ELEMENTARY ABELIAN P-GROUPS REVISITED

Paul Howard and Jean E. Rubin

For each prime p, a Fraenkel-Mostowski model is constructed in which there are two elementary Abelian p-groups with the same cardinality that are not isomorphic.

Introduction

In a paper published in 1977 Hickman [1] proves that for each prime $p \geqslant 5$ there is a Fraenkel-Mostowski (FM) model in which the statement,
$\mathrm{S}(\boldsymbol{p})$: There exist two elementary Abelian p-groups with the same cardinality that are not isomorphic.
is true. Hickman says it is not known whether there exists such a model if $p=2$ or 3. (It is an easy exercise in ZFC to prove the negation of $\mathrm{S}(p)$ for every prime p.) In this note, for each prime p, we show that there is an FM model in which $\mathrm{S}(p)$ is true. Our result extends Hickman's to the primes 2 and 3, but since the construction is quite a bit different than Hickman's, we present the result here. It follows from the Jech-Sochor transfer results that the result is transferable to ZF , that is, for each prime p, $\operatorname{Con}(\mathrm{ZF}$ $+S(p))$.

An elementary Abelian p-group is an Abelian group in which all non-identity elements have order p. First note that an elementary Abelian p-group is just a vector space over the p-element field $\{0,1, \ldots, p-1\}$. Further, every vector space isomorphism is a group isomorphism and every group isomorphism is a vector space isomorphism.

The Model

Let \mathcal{N} be a model of ZFU + AC whose set of atoms A is written as a disjoint union $A=B \cup C \cup R \cup S \cup T$ and the sets B, C, R, S, and T are indexed as follows:

$$
\begin{aligned}
& B=\left\{b_{n, \lambda}: n \in \omega \wedge \lambda<\aleph_{1}\right\}, \\
& C=\left\{c_{n, \lambda}: n \in \omega \wedge \lambda<\aleph_{1}\right\}, \\
& R=\left\{r_{n, \lambda}: n \in \omega \wedge \lambda<\aleph_{1}\right\}, \\
& S=\left\{s_{n, \lambda}: n \in \omega \wedge \lambda<\aleph_{1}\right\}, \\
& T=\left\{t_{n, \lambda}: n \in \omega \wedge \lambda<\aleph_{1}\right\} .
\end{aligned}
$$

Received 10th January, 1995
Copyright Clearance Centre, Inc. Serial-fee code: 0004-9729/95 \$A2.00+0.00.

For each $\lambda<\aleph_{1}$, we shall let $A_{\lambda}=B_{\lambda} \cup C_{\lambda} \cup R_{\lambda} \cup S_{\lambda} \cup T_{\lambda}$ where $B_{\lambda}=\left\{b_{n, \lambda}\right.$: $n \in \omega\}, C_{\lambda}=\left\{c_{n, \lambda}: n \in \omega\right\}$ and so on. And let ϕ_{λ} be the permutation of A which is the product of the cycles $\phi_{\lambda}=\prod_{n \in \omega}\left(b_{n, \lambda}, c_{n, \lambda}\right)\left(r_{n, \lambda}, s_{n, \lambda}\right)$. (So that $\phi_{\lambda}\left(t_{n, \lambda}\right)=t_{n, \lambda}$ and ϕ_{λ} is the identity on $A-A_{\lambda}$.) We let G be the group generated by the permutations ϕ_{λ} for $\lambda<\aleph_{1}, \Gamma$ the filter of subgroups of G determined by finite supports and \mathcal{M} the model determined by \mathcal{N}, G and Γ.

Note that for each $\lambda<\aleph_{1}$, if $\psi \in G$ fixes any element of $B_{\lambda} \cup C_{\lambda} \cup R_{\lambda} \cup S_{\lambda}$ then ψ fixes A_{λ} pointwise. Hence for each $x \in \mathcal{M}$, there is some finite set $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\} \subset \aleph_{1}$ such that fix ${ }_{G}\left(\bigcup_{i=1}^{n} A_{\lambda_{i}}\right)=\operatorname{def}\left\{\phi \in G: \phi\right.$ fixes $\bigcup_{i=1}^{n} A_{\lambda_{i}}$ pointwise $\}$ is in Γ and $\forall \phi \in$ $\operatorname{fix}_{G}\left(\bigcup_{i=1}^{n} A_{\lambda_{i}}\right), \phi(x)=x$. For the rest of the argument we shall refer to $\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$ as a support of x.

We now define elementary Abelian p-groups G_{1} and G_{2} (with $p=2$) both of which are in \mathcal{M} with empty support: G_{1} is the vector space over the two element field $\{0,1\}$ with basis $B \cup C$ and G_{2} is the vector space over the two element field with basis $R \cup S \cup T$. (More formally, we could define G_{1} to be the set of all functions $\mathbf{v}: B \cup C \rightarrow\{0,1\}$ such that $\mathbf{v}^{-1}(1)$ is finite, together with the operation + of coordinatewise addition mod 2, similarly for G_{2}.) If $\mathbf{v} \in G_{2}$ and $\mathbf{v}=\mathbf{v}_{1}+\cdots+\mathbf{v}_{\boldsymbol{n}}$ where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n} \in R \cup S \cup T$, we shall say that $\mathbf{v}_{1}, \ldots, \mathbf{v}_{n}$ occur in \mathbf{v}.

Since $\forall \gamma, \lambda<\aleph_{1}$ and $\forall n \in \omega, \phi_{\gamma}\left(t_{n, \lambda}\right)=t_{n, \lambda}$ (and since $t_{n, \lambda}+t_{n, \lambda}=0$) we have:
Lemma 1. For all $\mathbf{v} \in G_{2}$, for all $\lambda, \gamma<\aleph_{1}$ and for all $n \in \omega, t_{n, \lambda}$ does not occur in $\mathbf{v}+\phi_{\gamma}(v)$.

Theorem 2. In $\mathcal{M},\left|G_{1}\right|=\left|G_{2}\right|$.
Proof: It is clear that the function $H_{1}^{*}: B \cup C \rightarrow R \cup S$ defined by $H_{1}^{*}\left(b_{n, \lambda}\right)=r_{n, \lambda}$ and $H_{1}^{*}\left(c_{n, \lambda}\right)=s_{n, \lambda}$ is in \mathcal{M} and has empty support. We note that H_{1}^{*} is a one to one function from a basis for G_{1} onto an independent subset of G_{2} and therefore can be extended uniquely to a one to one homomorphism H_{1} from G_{1} into G_{2}. Similarly, if we define $H_{2}^{*}: R \cup S \cup T \rightarrow G_{1}$ by $H_{2}^{*}\left(r_{n, \lambda}\right)=b_{2 n, \lambda}, H_{2}^{*}\left(s_{n, \lambda}\right)=c_{2 n, \lambda}$ and $H_{2}^{*}\left(t_{n, \lambda}\right)=b_{2 n+1, \lambda}+c_{2 n+1, \lambda}$ then
H_{2}^{*} has empty support. (Note that $\phi_{\lambda}\left(t_{n, \lambda}\right)=t_{n, \lambda}$ and
$\phi_{\lambda}\left(b_{2 n+1, \lambda}+c_{2 n+1, \lambda}\right)=c_{2 n+1, \lambda}+b_{2 n+1, \lambda}=b_{2 n+1, \lambda}+c_{2 n+1, \lambda}$) H_{2}^{*} maps a basis for G_{2} one to one onto an independent subset of G_{1}.

Therefore, H_{2}^{*} has empty support and can be extended uniquely to a one to one homomorphism H_{2} from G_{2} into G_{1}. Since $\left|G_{1}\right| \leqslant\left|G_{2}\right|$ and $\left|G_{2}\right| \leqslant\left|G_{1}\right|$ in \mathcal{M}, we conclude that $\left|G_{1}\right|=\left|G_{2}\right|$ in \mathcal{M}.

Theorem 3. In \mathcal{M}, G_{1} and G_{2} are not isomorphic.
Proof: We argue by contradiction that there is no isomorphism in \mathcal{M} from G_{1} onto G_{2}. Suppose that H is such an isomorphism with support $E=\left\{\lambda_{1}, \ldots, \lambda_{n}\right\}$. The set $X=\bigcup_{j=1}^{n}\left(B_{\lambda_{j}} \cup C_{\lambda_{j}}\right)$ is countable and hence there exists $n_{0} \in \omega$ and $\lambda_{0}<\aleph_{1}$ such that $t_{n_{0}, \lambda_{0}}$ occurs in no element of $H^{\prime \prime} X(=\{H(x): x \in X\})$.

Since H is an isomorphism, $H^{\prime \prime}(B \cup C)$ is a basis for G_{2} and therefore,

$$
\begin{equation*}
t_{n_{0}, \lambda_{0}}=\mathbf{v}_{1}+\cdots+\mathbf{v}_{k}+\mathbf{u}_{1}+\cdots+\mathbf{u}_{r} \tag{3}
\end{equation*}
$$

where $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k} \in H^{\prime \prime}((B \cup C)-X), \mathbf{u}_{1}, \ldots, \mathbf{u}_{r} \in H^{\prime \prime} X$ and the elements $\mathbf{v}_{1}, \ldots, \mathbf{v}_{k}$, $\mathbf{u}_{1}, \ldots, \mathbf{u}_{r}$ are pairwise distinct. Furthermore, except for the order in which the elements are written, this is the only way of writing $t_{n_{0}, \lambda_{0}}$ as a sum of pairwise distinct elements from $H^{\prime \prime}(B \cup C)$. By our choice of $t_{n_{0}, \lambda_{0}}, t_{n_{0}, \lambda_{0}}$ does not occur in $u_{1}+\cdots+u_{r}$ (and hence $k>0$). We shall arrive at a contradiction (and hence complete the proof) by showing that $t_{n_{0}, \lambda_{0}}$ does not occur in $\mathbf{v}_{1}+\cdots+\mathbf{v}_{k}$.

Lemma 4. Assume $1 \leqslant j \leqslant k$, then there is a λ not in E and an i with $1 \leqslant i \leqslant k$ and $i \neq j$ such that $\phi_{\lambda}\left(\mathbf{v}_{j}\right)=\mathbf{v}_{\boldsymbol{i}}$.

Proof: Assume that $\mathbf{v}_{j}=H\left(b_{n, \lambda}\right)$ where $\lambda \notin E$. (The proof is similar if $\mathbf{v}_{j}=$ $H\left(c_{n, \lambda}\right)$ where $\lambda \notin E$.) Since ϕ_{λ} fixes X pointwise, $\phi_{\lambda}(H)=H$. Further $\phi_{\lambda}\left(b_{n, \lambda}\right)=$ $c_{n, \lambda}$ so

$$
\begin{equation*}
\phi_{\lambda}\left(\mathbf{v}_{j}\right)=\phi_{\lambda}\left(H\left(b_{n, \lambda}\right)\right)=H\left(\phi_{\lambda}\left(b_{n, \lambda}\right)\right)=H\left(c_{n, \lambda}\right) \neq H\left(b_{n, \lambda}\right)=\mathbf{v}_{j} \tag{4}
\end{equation*}
$$

since H is one to one. Applying ϕ_{λ} to both sides of the equality (3) gives

$$
\begin{equation*}
t_{n_{0}, \lambda_{0}}=\phi_{\lambda}\left(\mathbf{v}_{1}\right)+\cdots+\phi_{\lambda}\left(\mathbf{v}_{k}\right)+\mathbf{u}_{1}+\cdots+\mathbf{u}_{r} . \tag{5}
\end{equation*}
$$

(ϕ_{λ} fixes $t_{n_{0}, \lambda_{0}}$ and fixes X pointwise. Therefore, ϕ_{λ} fixes $H^{\prime \prime} X$ pointwise.)
Since $\phi_{\lambda}(B \cup C)=B \cup C$, we have $\phi_{\lambda}\left(H^{\prime \prime}(B \cup C)\right)=H^{\prime \prime}(B \cup C)$. Therefore (5) expresses $t_{n_{0}, \lambda_{0}}$ as a sum of vectors from the basis $H^{\prime \prime}(B \cup C)$. Hence the right hand sides of (3) and (5) contain the same terms and so $\phi_{\lambda}\left(v_{j}\right)=v_{i}$ for some i such that $1 \leqslant i \leqslant k$. By (4), $\phi_{\lambda}\left(\mathbf{v}_{j}\right) \neq \mathbf{v}_{\boldsymbol{j}}$, hence $i \neq j$. This completes the proof of Lemma 4.

It follows that $\mathbf{v}_{1}+\cdots+\mathbf{v}_{k}$ can be written as a sum of vectors of the form $\mathbf{v}_{j}+\phi_{\lambda}\left(\mathbf{v}_{j}\right)$. Since (by Lemma 1) $t_{n_{0}, \lambda_{0}}$ does not occur in $\mathbf{v}_{j}+\phi_{\lambda}\left(\mathbf{v}_{j}\right)$ it follows that $t_{n_{0}, \lambda_{0}}$ does not occur in $v_{1}+\cdots+v_{k}$, which completes the proof of Theorem 3.

It is easy to see how the result can be generalised to any prime p. We shall indicate the construction for $p=3$. Let $A=B \cup C \cup D \cup R \cup S \cup T \cup W$. The group G is generated, by $\phi_{\lambda}=\prod_{n \in \omega}\left(a_{n, \lambda}, b_{n, \lambda}, c_{n, \lambda}\right)\left(r_{n, \lambda}, s_{n, \lambda}, t_{n, \lambda}\right), \lambda<\aleph_{1}$, where $\phi_{\lambda}\left(w_{n, \lambda}\right)=w_{n, \lambda}$ for all
$n \in \omega$. Supports are again finite. The elementary Abelian p-groups, are defined so that G_{1} is the vector space over the three element field $\{0,1,2\}$ with basis $B \cup C \cup D$ and G_{2} is the vector space over the same three element field with basis $R \cup S \cup T \cup W$. The proofs of the lemmas are similar to that given above using the fact that for all $\mathbf{v} \in G_{2}$, $w_{n, \lambda}$ does not occur in $\mathbf{v}+\phi_{\lambda}(\mathbf{v})+\phi_{\lambda}^{2}(\mathbf{v})$. The proofs of Theorems 2 and 3 are also similar to the proofs given above.

References

[1] J.S. Hickman, 'A remark on elementary Abelian groups', Bull. Austral. Math. Soc. 16 (1977), 213-217.

Department of Mathematics
Eastern Michigan University
Ypsilanti MI 48197
United States of America
e-mail: phoward@emunix.emich.edu

Department of Mathematics
Purdue University
West Lafayette IN 47907
United States of America
e-mail: jer@math.purdue.edu

