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LOCALLY LIPSCHITZ FUNCTIONS ARE GENERICALLY
PSEUDO-REGULAR ON SEPARABLE B A N A C H SPACES

J.R. GILES AND SCOTT SCIFFER

For a locally Lipschitz function on a separable Banach space the set of points of
Gateaux differentiability is dense but not necessarily residual. However, the set of
points where the upper Dini derivative and the Clarke derivative agree is residual.
It follows immediately that the set of points of intermediate differentiability is
also residual and the set of points where the function is Gateaux but not strictly
differentiate is of the first category.

A real valued function ij) on an open convex subset A of a normed linear space X

is said to be locally Lipschitz on A if for every xo S A there exists a Kg > 0 and a
So > 0 such that

\ip{x) — i>(z)\ ^ Ko \\x - z\\ for all x,z £ A and ||a; — aj01| < $o and \\z — EO|| < ^o-

We say that ip is Gateaux differentiable at a; 6 A if lim (ij)(x + Xy) - ip(z))/\ exists

for all y £ X, denoted by i)'[x)(y), where ip'{x) is a continuous linear functional on

X.

For Euclidean spaces, Rademacher [10] in 1919 gave the classical differentiability
result that a real-valued Lipschitz function on an open subset is differentiable almost
everywhere. In 1990, this result was spectacularly extended by Preiss [9] who proved
that on a Banach space which has an equivalent norm Gateaux differentiable away
from the origin, a real-valued locally Lipschitz function on an open subset is Gateaux
differentiable on a dense subset of its domain.

For separable Banach spaces, Mazur [6] in 1933 proved that a continuous convex
function on an open convex subset is Gateaux differentiable on a dense G( subset of
its domain. There has been considerable development of differentiability theory for
continuous convex functions since the paper [1] by Asplund in 1968; (see the 1989
lecture notes by Phelps [8]).

However, it is well known that the extension of differentiability theory from con-
tinuous convex to locally Lipschitz functions is fraught with difficulties. In particular,
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even on the real line, the set of points of differentiability of a locally Lipschitz function

need not contain a dense Gg subset.

For a locally Lipschitz function ip on an open subset A of a normed linear space

X, the upper Dini derivative at x £ A in the direction y £ X,

i + i \i \ v ip(x + Xy) - rp(x)
V>+(z)(2/) = hmsup — -̂  —

A — 0 + <*

and the lower Dini derivative at x £ A in the direction y £ X,

, _ , w v ,. . , i>{x + Xy) - 4>(x)

both exist for all y £ X. Clearly, i>~{x){y) = —(—i/>) (x)(y), and rp has a right hand
derivative at i 6 A in the direction y £ X,

if and only if rp+(x)(y) = tj}~{x){y).

For a continuous convex function <j> on an open convex subset A of X, the right
hand derivative <f>'+(x)(y) always exists for all x £ A and all y G X, and given x £ A,

<i>+(x)(y) is a continuous sublinear functional in y.

For a locally Lipschitz function ip on an open subset A of a normed linear space
X, given x 6 A, the upper Dini derivative ip+(x)(y) is not necessarily sublinear, but
a workable extension of this derivative was devised in 1975 by Clarke, [3]. The Clarke

generalised derivative at x £ A in the direction y £ X is defined as

= hm sup

and given x £ A, i/>°(x)(y) is a continuous sublinear functional in y. If -0 is Gateaux
differentiable at x £ A and. tl>'{x)(y) — ip°{x)(y) for all y £ X then we say that ip is
strictly differentiable at z . If V1 is Gateaux differentiable on a dense subset D ol A

and is strictly differentiable at x £ A then the derivatives V"'(z) a r e weak * convergent
to V>'(x) for z £ Z> as z approaches x, [5]. We say that V1 is regular at x £ A if
ip has a right hand derivative at x and V'+(a;)(2/) = V>°(x)(y) f ° r all y £ -X̂  and is
pseudo-regular at z £ A if Vl+(a;)(y) = V|0(a:)(y) f°r all y £ X , [2]. A continuous
convex function cj> on an open convex subset A of X is regular for all x £ .4. and is
strictly differentiable at x £ A if and only if it is Gateaux differentiable at x.

In this paper we aim to prove, as a categorical extension of Mazur's Theorem

for continuous convex functions, that on a separable Banach space, a locally Lipschitz
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function on an open subset is pseudo-regular on a residual subset of its domain. This will
have considerable implications for other differentiability properties of locally Lipschitz
functions on separable Banach spaces.

We establish our result by examining continuity properties associated with the
upper Dini derivatives. For a locally Lipschitz function rj> on an open subset A of a
normed linear space X and x £ A and y £ X, given p £ N we write

and

so that

= i n f .
0<A<I

= lim ^
p—>oo

A

Ay)-

and = Urn
p—•oo

LEMMA . Consider a locally Lipschitz function ij> on an open subset A of a normed
linear space X . Given p £ N,

(i) for x € A, TJ>p{x)(y) and il>+{x)(y) are continuous functions in y,
(ii) for y £ X, ipp(x)(y) is lower semi-continuous in x.

PROOF: Consider zo £ A with associated Lipschitz constants KQ > 0 and So > 0.

(i) For y,z £ X where ||Ay|| < So and ||Az|| < SQ we have

sup
Ay) -

— sup

sup
Ay) - if>(x0 + \z)<K0\\y-z\\.

(ii) Given 0 < t < 2KQ6Q there exists a 0 < Ao < 1/p such that

So for all x E A where \\x — xo|| < min((£Ao)/(4iiro),

Then D
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THEOREM. A locally Lipschitz function $ on an open subset A of a. separable
Banach space X is pseudo-regular on a dense Gs subset of A.

PROOF: For y 6 X , given p G N we have ipp{x){y) is lower semi-continuous on
A. So there exists a dense Gs subset DjJ" of A where ipp{x)(y) is continuous at each

oo

x G Dp . The set D* — ("| D^ is also a dense Gg subset of A and ip£(x)(y) is

continuous at each x G D^ for every p 6 N . So for a; € D+, given p, q € N and e > 0
there exists a 0 < 6P < 1/q such that

for all and ||« -

So sup I sup
\z-x\\<6p \ 0<A<i

Ay) -

This holds for all p, 9 G N so

But

so

and we conclude that i>+(x)(y) — ip°(x)(y).
Since X is separable there exists a countable dense set {yn} i

n X. For each
n G N there exists a dense Gs subset £)+ of A where ij}^ (x)(yn) is continuous at each

x G D+ . Now D+ = f\ D+ is a. dense Gs subset of A and for each x G D+

in = l

V>+(z)(yn)=V°(z)(3/n) fora l lneN.

But as both V'+(:c)(l/) anc^ ^"(^Jtv) a r e continuous in y we conclude that for every
xeD+

V»+(x)(y) = i>°(x)(y) for all y € X.

D
Recently, Fabian and Preiss [4] introduced the concept of intermediate differentia-

bility. A locally Lipschitz function ifi on an open subset A of a normed linear space X
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is said to be intermediately differentiable at z G A if there exists a continuous linear
functional / on X such that

+~{*){V) < /(») < l>+(*)(y) for all y e X.

They proved that, for a large class of Banach spaces, those which can be represented
as a subspace of a Stegall GSG space, a locally Lipschitz function defined on an open
subset of such a space is generically intermediately differentiable. Our Theorem enables
us to prove their result in an elementary manner for separable Banach spaces.

Associated with the Clarke generalised derivative is the Clarke generalised subdif-
ferential. Given x G A,

dr!>°(x) = {feX*: f(y) < t°(x)(y) for all y G X}.

Since i>°(x)(y) is a continuous sublinear functional in y, (?V>°(x) is non-empty.

COROLLARY 1. A locally Lipschitz function tf> on an open subset A of a. sepa-
rable Banach space X is intermediately differentiable on a dense Gs of A.

PROOF: NOW iji is pseudo-regular on a dense Gs subset D+ of A and (—t/>) is
pseudo-regular on a dense Gs subset D~ of A. For all x G D+ PI D~ a dense Gs
subset of A, there exists a continuous linear functional / on X such that

f(y) < V-°(*)(y) for aU y G X.

So
-(-V»)°(x)(3/) ^ f{y) ^ l>°(x)(y) for aU y € X.

But for x e D,

and iT(*)(v) = -(-V0+(*)(2/) = -(-^)°{x)(y) for all y G X.

So
i>-(x)(y) ^ f(y) ^ i>+(x)(y) for all y G X.

D
A continuous convex function <j> on an open convex subset A of a normed linear

space X is Gateaux differentiable at x G A if and only if it is intermediately differen-
tiable at x. So Corollary 1 provides another proof of Mazur's Theorem.

Corollary 1 actually shows that, for a locally Lipschitz function ip on an open subset
A of a separable Banach space X, the set of points where ip is both pseudo-regular
and intermediately differentiable is residual in A.
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It is well known that for a continuous function 6 on the real line, the set of points
where 6 is differentiable but not strictly differentiable is of the first category, [12, p.138].
Our Theorem gives a corresponding result for locally Lipschitz functions on separable
Banach spaces.

COROLLARY 2 . For a locally Lipschitz function ip on an open subset A of a

separable Banach space X, the set of points where ij) is Gateaux differentiable but not

strictly differentiable is of the first category in A.

PROOF: The set {x £ A: il>+(x)(y) = ij>0{x)(y) for all y £ X} is residual in
A. So the set {x £ A: there exists y £ X such that i>'{x){y) ^ i>°(x)(y)} C
{x £ A: there exists y £ X such that tj}+{x){y) ^ il>°{x)(y)} is of the first category
in A. U

Corollary 2 extends for Gateaux differentiability of locally Lipschitz functions on
separable Banach spaces, a very general result proved by Zajicek [13] in 1987, for
Frechet differentiability.

The following example, given by Rockafeller [11, p.97], of a globally Lipschitz
function on the real line, illustrates much of the diverse differentiability behaviour we
have been discussing.

EXAMPLE. There exists a measurable set S in R with the property that, for every
non-empty open interval I, the sets / O S and Jn(R \ 5) are both of positive measure.
Define a function 8 on R by

f +1 for x e 5
6{x) = <

I - 1 f o r x € R \ 5

and a function ip on R by

V>(aO= [X 8{t)dt.
Jo

Then T/> is globally Lipschitz with Lipschitz constant 1 and by Rademacher's Theorem
is differentiable almost everywhere and i>'{x) = 6(x) for almost every x £ R. From
the properties of S we have that dip°(x) = [—1, 1] for every x £ R, so -0 is nowhere
strictly differentiable. So from Corollary 2, the set of points where ip is differentiable
is of the first category. The set of points where t(> is pseudo—regular is residual but is
disjoint from the set of points where if) is differentiable. The set of points where ip is
intermediately differentiable is residual and of full measure since it includes the set of
points where ip is differentiable. However, the set of points where i/> is intermediately
differentiable but not differentiable is also residual but of measure zero. D

Our results can be applied to give information about the differentiability of distance
functions on separable Banach spaces. A non-empty closed set K in a normed linear
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space X is said to be proximinal if to each x 6 X \ K there exists a p(z) 6 K such
that

d(x) = d(x,K) = \\x-p(x)\\.

APPLICATION. Given a non-empty proximinal set K in a separable Banach
space with norm Gateaux differentiable away from the origin, the distance function d
generated by K is strictly differentiable on a dense Gs subset of X \ K.

PROOF: The distance function d is a Lipschitz function so from the Theorem, we
have that the set of points in X \ K where d is pseudo-regular is residual in X \ K.
At such a point x 6 X \ K we have

jO/ ., . ... >, . d(x + Xy) - d(x)
d\x){y) = d+(x){y) = hm sup -i ^ ^

A-.0+ •*

\\x -p{x) + Xy\\ - | |x-p(x) | |
^ h m sup •

A—0+ A

= | |x-p(x)| | '(y) for all y e X.

Since <£°(x)(i/) is subhnear in y we conclude that

° | |x-p(*)|r(y) for all y£

and so d is strictly differentiable at x. U

REMARKS. 1. For a locally Lipschitz function ip on an open subset A of a separable
Banach space X, given p € N, i>p(x)(y) is continuous at points x G D+ for every
y £ X. But this does not necessarily imply that ip+(x)(y) is continuous at any point
x £ A for every y £ X. The points x G D+ are points where tp is pseudo-regular, but
a point x £ A where ij>+(x)(y) is continuous at x for every y £ X is a point where
V> is strictly differentiable. The former set is residual but in the Example the latter is
empty.

2. We might well ask how our Theorem could be extended for a wider class of
Banach spaces than the separable spaces. For a locally Lipschitz function x(> on an open
subset A of a Banach space X, given p S N, Tp£(x)(y) is jointly lower semi-continuous
on A x X. So there exists a dense Gs subset of A x X at the points of which V^J"(x)(y)
is continuous in both variables. For any Banach space where we could guarantee that
such a Gs subset of A x X contained a subset D x X where D is a Gg subset of A,
the Theorem would extend to such a space. However, such an investigation would take
us beyond the problem so deftly treated by Namioka [7].
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