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1. Introduction

Various authors have studied the transient behaviour of single-server
queues. Notably, Takacs [13], [14] has analysed a queue with recurrent
input and exponential service time distributions, Keilson and Kooharian
[9], [10] and Finch [5] have considered a queue with general independent
input and service times, Finch [6] has analysed a queue with non-recurrent
input and Erlang service, and Jaiswal [8] has considered the bulk-service
queue with Poisson input and Erlang service. Except for Finch [6], these
authors have made the usual assumptions of independence for successive
intervals between arrivals and for service times, as formulated by Lindley
[12]. The transient distributions for queue length or waiting time have been
expressed, usually, as Laplace transforms of generating functions. These
distributions are shown to tend, as time increases, to the known distributions
for the steady state of the queue, but the rate of this convergence has not,
apparently, been investigated.

More detailed results are available for the single-server queue with a
random (Poisson) input process and negative exponential distribution of
service times. In particular, Bailey [2] [3] has obtained explicitly the queue
length distribution as a function of time, and has obtained an asymptotic
expression showing the rate at which the steady state is approached. Ref-
erences to earlier work are given in Bailey's paper.

This paper obtains, for the more general case of the bulk service queue
introduced by Bailey [1], an asymptotic expression for the queue length
distribution for large times. The results given are not restricted to negative
exponential distributions of service times.

2. Bulk service queue

In Kendall's [11] queue model, customers arrive at random (Poisson
process) at a single serving station, and are served in order of arrival, succes-
sive service intervals being independent with the same distribution. In
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the bulk service queue, conditions are the same, except that during each
service interval, a batch of N customers, or the whole queue if less than N,
is served. The queue lengths (excluding customers being served) at instants
immediately before a service interval begins form a Markov chain, with
matrix Qtj of transition probabilities, where

Qt, = k, (* = 0 ,1 , • • • , # )
Qt, = k,_i+N (i >N,i^ i-N)
Qit = 0 (i>N,j<i-N)

and kT denotes the probability of r arrivals in a service time. If p, is the
probability of a queue of r in the steady state, and

(1) P(z)

then

in which

(3)

Since P(z) is a probability generating function, it can have no singularity
in \z\ < 1. Bailey shows, that for a choice of K[z) corresponding to a gamma
distribution of service times, the N values p0, plt • • •, fn-i c a n De chosen
so that the zeros in numerator and denominator of (2) cancel for \z\ < 1.
This leads to an explicit solution for P(z).

For the transient case, let pT(n) denote the probability of a queue
length of r immediately before service interval n has commenced. Define

P(z, n) — 2 pr{
n)" z"-

Then the analysis leading to (2) leads at once to

(4) P(z, n+1) = z-»K(z) • [P(z, n) + "£pt{n) • (z»-z>)\

valid for n = 0,1, 2, • • •

For later analysis, it is convenient to express (4) in terms of a continuous
variable t, replacing the integer variable n. Define then

F(z, t) = P(z, n) for « ^ t < n+1
= 0 f or t < 0

(6) fi(i) = p,(n) for
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Then, for all t ^ 0

(7) F(z, t+1) = r*K(x) [F(Z, t) + *£/,(*) • (*»-*)].

If the initial queue length is a, then

F(z, t) = za for 0 ^ t < 1.

From (7), writing W(z) = ^fK^z).

W(z) P F{z, t+l)e-'dt = r F(z, t)er>*dt + P e-* ( £ AW (-Z*-*1)] <«•
Jo Jo J o u - o ;

But since F{z, t) = 0 for t < 0,

(8) J ^ _ er«dF(z. t) = s J " e-«F(x, f)A = P*(*. s), say.

A similar equation applies to each ft(t). Then

-'*F{z, t)dt

z, s)— e's-1za(l— e-).

From these results,

(9) P*{z, s) =

in which

If, following Bailey [1], K(z) is taken as

(10) K(z) =

which results from Poisson arrivals at mean rate A and a service time distri-
bution

(11) dB(v) = [«?/r{p)]v'-le-"'dv. (m = XE(v) = Xpja.)

then (9) gives

(12) P*(z, s)

The denominator of (12) is a polynomial in z of degree 2V+/>, and the
numerator is of degree N if a z£N. This restriction on a will be assumed
henceforth. Since P(z, n) is a generating function, F(z, t) and P*(z, t) can
have no singularity in |z| < 1. The factors of the characteristic equation
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(13) W{z)—e- = 0

which vanish in \z\ < 1 must therefore cancel with corresponding factors
of the numerator.

3. Roots of characteristic equation

Bailey [1] showed that W(z) — l has exactly N distinct zeros in [z\ ^ 1,
and p zeros in \z\ > 1. Consider

(14) W(z) = 2*{l+»t(l -z)[py = «-• = «.

For tn < N, there are no multiple zeros in \z\ ̂  1, otherwise

zN =
and

which implies m^N. Thus the solutions are distinct.
For « = 1, Bailey [1] applied Rouche"'s theorem to show that (14)

has exactly N roots in |z| ^ 1. To extend this to the present case, let z = £{s)
be any one solution of (14) satisfying |?(s)| ^ 1. Then f (s) is a regular func-
tion, except at the branch points given by W'(z) = 0, i.e. at

z = [N(p+m)]/[m(p+N)] = g

u =
(15)

and

(16)

(» = 0, ± 1 ,

= log 6,

S = 00.

Therefore f (s) is continuous for finite s in Re(s) > 0. If any £(s) has |f (s)| = 1
for some M = e~» with |»| < 1, then

^ l for |C| = l.

This contradiction, together with the continuity of £(s), shows that for
Re (s) > 0, no solution f (s) with |£(0) ^ 1 can have |£(s)| > 1 for any
s in Re (s) > 0, i.e. the N solutions with |f(0)| ^ 1 satisfy |f(s)| < 1 for
all s in Re(s) > 0. A similar argument shows that the p solutions C(s)
with |£(0)| > i satisfy |f(s)| > 1 for all s in Re(s) > 0.

Therefore cancelling the N factors common to numerator and denomi-
nator of (12)
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(17) P*(z, s) = *"(l-«-)+*(s)/II[*-C(s)]

where the product is over the p solutions £(s) with |f(s)| > 1, and <j>(s)
is of degree zero in z. The cancellation (17) assumes N linear conditions on
the N undetermined p* (s). For s = 0, Bailey [1] showed that the determi-
nant of the N equations is non-zero, given that the solutions f (0) are distinct,
so that the equations are consistent. The determinant is a rational function
of the f (0). Since each f(s) is an analytic function of s, the determinant for
general values of s can only vanish for isolated values of s, so that the can-
cellation (17) is generally valid.

Since P(z, n) is a generating function, F(l—0, t) = 1, whence
P*(l —0, s) = 1. This determines <£(s), so that

(18) P*(s) = z'(l-e-')+e" f[ [l-C,

where £,(s) for / = 1, 2, • • •, p are the p zeros of W(z)—e~' for which

lfi(s)l > 1-

4. Inversion procedure

Since P*(z, s) is a Laplace transform, a standard Tauberian theorem
gives the stationary state distribution of queue length (provided m < N) as

(19) P(z) = lim F(z, t) = lim P*{z, s).
t—oo s-»oo

For Re(s) > 0, the £,-(s) are regular, and no factor of the denominator
of (18) vanishes. Hence P*(z, s) is a regular function of u for |»| < 1 and
\z\ < 1, and thus can be expanded in a power series

3-0

Applying the inversion formula

(20) *{F("' t+V + F(z' ' 0 ) } i { ^ . 0+0) + F(z, 0-0)}

= — lim
2ni«-.«, jr-u s

P*(z, s)ds

in which y > 0 and \{F(z, 0-\-0)-\-F{z, 0—0)} = \za, an expansion of the
form

(21) F(z,t)=2ci(z)-U(t-j)
J=0

is obtained, where U(t) is the Heaviside unit function. This series gives the
transient distribution for small values of t, if the functions f,(s) have been
evaluated.
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For large values of t, the series (21) is not useful. What is required is an
asymptotic inversion, valid for large t, of

(22) T*(z, s) = TJ [W,(s)]/|>-£,(«)].
3 - 1

This expression differs from (18) by the omission of the multiplier e~',
representing a unit time delay.

5. Asymptotic distribution

The following argument shows that no d(s) in (22) can assume a real
value z in 0 < z < 1. For Re(s) ^ 0, \Ct{s)\ > 1. If f,(s) = z, 0 < z < 1,
for R(s) < 0, then by (14) there is a real (negative) s with this property.
Since 0 < z < 1, W'(z) > 0, d^{s)jds < 0, so that £,(0) < 1. By (14),
no f̂ (0) has a real value less than —1, so that |?,(0)| < 1, contradicting
|Ci(0)| > 1.

The only singularities of the integrand of (20), when 0 < z < 1, are
therefore the branch points of the f,(s). The integrand is therefore single-
valued in the s-plane cut from each branch point —f}+2nvi to — ao+2nvi.
The integral (20) then equals the sum of integrals round each cut, plus a
component which is zero if T*(z, s) is bounded for sufficiently large \s\.
(This is the case, since from (14), C,(s) = 0 (exp[—sj(N+p)]) as \s\ -*• oo).

The integral (20) equals the stationary distribution (19), plus a function
of t, obtained by inverting

y>(z,s) = T*(z,s)-T*(z,0).

The integral around the cut at — /3-f-2jm contributes (for integer t)

(24) —. (J) . • y>(z, t-p+2nvi)dy.

Since

lim 2 2(y
r-»oo v—r » c"

and y>(z, s) is a function of s only through e~', the integrals (24) sum to

e-$t p!0+) f+j

e-fit
= _ er» .-fL—. G{x)dx

where x = —y and
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(26) 2iG(x) = y>(z, —x—^—0i)—y)(z, —x—p+Oi).

From (14), u — W(z) may be expanded by Taylor's theorem about
z = g, where g is defined in equation (15):

since W'(g) = 0. For small values of v = s+jS, this series may be inverted
to give an expansion of z = ? (s) in half-integer powers of v, with leading
terms

(27) Z(s) ~ g ± [ -2 /W"(g) ] i [ e * -e - ] i ~ g±Kvh

where

Only the positive sign in (27) corresponds to a £(s) with |f (0)| > 1. Denote
this function by fx(s) = t)(s).

Then [1— »?(s)]/[z—»?(s)] — [1— »/(0)]/[z—»?(0)] has an expansion in
half-integer powers of w, with leading term (apart from the constant) of

(l-z)(z-g)-*Kv*.

The other f,(s) (j = 2, 3, • • •, p) have no branch point at s = —f}, so can
be expanded in integer powers of v. Therefore ip(z, s) has an expansion in
half-integer powers of v (with non-zero radius of convergence) in which the
leading term (apart from the constant) is

(28) A(z) • (l-z)(z-g)-*Kvh

where

) n
Therefore G(x) has a similar expansion, with leading term

(29) A(z) • (z-l)(z-g)-* • Kxi.

Since ip(z, s) is bounded, for large \s\, the conditions of Watson's lemma
(e.g. Copson [4]) apply, so that a valid asymptotic expansion is obtained
by integrating this expansion of the integrand term by term. The generating
function for queue length distribution is therefore given, asymptotically
for large n, by

( 3 0 )

K ( l ) <>+l - f > n 3 ! 2 \

J '(z-g)2 ' c*-l 4.i1/2 J
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From (30), the asymptotic moments of the distribution are readily
obtained. In particular, the mean queue length is

6. Special cases

For the queue with Poisson arrivals and negative exponential service
time distribution, and unit batch size (p = N = 1), the £(s) can be obtained
explicitly. Assuming that the traffic intensity (m/N) is less than one, only
one £(s) has |t(0)| > 1, namely

(32) v(s)

The stationary state distribution is then

which is the known (Erlang) distribution. The mean queue length is
obtained, asymptotically for large n, as

(33) m — ~""'~ ' " / v ~ ' "* ' • I '* ' '"' I M-3/2

For example, if the traffic intensity is 0.8, then mean queue length

= 3.5 at n = 100.

This illustrates the slow approach of the mean queue length from an initial
value of zero to the stationary value of 4.0.

Equation (33) may be compared with Bailey's result [3] for the simple
queue (N = f = 1) in continuous time. Taking the mean service time as the
time unit, the leading time-dependent term in Bailey's asymptotic expression
is proportional to

c-ie-'H-3'2 for c = [1-mi]2.

Both c and log [(l+w)2/(4w)] from (33) are equal to

so that the two results agree, to this order, in their functional dependence
on time.
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As an example of a bulk service queue, the case of N = 2, p=2 may
be considered. For traffic intensity mfN = 0.8,

W(z) =
g= 1.125
(3 = 0.0248.

The solutions ?(s) having |£(0)| > 1 are

t]{s) = Ci{s) for which »?(0) = 1.2498, v[-^) = 1.125
and C2(s) for which fx(0) = 2.7111, C2(-0) = 2.7159.

The mean queue length is asymptotically

4.58-578tt-3/2<r-0248n.

The queue length is therefore 4.11 at n = 50 and 4.53 at n = 100.

7. Comments

The steady state queue length distribution for the bulk service queue is
determined by the p roots ^(0). Equation (30) shows that the leading time-
dependent term is the asymptotic transient distribution is completely
determined by the £̂ (0) and by quantities given explicitly by equations
(15) and (30). It is of interest that, to obtain this result, only one of the
roots f (s) of (14) had to be expanded as a function of s, and for this the first
two terms of the series sufficed. The method should be applicable to other
queue models, whose transient distribution has been obtained as a Laplace
transform.

An asymptotic expansion such as (30) is particularly relevant when the
traffic intensity in the queue is close to one. In this case, the stationary
state may be approached very slowly, and, in a practical application, the
stationary solution may be quite inapplicable, particularly if there is any
change in the system parameters with time.
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