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which leads to the energy integral T + V = constant, when the power of the noncon-
servative generalised forces, given by the right hand side of (1.3), is zero. The second
consequence follows for a variable qr which is cyclic, that is, T and V are both inde-
pendent of qr , leading to

or in integrated form

dT dT
dqr

If the impulse of the npnconservative force corresponding to the cyclic variable, given
by the left hand side of (1.5), is zero, then the change in the generalised momentum
corresponding to this variable, given by the right hand side of (1.5), is also zero. It is
the two properties expressed by (1.3) and (1.4) wliich the discretisations are forced to
preserve.

2. PARTIAL DIFFERENCES

Consider / - f(q) = f{q^ , . . . ,?„) with

If / is independent of qr, then

(2.2) df/dqr = 0.

If the time t is discretised at time instants t(k), k — 0 ,1 , . . . then the present aim
is to choose a discrete analogue of the partial derivative, which we shall denote by

(2.3)
Aqr(k) qr(k + 1) - qr(k)'

so that the discrete analogues of (2.1) and (2.2) are satisfied. In (2.3), A is the usual
forward difference operator and Ar will be called the (forward) partial difference oper-
ator. The discrete analogue of (2.1) is

(2.4) A/ = /[,(* + 1)] - f[q(k)} = J2
r = 1
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Figure 1. For a function / = f[qi(k) ,q2(k) ,q3(k)} the six
paths along the edges of the cube from vertex A (for k) to
D (k + 1) lead to possible formulae for the partial difference
operator Arf. The paths ABCD and AEFD correspond to
expressions (2.7) and (2.8) with n = 3.

or simply
n

(2.5) A / = ^ A r / ( A ; )
r= l

and the analogue of (2.2) is

(2.6) Ar/(fc) = 0, / independent of qr.

In summary, we seek an expression for the partial difference Arf(k) which satisfies
(2.5) and (2.6).

It is easy to verify that the form chosen by Neuman and Tourassis [3], namely

Arf(k) = /[9i(fc), - • •, 9r_i(fc), 9,.(A; + 1), qr+i{k + 1) , . . . ,qn(k + 1)]

(2.7) - f[qi(k),..., qr-i(k), qr(k),qr+1(k + 1),.. . , ,„(* + 1)]

satisfies (2.5) and (2.6), and so also does that chosen by Gotusso [1], which is essentially
the average of the right hand side of (2.7) and a similar term

f[qt{k + 1 ) , . . . , ?r_i(fc + 1), qr(k + 1), ) , . . . , qn(k)]

(2.8)
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The proof follows by summing (3.5) from r — 1 to r = n giving, with the use of

(2.5),

r r j

(3.6) -\^[**ij(k)]Q(qi,qi) +

Comparison with (3.3) shows that what is required is that

\ ^2 [Aqj(k)/At(k)]A[aij(k)qi(k)}}

(3.7) -\Y

where use has been made of the symmetry â - = aji. Equating coefficients of aij(k + 1)

and dij(k) in turn gives

(3.8). [Aqi(k)/At(k)]qj(k + 1) + [Aqj(k)/At(k)}qi(k + 1) - Q(qi,qj)

= qi(k+ l)qj{k + l)

(3.9) [Aqi(k)/At(k)}qj(k) + [Aqj(k)/At(k)]qi(k) - Q(qit qj)

Putting j — i and subtracting (3.9) from (3.8) gives

(3.10) 2[Aqi(k)/At(k)][qi(k + 1) - ft(fc)] = qi(k + I)2 - qi(k)2

from which the smoothing formula

(3.11) Aqi(k)/At(k) = [qi(k + 1) + qi(k)]/2

follows immediately The expression for Q is obtained by substituting (3.11) into (3.9) :

(3.12) Q(qi, qj) = [qi(k)qj(k + 1) + qi(k + l)qj(k)}/2.

Note that when Q is inserted into (3.5) it can be replaced by qi{k)<jj(k + 1) because
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4. CONCLUSION

It has been shown that the general formula (2.11) for the partial difference operator

A r satisfies the requirements expressed by (2.5) and (2.6). With these requirements

satisfied it is then shown that the discretisation of Lagrange's equations of motion

naturally lead to the smoothing formula (3.1).

Recent work [4] has shown that the discretisations discussed in this paper are very

effective in the modelling and planning of the intricate motion of robots.
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