [20],
Hytönen, van Neerven and Portal [24] extended tent spaces to the the vector-valued setting. In this
subsection we will point out how the arguments of the preceding subsection extend to this setting.
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In order to give the definition of these vector-valued tent spaces, we first need to introduce some
notation. For a Banach space X and a Hilbert space H, denote the space of 𝛾-radonifying operators by
𝛾(𝐻, 𝑋) ⊆ L(𝑋, 𝐻). For an introduction to these spaces, we refer to [26, Chapter 9].

For the remainder of this section, set 𝐻 := 𝐿2 (R𝑛+1
+ , d𝑦d𝑡

𝑡𝑛+1 ). Then the space 𝛾(𝐻, 𝑋) can be thought
of as a square function space, since

𝛾(𝐻, 𝐿 𝑝 (R𝑑)) = 𝐿 𝑝 (R𝑑; 𝐿2 (R𝑛+1
+ , d𝑦d𝑡

𝑡𝑛+1 )), 𝑝 ∈ [1,∞).

Let 𝑓 : R𝑛+1
+ → 𝑋 be strongly measurable. If 〈 𝑓 , 𝑥∗〉 ∈ 𝐻 for all 𝑥∗ ∈ 𝑋∗, we can define the operator

𝐼 𝑓 ∈ L(𝐻, 𝑋) by

𝐼 𝑓 𝜑 :=
∫
R
𝑛+1
+

𝑓 (𝑦, 𝑡)𝜑(𝑦, 𝑡) d𝑦d𝑡
𝑡𝑛+1 , 𝜑 ∈ 𝐻,

where the integral is interpreted in the Pettis sense (see [25, Theorem 1.2.37]). If 𝐼 𝑓 ∈ 𝛾(𝐻, 𝑋), we write
with slight abuse of notation 𝑓 ∈ 𝛾(𝐻, 𝑋) and ‖ 𝑓 ‖𝛾 (𝐻,𝑋 ) := ‖𝐼 𝑓 ‖𝛾 (𝐻,𝑋 ) . Moreover, if 𝐼 𝑓 ∉ 𝛾(𝐻, 𝑋)
or 〈 𝑓 , 𝑥∗〉 ∉ 𝐻 for some 𝑥∗ ∈ 𝑋∗, we set ‖ 𝑓 ‖𝛾 (𝐻,𝑋 ) = ∞.

We are now ready to define the vector-valued tent spaces introduced in [24]. For 𝛼 > 0 and a strongly
measurable 𝑓 : R𝑛+1

+ → 𝑋 , define

𝐴(𝛼) ( 𝑓 ) (𝑥) := ‖ 𝑓 · 𝜒Γ𝛼 (𝑥) ‖𝛾 (𝐻,𝑋 ) , 𝑥 ∈ R𝑛

𝐴(𝛼)
ℎ ( 𝑓 ) (𝑥) := ‖ 𝑓 · 𝜒Γ𝛼 (𝑥) · 𝜒R𝑛×(0,ℎ) ‖𝛾 (𝐻,𝑋 ) , 𝑥 ∈ R𝑛, ℎ > 0.

Since 𝛾(𝐻,R) = 𝐻, this definition coincides with the scalar-valued definitions of 𝐴(𝛼) and 𝐴(𝛼)
ℎ .

Therefore, it makes sense to define 𝑇 𝑝𝛼 (𝑋) as the completion of the space of all strongly measurable
𝑓 : R𝑛+1

+ → 𝑋 such that

‖ 𝑓 ‖𝑇 𝑝
𝛼 (𝑋 ) := ‖𝐴(𝛼) ( 𝑓 )‖𝐿𝑝 (R𝑛) < ∞.

It was shown in [24, Theorem 4.3] that, as in the scalar case, 𝑇 𝑝𝛼 (𝑋) = 𝑇 𝑝𝛽 (𝑋) for 𝛼, 𝛽 > 0 when
𝑝 ∈ (1,∞) and X has the so-called UMD property (see [25, Chapter 4]).

The scalar-valued definition of 𝐶 ( 𝑓 ) does not make sense in the vector-valued setting. However, its
reformulation using (6.3) does. Following the work of Hytönen and Weis [27], we slightly generalise
this formulation. Fix 𝑞 ∈ (0,∞), 𝛼 > 0, and for a strongly measurable 𝑓 : R𝑛+1

+ → 𝑋 , define

𝐶 (𝛼)
𝑞 ( 𝑓 ) (𝑥) := sup

𝐵�𝑥

( 1
|𝐵 |

∫
𝐵
𝐴(𝛼)
𝑟 (𝐵) ( 𝑓 )

𝑞
)1/𝑞

, 𝑥 ∈ R𝑛.

If 𝑋 = R and 𝑞 = 2, we have 𝐶 (𝛼)
2 ( 𝑓 ) � 𝐶 ( 𝑓 ) by (6.3).

The equivalence between 𝐴(𝛼) ( 𝑓 ) and 𝐶 (𝛼) ( 𝑓 ) was proven in [27, Theorem 4.4], using a vector-
valued analogue of the good-𝜆 inequality (6.5). Since this uses the equivalence of vector-valued tent
spaces with different apertures, this result is limited to 𝑝 ∈ (1,∞) and UMD Banach spaces.

As in the scalar-valued setting, we will give a ‘sparse’ proof the equivalence between 𝐴(𝛼) ( 𝑓 )
and 𝐶 (𝛼) ( 𝑓 ). In the proof we will not use the equivalence of vector-valued tent spaces with different
apertures, which allows us the treat 𝑝 ∈ (0,∞) and arbitrary Banach spaces. The price we pay is that we
have to increase the aperture of 𝐶 (𝛼) ( 𝑓 ). Of course, if 𝑝 ∈ (1,∞) and X has the UMD property, one can
use the equivalence of vector-valued tent spaces with different apertures to recover [27, Theorem 4.4].

We refer to [26, Chapter 7] for the definition of (Rademacher) type 𝑟 ∈ [1, 2] with constant 𝜏𝑟 ,𝑋 used
in the following theorem. Let us note here that any Banach space has type 1 with constant 𝜏1,𝑋 = 1.
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Theorem 6.4. Let X be a Banach space with type 𝑟 ∈ [1, 2], take 𝑞 ∈ (0,∞) and let 𝛼 > 0. Let
𝑓 : R𝑛+1

+ → 𝑋 be strongly measurable. For every cube 𝑄 ∈ Q there exists a 1
2 -sparse family F ⊂ D(𝑄)

such that for a.e. 𝑥 ∈ 𝑄,

𝐴(𝛼)
ℓ𝑄

( 𝑓 ) (𝑥) � 𝜏𝑟 ,𝑋

( ∑
𝑃∈F

( 1
|𝑃 |

∫
𝑃
𝐴
(4𝛼+

√
𝑛)

ℓ𝑃
( 𝑓 )𝑞

)𝑟/𝑞
· 𝜒𝑃 (𝑥)

)1/𝑟
.

Proof. As in the proof of Theorem 6.1, let Φ be a smooth function such that 𝜒𝐵 (0,1) ≤ Φ ≤ 𝜒𝐵 (0,2) and
for 𝑄 ∈ Q and 𝑃 ∈ D(𝑄) define

𝑓𝑄 (𝑥) :=
��(𝑦, 𝑡) ↦→ 𝑓 (𝑦, 𝑡) · Φ

( 𝑥−𝑦
𝛼𝑡

)
· 𝜒(0,ℓ𝑄) (𝑡)

��
𝛾 (𝐻,𝑋 ) , 𝑥 ∈ 𝑄,

𝑓𝑃,𝑄 (𝑥) :=
��(𝑦, 𝑡) ↦→ 𝑓 (𝑦, 𝑡) · Φ

( 𝑥−𝑦
𝛼𝑡

)
· 𝜒(ℓ𝑃 ,ℓ𝑄) (𝑡)

��
𝛾 (𝐻,𝑋 ) , 𝑥 ∈ 𝑃.

For the family { 𝑓𝑄, 𝑓𝑃,𝑄}𝑄∈Q,𝑃∈D(𝑄) the ℓ𝑟 -condition holds with𝐶𝑟 = 𝜏𝑟 ,𝑋 by [26, Proposition 9.4.13].
The rest of the proof follows the lines of the proof of Theorem 6.1. The only alterations are the following:

◦ We replace pointwise estimates by the fact that for 𝑓 ∈ 𝛾(𝐻, 𝑋) and 𝑔 ∈ 𝐿∞(R𝑛+1
+ ) we have

‖ 𝑓 · 𝑔‖𝛾 (𝐻,𝑋 ) ≤ ‖𝑔‖𝐿∞ (R𝑛+1
+ ) ‖ 𝑓 ‖𝛾 (𝐻,𝑋 ) .

◦ We use Theorem 3.2 with 𝑟 = 𝑟 instead of 𝑟 = 2.
◦ In the concluding estimate, we use (2.2) for q instead of 2. �

As in the scalar-valued setting, as a direct corollary of Theorem 6.4, we obtain the following: For
𝑝, 𝑞 ∈ (0,∞), 𝛼 > 0, a Banach space X and any strongly measurable 𝑓 : R𝑛+1

+ → 𝑋 , we have

‖ 𝑓 ‖𝑇 𝑝
𝛼 (𝑋 ) � ‖𝐶 (4𝛼+

√
𝑛)

𝑞 ( 𝑓 )‖𝐿𝑝 (R𝑛) , 𝑝 ∈ (0,∞).

Moreover, since 𝐶 (𝛼)
𝑞 ( 𝑓 )𝑞 � 𝑀 (𝐴(𝛼) ( 𝑓 )𝑞), we have

‖𝐶 (𝛼)
𝑞 ( 𝑓 )‖𝐿𝑝 (R𝑛) � ‖ 𝑓 ‖𝑇 𝑝

𝛼 (𝑋 ) , 0 < 𝑞 < 𝑝 < ∞.

As noted before, this recovers [27, Theorem 4.4] if 𝑝 ∈ (1,∞) and X is a UMD Banach space.
To conclude this subsection, let us note that, doing similar adaptations to the proof of Theorem 6.2

as we did in the proof of Theorem 6.4, we can improve the vector-valued good-𝜆 inequality in [27,
Theorem 4.4] to exponential dependence on 𝛾𝑟 .

7. Vector-valued square functions

In a recent paper by Xu [48], vector-valued Littlewoood–Paley–Stein theory was developed using
Littlewood–Paley theory and functional calculus methods, which vastly improves earlier approaches. In
this section we will simplify the technical core of [48], using our pointwise sparse domination principle.

To introduce the main result of [48], let 𝑝 ∈ (1,∞), let (Ω, 𝜇) be a 𝜎-finite measure space and let X
be a Banach space with martingale cotype 𝑞 ∈ [2,∞) with constant 𝑐mart

𝑞,𝑋 . We refer to [25, Section 3.5.d]
for an introduction to martingale (co)type. For a strongly continuous semigroup of regular operators
{𝑇𝑡 }𝑡≥0 on 𝐿 𝑝 (Ω) and its subordinated Poisson semigroup {𝑃𝑡 }𝑡≥0, one of the main results of [48]
states that for 𝑓 ∈ 𝐿𝑝 (Ω; 𝑋) one has���( ∫ ∞

0

��𝑡 𝜕𝜕𝑡 𝑃𝑡 ( 𝑓 )��𝑞𝑋 )1/𝑞���
𝐿𝑝 (Ω)

� max{𝑝
1
𝑞 , 𝑝′} · 𝑐mart

𝑞,𝑋 · ‖ 𝑓 ‖𝐿𝑝 (Ω;𝑋 ) . (7.1)

The converse of this estimate is shown to hold under a martingale type assumption. Moreover, using
functional calculus techniques, similar estimates with {𝑇𝑡 }𝑡≥0 instead of {𝑃𝑡 }𝑡≥0 are obtained under an
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analyticity assumption. The growth order in p in most of these estimates is sharp for 𝑝 → 1 and 𝑝 → ∞.
When {𝑇𝑡 }𝑡≥0 is the heat semigroup on R𝑛, these results answer a question raised by Naor and Young
in the appendix of [43].

The most technical part of the argument in [48] is a sharp estimate for a vector-valued variant of the
vertical square function. For 𝜀, 𝛿 > 0 let H𝜀, 𝛿 be the class of all 𝜑 : R𝑛 → R such that

∫
R𝑛

𝜑 = 0 and

|𝜑(𝑥) | ≤ 1
(1 + |𝑥 |)𝑛+𝜀 , 𝑥 ∈ R𝑛 (7.2)

|𝜑(𝑥) − 𝜑(𝑥 ′) | ≤ |𝑥 − 𝑥 ′ | 𝛿

(1 + min{|𝑥 |, |𝑥 ′ |})𝑛+𝜀+𝛿
, 𝑥, 𝑥 ′ ∈ R𝑛. (7.3)

For 𝜑 ∈ H𝜀, 𝛿 and 𝑓 ∈ 𝐿1 (R𝑛; 𝑋), define

𝐺𝑞,𝜑 ( 𝑓 ) (𝑥) =
( ∫ ∞

0
‖𝜑𝑡 ∗ 𝑓 (𝑥)‖𝑞𝑋

d𝑡
𝑡

)1/𝑞
, 𝑥 ∈ R𝑛,

where 𝜑𝑡 (𝑥) = 1
𝑡𝑛 𝜑(

𝑥
𝑡 ). In [48], the main result (7.1) follows from

‖𝐺𝑞,𝜑 ( 𝑓 )‖𝐿𝑝 (R𝑛) � max{𝑝
1
𝑞 , 𝑝′} · 𝑐mart

𝑞,𝑋 ‖ 𝑓 ‖𝐿𝑝 (R𝑛;𝑋 ) , (7.4)

by representing the left-hand side of (7.1) for the Poisson semigroup subordinated to the translation group
on R by 𝐺𝑞,𝜑 ( 𝑓 ) for some 𝜑 ∈ H 1

2 ,1
and then using a transference argument for general semigroups.

The case 𝑝 < 𝑞 of (7.4) follows quite easily from the case 𝑝 = 𝑞, using classical Calderón–Zygmund
theory. The case 𝑝 > 𝑞 with optimal dependence on p is harder, for which delicate results on conical
and intrinsic square functions and weighted estimates, developed in the scalar-valued case by Wilson
[46, 47], are adapted to the vector-valued setting in [48, Section 6]. We will prove (7.4) without the use
of this machinery, instead opting to use our sparse domination principle.

As a starting point, we will use the following weak 𝐿1-estimate for𝐺𝑞,𝜑 , which is implicitly contained
in [48].

Proposition 7.1. Let 𝑞 ∈ [2,∞), let X be a Banach space with martingale cotype q and let 𝜑 ∈ H𝜀, 𝛿

for 𝜀, 𝛿 > 0. Then we have for 𝑓 ∈ 𝐿1 (R𝑛; 𝑋),

‖𝐺𝑞,𝜑 ( 𝑓 )‖𝐿1,∞ (R𝑛) � 𝑐mart
𝑞,𝑋 ‖ 𝑓 ‖𝐿1 (R𝑛;𝑋 ) ,

with the implicit constant only depending on 𝜀, 𝛿, 𝑛.

Proof. The estimate

‖𝐺𝑞,𝜑 ( 𝑓 )‖𝐿𝑞 (R𝑛) � 𝑐mart
𝑞,𝑋 ‖ 𝑓 ‖𝐿𝑞 (R𝑛;𝑋 )

follows directly from [48, Lemma 5.6], see the first half of Step 1 of the proof of [48, Theorem 1.5]. The
proposition then follows by viewing 𝐺𝑞,𝜑 as a Calderón–Zygmund operator using [48, Lemma 5.4]. �

For 𝜑 ∈ H𝜀, 𝛿 for 𝜀, 𝛿 > 0, define the localisation

𝐺ℎ
𝑞,𝜑 ( 𝑓 ) (𝑥) =

( ∫ ℎ

0
‖𝜑𝑡 ∗ 𝑓 (𝑥)‖𝑞𝑋

d𝑡
𝑡

)1/𝑞
, 𝑥 ∈ R𝑛
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for ℎ > 0. Since the support of 𝜑 is not necessarily compact, the support of 𝐺ℎ
𝑞,𝜑 ( 𝑓 ) is not localised to

(a multiple of) the support of f. Therefore, for arbitrary 𝑓 ∈ 𝐿1 (R𝑑; 𝑋), one cannot estimate 𝐺ℎ
𝑞,𝜑 ( 𝑓 )

by a local expression of the form( ∑
𝑃∈F

〈
‖ 𝑓 ‖𝑋

〉𝑞
1,𝛼𝑃𝜒𝑃

)1/𝑞
, 𝛼 ≥ 1. (7.5)

This, in particular, means that the precursor of Theorem 3.2 in [39] – that is, Theorem 4.2 – is not
applicable to the localisation 𝐺

ℓ𝑄
𝑞,𝜑 ( 𝑓 ).

Thanks to the flexible formulation of Theorem 3.2, we are able to compensate the nonlocal behaviour
of 𝐺ℎ

𝑞,𝜑 ( 𝑓 ) by adding a convergent series of dilations of P to (7.5). The main result of this section reads
as follows.

Theorem 7.2. Let 𝑞 ∈ [2,∞), let X be a Banach space with martingale cotype q and let 𝜑 ∈ H𝜀, 𝛿 with
𝜀, 𝛿 > 0. For any 𝑓 ∈ 𝐿1 (R𝑛; 𝑋) and 𝑄 ∈ Q there exists a 1

2 -sparse collection of cubes F ⊂ D(𝑄) such
that for a.e. 𝑥 ∈ 𝑄,

𝐺
ℓ𝑄
𝑞,𝜑 ( 𝑓 ) (𝑥) � 𝑐mart

𝑞,𝑋

( ∑
𝑃∈F

∞∑
𝑚=1

1
2𝑚𝜀

〈
‖ 𝑓 ‖𝑋

〉𝑞
1,2𝑚𝑃𝜒𝑃 (𝑥)

)1/𝑞
,

with the implicit constant depending only on 𝜀, 𝛿, 𝑛.

Using Hölder’s inequality and the boundedness of the maximal operator, Theorem 7.2 yields for
𝑝 > 𝑞 and any 𝑔 ∈ 𝐿 (𝑝/𝑞)′ (R𝑛) that∫

𝑄
𝐺
ℓ𝑄
𝑞,𝜑 ( 𝑓 )𝑞𝑔 � (𝑐mart

𝑞,𝑋 )
𝑞
∑
𝑃∈F

∞∑
𝑚=1

1
2𝑚𝜀

〈
‖ 𝑓 ‖𝑋

〉𝑞
1,2𝑚𝑃

∫
𝑃
𝑔

� (𝑐mart
𝑞,𝑋 )

𝑞
∑
𝑃∈F

∫
𝐸𝑃

𝑀
(
‖ 𝑓 ‖𝑋

)𝑞
𝑀𝑔

� (𝑐mart
𝑞,𝑋 )

𝑞 · 𝑝
𝑞
· ‖ 𝑓 ‖𝑞

𝐿𝑝 (R𝑛;𝑋 ) ‖𝑔‖𝐿 (𝑝/𝑞)′ (R𝑛) .

This yields (7.4) by duality and the monotone convergence theorem.
Moreover, one can deduce sharp weighted estimates for 𝐺𝑞,𝜑 ( 𝑓 ) for weights in the Muckenhoupt

𝐴𝑝-class, using [34, Lemma 4.5] and an argument as in [33, Section 4].

Proof of Theorem 7.2. For 𝑄 ∈ Q and 𝑃 ∈ D(𝑄) define

𝑓𝑄 (𝑥) := 𝐺
ℓ𝑄
𝑞,𝜑 ( 𝑓 ) (𝑥), 𝑥 ∈ R𝑛,

𝑓𝑃,𝑄 (𝑥) :=
( ∫ ℓ𝑄

ℓ𝑃

‖𝜑𝑡 ∗ 𝑓 (𝑥)‖𝑞𝑋
d𝑡
𝑡

)1/𝑞
, 𝑥 ∈ R𝑛.

The family { 𝑓𝑄, 𝑓𝑃,𝑄}𝑄∈Q,𝑃∈D(𝑄) trivially satisfies the ℓ𝑞-condition with 𝐶𝑞 = 1, and condition (3.1)
holds as well. Therefore, by Theorem 3.2, there exists a 1

2 -sparse family F ⊂ D(𝑄) such that

𝐺
ℓ𝑄
𝑞,𝜑 ( 𝑓 ) (𝑥) �

( ∑
𝑃∈F

𝛾𝑞𝑃𝜒𝑃 (𝑥)
)1/𝑞

, 𝑥 ∈ 𝑄.

Thus, it suffices to show

𝛾𝑃 � 𝑐mart
𝑞,𝑋 ·

( ∞∑
𝑚=1

1
2𝑚𝜀

〈
‖ 𝑓 ‖𝑋

〉𝑞
1,2𝑚𝑃

)1/𝑞
:= 𝑐mart

𝑞,𝑋 ·M𝑃 (7.6)

for 𝑃 ∈ F.
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Fix 𝑃 ∈ F. For any 𝑧 ∈ 𝑃 we have by (7.2) and Hölder’s inequality

𝐺ℓ𝑃
𝑞,𝜑 ( 𝑓 𝜒R𝑛\2𝑃) (𝑧) ≤

( ∫ ℓ𝑃

0

( ∞∑
𝑚=1

∫
(2𝑚+1𝑃)\(2𝑚𝑃)

1
|𝑧 − 𝑦 |𝑑+𝜀

‖ 𝑓 (𝑦)‖𝑋 d𝑦
)𝑞 d𝑡

𝑡1−𝑞𝜀

) 1
𝑞

�
∞∑
𝑚=2

1
2𝑚𝜀

〈
‖ 𝑓 ‖𝑋

〉
1,2𝑚𝑄 ·

(
ℓ−𝑞𝜀𝑃

∫ ℓ𝑃

0

d𝑡
𝑡1−𝑞𝜀

) 1
𝑞
�M𝑃 .

(7.7)

Therefore, we have by the weak 𝐿1-boundedness of 𝐺𝑞,𝜑 in Proposition 7.1 that

( 𝑓𝑃𝜒𝑃)∗(|𝑃 |/2𝑛+3) �
(
𝐺𝑞,𝜑 ( 𝑓 𝜒2𝑃)𝜒𝑃

)∗(|𝑃 |/2𝑛+3) +M𝑃

� 𝑐mart
𝑞,𝑋 ·

〈
‖ 𝑓 ‖𝑋

〉
1,2𝑃 +M𝑃 � 𝑐mart

𝑞,𝑋 ·M𝑃 .

Now let us turn to (𝑚#
𝑃 𝑓 )∗(|𝑃 |/2𝑛+3). Fix 𝑥 ∈ 𝑃 and 𝑅 ∈ D(𝑃) such that 𝑥 ∈ 𝑅. We will split

𝑓 = 𝑓 𝜒R𝑛\2𝑃 + 𝑓 𝜒2𝑃\2𝑅 + 𝑓 𝜒2𝑅 . (7.8)

For 𝜉, 𝜂 ∈ 𝑅 we note that by (7.3) and [17, Theorem 2.1.10] we have

( ∫ ℓ𝑃

ℓ𝑅

��𝜑𝑡 ∗ 𝑓 𝜒2𝑃\2𝑅 (𝜉) − 𝜑𝑡 ∗ 𝑓 𝜒2𝑃\2𝑅 (𝜂)
��𝑞
𝑋

d𝑡
𝑡

)1/𝑞

�
( ∫ ℓ𝑃

ℓ𝑅

(
|𝜉 − 𝜂 | 𝛿

∫
R𝑛\𝐵 (𝑥,ℓ𝑅/2)

‖ 𝑓 (𝑦)𝜒2𝑃 (𝑦)‖𝑋
|𝑥 − 𝑦 |𝑛+ 𝛿

2
d𝑦

)𝑞 d𝑡
𝑡1+

𝛿
2

)1/𝑞

� ℓ𝛿𝑅 ·
��� 𝜒R\𝐵 (0,ℓ𝑅/2)

|·|𝑛+ 𝛿
2

���
𝐿1 (R𝑛)

·
∫ ℓ𝑃

ℓ𝑅

d𝑡
𝑡1+

𝛿
2
· 𝑀

(
‖ 𝑓 𝜒2𝑃 ‖𝑋

)
(𝑥)

� 𝑀
(
‖ 𝑓 𝜒2𝑃 ‖𝑋

)
(𝑥).

Furthermore, by (7.2) we have for 𝜉 ∈ 𝑅

( ∫ ℓ𝑃

ℓ𝑅

��𝜑𝑡 ∗ 𝑓 𝜒2𝑅 (𝜉)
��𝑞
𝑋

d𝑡
𝑡

)1/𝑞
≤
∫

2𝑅
‖ 𝑓 (𝑦)‖𝑋 d𝑦 ·

( ∫ ℓ𝑃

ℓ𝑅

d𝑡
𝑡1+𝑞𝑛

)1/𝑞

� 𝑀
(
‖ 𝑓 𝜒2𝑃 ‖𝑋

)
(𝑥).

Splitting as in (7.8), combining these estimates with (7.7) and using the weak 𝐿1-boundedness of the
maximal operator, we therefore obtain

(𝑚#
𝑃 𝑓 )∗(|𝑃 |/2𝑛+3) �

(
𝑀 (‖ 𝑓 𝜒2𝑃 ‖𝑋 )

)∗(|𝑃 |/2𝑛+3) +M𝑃

�
〈
‖ 𝑓 ‖𝑋

〉
1,2𝑃 +M𝑃 �M𝑃 .

This finishes the proof of (7.6) and thus the proof of the theorem. �

8. An application to dyadic sums

In this final section we will give a condition on a sequence {𝛼𝑅}𝑅∈D(𝑄) for 𝑄 ∈ Q that allows one
to control a dyadic sum of the form

∑
𝑅∈D(𝑄) 𝛼𝑅𝜒𝑅 by a sum over a sparse family F ⊂ D(𝑄). As

an application, we will generalise and provide a new proof of a good-𝜆 inequality of Honzík and
Jaye [21].
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Theorem 8.1. Let 𝑄 ∈ Q and let {𝛼𝑅}𝑅∈D(𝑄) be a sequence of nonnegative numbers. Suppose that
there exist 𝐶 > 0 and 0 < 𝛿 ≤ 1 such that for every cube 𝑄 ′ ∈ D(𝑄),∑

𝑅∈D(𝑄′)
𝛼𝛿𝑅 |𝑅 | ≤ 𝐶𝛼𝛿𝑄′ |𝑄 ′ |. (8.1)

Then there exists a 1
2 -sparse family F ⊂ D(𝑄) such that for a.e. 𝑥 ∈ 𝑄,∑

𝑅∈D(𝑄)
𝛼𝑅𝜒𝑅 (𝑥) � 𝐶

∑
𝑃∈F

𝛼𝑃𝜒𝑃 (𝑥).

Proof. For 𝑄 ′ ∈ D(𝑄) denote

𝑓𝑄′ (𝑥) =
∑

𝑅∈D(𝑄′)
𝛼𝑅𝜒𝑅 (𝑥), 𝑥 ∈ 𝑄 ′,

and for 𝑃 ∈ D(𝑄 ′) set 𝑓𝑃,𝑄′ = 𝑓𝑄′ − 𝑓𝑃 . Then { 𝑓𝑄′ , 𝑓𝑃,𝑄′ }𝑄′ ∈D(𝑄) ,𝑃∈D(𝑄′) trivially satisfies the ℓ1-
condition (with 𝐶1 = 1) and condition (3.1).

Observe that 𝑓𝑃,𝑄 is a constant on P and therefore 𝑚#
𝑃 𝑓 ≡ 0. Hence, by the local version of Theorem

3.2 (see Remark 3.3), there exists a 1
2 -sparse family F ⊂ D(𝑄) such that, for a.e. 𝑥 ∈ 𝑄,∑

𝑅∈D(𝑄)
𝜆𝑅𝜒𝑅 (𝑥) ≤

∑
𝑃∈F

( 𝑓𝑃𝜒𝑃)∗(|𝑃 |/2𝑛+3)𝜒𝑃 (𝑥).

By (2.2),

( 𝑓𝑃𝜒𝑃)∗(|𝑃 |/2𝑛+3) ≤
(2𝑛+3

|𝑃 |

∫
𝑃
𝑓 𝛿𝑃

)1/𝛿

and, by (8.1), ∫
𝑃
𝑓 𝛿𝑃 ≤

∑
𝑅∈D(𝑃)

𝛼𝛿𝑅 |𝑅 | ≤ 𝐶𝛼𝛿𝑃 |𝑃 |.

Combining these three estimates completes the proof. �

Let 𝒟 be a dyadic lattice in R𝑛. Given a sequence of nonnegative numbers 𝜶 = {𝛼𝑄}𝑄∈𝒟, define the
following two objects associated with 𝜶:

𝑆𝑞 (𝜶) :=
( ∑
𝑄∈𝒟

𝛼𝑞𝑄𝜒𝑄

)1/𝑞
𝑞 ∈ (0,∞),

𝑀 (𝜶) := sup
𝑄∈𝒟

𝛼𝑄𝜒𝑄 .

Corollary 8.2. Let 𝑞 ∈ (0,∞). Suppose that there exist 𝐶 > 0 and 0 < 𝛿 ≤ 𝑞 such that for every cube
𝑄 ∈ 𝒟, ∑

𝑅∈D(𝑄)
𝛼𝛿𝑅 |𝑅 | ≤ 𝐶𝛼𝛿𝑄 |𝑄 |. (8.2)

Then there exists 𝐾 = 𝐾 (𝑞, 𝛿, 𝐶) such that for all 𝜆 > 0 and 0 < 𝜀 < 1,{𝑥 ∈ R𝑛 : 𝑆𝑞 (𝜶) (𝑥) >2𝜆, 𝑀 (𝜶) (𝑥) ≤ 𝜀𝜆}
 ≤ 2𝑒−𝐾/𝜀𝑞 {𝑥 ∈ R𝑛 : 𝑆𝑞 (𝜶) (𝑥) > 𝜆}

. (8.3)
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Proof. By a standard limiting argument, it sufficed to prove (8.3) for 𝑆𝐹𝑞 (𝐴) instead of 𝑆𝑞 (𝐴), where

𝑆𝐹𝑞 (𝜶) =
( ∑
𝑄∈𝐹

𝛼𝑞𝑄𝜒𝑄

)1/𝑞

for an arbitrary finite family of cubes 𝐹 ⊂ 𝒟.
Write the set {𝑥 ∈ R𝑛 : 𝑆𝐹𝑞 (𝜶) (𝑥) > 𝜆} as the union of its maximal cubes 𝑄 𝑗 ∈ 𝐹. Then it suffices

to prove that {𝑥 ∈ 𝑄 𝑗 : 𝑆𝐹𝑞 (𝜶) (𝑥) > 2𝜆, 𝑀 (𝜶) (𝑥) ≤ 𝜀𝜆}
 ≤ 2𝑒−𝐾/𝜀𝑞 |𝑄 𝑗 |. (8.4)

Denote the set on the left-hand side of (8.4) by 𝐸 𝑗 and fix 𝑥 ∈ 𝐸 𝑗 . By maximality of 𝑄 𝑗 ,∑
𝑅∈𝐹 :𝑄 𝑗 ⊂𝑅

𝛼𝑞𝑅𝜒𝑅 (𝑥) ≤ 𝜆𝑞 ,

and hence ∑
𝑅∈𝐹 :𝑅⊆𝑄 𝑗

𝛼𝑞𝑅𝜒𝑅 (𝑥) = 𝑆𝐹𝑞 (𝜶) (𝑥)𝑞 −
∑

𝑅∈𝐹,𝑄 𝑗 ⊂𝑅
𝛼𝑞𝑅𝜒𝑅 (𝑥) > (2𝑞 − 1)𝜆𝑞 .

On the other hand, applying Theorem 8.1 to {𝛼𝑞𝑅}𝑅∈D(𝑄 𝑗 ) , there exists a 1
2 -sparse family F ⊂ D(𝑄 𝑗 )

such that for a.e. 𝑥 ∈ 𝐸 𝑗 , ∑
𝑅∈𝐹 :𝑅⊆𝑄 𝑗

𝛼𝑞𝑅𝜒𝑅 (𝑥) �
∑
𝑃∈F

𝛼𝑞𝑃𝜒𝑃 (𝑥) � (𝜀𝜆)𝑞
∑
𝑃∈F

𝜒𝑃 (𝑥).

So we have
∑
𝑃∈F 𝜒𝑃 (𝑥) � 1

𝜀𝑞 and therefore, by Proposition 6.3,

|𝐸 𝑗 | ≤
{𝑥 ∈ 𝑄 𝑗 :

∑
𝑃∈F

𝜒𝑃 (𝑥) �
1
𝜀𝑞

} ≤ 2𝑒−𝐾/𝜀𝑞 |𝑄 𝑗 |;

that is, (8.4) holds and the proof is complete. �

Example 8.3. Let 𝜇 be a nonnegative Borel measure. Given 0 < 𝛾 < 𝑛 and 𝑞 ∈ (0,∞), define the
nonlinear dyadic potential by

T𝑞,𝛾 (𝜇) :=
( ∑
𝑄∈𝒟

( 𝜇(𝑄)
|𝑄 |1−𝛾/𝑛

)𝑞
𝜒𝑄

)1/𝑞
.

Define also the fractional maximal operator by

𝑀𝛾 (𝜇) := sup
𝑄∈𝒟

𝜇(𝑄)
|𝑄 |1−𝛾/𝑛

𝜒𝑄 .

In [21], Honzík and Jaye established the following good-𝜆 inequality: there exists 𝐶1, 𝐶2 > 0 such
that for all 𝜆 > 0 and 0 < 𝜀 < 1,{𝑥 ∈ R𝑛 : T𝑞 (𝜇) (𝑥) > 2𝜆, 𝑀𝛾 (𝜇) (𝑥) ≤ 𝜀𝜆}

 ≤ 𝐶1𝑒
−𝐶2/𝜀𝑞

{𝑥 ∈ R𝑛 : T𝑞 (𝜇) (𝑥) > 𝜆}
. (8.5)

Let us show that this result can be deduced from Corollary 8.2. Indeed, set 𝛼𝑄 = 𝜇 (𝑄)
|𝑄 |1−𝛾/𝑛 for 𝑄 ∈ 𝒟.

It suffices to show that (8.2) holds for 𝛿 = min(𝑞, 1). Write D(𝑄) = ∪∞
𝑘=0D𝑘 , where D𝑘 is the kth
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generation of dyadic subcubes of Q. First, suppose that 𝑞 ≥ 1. Then 𝛿 = 1 and we have

∑
𝑅∈D(𝑄)

𝛼𝛿𝑅 |𝑅 | =
∑

𝑅∈D(𝑄)
𝜇(𝑅) |𝑅 |𝛾/𝑛 = |𝑄 |𝛾/𝑛

∞∑
𝑘=0

2−𝑘𝛾
∑
𝑃∈D𝑘

𝜇(𝑃)

= 𝐶𝛾 · 𝜇(𝑄) |𝑄 |𝛾/𝑛 = 𝐶𝛾 · 𝛼𝛿𝑄 |𝑄 |.

Now suppose that 𝑞 < 1. Since #{𝑄 ∈ D𝑘 } = 2𝑘𝑛, we have by Hölder’s inequality∑
𝑃∈D𝑘

𝜇(𝑃)𝑞 ≤ 2𝑛𝑘 (1−𝑞)𝜇(𝑄)𝑞 .

Hence, as 𝛿 = 𝑞,

∑
𝑅∈D(𝑄)

𝛼𝛿𝑅 |𝑅 | = |𝑄 |1−𝑞 (1−𝛾/𝑛)
∞∑
𝑘=0

2𝑛𝑘 ( (1−𝛾/𝑛)𝑞−1)
∑
𝑃∈D𝑘

𝜇(𝑃)𝑞

≤
( 𝜇(𝑄)
|𝑄 |1−𝛾/𝑛

)𝑞
|𝑄 |

∞∑
𝑘=0

2𝑛𝑘 ( (1−𝛾/𝑛)𝑞−1)2𝑛𝑘 (1−𝑞)

= 𝛼𝑞𝑄 |𝑄 |
∞∑
𝑘=0

2−𝑘𝛾𝑞 = 𝐶𝛾,𝑞 · 𝛼𝛿𝑄 |𝑄 |.

Thus, we have verified (8.2) and therefore (8.5) holds.
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