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We report on the presence of the boundary zonal flow in rotating Rayleigh–Bénard
convection evidenced by two-dimensional particle image velocimetry. Experiments were
conducted in a cylindrical cell of aspect ratio Γ = D/H = 1 between its diameter (D) and
height (H). As the working fluid, we used various mixtures of water and glycerol, leading
to Prandtl numbers in the range 6.6 � Pr � 76. The horizontal velocity components were
measured at a horizontal cross-section at half height. The Rayleigh numbers were in the
range 108 ≤ Ra ≤ 3 × 109. The effect of rotation is quantified by the Ekman number,
which was in the range 1.5 × 10−5 ≤ Ek ≤ 1.2 × 10−3 in our experiment. With our results
we show the first direct measurements of the boundary zonal flow (BZF) that develops near
the sidewall and was discovered recently in numerical simulations as well as in sparse and
localized temperature measurements. We analyse the thickness δ0 of the BZF as well as its
maximal velocity as a function of Pr, Ra and Ek, and compare these results with previous
results from direct numerical simulations.

Key words: Bénard convection, rotating flows, rotating turbulence

1. Introduction

Rotating thermal convection is a widespread natural phenomenon that also plays a crucial
role in various industrial applications. For example, the development of Rossby waves
in oceans (Chelton & Schlax 1996) and the flow structures of the atmosphere on Jupiter
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(Heimpel, Aurnou & Wicht 2005; Reuter et al. 2007) are caused by Coriolis forces acting
on fluid motion, which itself is driven by temperature differences between the poles, the
equatorial regions and the planet’s interior (Zhang & Schubert 1996). In particular, highly
turbulent flows involving many different length scales – such as, for example, inside the
Sun – are far from being understood and cannot be resolved sufficiently well by state of
the art numerical simulations. Thus we rely mostly on simple scaling models that we hope
also hold for large-scale systems.

For decades, Rayleigh–Bénard convection (RBC) has been widely used as an idealized
model system to investigate convection and its underlying physical phenomena. In this
system, a fluid is confined between two horizontal plates at distance H apart from each
other, with the lower one at a temperature difference Δ warmer than the upper one. The
underlying equations depend only on two dimensionless control parameters, namely

Ra = gαΔH3

νκ
, the Rayleigh number, (1.1)

and
Pr = ν

κ
, the Prandtl number. (1.2)

Here, g denotes the gravitational acceleration, α the isobaric expansion coefficient, ν

the kinematic viscosity, and κ the thermal diffusivity. For a laterally extended system,
convection sets in above a critical Rayleigh number Rac ≈ 1708 in the form of steady
laminar convection rolls, which become unsteady with increasing Ra, and the flow
eventually becomes turbulent for very large Ra.

For turbulent convection, one is usually interested in the vertical heat transport, which
is expressed by the non-dimensional Nusselt number

Nu = qH
λΔ

. (1.3)

Here, q is the time averaged heat flux from the bottom to the top plate, and λ is the heat
conduction coefficient. Experiments and simulations have been conducted and theoretical
models have been proposed to find the correct exponents b and c in the power-law relations
Nu ∝ Rab Prc (see e.g. Malkus 1954; Grossmann & Lohse 2000, 2002; Ahlers, Grossmann
& Lohse 2009; Zhong & Ahlers 2010; He et al. 2012). Due to rotational symmetry, most
experiments and many numerical investigations have been conducted in upright cylinders,
hence the aspect ratio Γ = D/H between cylinder diameter D = 2R and height H is a
parameter quantifying the geometrical constraints. The height H is a good length scale in
RBC only for sufficiently large Γ because only then is Nu independent of Γ (Ahlers et al.
2022; Zwirner et al. 2021). Nevertheless, most experiments are conducted in cylinders of
Γ close to 1 in order to maximize H, and in this way Ra. In such cases, the turbulent flow
organizes itself in a large-scale circulation (LSC), which, depending on the aspect ratio,
spans the entire domain (Krishnamurti & Howard 1981; Sano, Wu & Libchaber 1989;
Ciliberto, Cioni & Laroche 1996) so that warm fluid rises along one side and cold fluid
sinks on the opposite side.

Rotation is usually assumed to be around the vertical axis with rotation rate Ω . This
leads to additional dimensionless control parameters. When the buoyancy should be
compared to the Coriolis forces, one usually considers the Rossby number

Ro =
√

gαΔ/H
2Ω

. (1.4)
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If one is, rather, interested in the ratio between viscous and Coriolis forces, then the Ekman
number (Ek) is more appropriate. These numbers are related by

Ek = ν

H2Ω
= 2Ro

√
Pr
Ra

. (1.5)

We note that the definition of Ek sometimes differs by a factor of two in the literature. The
influence of rotation on the flow field and the heat transport is non-trivial because multiple
different mechanisms become important, hence making it complicated to deduce simple
scaling laws of the form Nu ∝ Eka Rab Prc. Finding such scaling laws, however, is vital for
understanding rotating turbulent convection, in particular in geophysical and astrophysical
systems with Ra and Ek being out of reach for lab experiments or numerical simulations.

When rotation is applied to a fully turbulent RBC flow, multiple different regimes have
been observed as a function of the rotation rate. For low rotation rates, i.e. small 1/Ro,
Coriolis forces barely affect the flow, and the LSC still exists and transports the majority
of the heat. This regime is referred to as the rotation-unaffected regime.

With increasing rotation rate, the LSC breaks down and is replaced by vortices that
start to form from rising (sinking) warm (cold) plumes emerging from the bottom (top)
boundary layer. Within these vortices, Ekman pumping occurs, where warm (cold) fluid
is efficiently pumped across the thermal boundary layer, leading to an enhancement in the
global heat transport for fluids with Pr > 1, which sets in with a rather sharp transition at
1/Roc (see e.g. Rossby 1969; Zhong, Ecke & Steinberg 1993; Julien et al. 1996; Liu & Ecke
1997; Kunnen, Clercx & Geurts 2006; Weiss & Ahlers 2011a). This enhancement is absent
for Pr < 1 (Rossby 1969; Zhong et al. 2009; Horn & Shishkina 2015; Weiss, Wei & Ahlers
2016; Wedi et al. 2021). The regime is often called the rotation-affected regime (see e.g.
Kunnen 2020). We note that the global heat transport within this regime exhibits, under
certain conditions, rather sharp changes (see e.g. Wei, Weiss & Ahlers 2015), suggesting
that there the interplay of multiple different mechanisms leads to various sub-regimes with
different functional relations between Nu, Ro and Ra.

With increasing 1/Ro, the vortices extend and eventually form vertical columns
spanning the entire cell (Stellmach et al. 2014; Plumley et al. 2016). In this so-called
rotation-dominated regime, the global heat transport decreases with increasing rotation
rates due to the Taylor–Proudman (Taylor 1921; Proudman 1916) theorem, which states
that vertical gradients and therefore also the vertical velocity, are suppressed by Coriolis
forces. Hence for sufficiently fast rotation, convection is suppressed entirely. Then
buoyancy is too weak to overcome the damping Coriolis forces, and Ra needs to be raised
above a threshold value Rac for convection to occur. For a laterally infinite system, this
critical Rayleigh number is Rac ≈ 3(π2/2)2/3Ek−4/3 (Chandrasekhar 1961), independent
of Pr.

However, in laterally confined cylinders, convection occurs close to the sidewall already
for smaller Ra, namely above Raw ≈ π2(6

√
3)1/2Ek−1. The flow then takes the form

of azimuthal wall modes (see e.g. Rossby 1969; Buell & Catton 1983; Zhong, Ecke &
Steinberg 1991; Ecke, Zhong & Knobloch 1992; Goldstein et al. 1993; Herrmann & Busse
1993; Kuo & Cross 1993; Zhong et al. 1993; Zhang & Liao 2009; Favier & Knobloch
2020). While the influence of these wall modes on the heat transport and the flow field is
significant close to Raw, it was expected that the sidewall influence is negligible for larger
Ra, when the flow is turbulent. Then the relevant horizontal length scales are small and
the sidewall was thought to effect the flow in its direct vicinity only via a thin viscous
boundary layer. This assumption has been shown to be false with the recent discovery
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of the boundary zonal flow (BZF), a new flow state that occurs in rotating RBC (de Wit
et al. 2020; Zhang et al. 2020). The BZF occurs close to the lateral sidewall and plays
an important role for the global heat transport in confined systems (see § 2). Although
sparse pointwise temperature measurements (Wedi et al. 2021) agree with simulations
(Shishkina 2020; de Wit et al. 2020; Zhang et al. 2020), the BZF has so far not been
observed directly experimentally. The goal of this paper is to close this gap. Thanks
to particle image velocimetry (PIV) measurements of the azimuthal velocity along a
horizontal cross-section at mid-height, the thickness and maximum velocity of the BZF
could be measured and analysed.

The paper is organized as follows. In the next section we will explain some properties of
the BZF in more detail, and we will also reinterpret previous experimental measurements
in light of this newly found flow structure. Then, in § 3, we explain the experimental
set-up, followed by a section about the measurement results (§ 4). The paper finishes with
a conclusion (§ 5).

2. The boundary zonal flow

The BZF is observed as a region close to the sidewall, with a positive time-averaged
azimuthal velocity 〈uφ〉 (cyclonic motion), and a central region of negative azimuthal
velocity (anticyclonic motion). In the same region, there is also a strong vertical flow that
transports warm fluid from the bottom to the top, and cold fluid towards the bottom. The
warm (up) and cold (down) regions are periodic in azimuthal direction, with wavenumber
k = 1 for aspect ratios Γ = 1/5 (de Wit et al. 2020) and Γ = 1/2 (Zhang et al. 2020),
whereas k = 2Γ was observed for Γ = 1 and Γ = 2 cylinders (Shishkina 2020; Zhang,
Ecke & Shishkina 2021a). This periodic temperature structure drifts in the retrograde
direction and can be detected by temperature probes inside the cylinder sidewall (Wedi
et al. 2021). Although similar, whether the BZF is a remnant of the wall modes above
onset is still unclear. A recent study by Favier & Knobloch (2020) suggests that the BZF’s
origin is in a nonlinear evolution of the wall modes with increasing Ra.

Even though the BZF has just recently been discovered in numerical simulations, some
of its features can be seen in older measurements. We show in figure 1 data from Weiss
& Ahlers (2011b) and Zhong & Ahlers (2010), taken in rotating cylinders with Γ = 0.5
(figures 1a,c) and Γ = 1 (figures 1b,d), filled with water (Pr = 4.38) as the working fluid.
For a better orientation, we mark with vertical black lines the critical inverse Rossby
number (1/Roc) for the onset of heat transport enhancement due to rotation at a constant
Ra. One can roughly state that 1/Roc is the rotation rate at which rotation starts to influence
the flow and the heat transport, but where buoyancy is still significantly stronger than
Coriolis forces, i.e. the rotation-affected regime.

Figures 1(a,b) show the energies in the first four azimuthal Fourier modes of the
temperature signal in the sidewall at mid-height, calculated based on temperature
measurements of 8 thermistors. The first mode represents a state where warm fluid rises
along one side and cold fluid sinks at the opposite side. The second mode represents a
state with two zones where warm fluid rises (on opposite sides), separated by two zones
where cold fluid sinks towards the bottom plate. Let us first have look at figure 1(b),
which shows data from measurements in Γ = 1 cylinders. When it was first published,
the plot was interpreted as showing that for small rotation rates (1/Ro < 1/Roc), the
LSC consists of a single convection role with warm upflow along one side and cold
downflow along the other. As a result, the first Fourier mode is significantly stronger
than the others. However, at around 1/Roc, the energy in the first Fourier mode decreases
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Figure 1. (a,b) Relative energy in the first four Fourier modes of the azimuthal temperature signal at
mid-height of the cell. (c,d) Relative azimuthal drift of the temperature structure at mid-height normalized by
the rotation rate of the convection cell. The solid blue lines in (c,d) mark power laws ∝ (1/Ro)−5/3 as suggested
by Zhang, Ecke & Shishkina (2021b). The insets in (c,d) show only a subsection of the same data (large
1/Ro), but multiplied by (−1) and on a log-log plot. (a,c) Data from experiments with cylindrical Γ = 0.5
containers (Ra = 1.8 × 1010, Pr = 4.38). (b,d) Data from experiments with cylindrical Γ = 1 containers
(Ra = 2.25 × 109, Pr = 4.38). The vertical solid lines mark the onset of heat transport enhancement at
1/Roc = 0.8 (a,c) and 1/Roc = 0.4 (b,d). Plots adapted from figures 4 and 13 of Weiss & Ahlers (2011b),
and figure 19 of Zhong & Ahlers (2010).

drastically with increasing rotation rates, which is interpreted as the disappearance of the
LSC. This decrease of E1/Etot is accompanied with an increase in particular of the second
harmonic. While it was not clear at the time, we now believe that this increase of the
second harmonic shows the occurrence of the BZF, which in Γ = 1 cylinders consists
of two warm upflow regions separated by two regions where cold fluid sinks near the
sidewall.

Similarly, we interpret the data in figure 1(a). The LSC starts to disappear at around
1/Roc, however the energy of the first Fourier mode is still large even beyond 1/Roc since
now the BZF appears, which for Γ = 0.5 has a wave number k = 1. Note that in both cases
(Γ = 1/2 and Γ = 1), the Fourier energy in the BZF mode decreases with increasing
rotation rate. This means not that the BZF disappears, but rather that the temperature
difference between warm and cold areas decreases, which to some extent is caused by
the finite heat conductivity of the sidewall and a subsequent heat loss. Note that in these
experiments, temperatures were measured inside the sidewall with probes not in direct
contact with the fluid.
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Figure 1(c) shows the azimuthal drift rate of the LSC (for small 1/Ro) or the BZF (for
larger 1/Ro), normalized by the rotation rate of the convection cylinder as a function of
1/Ro. For Γ = 0.5 (figure 1c), the change of direction from positive (prograde) to negative
(retrograde as observed for the BZF) above 1/Roc is visible. For Γ = 1 (figure 1d), the
drift rate is always negative but nevertheless shows a monotonic behaviour similar to that
for Γ = 0.5, in particular beyond 1/Roc. For sufficiently large 1/Ro, the drift rate increases
asymptotically to zero. The solid blue line in figures 1(c,d) is a power law ∝ (1/Ro)5/3 as
suggested by Zhang et al. (2021b) based on numerical observation. We see that data for
Γ = 0.5 (figure 1c) start to follow this power law only at the largest 1/Ro, while for Γ = 1
(figure 1d), data follow this power law rather well for 1/Ro > 0.6 or so. We also remind
the reader that in temperature measurements at small Pr, i.e. where no heat transport
enhancement is observed, the onset of the BFZ can be determined from the temperature
distribution close to the sidewall, which changes from a unimodal (no BZF) to a bimodal
distribution (BZF exists) close to 1/Ro = 1, i.e. just when Coriolis forces start to influence
the turbulent flow (Zhang et al. 2020; Wedi et al. 2021).

The above observations constitute evidence that the BZF starts to form (at least for
moderate and larger Pr) already above 1/Roc in the rotation-affected regime. However, it
is unclear at which rotation rates the BZF is fully developed such that its properties (width,
strength, drift rate) follow strict power laws in Ek, Ra and Pr over large parameter ranges.
Looking at figures 1(c,d), one can see that a maximal negative drift is reached at ≈ 2/Roc
(1.5/Roc for Γ = 1), above which the (negative) drift rate decreases monotonically with
1/Ro, suggesting that only then is the BZF fully developed.

It is unclear at this point whether scaling relations of characteristic BZF properties –
such as its width or the maximal azimuthal velocity – and the dimensionless control
parameters are affected by changes in the bulk flow morphologies (turbulence, plumes,
columns, cells). In this context, we also want to point out that even at moderate rotation
rates, in the rotation-affected regime, multiple different smaller regimes exist, which were
observed in heat flux measurements at large Ra (Wei et al. 2015; Weiss et al. 2016), and
which are unexplained to date. One might speculate that these regimes occur from an
interplay of heat transport enhancement due to Ekman pumping, heat transport reduction
due to the suppression of vertical velocity (Taylor–Proudman), and additional pumping of
heat within the BZF. Understanding the BZF hence also helps us to better understand the
seemingly sharp changes in the slope of ∂Nu/∂Ro for small rotation rates. In this context,
it is also important to quantify how much of the heat transport enhancement is due to the
Ekman pumping within vortices in the radial bulk, and how much stems from the BZF.

Some features of the BZF, such as the positive azimuthal velocity close to the sidewall,
have been observed before (Kunnen et al. 2011) and were attributed to Stewartson layers
in which fluid is pumped from the Ekman layers at the bottom and the top towards the
mid-height of the cell. This explanation is, however, incompatible with the observation
of the BZF, in particular since Stewartson layers form when fluid is pumped from the
vertical boundaries towards the vertical cell centre. This is in contrast to the long vertical
structures observed for the BZF, in which fluid is pumped from the bottom to the top,
and vice versa. Furthermore, the Stewartson mechanism assumes a flow towards the
sidewalls that is independent of the azimuthal orientation and is not in accordance with
the azimuthally periodic, vertical flow structures of the BZF. In addition, simulations
at rather small Ek suggest that the thickness of the BZF (δ0) varies with Ek and Ra as
δ0 ∼ Ek2/3 (Zhang et al. 2020), which is not compatible with the known Stewartson layer
scalings δs ∼ Ek1/3 and δs ∼ Ek1/4 (Stewartson 1957, 1966; Kunnen et al. 2011) that form
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Figure 2. (a) Schematic of the experimental set-up. The copper bottom plate is shown in orange; the sapphire
top plate is shown in blue. (b) Investigated parameter space in an Ra–Ek plot. Different colours of the symbols
show different Pr (see legend). Closed symbols mark measurements taken at Ra = const. (datasets R1, R2, R3),
while open symbols mark measurements at Ek = const. (datasets E1, E2, E3). The black solid line marks the
onset of bulk convection according to Chandrasekhar (1961). The solid red and blue lines mark Ra below which
Coriolis forces affect the flow for the two smallest Pr. These lines are calculated based on 1/Roc for onset of
heat transport enhancement reported by Weiss et al. (2016). Dashed lines mark Ra below which Coriolis forces
become dominant over buoyancy and are estimated from the 1/Romax where heat transport is maximal (Weiss
et al. 2016).

due to Ekman pumping. While in measurements presented in this paper, taken in the
rotation-affected (buoyancy-dominated) regime, we find a lower exponent for the thickness
close to δ0 ∼ Ek1/2, this is still significantly larger than what is expected for Stewartson
layers.

3. Set-up

Our experimental set-up (figure 2a) consists of a cylindrical cell with height equal to the
diameter 196 mm resulting in an aspect ratio of Γ = 1. The cell is cut out of a block of
acrylic glass and is thus transparent from all sides. A 15 mm thick copper plate with heat
conductivity 394 W m −1 K−1 serves as the bottom plate. It is heated via an electrical
wire that is embedded in grooves at its bottom. Neighbouring grooves are 6 mm apart
to enable uniform heating. Two thermistors are installed into the plate approximately
3 mm below the fluid interface. As a top plate of the convection cell, we use a 5 mm
thick high-conductive sapphire plate, which is cooled by a temperature-controlled water
bath. The water temperature is measured with a single thermistor and kept at a desired
temperature to within ±0.02 K via a computer-controlled feedback loop.

The cooling water bath on top of the top plate consists of PVC sides and has a transparent
top cover of acrylic glass. This transparent set-up allows optical access from the top for
particle image velocimetry (PIV). For this, a Dantec RayPower 2000 laser with cylindrical
lens optics is attached inside the rotating structure of the set-up as shown in figure 2(a).
To measure a horizontal cross-section of the cell, the light sheet is redirected using a
mirror from the side and in this way illuminates a horizontal cross-section of the cell at
mid-height (z = H/2). A high-speed camera (Phantom VEO4K 590-L) is mounted inside
the rotating frame above the cell. For illumination, the fluid is seeded with silver-coated
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Dataset Tm (◦C) Pr Ra Ek

R1 22.5 6.55 9.8 × 108 1.6 × 10−5–3.2 × 10−4

R2 22.5 12.0 6.5 × 108 2.6 × 10−5–6.2 × 10−4

R3 22.5 76 4.0 × 108 1.0 × 10−4–1.2 × 10−3

E1 22.5 6.55 1.8 × 108–1.8 × 109 2.5 × 10−5

E2 22.5 12.0 3.2 × 108–2.4 × 109 5.0 × 10−5

E3 22.5 76 1.0 × 108–1.1 × 109 2.0 × 10−4

P1 20.0–30.0 5.4–83.3 5.8 × 108 1.0 × 10−4

P2 20.0–30.0 9.8–83.3 5.9 × 108 5.1 × 10−5–1.5 × 10−4

Table 1. Overview of the conducted experiments.

hollow glass spheres of diameter 10 μm. Two-dimensional velocity fields were calculated
from the cross-correlation of two consecutive camera snapshots, taken 20 ms apart in most
cases, but this value was adapted depending on the free-fall time τff . Images were taken
until the RAM of the camera (72 GB) was filled, which in all cases ensured a minimum
recording time of 100 τff (typically about 10 min). The PIV algorithm was performed with
ParaPIV within MATLAB (Wang 2018). The resulting velocity field had a resolution of
240 × 240 velocity points.

The entire set-up was mounted on a rotating table with a frame built on top of it and
driven by a Nanotec PD4-C stepper motor. All necessary electrical connections from the
lab into the rotating frame were achieved via sliprings at the top and bottom of the rotating
frame. At the top, water feed-throughs were installed to supply water to the cooling water
bath. The stainless steel feed-throughs were connected with bolts to the rotating frame on
one side and to a non-rotating aluminum framework on the other in such a way that it kept
the rotating axis fixed in space in order to avoid any precession of the set-up.

As working fluid we used mixtures of deionized water with glycerol. For most
experiments, we kept the temperature constant at Tm = (Tbot + Ttop)/2 = 22.5 ◦C, i.e.
close to room temperature, in order to minimize heat flux to or from the sides. Different
Pr were achieved by using different mass concentrations of glycerol in water, which
however also changes the accessible Ra and Ek ranges for a given Pr. In this paper, we
focus mostly on the three cases Pr = 6.55 (pure water), Pr = 12.0 (20 % glycerol) and
Pr ≈ 76 (60 % glycerol). By changing the temperature difference Δ and the rotation rate
Ω , we control Ra and Ek. Figure 2(b) and table 1 show an overview of the performed
experiments. For each Pr, we performed measurement at fixed Ek and various Ra (E1,
E2, E3) as well as measurements with one fixed Ra and varying Ek (R1, R2, R3). Due to
experimental constraints, different combinations of Ek and Ra were chosen for different
Pr. For two experimental runs, P1 and P2, we explored the Pr dependency of the BZF, and
there we also changed Tm to easily adjust Pr.

In all measurements, we are far away from the onset of convection (Ra 
 Rac), as
shown in figure 2(b). Hence the observed structures close to the walls are results of
strongly nonlinear interactions, in contrast to the linear wall modes close to 1/Row. We
also note that most of our measurements are not conducted in the geostrophic regime.
Although it is not clear at which Ek the geostrophic regime starts, we can compare
our data with heat flux measurements presented in Weiss et al. (2016). There, the onset
of heat transport enhancement was found to scale like 1/Roc1 ≈ 0.75Pr−0.41, and it
presents a critical rotation rate above which Coriolis forces have a significant influence
on the flow. These functions are shown as solid lines in figure 2(b). We see that all our
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Figure 3. (a–d) Time-averaged uφ measured at mid-height for Ra = 4 × 108 and Pr ≈ 76, and Ek = ∞ (a),
Ek = 6.2 × 10−4 (b), Ek = 1.5 × 10−4 (c), and Ek = 1.0 × 10−4 (d). (e) Red circles show the azimuthal
average of (c), in physical units (left-hand y-axis) and normalized by the free-fall time (right-hand y-axis).
The blue solid line is a fit of a polynomial of 10th order. The dashed vertical line marks the BZF thickness
δ0, at which 〈uφ〉 crosses 0; the arrow points to the maximum velocity umax

φ within the BZF. The inset shows
results from direct numerical simulations (DNS) of the azimuthal velocity normalized by the free-fall velocity,
〈uφ〉/uff , for Ra = 108, 1/Ro = 10, Pr = 0.8.

measurements are in this regime. However, we also show as dashed lines the rotation
rates 1/Romax ≈ 21.4 Pr1.37 Ra−0.18, at which the heat transport was maximal (Weiss et al.
2016). Only for larger rotation rates did the Coriolis forces cause a clear suppression of
the heat flux. We therefore believe that the geostrophic regime must be to the left of
the dashed lines. We see that our data are in the rotation-affected regime but not in the
rotation-dominated regime.

4. Results

4.1. Radial velocity profile
The horizontal velocity in Cartesian coordinates (u, v) is first transformed into polar
coordinates ur = u cos(φ) + v sin(φ) and uφ = −u sin(φ) + v cos(φ). Here, r is the radial
distance from the cell centre, and φ is the polar angle. We show in figures 3(a–d)
time-averaged azimuthal velocity fields 〈uφ(r, φ)〉t for different Ek.

One can see how the structure of the flow changes qualitatively. In the non-rotating case
(Ek = ∞), the flow field does not show a clear difference between the radial centre and
the regions close to the sidewall. Instead, the distribution of the red (〈uφ〉t > 0) and blue
(〈uφ〉t < 0) is orderless. In fact one would expect in this case that due to the turbulent
motion, the time-averaged azimuthal velocity would be very small. This is, however,
not the case, since there is a rather persistent large-scale motion, i.e. the LSC, that is
steady over the time duration of our measurement. Under rotation (figures 3b–d), the
characteristic features of the BZF become clearly visible, namely a red ring (〈uφ〉t > 0)
surrounding a blue central region (〈uφ〉t < 0). It can be observed that with increasing
rotation rates, the width of the red cyclonic zone decreases as well as the strength of the
flow.

For a more quantitative analysis, we average the velocity in the azimuthal direction. For
this, we sum over all velocity vectors at radial distances between r and r + dr away from
the centre, and divide this sum by the number of voxels in this range (Nr):

〈uφ〉(r) = 1
Nr

r+dr∑
r

〈uφ〉t. (4.1)
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As an example, we show in figure 3(e) 〈uφ〉 calculated from the field in figure 3(c). The
red points show the calculated velocities. The blue line is a polynomial fit of degree 10 to
these points that allows quantitative analysis. We also show for comparison, in the inset of
figure 3(e), results from simulations at very similar Ra and Ro but smaller Pr = 0.8 (Zhang
et al. 2021a). At first glance, our radial profile of 〈uφ〉 looks very similar qualitatively to
the results from direct numerical simulations (DNS). But on a closer look, quantitative
differences become visible. The most obvious is the width of the BZF, i.e. the distance
δ0 from the wall, where 〈uφ〉 switches sign, is much smaller in the DNS than in our case.
This discrepancy is most likely due to the difference in Ek (1.8 × 10−5 compared to 1.5 ×
10−4 for our measurement). While DNS were conducted within the rotation-dominated
regime, our measurements were acquired in the rotation-affected regime. Even though
Pr is different between DNS and our simulation by a factor of 10, from Zhang et al.
(2021a) we expect no, or only a very small Pr dependency of δ0 in the investigated Pr
range.

In the following, we will analyse some features of the radial profile as functions of the
dimensionless control parameters. One of these features is the radial position r0, where
〈uφ〉 switches sign, i.e. where the BZF and the bulk flow separate. To be in agreement
with previous publications (Zhang et al. 2020, 2021a), we define the width of the BZF as
δ0 = (R − r0)/R.

Figure 4 shows various time- and azimuthally-averaged velocity profiles for different
control parameters. To compare with DNS, the velocity profiles are normalized by the
free-fall velocity uff = √

αgHΔ. In figures 4(a,c), Ra was kept constant and Ek was
changed. The azimuthal velocity amplitude inside the BZF decreases with increasing
rotation rate (decreasing Ek). This decrease with decreasing Ek is by no means obvious.
On one hand, we know that increasing rotation suppresses fluid motion, hence a reduced
velocity is expected. While this is certainly true for sufficiently fast rotation rates, for
moderate rotation rates and Pr discussed here, the heat flux (Nu) is enhanced, which
suggests at least a faster flow in the z-direction. Also note that the rate with which potential
energy is converted into kinetic energy, and finally dissipated into heat, is proportional to
Nu i.e. εu = (ν3/H4)(Nu − 1) Ra Pr−2. Therefore, the total kinetic energy in the fluid is
expected to increase with increasing rotation rates first.

The fact that we nevertheless see a decrease here for all rotation rates might be because
the additional kinetic energy is contributing mostly to vertical velocity. In addition, the
width of the BZF becomes smaller, hence also viscous drag would lead to a further
reduction of the maximal azimuthal velocity inside the BZF.

In figures 4(b,d), Ek is kept constant and plots are shown for different Ra. The maximal
velocities increase with increasing Ra, which can be explained with the enhanced thermal
driving. However, we want to remind the reader that here, we show the azimuthal
velocity normalized by the free-fall velocity uff = √

gαΔH = Ra1/2(νκ)1/2/H. In fact,
the Reynolds number Re = UH/ν, and hence also the typical velocity scale U in
non-rotating RBC, scales as Re ∼ Raζ , with ζ determined experimentally to be in the
range ζ ≈ 0.42 . . . 0.5 (see e.g. Sun & Xia 2005; Brown, Funfschilling & Ahlers 2007),
which would lead to U/uff ∝ Ra−0.08 ... 0, i.e. a decrease with increasing Ra. Hence the
azimuthal velocity in the BZF increases significantly faster with Ra than for non-rotating
RBC.

In the following, we will analyse these profiles quantitatively. Most importantly, we look
at the width δ0, as well as the maximal velocity umax

φ and its location δmax, as functions of
the control parameters Ek, Ra and Pr.
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Figure 4. Radial profiles of 〈uφ〉 for Ra = const. and changing Ek (a,c), and changing Ra at Ek = const. (b,d),
as in the legends. (a,b) Pr = 6.55; (c,d) Pr = 76. Green dashed lines are guides to the eye and connect the
velocity maxima inside the BZF measuring δumax

φ
(see also figure 7).

4.2. BZF width δ0

We begin by calculating the zero-crossing and hence the thickness δ0 as functions of the
rotation rate. These results are presented in figure 5. In figure 5(a), we show δ0 as a function
of 1/Ro for three different Ra. Note that here we have chosen to plot 1/Ro on the x-axis,
because as was shown in previous studies, different features of the heat transport seem to
depend predominantly on 1/Ro and depend only weakly on Ra, such as the onset of heat
transport enhancement in large Pr fluids (Weiss et al. 2016) or the decrease of Nu in small
Pr fluids (Wedi et al. 2021).

We see in figure 5(a) that δ0 decreases with increasing 1/Ro for all three datasets. We
have seen in figure 2(b) that our data are in the rotation-affected regime but not in the
rotation-dominated regime, and that we are particularly far from the geostrophic regime for
Pr = 76. Also considering the trend of the green data points, we decide to set a somehow
arbitrary threshold for the rotation rate, which is 1/Rot = 1 for Pr = 6.55 and Pr = 12.0,
and 1/Rot = 3 for Pr = 76. In the following, we will mark data points at small and larger
1/Ro ≥ 1/Rot with open and closed symbols, respectively, and will use only the closed
symbols for scaling analysis. While this decision is somewhat arbitrary, we will see below
that solid symbols often follow certain scaling relations from which the open symbols
diverge. Now we fit power laws of the form δ0 ∼ (1/Ro)−α to the data for which 1/Ro ≥
1/Rot (solid symbols in figure 5).

The resulting power laws are shown as dashed lines in figure 5(a) and have exponents
α6.55 = 0.52 ± 0.03, α12 = 0.30 ± 0.02 and α75 = 0.07 ± 0.03, with the subscript being
Pr. At first glance, these three different power laws suggest that the exponent α is itself
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(b)
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Pr = 12.0, Ra = 6.5 × 108

Pr = 6.55, Ra = 109

Ek

Pr = 76, Ra = 4 × 108

Pr = 12.0, Ra = 6.5 × 108

Pr = 6.55, Ra = 109

∝ Ek1/2

∝ Ek2/3

Figure 5. BZF width δ0 as a function of the rotation rate for datasets E1 (blue circles), E2 (red squares) and
E3 (green diamonds). Open symbols mark data with 1/Ro < 1/Roc. Closed symbols mark data with 1/Ro ≥
1/Roc (see text for further information). The error bars were estimated from the scatter of the data points around
the fitted polynomial close to δ0. Panel (a) shows δ0 as a function of 1/Ro on a log-log plot. The dashed lines
are power-law fits to the solid symbols (1/Ro ≥ 1/Roc). Panel (b) shows the same data plotted against Ek. The
black line is a power law ∝ Ek2/3 as suggested by Zhang et al. (2021a). The purple line is a power law ∝ Ek1/2.

dependent on Ra and/or Pr, and that no simple scaling law of the form

δ0 = A Ekα Raβ Prγ = 2αA Roα Raβ−α/2 Prγ+α/2, (4.2)

can be found, even though such simple scalings have been suggested recently based on
numerical simulations (Zhang et al. 2021a), namely (for Pr > 1)

δ0 ∝ Γ 0 Pr0 Ra1/4 Ek2/3. (4.3)

For comparison with data from simulations, we plot in figure 5(b) the same measured
data but now as functions of their respective Ek. Now the data for very different Ra and
Pr overlap surprisingly well, for a given Ek. The black solid line in figure 5(b) is ∝ Ek2/3

as found in simulations by Zhang et al. (2021a), but is ignoring the Ra-dependency. We
also show by a purple line a scaling ∝ Ek1/2 for comparison. Here, our data seem to agree
better with the purple line (∝ Ek1/2), in particular for larger Ek. However, we also note that
the data scatter significantly and have rather large error bars, in particular for small Ek,
where the influence of buoyancy is small. Deviations from either power law occur mostly
for larger Ek, where also the buoyancy becomes more important. A firm conclusion on
which exponent represents the data better cannot be drawn from these data.

Clearly, there is either a simple power-law relation as in (4.2), or something more
complicated as figure 5(a) suggests. In the case of a simple power-law relation (as in
(4.2)), we can at least state from figure 5(b) that δ0 might depend predominantly on Ek,
but is otherwise at most very weakly dependent on Ra and Pr, at least in the range of our
investigation.

Observations from DNS (see (4.3)) indeed suggest an independence from Pr, but also
found an Ra-dependency δ0 ∝ Ra1/4. Let us have a closer look at what our data have to
say. Figure 6(a) shows δ0 as function of Ra for three different Pr and different but constant
Ek. While the data with Pr = 76 (largest Ek) suggest a scaling of the BZF width δ0 ∼ Raβ

with β = −0.19 ± 0.01, for smaller Pr (and also smaller Ek), δ0 seems to be unaffected
by Ra, i.e. β ≈ 0. As before, the error bars are estimates from the scatter of the velocity
data points around the fitted polynomial close to δ0. Again here, it seems that the exponent
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Figure 6. (a) Thickness δ0 as a function of Ra for three different datasets: E1 (Pr = 6.55, Ek = 2.5 × 10−5,
blue circles), E2 (Pr = 12.0, Ek = 5 × 10−5, red squares) and E3 (Pr = 76, Ek = 2 × 10−4, green diamonds).
The error bars were estimated from the scatter of the data points around the fitted polynomial close to δ0.
The green dashed line is a power law with exponent γ = −0.19 ± 0.01. The red and blue horizontal lines
are constants with δ0 = 0.18 and 0.12. (b) Thickness δ0 as a function of Pr for Ra = 6 × 108 and 1/Ro = 5
(dataset P2). The red dashed line is a power-law fit with ∼ Pr0.20±0.05. (c) Thickness δ0 as a function of Pr for
Ra = 6 × 108 and Ek = 10−4 (dataset P1). The red, orange and green lines are functions A1Prγ with the values
listed in table 2. The dashed blue line marks a power law ∝ Pr0.1.

β is a function of Pr. Note in particular that for Pr = 76, δ0 decreases with increasing Ra,
which is in disagreement with the results of DNS.

In figures 6(b,c), we show δ0 as a function of Pr for constant Ra. Experimentally, Pr was
varied by changing either Tm or the concentration of glycerol in the aqueous working fluid.
While it is trivial to set the system to the desired Ra by changing Δ accordingly, the rotation
rate Ω needed to be adjusted to keep either Ek or Ro constant. We did both.

Let us first have a look at figure 6(b), where 1/Ro = 5. As can be seen, the data are
rather noisy and do not increase strictly monotonically with Pr. There is, however, a clear
trend that δ0 increases with increasing Pr, as suggested by the previous measurements.
Fitting a power law of the form δ0 ∼ Prγ1 to the data yields γ1 = 0.2 ± 0.05.

We show in figure 6(c) values of δ0 that were acquired at constant Ra, constant Ek and
varying Pr. The data scatter significantly, and no clear trend is obvious. Here, δ0 looks
rather constant for small Pr, and seems to increase for larger Pr. While the red squares in
figure 6(b) and the blue circles in figure 6(c) show different datasets, the data are related
via (4.2). In particular, we see from (4.2) that γ1 = γ + α/2.

We assume for a moment that δ0 can be represented by power laws as in (4.2), but
that the exponents α, β and γ are different for the three different Pr ranges, as observed
in figures 5(a) and 6(a). We list in table 2 the fitted parameters from figure 5(a) as
well as figures 6(a,b). With this, we can calculate the expected power laws A1 Prγ , with
A1 = A Ekα Raβ , for all three Pr ranges, which we show in figure 6(c) as solid lines. Due to
the different exponents α for different Pr, we also get different exponents γ , which would
explain the somewhat non-monotonic behaviour of the data points in figure 6(c). Indeed,
the lines represent somehow the non-monotonic behaviours of the data points. Of course,
assuming a power law with a varying exponent means that there is no real power law in
the investigated range. However, this approach shows that the two different datasets are
consistent with each other. We note that one could have also fitted a power law through
the blue points in figure 6(c), resulting in a single exponent ∝ Pr0.1±0.03 (blue dashed
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Pr A α β β − α/2 γ + α/2 A1 γ

6.55 34.0 0.522 0 −0.261 0.20 0.278 −0.061
12.0 2.93 0.292 0 −0.146 0.20 0.199 0.054
76 15.23 0.092 −0.19 −0.236 0.20 0.140 0.154

Table 2. Coefficient and power-law exponent estimates from (4.2). The α values were estimated based on the
data in figure 5(a). The A and β values are estimates from figure 6(a), and γ was estimated from figure 6(b).

line) over the entire range. One could then represent the data in figure 6(b) with different
power laws for different Pr ranges. In any case, we have learned from figure 6(c) that (i)
the Pr dependency is rather small when Ek is kept constant, and (ii) the Ra, Pr and Ek
dependencies of δ0 cannot be written by simple power laws in the parameter range that we
are investigating here (i.e. the rotation-affected regime).

So far we have analysed δ0, the width of the BZF, as it can be measured easily in
the time-averaged two-dimensional velocity field shown in figures 3(a–d). However, the
strength of the flow, represented by the maximal averaged azimuthal velocity umax

φ , is
another quantity characteristic for the BZF, which can help to reveal the mechanisms
leading to this zonal flow. Therefore, we show in figures 7(a,b) the compensated
time-averaged maximal velocity u∗

max = umax
φ Ra Pr0.8, and in figures 7(c,d) its location

measured as the distance from the sidewall δmax. These data are plotted against Ra Ek on
the x-axis, as this represents the Rayleigh number compared to its critical value for the
onset of wall modes (Raw ∝ Ek−1). We show in figures 7(a,c) data that were acquired at
constant Ek for a given Pr and varying Ra, whereas figure 7(b,d) show data with constant
Ra and different Ek.

Let us first have a look at the compensated maximal averaged azimuthal velocity u∗
max

shown in figure 7(a). Note that the definition of u∗
max is not based on scaling arguments,

but is rather an empirical relation that provides a very good collapse of data onto a single
power law for all three Pr, with each having a different Ek. The black solid line marks
u∗

max = 4.7(Ek Ra)3/2 (or equivalently umax
φ = 4.7 Ek3/2 Ra1/2 Pr−0.8), which represents

the data fairly well. We show the same function as a black line also in figure 7(b), but
now compare it with measurements that were acquired at constant Ra but varying Ek. We
see that data for small values of Ek Ra follow this law, but data for large values of Ek Ra
diverge from the straight line. For a better visual separation, data with 1/Ro ≥ 1/Rot were
plotted with solid symbols, whereas data for which 1/Ro < 1/Rot were plotted with open
symbols. As mentioned previously, we assumed 1/Rot = 1 for the two smaller Pr, and
1/Rot = 3 for Pr = 76. Since data for varying Ra follow the mentioned power law for
nearly two decades, we are confident that this power law also holds for smaller Ek, at
least as long as buoyancy plays a significant role. Whether this scaling holds even in the
rotation-dominated regime, however, remains unclear.

Figures 7(c,d) show the distance from the wall to the maximal velocity δmax, normalized
by

√
Ek and plotted against Ek Ra. Measurements are the same as for figures 7(a,b), which

means constant Ek for figure 7(c), and constant Ra for figure 7(d). We see that the data
collapse fairly well on a constant δmax/

√
Ek ≈ 10 or so. The inset in figure 7(c) shows that

data do not collapse on top of each other without this normalization. However, the green
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Figure 7. (a,b) Compensated maximal averaged azimuthal velocity umax

φ Ra Pr0.8 as a function of Ek Ra. (a)
Data acquired at constant Ek (datasets E1, E2, E3). (b) Data acquired at constant Ra (datasets R1, R2, R3). The
solid black lines in (a) and (b) mark the same power law ∝ (Ek Ra)3/2. (c,d) Distance between the sidewall and
the location of the azimuthal velocity maximum δumax

φ
. (c) Datasets E1, E2, E3 with constant Ek. (d) Datasets

R1, R2, R3 taken at constant Ra. Open symbols in (b) and (d) mark data with 1/Ro < 1/Rot (see text). The
inset in (c) shows the same data but plotted without the normalization Ek−1/2. One sees that the data do not
collapse on top of each other. The blue arrow in (c) marks the estimated location of the maximal heat transport
for dataset E1.

data points (Pr = 76) seem to decrease slightly for larger Ek Ra, which might hint at the
fact that buoyancy becomes too strong compared to Coriolis forces.

In figure 7(d), the same quantity is plotted but from data where Ra was constant (for a
given Pr) and Ek was varied. We again plot with solid symbols data with 1/Ro ≥ 1/Rot,
and use open symbols for data with 1/Ro < 1/Rot. Clearly, the overlap of data with
different Pr is rather good only for sufficiently large 1/Ro (solid symbols), and less good
for the open symbols.

Data plotted as δmax/
√

Ek (see figures 7c,d) collapse onto a single flat line, suggesting
that δmax ∝ Ek1/2 and δmax otherwise independent of Ra and Pr. We have already seen
above (figure 5) that a similar scaling might also be visible in the data for δ0, the thickness
of the BZF. In fact, in figure 5(b), we have plotted already a purple line marking a power
law δ0 ∝ Ek1/2. Now, for a better comparison, we plot in figure 8(a) both δmax/

√
Ek and

δ0/
√

Ek as open and solid symbols inside the same graph. Clearly, the scatter of the data
for δ0 is much larger, but both follow straight lines over more than a decade in Ek Ra.
However, in both cases, the green data (Pr = 76) for the largest Ek Ra clearly decrease.

Figure 8(b) shows the ratio δ0/δmax as a function of Ek Ra. For this we have used all
available data, and show data with constant Ek as open symbols, and data with constant
Ra as solid symbols. The colour marks Pr. It becomes evident that the ratio δ0/δmax ≈ 2.6
is a constant, therefore both δ0 and δmax should exhibit the same scaling relations with the
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Figure 8. (a) Normalized length scales δ0/
√

Ek (closed symbols) and δmax/
√

Ek (open symbols) as functions
of Ek Ra. Note that data are presented for datasets E1, E2 and E3, where in fact only Ra was varied. The
straight black lines mark δ0/

√
Ek = 24.0 and δmax/

√
Ek = 9.2. (b) Ratio δ0/δmax as function of Ek Ra. Here,

the open (closed) symbols are datasets with constant (varying) Ra and varying (constant) Ek. The different
colours denote the different Prandtl numbers Pr = 6.55 (blue circles), 12 (red squares), 76 (green diamonds).
The straight black line marks δ0/δmax = 2.6.

control parameters. However, we note that due to the rather large scattering of the data,
small differences in the scaling exponents cannot be ruled out.

5. Conclusion

In this paper, we have presented measurements of the horizontal velocity at mid-height
in a rotating Rayleigh–Bénard cell of aspect ratio Γ = 1 for various Ra, Ek and Pr using
planar PIV. In these measurements, we could observe the boundary zonal flow (BZF) for
the first time in an experiment, as a ring with positive average azimuthal velocity 〈uφ〉 > 0
(cyclonic motion) surrounding a central region with 〈uφ〉 < 0 (anticyclonic motion) as
reported in Zhang et al. (2020, 2021a).

We studied the thickness of this zone (δ0) as a function of Ek, Ra and Pr. Interpretation
of the measured data is a somewhat difficult task, because on the one hand, the available
parameter ranges cover no more than a decade, but also because we cover mainly small
rotation rates, where the system is in the rotation-affected regime, where buoyancy is
small compared to Coriolis forces. Hence it is unclear whether simple scaling laws are
even expected in this regime and whether they will hold also in the rotation-dominated
(geostrophic) regime. For example, for sufficiently large rotation rates (i.e. 1/Ro > 1/Rot),
δ0 seems to follow ∝ 1/Roα , with α(Pr) being a function of Pr. While such a relation is
possible (see e.g. Grossmann & Lohse 2000, 2001), finding the correct function α(Pr)
is a difficult task for which many more data points over a much larger range need to be
acquired to get reliable results.

Furthermore, we know that the rotation-affected regime as well as the rotation-dominated
regime consists of smaller sub-regimes with transitions between them, as has been
observed in measurements of the vertical heat flux (see e.g. Zhong & Ahlers 2010; Wei
et al. 2015) and the flow configuration in the bulk (e.g. Stellmach et al. 2014; Plumley
et al. 2016). In which way these regimes affect properties of the BZF is currently unclear.
While it is somehow expected that transitions in the bulk from one regime to another
also change how the BZF properties depend on Ra, Ek and Pr, it is also possible that
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the BZF is decoupled from the dynamics in the bulk for sufficiently large rotation rates.
As a result, scaling relations of its properties could hold in both the rotation-affected and
rotation-dominated regimes. In this context, we want to remind the reader that data for
Pr = 6.55 (datasets E1 and R1) cover not only parameter ranges, where a heat transport
enhancement has been observed, but also ranges where a heat transport reduction is
expected (see Zhong & Ahlers 2010; Weiss et al. 2016). In fact, the location of maximal
heat transport enhancement for dataset E1 is marked with a blue arrow in figure 7(c). The
trends of both umax

φ and δmax do not show significant differences at the left (Nu reduction)
and the right (Nu enhancement) of this arrow.

Under the assumption of a simple power-law relationship of the form δ0 ∝ EkαRaβPrγ ,
our data suggest β ≈ 0 or close by. In fact, only for the largest number, Pr = 76, do we find
a slight decrease of δ0 with increasing Ra, which might be due to insufficient rotation rates.
This exponent is in contrast to β = 1/4, as found in numerical simulations by Zhang et al.
(2021a). The exponent γ is around zero, or at least very small, which is in agreement with
the scaling found in DNS, at least in the same Pr range (Zhang et al. 2021a). Regarding the
Ek scaling, our data suggest α ≈ 1/2, again in contrast to DNS (Zhang et al. 2021a), where
α = 2/3 was suggested. A possible explanation for the difference between DNS and our
experiment is the different parameter ranges. In fact, Zhang et al. (2021a) report results for
Pr > 1 only for cylinders of aspect ratio Γ = 1/2. However, probably more important for
the datasets of comparable Pr is that Ek in DNS is at least an order of magnitude smaller,
and therefore Coriolis forces are much stronger compared to buoyancy in the simulation.
It is indeed possible that the scaling relations that we find change for faster rotation and
converge towards the findings in DNS.

In this respect, we note that in DNS, different scaling relations were found for δ0
and δmax, i.e. the distance from the sidewall at which the averaged azimuthal velocity is
maximal. Here we find that both scale similarly ∝ Ek1/2. The maximal azimuthal velocity
itself is found in our measurements to scale as umax

φ ∝ Ek3/2 Ra1/2 Pr−0.8. It is interesting
that both δmax and δ0 are independent of Ra, but umax

φ is not, suggesting that different
mechanisms play a role here. In particular, the width is not just a result of a self-adjusting
wall shear stress. Note in this respect that in this system, Ek Ra represents the amount
of thermal driving, compared to the minimal buoyancy that is necessary to initiate wall
modes. On the other hand, δmax and δ0 are self-adjusting purely by Coriolis forces. To
investigate this problem further, more measurements and simulations are necessary that
indeed cover the entire range from the onset of wall modes up to the buoyancy-dominated
regime.
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