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Wave interaction with graded metamaterials exhibits the phenomenon of rainbow
reflection, in which broadband wave signals slow down and separate into their
frequency components before being reflected. This phenomenon has been qualitatively
understood by describing the wave field in the metamaterial using the local Bloch
wave approximation (LBWA), which locally represents the wave field as a superposition
of propagating wave solutions in the cognate infinite periodic media (so-called Bloch
waves). We evaluate the performance of the LBWA quantitatively in the context of
two-dimensional linear water-wave scattering by graded arrays of surface-piercing vertical
barriers. To do this, we implement the LBWA numerically so that the Bloch waves in one
region of the graded array are coupled to Bloch waves in adjacent regions. This coupling
is computed by solving the scattering of Bloch waves across the interface between two
semi-infinite arrays of vertical barriers, where the barriers in each semi-infinite array can
have different submergence depths. Our results suggest that the LBWA accurately predicts
the free surface amplitude across a wide range of frequencies, except those just above the
cutoff frequencies associated with each of the vertical barriers in the array. This highlights
the importance of decaying Bloch modes above the cutoff in rainbow reflection.

Key words: wave-structure interactions, wave scattering, surface gravity waves

1. Introduction

Graded metamaterials, i.e. media composed of a spatially varying resonant substructure,
have been shown to exhibit remarkable properties across a wide range of wave sciences,
including electromagnetic waves (Tsakmakidis, Boardman & Hess 2007), acoustic waves
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(Zhu et al. 2013; Ni et al. 2014; Jiménez et al. 2017; Bennetts, Peter & Craster 2019; Zhao
& Zhou 2019), elastic waves (Skelton et al. 2018; Arreola-Lucas et al. 2019), seismic waves
(Colombi et al. 2016) and water waves; the latter area is the focus of this paper. Modelling
has shown that water wave metamaterials can locally amplify wave energy; the subsequent
absorption or reflection of this energy may have important applications in the design of
wave energy converters and coastal breakwaters, respectively (Bennetts, Peter & Craster
2018; Wilks, Montiel & Wakes 2022). Grading the geometric or physical properties of
the resonators in the metamaterial can result in broadband effects. Such effects were also
demonstrated experimentally in the context of water waves by Archer et al. (2020).

The most commonly used conceptual tool for understanding wave propagation through
graded metamaterials has been what we shall refer to as the local Bloch wave
approximation (LBWA). This approach assumes that if the grading of the metamaterial is
sufficiently weak, then the wave field inside the metamaterial can locally be approximated
as a sum of propagating solutions of the Bloch–Floquet problem, in which the unit cell
of the infinite array matches the local geometry of the metamaterial. These propagating
solutions, which are associated with a frequency-dependent group velocity, only exist
in frequency intervals known as passbands. In the complementary frequency intervals
(known as stopbands), waves cannot propagate, i.e. only decaying modes are present. The
LBWA explains the properties of graded metamaterials as follows.

(i) Waves of a given frequency enter the metamaterial and gradually slow down because
the group velocity of the local Bloch wave is decreasing;

(ii) When the group velocity becomes zero at the so-called turning point, propagation
farther into the metamaterial is forbidden because the local geometry only supports
decaying modes;

(iii) Since propagation beyond the turning point is impossible, the local forward-
propagating wave must couple with the local backward-propagating wave at the
turning point, which continues to propagate backwards through the array, ultimately
leading to reflection;

(iv) The near-zero group velocity of the forward-propagating and backward-propagating
Bloch wave near the turning point results in local energy amplification;

(v) The grading causes the location of the turning point to be frequency dependent,
therefore allowing the metamaterial to induce the spatial separation of broadband
signals into their frequency components.

Variations of the above argument can be found in a large number of research papers on
the topic of graded metamaterials (Tsakmakidis et al. 2007; Zhu et al. 2013; Cebrecos
et al. 2014; Bennetts et al. 2018; Wilks et al. 2022). The interaction of waves with graded
metamaterials is often termed rainbow trapping, due to the ability of the metamaterial to
separate frequencies. As noted by Chaplain et al. (2020), a better term for this interaction
is rainbow reflection, since local amplifications of energy gradually decay, while trapped
modes do not (also see He, He & Jin (2012)).

While there are many examples of the qualitative version of the LBWA being
successfully used to explain wave interaction with graded metamaterials, few studies have
examined the approximation quantitatively. In particular, it is not known how the accuracy
of the approximation depends on the grading strength of the metamaterial, i.e. the rate
at which the resonant properties of the metamaterial vary spatially. Some discussions
based on the LBWA assume that small reflections of the local Bloch wave – which can
occur between adjacent unit cells with different properties – may be ignored in weakly
graded metamaterials. In other words, it is assumed that the transmission of Bloch waves
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A mechanistic evaluation of the LBWA

is perfect except at the turning point, where instead perfect reflection occurs. Tsakmakidis
et al. (2007), who first introduced the concept of rainbow reflection in their study of an
adiabatically tapered electromagnetic waveguide, found that an excellent approximation of
the wave-power transport into the device was obtained by assuming that these reflections
were negligible. However, the extent to which these reflections remain negligible in other
metamaterials with more significant grading is unclear.

Another key assumption of the LBWA is that decaying modes – i.e. non-propagating
solutions to the Bloch–Floquet problem which are excited in graded arrays – may be
ignored. Cebrecos et al. (2014), who studied chirped sonic crystals consisting of cylinders,
used coupled mode theory to approximate the array as a multilayered structure which only
supports wave propagation along the direction of wave incidence. By further assuming
that the dispersion relation of the crystal varies smoothly with the spatial parameter, the
authors derived a system of ordinary differential equations that accurately predicts the
wave amplitude envelope in the crystal. In their study of water wave interaction with line
arrays of split-ring resonators with graded radii, Bennetts et al. (2018) showed that the
solution was locally dominated by Rayleigh–Bloch waves, i.e. propagating homogeneous
solutions to the problem of diffraction by an infinite periodic line array of scatterers (for
details see Porter & Evans (1999)). This was done by comparing the full numerical solution
with an approximation, in which the velocity potential in each unit cell is represented using
solely the Rayleigh–Bloch eigenfunctions of the unit cell’s transfer matrix. However, none
of these papers have studied the LBWA mechanistically. Here, we will investigate wave
propagation in a graded metamaterial by exploring the coupling mechanism between Bloch
waves in adjacent unit cells. To do this, we consider the scattering of Bloch waves across
the interface between two semi-infinite uniform arrays positioned end-to-end.

The idea of using the semi-infinite problem to understand complex wave phenomena in
finite arrays is not new. The present paper is inspired by the work of Thompson, Linton
& Porter (2008) who studied the interaction of water waves by long finite line arrays
of cylinders. These authors sought to understand the resonances of these arrays further,
which had previously been discussed by Maniar & Newman (1997) and are related to
Rayleigh–Bloch waves. Thompson et al. (2008) decomposed the wave scattered by each
cylinder into (i) the diffracted wave assuming the cylinder belongs to an infinite line array,
(ii) the left and right-propagating Rayleigh–Bloch waves and (iii) decaying circular waves
which originate at the array ends. The amplitudes of the Rayleigh–Bloch waves, which are
excited by the incident waves at the array ends, were computed from the solution to the
semi-infinite problem derived by Linton, Porter & Thompson (2007). The so-called large
array approximation of Thompson et al. (2008), which assumes that the interactions of the
decaying circular waves at the opposite array ends can be ignored, yielded numerically
accurate predictions of the scattered wave coefficients. We will apply a similar modelling
approach to study graded arrays of vertical barriers in a two-dimensional fluid.

In our previous work (Wilks et al. 2022), we demonstrated rainbow reflection in graded
arrays of surface-piercing vertical barriers of point-thickness in a two-dimensional fluid
of constant and finite depth. We claimed the LBWA applied to this problem and used it
to explain the rainbow reflection, although we did not verify this claim. Subsequently,
we augmented the boundary value problem for the graded array of vertical barriers
to include an energy absorption mechanism (i.e. damped pistons) in the interbarrier
regions. By optimising the parameters of the device, we showed that it could achieve
near-perfect energy absorption over a prescribed frequency interval. More recently, Huang
& Porter (2023) considered the related problem of a water wave metamaterial consisting
of an equally spaced array of identical vertical barriers. The authors solved the problem
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(i) numerically using an efficient transfer-matrix method and (ii) via homogenisation
in the small spacing limit. The agreement between these methods is excellent if this
small-spacing assumption is valid, although the homogenised model fails as the resonant
frequency of the array is approached. Here, we will also consider the scattering of water
waves by arrays of vertical barriers. This setting is advantageous because the scattering
problem is simple to formulate and solve using computationally efficient methods, yet it
is sufficiently non-trivial that metamaterials can support both propagating and decaying
solutions to the Bloch–Floquet problem at the same frequency.

In § 2, we solve the scattering of Bloch waves across the interface between two
semi-infinite arrays of vertical barriers. We arrive at this solution hierarchically, after
discussing (i) scattering by a single vertical barrier, (ii) scattering by finite arrays of
vertical barriers, (iii) propagation of Bloch waves through infinite periodic arrays of
vertical barriers and (iv) scattering by semi-infinite arrays of vertical barriers. In § 3,
we present results for the transmission of Bloch waves across the interface between two
semi-infinite arrays of vertical barriers. In § 4, we numerically implement the LBWA
based on the assumption that the coupling of Bloch waves between adjacent subregions
in a graded array behaves like the coupling across the interface between two semi-infinite
arrays. Our results suggest that the LBWA accurately predicts the free surface amplitude
at most frequencies, with the exception of intervals which lie just above the cutoff
frequencies associated with each of the vertical barriers in the array. Specifically, these
cutoff frequencies are the maximum frequency at which the corresponding infinite array
problem supports propagating Bloch solutions. We argue that these errors are due to the
excitation of slowly attenuating Bloch waves in the region immediately beyond the turning
point.

2. Scattering by arrays of vertical barriers

2.1. A single vertical barrier
We begin by considering the problem of wave scattering by a single surface-piercing
vertical barrier, which is a classic problem in linear water wave theory (Ursell 1947; John
1948). Here, we consider the finite-bathymetry version of the problem. In our notation,
the fluid occupies the region Ω = {(x, z)|x ∈ R,−H < z < 0} \ Γ , where H is the depth,
the sea-bed being situated at z = −H. The mean position of the free surface is situated at
z = 0 and Γ = {(0, z)| − d < z < 0} describes the barrier, which has submergence depth
of d. Under the usual assumptions of time-harmonic linear water wave theory (Linton &
McIver 2001; Mei, Stiassnie & Yue 2005), the velocity potential of the fluid is described
by Re(φ(x, z) e−iωt), where t is time, ω is the angular frequency, and the complex valued
function φ satisfies the following boundary value problem:

�
φ = 0 (x, z) ∈ Ω, (2.1a)

∂zφ = ω2

g
φ z = 0, (2.1b)

∂zφ = 0 z = −H, (2.1c)(
∂

∂x
∓ ik0

)
(φ − φIn) → 0 as k0x → ±∞, (2.1d)

967 A20-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
3.

46
6 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2023.466


A mechanistic evaluation of the LBWA

∂xφ = 0 (x, z) ∈ Γ, (2.1e)√
x2 + (z + d)2‖∇φ‖ → 0 as

√
x2 + (z + d)2 → 0, (2.1f )

where g is acceleration due to gravity and φIn is the potential of the prescribed incident
wave. Moreover, the quantities km are the solutions to the dispersion relation k tanh kH =
ω2/g, with k0 ∈ R

+ and −ikm ∈ ((m − 1)π/H,mπ/H) for all m ∈ N. After applying
separation of variables, we adopt a piecewise ansatz for the solution to (2.1) of the form

φ(x, z) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∞∑
m=0

(A(0)m exp(ikmx)+ B(0)m exp(−ikmx))ψm(z), x < 0,

∞∑
m=0

(A(1)m exp(ikmx)+ B(1)m exp(−ikmx))ψm(z), x > 0,
(2.2)

where the vertical eigenfunctions have been defined as

ψm(z) =
(

sinh(2kmH)
4kmH

+ 1
2

)−1/2

cosh(km(z + H)). (2.3)

The expansions in (2.2) automatically satisfy (2.1a–c). The Sommerfeld radiation
condition (2.1d) allows us to formulate the boundary value problem as a scattering
problem, in which the unknown coefficient vectors of the scattered field (A(1) and B(0))
are sought in terms of the prescribed coefficient vectors of the incident field (A(0) and
B(1)). The entries of these coefficient vectors are the coefficients in (2.2) after the infinite
sums have been truncated at m = Nsol. The coefficient vectors of the scattered field must
be chosen so that φ(x, z) satisfies the boundary condition on the barrier (2.1e) and is
continuously differentiable across the gap beneath the barriers. This is accomplished using
the integral equation/Galerkin method of Porter & Evans (1995), which leverages prior
knowledge of the singularity at the tip of the barrier (2.1f ) to enable accurate computation
of the coefficient vectors. The method yields a scattering matrix (which we express in
blockwise form) that satisfies[

S11 S12
S21 S22

] [
A(0)

B(1)

]
=

[
A(1)

B(0)

]
. (2.4)

Other than Nsol, the accuracy of the Galerkin solution depends on two other truncation
parameters, which we have tuned so that at least five-figure accuracy of B(0)0 and A(1)0 is
achieved across a range of test frequencies. The reader is referred to Porter & Evans (1995)
for further details.

2.2. Finite arrays of vertical barriers
Next, we consider the scattering by N + 1 vertical barriers which are positioned at x =
nW for n ∈ {0, . . . ,N}. Although the treatment here is essentially identical to that in our
earlier paper (Wilks et al. 2022), we use this subsection to introduce terms which will be
used subsequently in this paper. We restrict the problem to the case where the horizontal
distance between barriers W and their submergence depth d are constant. Both restrictions
could be easily relaxed (the latter by incorporating different scattering matrices at each of
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the different barriers) but this is not done here for ease of exposition. The solution to the
multiple scattering problem may be written in the form

φ(x, z) =
∞∑

m=0

(A(n)m exp(ikm(x − nW))+ B(n)m exp(−ikm(x − nW)))ψm(z), (2.5)

for n ∈ {0, . . . ,N + 1} and

x ∈ In :=

⎧⎪⎨
⎪⎩
(−∞, 0), n = 0,
((n − 1)W, nW), 0 < n ≤ N,
(NW,∞), n = N + 1.

(2.6)

A scattering matrix equation analogous to (2.4), modified to incorporate the phase-shift
matrix L = diag(exp(ikmW)), in which 0 ≤ m ≤ Nsol, can be written as[

LS11 LS12L
S21 S22L

] [
A(n−1)

B(n)

]
=

[
A(n)

B(n−1)

]
, (2.7)

for all n ∈ {1, . . . ,N + 1}. In the multiple scattering problem, A(0) and B(N+1) are known.
To compute the remaining unknown coefficients, we use the scattering matrix method (Ko
& Sambles 1988; Bennetts & Squire 2009; Montiel, Squire & Bennetts 2015) to obtain a
scattering matrix for the whole array and compute the unknown coefficients recursively.
This method remains numerically stable for large N.

2.3. Infinite arrays of vertical barriers
We now seek propagating solutions to the infinite array problem, i.e. the case where
the barriers are positioned at nW for all n ∈ Z. Despite our treatment here being again
essentially identical to that in our previous paper (Wilks et al. 2022), we introduce terms
that will be important in what follows. Our formulation and method are also analogous to
those of Peter & Meylan (2009). In the infinite array problem, we require that (2.5) and
(2.7) hold for all n ∈ Z after redefining the horizontal intervals as In = ((n − 1)W, nW).
Bloch’s theorem motivates seeking quasiperiodic solutions of the form

φ(x + nW, z) = exp(±iqnW)φ(x, z), (2.8)

for all n ∈ Z, where q(−q) is the unknown Bloch wavenumber of the forward-propagating
(backward-propagating) Bloch wave. Periodicity arguments allow us to restrict q ∈
(0,π/W). Solutions to (2.8) may easily be shown to satisfy

A(n)m = exp(±iqnW)A±
m, (2.9a)

B(n)m = exp(±iqnW)B±
m, (2.9b)

i.e. the coefficients in different interbarrier regions are related via a phase-shift which
depends on the direction of the Bloch wave. Combining equations (2.9) and (2.7) for n = 1
yields the following generalised eigenvalue equation:[

LS11 0M
S21 −I

] [
A±
B±

]
= exp(±iqW)

[
I −LS12L

0M −S22L

] [
A±
B±

]
, (2.10)

where I and 0M denote the identity and zero matrices of dimension Nsol + 1, respectively.
If generalised eigenvalues of (2.10) exist (do not exist) on the unit circle at a given angular
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frequency ω, then ω is said to lie in a passband (stopband). The eigenvectors of (2.10) are
normalised so that

|A±
0 |2 − |B±

0 |2 + 2i
∞∑

m=1

km

k0
Im(A±

mB±
m) = 1, (2.11)

in which w̄ denotes the complex conjugate of w. This normalisation ensures that the
conservation of energy identities given in §§ 2.4 and 2.5 take a familiar form.

2.4. Semi-infinite arrays of vertical barriers
Next, we consider the problem of scattering by a semi-infinite array of vertical barriers,
which are positioned at x = nW for n ∈ N0 (i.e. n is a non-negative integer) and have
identical submergence depth d. To the best of our knowledge, this particular problem has
not been considered before, although the scattering of water waves by semi-infinite arrays
has previously been considered in both two and three dimensions for different scatterer
geometries (Porter & Evans 2006; Linton et al. 2007; Peter & Meylan 2007). Our treatment
here, which uses the so-called filtering method when Bloch waves are supported by the
semi-infinite array, is based on these papers. For other solution methods to the semi-infinite
diffraction problem, see Martin, Abrahams & Parnell (2015) and Joseph & Craster (2015).

The separation of variables expansion for the problem is given by (2.5), in which n ∈ N0
and

In =
{
(−∞, 0), n = 0,
((n − 1)W, nW), n > 0.

(2.12)

Equation (2.7) then holds for all n ∈ N. We first consider the case where ω is in a passband
of the semi-infinite array. Anticipating the use of the solution to solve the coupling between
two semi-infinite arrays, we permit the incident wave to have both left-travelling and
right-travelling components. The right-travelling component is described generally by
the known coefficient vector A(0), whereas the left-travelling component is restricted to
consist only of a leftward-propagating Bloch wave of known complex amplitude β. The
scattered wave in x < 0 is described by the coefficient vector B(0). In the semi-infinite
array, the scattered field consists of a rightward-propagating Bloch wave of unknown
complex amplitude α, as well as a component made up of non-propagating Bloch waves
that decay as x → +∞. This motivates decomposing the coefficient vectors as

A(n) = α exp(iqnW)A+ + β exp(−iqnW)A− + C(n), (2.13a)

B(n) = α exp(iqnW)B+ + β exp(−iqnW)B− + D(n), (2.13b)

for all n ≥ 1, where C(n) and D(n) describe the component of the wave that decays as x →
∞. This implies that C(n),D(n) → 0V as n → ∞, where 0V is the (Nsol + 1)-dimensional
zero column vector.

Next, we obtain the unknown coefficients using the filtering method, which leverages
information about the phase of the scattered wave (implied by the Bloch wavenumber) to
achieve a significant reduction of the numerical error of the amplitude of the scattered
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Bloch wave compared with more direct methods (Linton et al. 2007). To do this, we define

Ã
(n)

:=
{

A(n) − β exp(−iqnW)A−, n > 0,
A(0), n = 0,

(2.14a)

B̃
(n)

:=
{

B(n) − β exp(−iqnW)B−, n > 0,
B(0), n = 0,

(2.14b)

which approach the coefficients of the scattered Bloch wave as n → ∞, i.e. Ã
(n) →

α exp(iqnW)A+ and B̃
(n) → α exp(iqnW)B+. We also define

C̃
(n)

:=
{

Ã
(n) − exp(iqW)Ã

(n−1)
, n > 0,

A(0), n = 0,
(2.15a)

D̃
(n)

:=
{

B̃
(n) − exp(iqW)B̃

(n−1)
, n > 0,

B(0), n = 0,
(2.15b)

which both decay to 0V as n → ∞. The quantities in (2.14) and (2.15) are related by the
following telescoping sum identities:

Ã
(n) =

n∑
j=0

exp(iq(n − j)W)C̃
(j)
, (2.16a)

B̃
(n) =

n∑
j=0

exp(iq(n − j)W)D̃
(j)
. (2.16b)

Next, we substitute (2.16) into (2.7), in order to reformulate the problem in terms of the
unknowns C̃

(n)
and D̃

(n)
. After some algebra, we eventually obtain

LS11C̃
(0) +

1∑
j=0

exp(iq(1 − j)W)[LS12LD̃
(j) − C̃

(j)
] = β exp(−iqW)[A− − LS12LB−],

(2.17a)

S21C̃
(0) + exp(iqW)[S22L − I]D̃

(0) + S22LD̃
(1) = −β exp(−iqW)S22LB−, (2.17b)

in the n = 1 case, and
n−1∑
j=0

exp(iq(n − j)W)[(exp(−iqW)LS11 − I)C̃
(j) + LS12LD̃

(j)
] − C̃

(n) + LS12LD̃
(n) = 0,

(2.17c)

n−1∑
j=0

exp(iq(n − j)W)[exp(−iqW)S21C̃
(j) + (S22L − exp(−iqW))D̃

(j)
] + S22LD̃

(n) = 0,

(2.17d)

in the n > 1 case. In particular, (2.10) was used to show that the right-hand sides of
(2.17c,d) are zero, which implies that the incident Bloch wave can only excite other wave
modes at x = 0.
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To obtain the numerical solution, we assume that for some sufficiently large P, C̃
( p) =

D̃
( p) = 0V for all p > P. A 2P(Nsol + 1)-dimensional linear system for the remaining

unknown coefficients is assembled using (2.17a,b), (2.17c) for n ∈ {2, . . . ,P − 1}, (2.17d)
for n ∈ {2, . . . ,P} and the statement C̃

(0) = A(0). After solving this linear system, the
original desired coefficients A(n) and B(n) can then be obtained from (2.13), (2.14) and
(2.16). Moreover, some matrix algebra can be used to obtain the transmission and reflection
operators T+

f , T+
b , R+

f and R+
b , which satisfy

T+
f A(0) + R+

b β = α, (2.18a)

R+
f A(0) + T+

b β = B(0), (2.18b)

in which the superscript + indicates that the metamaterial occupies the positive half-line,
while the subscripts f and b refer to the forward and backward scattering problems,
respectively. In (2.18), T+

f is a (Nsol + 1)-dimensional row vector, R+
b is a scalar, R+

f is a
(Nsol + 1)-dimensional square matrix and T+

b is a (Nsol + 1)-dimensional column vector.
If only propagating modes are incident to the system, (2.18) can be reduced to a 2 × 2
matrix equation of the form

S(0, d)
[

A(0)0
β

]
=

[
α

B(0)0

]
, (2.19)

i.e. it relates the amplitudes of the propagating waves. The reason for using the notation
S(0, d) for the 2 × 2 matrix will become apparent in § 2.5.

Next, we consider conservation of energy. In the forward scattering problem, we set
A(0)m = δ0m (in which δij denotes the Kronecker delta) and β = 0. The reflection and
transmission coefficients are then given by R = B(0)0 and T = α. In the backward scattering
problem, we set β = 1 and A(0)m = 0 for all 0 < m < Nsol. In this case, the reflection
and transmission coefficients are given by T = B(0)0 and R = α. In both scattering
problems, the conservation of energy identity |R|2 + |T|2 = 1 can be shown to hold by
applying Green’s second identity. The familiar form of this identity is guaranteed by the
normalisation of the Bloch waves given in (2.11).

We remark that when ω is in a stopband, no propagating Bloch waves exist in the
metamaterial region and the filtering method is not required. In this case, the only required
diffraction matrix is R+

f , which can be approximated accurately using the solution for a
finite, regularly spaced array of vertical barriers, that is, the method outlined in § 2.2.
In the absence of propagating Bloch waves, all of the matrices T+

f , T+
b and R+

b are
not well defined. For consistency of notation in this case, we write a 1 × 1 scattering
matrix equation of the form S(0, d)A(0)0 = B(0)0 . The conservation of energy identity for
the forward scattering problem in which A(0)m = δ0m is simply |R| = 1, where R = B(0)0 .

We also require the solution to the problem where the barriers occupy the negative
half-line. Specifically, the barriers are situated at x = −nW for n ∈ N. This solution is
obtained by applying the transformation x 
→ −(x + W). Following some lengthy algebra,
we obtain the following relationships between the diffraction matrices for the positive and
negative half-line problems:

R−
b = LR+

f L T−
b = JT+

f L, (2.20a)

T+
f = LT−

b J R−
f = J2R+

b , (2.20b)
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d–

d+

z = 0

x = 0

z = –H

W
W· · · · · ·

Figure 1. A schematic of the geometry of the problem of two coupled semi-infinite arrays of surface-piercing
vertical barriers in a fluid of finite depth.

where the number J has been defined as

J := exp(−ikmW)
A+

m

B−
m

= exp(ikmW)
B+

m

A−
m
, (2.21)

which can be shown to be independent of the choice of m. The negative half-line diffraction
matrices satisfy

T−
f γ + R−

b B(0) = A(0), (2.22)

R−
f γ + T−

b B(0) = η, (2.23)

where γ and η denote the amplitudes of the incident (right-travelling) and scattered
(left-travelling) Bloch waves in the metamaterial region, respectively. Similarly to the right
semi-infinite array problem, (2.22) may be reduced to a 2 × 2 scattering matrix equation
of the form

S(d, 0)
[
γ

B(0)0

]
=

[
A(0)0
η

]
, (2.24)

when evanescent modes are discarded.

2.5. Two coupled semi-infinite arrays
Lastly, we solve the problem of two coupled semi-infinite arrays. The submergence depth
of the barriers of the semi-infinite array on the negative (positive) half-line is denoted
d− (d+). For simplicity we will only consider the case when the spacing W is identical
for both semi-infinite arrays, although this condition would be easy to relax at the cost of
introducing more notation. A schematic of the geometry is given in figure 1.

In general, we consider the case where incident Bloch waves can originate from both
semi-infinite arrays. The Bloch wave incident from the left (right) semi-infinite array
has complex amplitude α− (β+) and propagates towards the right (left). The unknown
amplitude of the scattered wave travelling left (right) in the left (right) semi-infinite array
is denoted β− (α+). With reference to the diffraction matrices in § 2.4, these unknown
amplitudes can be obtained from the following linear system:⎡

⎢⎢⎣
−1 0 T+

f 0ᵀ
V

0V 0V R+
f −I

0V 0V −I R−
b

0 −1 0ᵀ
V T−

b

⎤
⎥⎥⎦

⎡
⎢⎢⎣
α+
β−
A(0)

B(0)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

−R+
b β

+
−T+

b β
+

−T−
f α

−

−R−
f α

−

⎤
⎥⎥⎦ , (2.25)

in which ᵀ denotes the transpose. When α− = 1 and β+ = 0, the reflection and
transmission coefficients for this problem are R = β− and T = α+. Green’s second
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identity and the Bloch wave normalisation (2.11) yields the conservation of energy identity
|R|2 + |T|2 = 1. When α− = 0 and β+ = 1, the aforementioned identity again holds with
the roles of R and T reversed. After inverting the matrix in (2.25) and using matrix algebra
to eliminate A(0) and B(0), the following 2 × 2 linear system for the unknown Bloch
amplitudes is obtained:

S(d−, d+)
[
α−
β+

]
=

[
α+
β−

]
. (2.26)

The previous discussion assumed that propagating Bloch waves are defined in both
semi-infinite regions. If ω is in the stopband of the right semi-infinite array, then (2.25)
reduces to ⎡

⎣0V R+
f −I

0V −I R−
b

−1 0ᵀ
V T−

b

⎤
⎦

⎡
⎣ β−

A(0)

B(0)

⎤
⎦ =

⎡
⎣ 0V

−T−
f α

−

−R−
f α

−

⎤
⎦ . (2.27)

For α− = 1, the conservation of energy condition becomes |R| = 1, where R = β−. For
notational consistency, we remark that (2.27) reduces to the following 1 × 1 linear system:

S(d−, d+)
[
α−] = [

β−]
. (2.28)

3. Bloch wave coupling in semi-infinite arrays

In the remainder of this paper, we fix the parameters H = 20 m and W = 2 m. With
regards to the numerical parameters, we set the truncation of the solution expansion
Nsol = 20. Furthermore, the point in the array where decaying effects are assumed to have
vanished is fixed at P = 50 for the remainder of this paper. This value of P was chosen so
that at least four figures of convergence was obtained for α, where α is the amplitude of the
right-travelling Bloch wave in the problem of forward scattering by a single semi-infinite
array described in § 2.4. The validation of our method for the problem of two coupled
semi-infinite arrays is discussed in the next subsection.

3.1. Method validation
Several steps were taken to validate the method given in § 2.5 and its subsequent
implementation. First, the absolute error of the conservation of energy identities was
checked and found to be less than 5 × 10−7 across the range of parameters and frequencies
considered here. Second, we chose an arbitrary selection of barriers on which to verify the
boundary and matching conditions. We confirmed that to a good approximation (i) the
normal derivative of the potential on each barrier was zero and (ii) the potential was
continuously differentiable beneath the barrier. Third, we recognise that the solution to the
two coupled semi-infinite arrays problem must reduce to the infinite array problem when
the barriers of both arrays have the same submergence depth, i.e. d+ = d−. This means
that Bloch waves should not undergo any interaction at the interface and that S(d−, d+) is
the 2 × 2 identity matrix. This has been verified.

3.2. Transmission between two semi-infinite arrays
We first recall some results from Wilks et al. (2022) about Bloch wave dispersion in an
infinite array of vertical barriers. Periodic arrays of vertical barriers have a single finite
passband at low frequencies, which lies beneath an infinite stopband. The so-called cutoff
frequency which separates the passband and stopband is closely related to the resonant
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ω
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|T |
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1.0 d– = 0

d– = 1

d– = 2

d– = 3

d– = 4
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Figure 2. The effect of frequency on the transmission of Bloch waves from the left semi-infinite array to
the right semi-infinite array. The submergence depth of the barriers in the right semi-infinite array is fixed at
d+ = 5 m, while the submergence depth of the barriers in the left semi-infinite array ranges from d− = 1 m to
d− = 5 m. The perfect transmission indicated by the curve for d+ = d− provides validation for the method of
coupling two semi-infinite arrays – see the discussion in § 3.1 for further details. When d− = 0 m, the problem
reduces to scattering by a single semi-infinite array – the corresponding transmission curve is also included.

frequency of a pair of vertical barriers, which decreases as the submergence depth of the
two barriers increases (Wilks et al. 2022).

Curves showing the effect of frequency on the transmission of Bloch waves from the left
semi-infinite array to the right semi-infinite array are given in figure 2. In that figure, we fix
the submergence depth of the barriers in the right semi-infinite array to be d+ = 5 m, while
varying the submergence depth of the barriers in the left semi-infinite array from d− =
0 m to d− = 5 m. We observe that at low frequencies, transmission is very close to unity
regardless of the submergence depth of the barriers in the left semi-infinite array. This is
because the interaction between the barriers and the wave is negligible when k0d � 1 and
d � H (Ursell 1947). For d− < d+, transmission decreases as the frequency approaches
the cutoff frequency from below. The rate of this decrease is higher when d+ − d− is
larger. When 0 m < d− < 5 m and ω is in the stopband of the right semi-infinite array
(beginning at approximately 1.342 s−1), Bloch waves cannot propagate to the right, thus T
vanishes as only reflection can occur. In these cases,ω eventually enters the stopband of the
left semi-infinite array as well. When this happens, the problem is not well defined and the
transmission curve terminates, although several of these terminations occur outside of the
frame of figure 2. When d− = 0 m, the open sea region x < 0 supports propagating plane
waves at all frequencies, thus the corresponding transmission curve never terminates.

The results from this section have implications for the LBWA. In any unit cell of a graded
array, the local Bloch waves must couple with the local Bloch waves in adjacent unit cells.
It is reasonable to expect that this coupling will behave like the coupling of Bloch waves
across two semi-infinite arrays. When the grading is not sufficiently weak, the difference
between the submergence depths of adjacent barriers may not be small. This means that
the naïve version of the LBWA, which treats Bloch wave coupling before the turning point
as perfect transmission, may not apply. Instead, these reflections should be accounted for
and the problem should be treated like a multiple scattering problem. In the next section,
we describe and implement a version of the LBWA which accounts for reflections of Bloch
waves yet continues to ignore the contributions of decaying Bloch modes.
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4. Numerical implementation of the LBWA

We consider the problem of scattering by a finite graded array of N vertical barriers
using an approximate method based on the LBWA. In particular, we assume that between
every adjacent pair of barriers, the wave can be represented as the superposition of right-
and left-travelling Bloch waves. This assumption reduces the problem to the well-known
problem of one-dimensional multiple scattering of waves on a string (see Martin (2014)
for an outline of these problems). In this analogy, the grading of the submergence depths
of the barriers in the water wave metamaterial would be equivalent to the string having
piecewise-constant material properties. To describe our scattering problem in this way,
we must obtain the transmission and reflection coefficients that couple Bloch waves in
adjacent regions – we derive these from the coupling of two semi-infinite arrays as
discussed in § 2.5. The solution obtained using this method will be contrasted with the
solution obtained using the semianalytic method introduced in § 2.2.

4.1. Method
As in § 2.2, the barriers are positioned at x = nW and have submergence depth d(n)
for n ∈ {0, . . . ,N}. In the region x < 0, we assume a plane incident wave of the form
exp(ik0x)ψ0(z) and also approximate the scattered field as a plane wave, which implies
that

A(0)m = ÃIncδ0m, (4.1a)

B(0)m ≈ B̃Rδ0m, (4.1b)

where B̃R is unknown and

ÃInc ≈ AInc
g
ω

(
sinh(2k0H)

4k0H
+ 1

2

)1/2

, (4.1c)

where AInc is the amplitude of the incident wave. To the right of the array, the transmitted
wave is approximated as a plane wave of the form

A(N+1)
m ≈ ÃTδ0m, (4.1d)

where ÃT is unknown. For x ∈ (nW, (n + 1)W) and 0 ≤ n < N, the wave is approximated
as the superposition of Bloch waves that correspond to the infinite array where the barriers
have submergence d(n) if solutions to the Bloch–Floquet problem exist. That is, we assume
that the potential is a superposition of right- and left-travelling Bloch waves with complex
amplitudes α(n) and β(n), respectively. This implies

A(n) ≈ α(n) exp(iq(n−1)nW)A(n−1)+ + β(n) exp(−iq(n−1)nW)A(n−1)−, (4.2a)

B(n) ≈ α(n) exp(iq(n−1)nW)B(n−1)+ + β(n) exp(−iq(n−1)nW)B(n−1)−, (4.2b)

where q(j) is the Bloch wavenumber and A(j)± and B(j)± are the Bloch wave coefficients for
the infinite array of barriers with submergence depth d(j). These quantities are computed
using the method given in § 2.3. If the Bloch–Floquet problem has no solutions for the
infinite array where the barriers have submergence d(n), then we assume A(n)m = B(n)m = 0.

To compute the LBWA, we must consider three cases.
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4.1.1. Case 1: total reflection by the first barrier
This case governs the situation where the region 0 < x < W does not support propagating
Bloch waves, that is, the frequency is in the stopband of the infinite array where the barriers
have submergence d(0). The LBWA suggests that there is no wave amplitude anywhere in
the array and that transmission by the array is zero. The interaction at the first barrier
is modelled using the single semi-infinite array diffraction problem where the barriers
occupy the positive half-line. Thus, we need only compute B̃R = S(0, d(0))ÃInc.

4.1.2. Case 2: total reflection within the graded array
This case describes the situation where the local Bloch wave is totally reflected inside
the array. Let p be the smallest value in {1, . . . ,N} such that ω is in the stopband of the
infinite array of barriers with submergence depth d( p). This implies that x = pW is the
turning point and no Bloch waves exist past this point. At the leftmost barrier of the array,
we assume that the wave interaction can be locally modelled using the single semi-infinite
array diffraction problem. Thus, we use (2.19) to relate the amplitudes of plane waves to
the left and Bloch waves to the right of the leftmost barrier, i.e.

S(0, d(0))
[

ÃInc
β(1)

]
=

[
α(1)

B̃R

]
. (4.3a)

For 2 ≤ n ≤ p, we assume that the wave interaction can be locally modelled using
the two coupled semi-infinite arrays problem. This problem must be transformed
so that the first barrier of the right semi-infinite array occurs at x = (n −
1)W instead of at x = 0. By combining (2.26) with the phase shift matrices
Pn = diag[exp(−iq(n−1)nW), exp(iq(n−2)nW)] and Qn = diag[exp(−iq(n−1)nW),
exp(iq(n−2)nW)], we obtain

PnS(d(n−2), d(n−1))Qn

[
α(n−1)

β(n)

]
=

[
α(n)

β(n−1)

]
. (4.3b)

Lastly, the amplitudes of the Bloch waves in the region immediately preceding the
turning-point barrier are again related by assuming that the wave interaction can be locally
modelled using the two coupled semi-infinite arrays problem. However, in this problem
no Bloch wave is defined in the right semi-infinite array. Thus, we use (2.28) to model
the reflection of Bloch waves in the left semi-infinite array, which after transformation
becomes

exp(2iq( p−1)pW)S(d( p−1), d( p))α( p) = β( p). (4.3c)

Equation (4.3a–c) form a system of 2p + 1 equations and 2p + 1 unknowns, which can be
solved using standard methods. The approximation of the fluid potential can be recovered
using (4.1a,b) and (4.2a,b).

4.1.3. Case 3: partial transmission
This last case governs the case where local Bloch waves are defined throughout the array
and therefore the array can transmit energy. The solution proceeds similarly to case 2,
where (4.3a) holds and (4.3b) holds for 2 ≤ n ≤ N. However, (4.3c) no longer applies.
Instead, the interaction of the Bloch waves to the left of the (N + 1)th barrier with the
plane wave to the right is modelled using the semi-infinite array diffraction problem where
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the barriers occupy the negative half-line. This implies that

PN+1S(d(N), 0)QN+1

[
α(N)

0

]
=

[
ÃT
β(N)

]
(4.4)

where the phase-shift matrices have been defined as

PN+1 = diag[1, exp(iq(N)(N + 1)W] and QN+1 = diag[exp(iq(N)(N + 1)W, 1].
(4.5)

Case 3 requires that d(N−1) = d(N) so that Bloch waves can be consistently defined in the
region x ∈ ((N − 1)W,NW).

4.2. Validation
The purpose of this subsection is to validate our implementation of the LBWA by
comparing its predictions with the corresponding semianalytic solutions. In particular,
we want to show that our implementation does not suffer from mathematical or coding
mistakes, since later (in § 4.3) we will seek to identify and describe errors that are
fundamental to the LBWA. With this in mind, we will not attempt to validate our
implementation of the LBWA using a graded array, since this would not allow us to identify
the origins of any discrepancies. Instead, we rule out the presence of mathematical or
coding errors by first considering a case in which the LBWA should perform well, namely,
that of a long array of regularly spaced and identical vertical barriers. Indeed, the LBWA
reduces to a long array approximation analogous to that of Thompson et al. (2008), as it
assumes that only propagating Bloch waves excited at each of the array ends can interact
at the opposite ends. In other words, the evanescent modes excited at each end do not
interact. To evaluate the LBWA over a range of frequencies, we consider the absolute error
of the reflection coefficient defined as ER = |R̃ − R|, where R̃ is computed from the LBWA
(i.e. it is the value of B̃ when ÃInc = 1) and R is computed using the semianalytic method
described in § 2.2. In figure 3, results are presented for a finite array of N = 50 barriers
with submergence depth d(n) = 5 m for all 0 ≤ n ≤ N. In figure 3(a), we observe that the
absolute error of the reflection coefficient remains bounded below 5 × 10−7 below the
cutoff frequency ω ≈ 1.342 s−1 and is numerically zero above the cutoff.

We also assess how well the LBWA predicts local energy amplification within the array.
To do this, we use the complex-valued free surface elevation given by

ζ(x) = iω
g
φ(x, 0). (4.6)

In figure 3(b), the absolute value of the free surface elevation at ω = 1.2 s−1 is computed
using both the LBWA (blue line) and the semianalytic solution (red line) for the array.
We observe that there is excellent agreement between the two solutions across most
of the horizontal domain. Small errors occur in the neighbourhood of the zeroth and
Nth barriers, which are due to evanescent modes excited at the array ends that are not
considered by the LBWA. These results are completely analogous to those of Thompson
et al. (2008). We conclude that our method performs as expected for a problem that the
LBWA should describe accurately. This suggests that any errors produced by our method
in other problems are fundamental to the LBWA.
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Figure 3. Validation of the LBWA for a finite array of vertical barriers for which N = 50 and d(n) = 5 m for
all 0 ≤ n ≤ N. Panel (a) displays the absolute error of the reflection coefficient. Panel (b) contrasts the absolute
value of the free surface elevation computed using the LBWA (blue line) and using the semianalytic method
(red line) at the angular frequency ω = 1.2 s−1. The x-coordinates of the vertical barriers are marked with
dashed black lines.

4.3. Results
We consider linearly graded arrays of N vertical barriers described by Δd = d(n) − d(n−1),
where we restrict Δd so that N + 1 = d(N)/Δd ∈ N. Moreover, we fix d(N) = 10 m
which implies that d(0) = Δd. Three such arrays are considered, for which the grading
parameters are Δd = 0.25 m, Δd = 0.5 m and Δd = 1 m. In this subsection, we restrict
our investigation to case 2, i.e. we only consider frequencies at which the LBWA
predicts total reflection within the array. Plots showing the absolute error of the reflection
coefficient for each of these arrays are given in figure 4. We observe that the curves of ER
are sawtooth-like (recall that ER is the absolute error of the reflection coefficient defined in
§ 4.2). The peaks of these error curves occur just above the angular frequencies ω(n), where
ω(n) is the cutoff frequency of the infinite array of vertical barriers with submergence depth
d(n). Away from these peaks, the error approaches a baseline that is lower for more weakly
graded arrays. The error peaks for more weakly graded arrays are more densely packed
because these arrays contain more different barrier submergence depths, i.e. they have
more internal cutoff frequencies.

Next, we seek to explain why the cutoff frequencies induce peaks in the error curves.
To do this, we use the absolute value of the free surface to compare the LBWA and
semianalytic solutions for the graded array with Δd = 0.25 m (figure 5) and Δd = 1 m
(figure 6). We compare the solutions at ω = 1.341 s−1 (figure 5a and figure 6a) and
ω = 1.343 s−1 (figure 5b and figure 6b). The former angular frequency is just below
the cutoff frequency ω(j) associated with the barrier with submergence depth d(j) = 5 m,
whereas the latter angular frequency is just above this cutoff. The index j of this barrier
depends on Δd. Specifically, j = 19 in figure 5 and j = 4 in figure 6.
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Figure 4. The absolute error of the reflection coefficient for arrays of vertical barriers parameterised by
(a) Δd = 1 m, (b) Δd = 0.5 m and (c) Δd = 0.25 m. The cutoff frequencies ω(n) are indicated with dashed
vertical lines. Specifically, these are the cutoff frequencies for an infinite array of vertical barriers with spacing
W and submergence d(n), for 0 ≤ n ≤ N.
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Figure 5. The free surface elevation in the graded array of vertical barriers with grading parameter Δd =
0.25 m and angular frequencies (a) ω = 1.341 s−1 and (b) ω = 1.343 s−1. A complete description of the array
geometry is provided in § 4.3. The elevation curves were computed using the semianalytic method (red line) and
our implementation of the LBWA (blue line). The positions of the vertical barriers (i.e. x = nW for 0 ≤ n ≤ N)
are marked with dashed black lines and the position of the turning point (i.e. x = pW) is marked with a solid
black line.
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Figure 6. As for figure 5 but with Δd = 1 m.

In figures 5(a) and 6(a), which correspond to the case where ω is just below ω(j), we
observe excellent agreement between the solutions for x < pW, where p = j + 1 is the
turning point. In results not shown here, similarly good agreement was found across a
range of different array configurations and frequencies, provided that the frequency is
away from the peaks in ER. This suggests that decaying Bloch waves are negligible in
these cases.

We briefly discuss the small discrepancy in figure 5(a) in the region pW < x < ( p +
1)W. As this region does not support propagating Bloch modes, our implementation of the
LBWA defines the amplitude in this region to be zero. However, this region does support
decaying Bloch waves. To explain why this error does not significantly affect the accuracy
of the LBWA for x < pW, we note that the reflection coefficient used by the LBWA at
x = pW was computed from the version of the two coupled semi-infinite arrays problem
in which there is no propagating mode in the right array. This means that the decaying
Bloch wave in pW < x < ( p + 1)W is internally accounted for by the LBWA, despite the
fact that we later assume that there is zero amplitude in this region. Because ω is relatively
far above ω( p), the decaying Bloch mode in this region attenuates rapidly (see Appendix
for details). The rapid attenuation means that the effect of this mode on the solution is
negligible.

In figures 5(b) and 6(b), which correspond to the case where ω is just above ω(j) (i.e.
ω is a peak of ER), we observe that the agreement between the semianalytic and LBWA
solutions is significantly worse. As was the case in figure 5(a), the most notable difference
occurs in the region pW < x < ( p + 1)W. However, the increased value of ω means that
p has shifted from j + 1 to j. Since ω is now very close to ω( p), the decaying Bloch
mode in the region pW < x < ( p + 1)W attenuates slowly. We hypothesise that this slow
attenuation allows the decaying wave to interact with the barriers at x = nW for n > p in
a non-negligible way, which ultimately affects the solution.
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Figure 7. The free surface elevation in the graded array of vertical barriers described by (4.7). As in figure 5,
the elevation curves were computed using the semianalytic method (red line) and our implementation of the
LBWA (blue line). The positions of the vertical barriers are marked with dashed black lines and the position of
the turning point is marked with a solid black line.

To support this hypothesis, we consider a partially graded array of vertical barriers. The
partial grading is described by

d(n) =
{
(n + 1)Δd for 0 ≤ n < 20,
5 m for 20 ≤ n ≤ 40,

(4.7)

where Δd = 0.25 m. That is, the submergence depth of the barriers increases linearly up
to 5 m, after which it remains constant. At ω = 1.343 s−1, the LBWA assumes that waves
cannot propagate beyond the the 19th barrier, since ω is in the stopband of this region.
Importantly, this means that at ω, our implementation of the LBWA is unable to distinguish
between this partially graded array and the fully graded array with Δd = 0.25 m. On the
other hand, the semianalytic method can distinguish between these two cases. The free
surface elevation in the partially graded array computed using both methods is given in
figure 7. We observe excellent agreement between the two methods to the left of the turning
point, despite the LBWA failing to predict the free surface elevation accurately for the fully
graded array at the same frequency. This highlights the importance of the part of the array
to the right of the turning point when the decaying Bloch wave in pW < x < ( p + 1)W
attenuates slowly. Indeed, if the part of the array to the right of the turning point is not well
approximated by a semi-infinite array (as the LBWA assumes), these decaying Bloch waves
can be reflected into the region to the left of the turning point and affect the solution there.
This suggests that the peaks of ER could be reduced by replacing (4.3c) with an equation
that accounts for the grading of the barriers beyond the turning point, the derivation of
which is not considered here.

5. Concluding remarks

The LBWA has previously been established as a powerful tool for qualitatively
understanding wave propagation through graded arrays. This paper has examined the
LBWA in the context of graded arrays of vertical barriers by exploring the coupling
mechanism between Bloch waves in adjacent unit cells. This mechanism was assumed
to behave like the scattering of Bloch waves across the interface between two semi-infinite
arrays of vertical barriers. We found that reflection by these interfaces is non-negligible
when the differences between the submergence depths of the barriers of the two arrays is
not small. This suggests that these reflections should be considered whenever the grading
parameter of the metamaterial is significant.
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We then described a numerical implementation of the LBWA which accounts for these
small reflections yet continues to omit decaying Bloch modes. The method accurately
predicts the amplitude of the free surface at a wide range of frequencies. Exceptions occur
in frequency regions which lie just above the cutoff frequencies of individual barriers in
the array, where error peaks occur. We argued that these errors result from the LBWA
failing to account for decaying Bloch waves in the region just beyond the turning point,
which can have a non-negligible effect if they attenuate slowly. It may be possible to create
a more accurate implementation of the LBWA by accounting for these attenuating waves.

We note that the large amplitude oscillations reported in this paper may not be realistic,
since linear water wave theory is only accurate for low amplitude waves (Mei et al. 2005)
and the boundary conditions on the barriers are also greatly idealised when compared
with real-world materials. The large responses in the array are related to the fundamental
resonance of a pair of surface-piercing vertical barriers in isolation, which is known to
become stronger as the ratio of the barrier submergence depth to the spacing increases
(Newman 1974; McIver 1985; Wilks et al. 2022). Experimental or numerical tests (i.e.
using wave flumes or computational fluid dynamics, respectively) would be required to
evaluate the accuracy of the model.

The method presented in this paper may extend to graded arrays in which the scatterers
are not vertical barriers, although further investigation will be required to confirm this. For
example, it may be possible to extend our investigation of the LBWA to study the coupling
of Rayleigh–Bloch waves in a finite, graded line array of scatterers in an unbounded,
two-dimensional medium (in the sense of Bennetts et al. (2018)). However, it is likely
that mathematical difficulties due to the underlying spectral theory would be encountered
because the periodicity cells would be unbounded. It may also be possible to implement the
LBWA to study the interaction of waves with two-dimensional graded arrays of scatterers
in an unbounded, two-dimensional medium (in the sense of Bennetts et al. (2019)). The
LBWA suggests that in the neighbourhood of each scatterer, the wave field is governed
by the Bloch waves of the cognate doubly periodic lattices. Although the periodicity cells
would be bounded in this case, difficulties are likely to arise because in general there is
a continuous directional spectrum of the lattice Bloch waves, whereas only forward and
backward-propagating Bloch waves needed to be considered in this paper. Despite the
potential difficulties, both of these extensions could lead to better understanding of wave
interaction with graded metamaterials.
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Appendix. Bloch waves above the cutoff

The following discussion is heavily based on an article by Bennetts & Peter (2022), who
studied Rayleigh–Bloch waves above the cutoff in a medium governed by the Helmholtz
equation that contains an infinite line arrays of circular cylinders (also see Bennetts, Peter
& Montiel 2017; Bennetts et al. 2018, 2019). Our task is to show that in an infinite array
of vertical barriers, the attenuation rate of Bloch waves above the cutoff is an increasing
function of frequency.

Recall that exp(±iqW) are eigenvalues of (2.10). Below the cutoff, q is real and therefore
these eigenvalues lie on the unit circle. The eigenvalue in the upper (lower) half-plane
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Figure 8. Plots showing (a) the real part of q and (b) the imaginary part of q as functions of the angular
frequency.
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Figure 9. Generalised eigenvalues of (2.10) for the infinite array of vertical barriers with d = 5 m and W =
2 m at (a) ω = 1.2 s−1, (b) ω = 1.34 s−1 and (c) ω = 1.344 s−1. The values exp(±iqW) are marked with red
dots and all other eigenvalues are marked with blue dots. The unit circle is marked with a dashed black line.

corresponds to the right-propagating (left-propagating) Bloch mode. As ω approaches the
cutoff, q approaches π/W and both eigenvalues move around the unit circle, eventually
merging at −1. Above the cutoff, the merged eigenvalues bifurcate as a real-valued
reciprocal pair, with one moving inside the unit circle and the other moving outside the
unit circle. The eigenmode corresponding to the eigenvalue on the inside (outside) of the
unit circle describes a Bloch wave which decays towards the right (left). The decay rate of
the Bloch wave above the cutoff is described by the imaginary part of q. In figure 8, we
observe that above the cutoff, the imaginary part of q is an increasing function of ω, which
is what we wanted to show. Although d = 5 m and W = 2 m have been fixed in figures 9
and 8, we have verified that the result holds for a range of other values of the parameters.
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