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Abstract. We consider uniformly continuous surjections between
Cp(X) and Cp(Y ) (resp, C∗

p (X) and C∗
p (Y )) and show that ifX has

some dimensional-like properties, then so does Y . In particular, we
prove that if T : Cp(X) → Cp(Y ) is a continuous linear surjection
and dimX = 0, then dimY = 0. This provides a positive answer
to a question raised by Kawamura-Leiderman [11, Problem 3.1].

1. Introduction

All spaces in this paper, if not said otherwise, are Tychonoff spaces
and all maps are continuous. By C(X) (resp., C∗(X)) we denote the set
of all continuous (resp., continuous and bounded) real-valued functions
on a space X. We write Cp(X) (resp., C∗

p(X)) for the spaces C(X)
(resp., C∗(X)) endowed with the pointwise topology. More information
about the spaces Cp(X) can be found in [21]. By dimension we mean
the covering dimension dim defined by finite functionally open covers,
see [3]. According to that definition, we have dimX = dim βX, where
βX is the Čech-Stone compactification of X.

After the striking result of Pestov [19] that dimX = dimY provided
that Cp(X) and Cp(Y ) are linearly homeomorphic, and Gul’ko’s [8]
generalization of Pestov’s theorem that the same is true for uniformly
continuous homeomorphisms, a question arose whether dimY ≤ dimX
if there is continuous linear surjection from Cp(X) onto Cp(Y ), see
[1]. This was answered negatively by Leiderman-Levin-Pestov [15] and
Leiderman-Morris-Pestov [16]. On the other hand, it was shown in [15]
that if there is a linear continuous surjection Cp(X) → Cp(Y ) such
that X and Y are compact metrizable spaces and dimX = 0, then
dimY = 0. The last result was extended for arbitrary compact spaces
by Kawamura-Leiderman [11] who also raised the question whether
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2

this is true for any Tychonoff spaces X and Y . In this paper we pro-
vide a positive answer to that question and discuss the situation when
the surjection T : Cp(X) → Cp(Y ) is uniformly continuous. Let us
note that the preservation of dimension under linear homeomorphisms
doesn’t hold for function spaces with the uniform norm topology. In-
deed, according to the classical result of Milutin [18] if X and Y are
any uncountable metrizable compacta, then there is a linear homeo-
morphism between the Banach spaces C(X) and C(Y ).

Suppose Ep(X) ⊂ Cp(X) and Ep(Y ) ⊂ Cp(Y ) are subspaces con-
taining the zero functions on X and Y , respectively. Recall that a
map φ : Ep(X) → Ep(Y ) is uniformly continuous if for every neigh-
borhood U of the zero function in Ep(Y ) there is a neighborhood V
of the zero function in Ep(X) such that f, g ∈ Ep(X) and f − g ∈ V
implies φ(f) − φ(g) ∈ U . Evidently, if Ep(X) and Ep(Y ) are linear
spaces, then every linear continuous map between Ep(X) and Ep(Y ) is
uniformly continuous. If f ∈ Cp(X) is a bounded function, then ||f ||
stands for the supremum norm of f . The notion of c-good maps was
introduced in [7] (see also [6]), where c is a positive number. A map
φ : Ep(X) → Ep(Y ) is c-good if for every bounded function g ∈ Ep(Y )
there exists a bounded function f ∈ Ep(X) such that φ(f) = g and
||f || ≤ c||g||.
Everywhere below, by D(X) we denote either C∗(X) or C(X). Here

is one of our main results.

Theorem 1.1. Let T : Dp(X) → Dp(Y ) be a c-good uniformly contin-
uous surjection for some c > 0. Then Y is 0-dimensional provided so
is X.

Corollary 1.2. Suppose there is a linear continuous surjection from
C∗

p(X) onto C∗
p(Y ). Then Y is 0-dimensional provided that so is X.

Corollary 1.2 follows from Theorem 1.1 because every linear contin-
uous surjection between C∗

p(X) and C∗
p(Y ) is c-good for some c > 0,

see Proposition 3.3. Moreover, as one of the referees observed, it is not
possible to have a continuous linear surjection T : C∗

p(X) → Cp(Y )
with Cp(Y ) ̸= C∗

p(Y ). Indeed, we consider the composition T ◦ i, where
i : Cp(βX) → C∗

p(X) is the restriction map. Then, according to [22,
Proposition 2], Y is pseudocompact and Cp(Y ) = C∗

p(Y ).
We consider properties P of σ-compact metrizable spaces such that:

(a) If X ∈ P and F ⊂ X is closed, then F ∈ P ;
(b) If X is a countable union of closed subsets each having the

property P , then X ∈ P ;
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(c) If f : X → Y is a perfect map with countable fibers and Y ∈ P ,
then X ∈ P .

For example, 0-dimensionality, strongly countable-dimensionality and
C-space property are finitely multiplicative properties satisfying condi-
tions (a) − (c). Another two properties of this type, but not finitely
multiplicative, are weakly infinite-dimensionality, or (m−C)-spaces in
the sense of Fedorchuk [5]. The definition of all dimension-like prop-
erties mentioned above, and explanations that they satisfy conditions
(a)− (c) can be found at the end of Section 2.

For σ-compact metrizable spaces we have the following version of
Theorem 1.1 (actually Theorem 1.3 below is true for any topological
property P satisfying conditions (a)− (c)):

Theorem 1.3. Suppose X and Y are σ-compact metrizable spaces and
let T : Dp(X) → Dp(Y ) be a c-good uniformly continuous surjection for
some c > 0. If all finite powers of X are weakly infinite-dimensional
or (m−C)-spaces, then all finite powers of Y are also weakly infinite-
dimensional or (m− C)-spaces.

M. Krupski [13] proved similar result for σ-compact metrizable spaces:
if T : Cp(X) → Cp(Y ) is a continuous open surjection and all powers
of X are weakly infinite-dimensional or (m − C)-spaces, then Y is
also weakly infinite-dimensional of has the property m− C. Theorem
1.3 was established in [7] in the special case when X, Y are compact
metrizable spaces and the property is either 0-dimensionality or strong
countable-dimensionality.

The notion of c-good maps is crucial in the proof of the above re-
sults. One of the referees observed that if X = Y is the space of natural
numbers, then the continuous linear surjection T : Cp(X) → Cp(Y ),
T (f)(n) = 1

n+1
f(n), is not c-good for any c. Therefore, as the referee

suggested, the more interesting question is whether the existence of a
linear continuous surjection T : Cp(X) → Cp(Y ) implies the existence
of another linear continuous surjection S : Cp(X) → Cp(Y ) which is c-
good for some c > 0. In that connection, let us note that more general
notion was considered in our recent paper [4]: T : Dp(X) → Dp(Y ) is
inversely bounded if for every norm bounded sequence {gn} ⊂ C∗(Y )
there exists a norm bounded sequence {fn} ⊂ C∗(X) with T (fn) = gn
for all n. Evidently, every c-good map is inversely bounded. It was
established in [4] that uniformly continuous inversely bounded surjec-
tions T : Dp(X) → Dp(Y ), where X and Y are metrizable, preserve
any one of the properties 0-dimensionality, countable-dimensionality or
strong countable-dimensionality. Most probably Theorem 1.1 remains
true if the surjection T is uniformly continuous and inversely bounded.
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Finally, here is the theorem which provides a positive answer to the
question of Kawamura-Leiderman [11, Problem 3.1] mentioned above:

Theorem 1.4. Let T : Cp(X) → Cp(Y ) be a linear continuous surjec-
tion. If dimX = 0, then dimY = 0.

2. Preliminary results

In this section we prove Proposition 2.1 which is used in the proofs
of Theorem 1.1 and Theorem 1.3. Our proof is based on the idea
of support introduced by Gul’ko [8] and the extension of this notion
introduced by Krupski [12].

Let Q be the set of rational numbers. A subspace E(X) ⊂ C(X)
is called a QS-algebra [8] if it satisfies the following conditions: (i) If
f, g ∈ E(X) and λ ∈ Q, then all functions f + g, f · g and λf belong
to E(X); (ii) For every x ∈ X and its neighborhood U in X there is
f ∈ E(X) such that f(x) = 1 and f(X\U) = 0.

We are using the following facts from [8]:

(2.1) If X has a countable base and Φ ⊂ C(X) is a countable set,
then there is a countable QS-algebra E(X) ⊂ C(X) containing
Φ. Moreover, it follows from the proof of [8, Proposition 1.2]
that E(X) ⊂ C∗(X) provided that Φ ⊂ C∗(X);

(2.2) If U is an open set in X, x1, x2, .., xk ∈ U and λ1, λ2, .., λk ∈ Q,
then there exists f ∈ E(X) such that f(xi) = λi for each i and
f(X\U) = 0.

(2.3) We consider the following condition for a QS-algebra E(X) on
X: For every compact setK ⊂ X and an open setW containing
K there exists f ∈ E(X) with f |K = 1, f |(X\W ) = 0 and
f(x) ∈ [0, 1] for all x ∈ X. Note that if X has a countable base
B, then there is a countable QS-algebra E(X) on X satisfying
that condition. Indeed, we can assume that B is closed under
finite unions and find U, V ∈ B such that K ⊂ V ⊂ V ⊂ U ⊂
U ⊂ W . Then consider the set Φ of all functions fU,V : X →
[0, 1], where V ⊂ U with U, V ∈ B, such that fV,U |V = 1 and
fV,U |(X\U) = 0. According to (2.1), Φ can be extended to a
countable QS-algebra E(X) on X.

Everywhere below we denote by R the extended real line [−∞,∞].

Proposition 2.1. Let X and Y be metrizable compactifications of X
and Y , and H ⊂ X be a σ-compact space containing X. Suppose E(H)
is a QS-algebra on H satisfying condition (2.3), E(X) = {f |X : f ∈
E(H)} and E(Y ) ⊂ C(Y ) is a family such that every g ∈ E(Y ) is
extendable to a map g : Y → R and E(Y ) = {g : g ∈ E(Y )} contains
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a QS-algebra on Y . Let also φ : Ep(X) → Ep(Y ) be a uniformly
continuous surjection which is c-good for some c > 0.

If all finite powers of H have a property P satisfying conditions (a)−
(c), then there exists a σ-compact set Y∞ ⊂ Y containing Y such that
all finite powers of Y∞ have the same property P.

Proof. We fix a countable base B of H which is closed under finite
unions, and denote by f the restriction f |X of any f ∈ E(H). For every

y ∈ Y there is a map αy : E(H) → R, αy(f) = φ(f)(y). Since φ is
uniformly continuous, so is the map βy : Ep(X) → R, βy(f) = φ(f)(y).
LetH =

⋃
k Hk be the union of an increasing sequence {Hk} of compact

sets. Following Krupski [12], for every y ∈ Y and every p, k ∈ N we
define the families

Ak(y) = {K ⊂ Hk : K is closed and a(y,K) < ∞}
and

Ak
p(y) = {K ⊂ Hk : K is closed and a(y,K) ≤ p},

where

a(y,K) = sup{|αy(f)−αy(g)| : f, g ∈ E(H), |f(x)−g(x)| < 1 ∀x ∈ K}.

Possibly, some or both of the values αy(f), αy(g) from the definition of
a(y,K) could be ±∞. That’s why we use the following agreements:

(2.4) ∞+∞ = ∞,∞−∞ = −∞+∞ = 0,−∞−∞ = −∞.

Note that a(y,∅) = ∞ since φ is surjective.
Using that E(X) and E(H) are QS-algebras on X and H, and fol-

lowing the arguments from Krupski’s paper [12] (see also the proofs
of [8, Proposition 1.4] and [17, Proposition 3.1]), one can establish the
following claims (for the sake of completeness we provide the proofs):

Claim 1. For every y ∈ Y there is p, k ∈ N such that Ak
p(y) contains

a finite nonempty subset of X.

This claim follows from the proof of [12, Proposition 2.1]. Indeed,
since φ is uniformly continuous there is p ∈ N and a finite set K ⊂
X such that if f, g ∈ E(X) and |f(x) − g(x)| < 1/p for every x ∈
K, then |αy(f) − αy(g)| = |φ(f)(y) − φ(g)(y)| < 1. Take arbitrary

f, g ∈ E(H) with |f(x) − g(x)| < 1 for every x ∈ K and consider the
functions fm = f+ m

p
(g−f) ∈ E(H) for each m = 0, 1, .., p. Obviously

|fm(x) − fm+1(x)| < 1/p for all x ∈ K, so |αy(fm) − αy(fm+1)| <

1. Consequently, |αy(f) − αy(g)| ≤
∑p−1

m=0 |αy(fm) − αy(fm+1)| < p.
Because K is finite, there is k ∈ N with K ⊂ Hk. Hence K ∈ Ak

p(y).

Consider the sets Y k
p = {y ∈ Y : Ak

p(y) ̸= ∅}, p, k ∈ N.
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Claim 2. Each Y k
p is a closed subset of Y .

We use the proof of [12, Lemma 2.2]. Suppose y ̸∈ Y k
p . Since y ∈

Y k
p iff Hk ∈ Ak

p(y), Hk ̸∈ Ak
p(y). So, there exist f, g ∈ E(H) with

|f(x) − g(x)| < 1 for all x ∈ Hk and |αy(f) − αy(g)| > p. Then

V = {z ∈ Y : |αz(f) − αz(g)| > p} is a neighborhood of y with
V ∩ Y k

p = ∅.

Claim 3. Every set Y k
p,q = {y ∈ Y k

p : ∃K ∈ Ak
p(y) with |K| ≤ q},

p, q, k ∈ N, is closed in Y k
p .

Following the proof of [12, Lemma 2.3], we first show that the set
Z = {(y,K) ∈ Y k

p × [Hk]
≤q : K ∈ Ak

p(y)} is closed in Y k
p × [Hk]

≤q,

where [Hk]
≤q denotes the space of all subsetsK ⊂ Hk of cardinality ≤ q

endowed with the Vietoris topology. Indeed, if (y,K) ∈ Y k
p ×[Hk]

≤q\Z,
then K ̸∈ Ak

p(y). Hence, a(y,K) > p and there are f, g ∈ E(H) such

that |f(x)− g(x)| < 1 for all x ∈ K and |αy(f)− αy(g)| > p. Let U =

{z ∈ Y k
p : |αz(f)− αz(g)| > p} and V = {x ∈ Hk : |f(x)− g(x)| < 1}.

The set U× < V > is a neighborhood of (y,K) in Y k
p × [Hk]

≤q disjoint

from Z (here < V >= {F ∈ [Hk]
≤q : F ⊂ V }). Since Y k

p × [Hk]
≤q is

compact and Y k
p,q is the image of Z under the projection Y k

p × [Hk]
≤q →

Y k
p , Y

k
p,q is closed in Y k

p .

For every k let Yk =
⋃

p,q Y
k
p,q. Obviously, Yk ⊂ {y ∈ Y : Ak(y) ̸= ∅}.

Since Hk ⊂ Hk+1 for all k, the sequence {Yk} is increasing. It may
happen that Yk = ∅ for some k, but Claim 1 implies that Y ⊂

⋃
k Yk.

Claim 4. For every y ∈ Yk the family Ak(y) is closed under finite
intersections and a(y,K1 ∩K2) ≤ a(y,K1) + a(y,K2) for all K1, K2 ∈
Ak(y).

We follow the proof of [12, Lemma 2.5] to show that K1∩K2 ∈ Ak(y)
for any K1, K2 ∈ Ak(y). Let f, g ∈ E(H) with |f(x) − g(x)| < 1 for
all x ∈ K1 ∩K2 and U = {x ∈ H : |f(x) − g(x)| < 1}. Take an open
set W in H containing K1 with W ∩ K2 ⊂ U and choose u ∈ E(H)
such that u|K1 = 1, u|(H\W ) = 0 and u(x) ∈ [0, 1] for all x ∈ H,
see condition (2.3). Then h = u · (f − g) + g ∈ E(H), h|K1 = f |K1,
h|(K2\W ) = g|(K2\W ) and |h(x) − g(x)| < 1 for x ∈ K2. Since
K1 ∈ Ak(y) and h|K1 = f |K1, we have |αy(f) − αy(h)| ≤ a(y,K1) <

∞. Similarly, K2 ∈ Ak(y) and |h(x) − g(x)| < 1 for x ∈ K2 imply
|αy(h)− αy(g)| ≤ a(y,K2) < ∞. Therefore,

|αy(f)−αy(g)| ≤ |αy(f)−αy(h)|+|αy(h)−αy(g)| ≤ a(y,K1)+a(y,K2).
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Note that the last inequality is true if some of αy(f), αy(h), αy(g) are

±∞. Indeed, if αy(f) = ±∞, then |αy(f) − αy(h)| < ∞ implies

αy(h) = ±∞. Consequently, αy(g) = ±∞ because |αy(h) − αy(g)| <
∞. Similarly, if αy(h) = ±∞ or αy(g) = ±∞, then the other two are
also ±∞. Hence, a(y,K1 ∩ K2) ≤ a(y,K1) + a(y,K2), which means
that K1∩K2 ̸= ∅ (otherwise a(y,K1∩K2) = ∞) and K1∩K2 ∈ Ak(y).

Since each family Ak(y), y ∈ Yk, consists of compact subsets of Hk,
K(y, k) =

⋂
Ak(y) is nonempty and compact.

Claim 5. For every y ∈ Yk the set K(y, k) is a nonempty finite subset
of Hk with K(y, k) ∈ Ak(y). Moreover, if y ∈ Y then there exists k
such that y ∈ Yk and K(y, k) ⊂ X.

Let y ∈ Yk. We already observed that K(y, k) is compact and
nonempty. Since y ∈ Y k

p,q for some p, q, Ak(y) contains finite sets.

Hence, K(y, k) is also finite and K(y, k) ∈ Ak(y) because it is an inter-
section of finitely many elements of Ak(y). If y ∈ Y , then by Claim 1,
there is k such that Ak(y) contains a finite subset of X. Since K(y, k)
is the minimal element of Ak(y), it is also a subset of X.
Following [8], for every k we define Mk(p, 1) = Y k

p,1 and Mk(p, q) =

Y k
p,q\Y k

2p,q−1 if q ≥ 2.

Claim 6. Yk =
⋃
{Mk(p, q) : p, q = 1, 2, ..} and for every y ∈ Mk(p, q)

there exists a unique set Kkp(y) ∈ Ak(y) of cardinality q such that
a(y,Kkp(y)) ≤ p.

Since Mk(p, q) ⊂ Y k
p,q ⊂ Yk,

⋃
{Mk(p, q) : p, q = 1, 2, ..} ⊂ Yk. If y ∈

Yk, then K(y, k) ∈ Ak(y) is a finite subset of Hk. Assume |K(y, k)| = q
and a(y,K(y, k)) ≤ p for some p, q. So, y ∈ Y k

p,q. Moreover y ̸∈ Y k
2p,q−1,

otherwise there would beK ∈ Ak(y) with a(y,K) ≤ 2p and |K| ≤ q−1.
The last inequality contradicts the minimality of K(y, k). Hence, y ∈
Mk(p, q) which shows that Yk =

⋃
{Mk(p, q) : p, q = 1, 2, ..}.

Suppose y ∈ Mk(p, q). Then there exists a set K ∈ Ak(y) with
a(y,K) ≤ p and |K| ≤ q. Since y ̸∈ Y k

2p,q−1, |K| = q. If there exists

another K ′ ∈ Ak(y) with a(y,K ′) ≤ p and |K ′| = q, then K ∩K ′ ̸= ∅,
|K∩K ′| ≤ q−1 and, by Claim 4, a(y,K∩K ′) ≤ a(y,K)+a(y,K ′) ≤ 2p.
This means that y ∈ Y k

2p,q−1, a contradiction. Hence, there exists a

unique Kkp(y) ∈ Ak(y) such that a(y,Kkp(y)) ≤ p and |Kkp(y)| = q.
For every q let [Hk]

q denote the set of all q-points subsets of Hk

endowed with the Vietoris topology.

Claim 7. The map Φkpq : Mk(p, q) → [Hk]
q, Φkpq(y) = Kkp(y), is

continuous.

https://doi.org/10.4153/S0008414X25101636 Published online by Cambridge University Press

https://doi.org/10.4153/S0008414X25101636


8

Because Kkp(y) ⊂ Hk consists of q points for all y ∈ Mk(p, q), it
suffices to show that if Kkp(y) ∩ U ̸= ∅ for some open U ⊂ H, then
there is a neighborhood V of y in Y with Kkp(z) ∩ U ̸= ∅ for all
z ∈ V ∩Mk(p, q). We can assume that Kkp(y)∩U contains exactly one
point x0.

Let q ≥ 2, so Kkp(y) = {x0, x1, .., xq−1}. Since y ̸∈ Y k
2p,q−1 we have

a(y,K) > 2p, where K = {x1, .., xq−1}. Hence, there are f, g ∈ E(H)

such that |f(x)−g(x)| < 1 for all x ∈ K and |αy(f)−αy(g)| > 2p. The

last inequality implies f(x0) ̸= g(x0), otherwise a(y,Kkp(y)) would be
greater than 2p (recall that y ∈ Mk(p, q) implies a(y,Kkp(y)) ≤ p).

So, at least one of the numbers f(x0), g(x0) is not zero. Without loss
of generality we can assume that f(x0) > 0, and let r be a rational
number with −1+δ

f(x0)
< r < 1+δ

f(x0)
, where δ = f(x0) − g(x0). Then −1 <

(1− r)f(x0)− g(x0) < 1, and choose h1 ∈ E(H) such that h1(x0) = r
and h1(x) = 0 for all x ̸∈ U . Consider the function h = (1 − h1)f .
Clearly, h(x0) = (1 − r)f(x0) and h(x) = f(x) if x ̸∈ U . Hence,
h ∈ E(H) and |h(x) − g(x)| < 1 for all x ∈ Kkp(y). This implies

|αy(h)− αy(g)| ≤ p. Then

|αy(f)− αy(h)| ≥ |αy(f)− αy(g)| − |αy(h)− αy(g)| > 2p− p = p.

Observe that it is not possible αy(f) = αy(h) = ±∞ because |αy(h)−
αy(g)| ≤ p would imply αy(g) = ±∞. Then |αy(f) − αy(g)| = 0, a
contradiction.

The set V = {z ∈ Y : |αz(f) − αz(h)| > p} is a neighborhood
of y. Since h(x) = f(x) for all x ̸∈ U , Kkp(z) ∩ U = ∅ for some

z ∈ V ∩ Mk(p, q) would imply |αz(h) − αz(f)| ≤ p, a contradiction.
Therefore, Kkp(z) ∩ U ̸= ∅ for z ∈ V ∩Mk(p, q).

If q = 1, then Kkp(y) = {x0} and K(y, k) = Kkp(y). So, Hk\U ̸∈
Ak(y) (otherwise K(y, k) ⊂ Hk\U). Hence, there exist f, g ∈ E(H)
such that |f(x)− g(x)| < 1 for all x ∈ Hk\U and |αy(f)−αy(g)| > 2p.

Define h ∈ E(H) as in the previous case and use the same arguments
to complete the proof.

Since Y k
p,q are compact subsets of Y , each Mk(p, q) is a countable

union of compact subsets {F k
n (p, q) : n = 1, 2, ..} of Y . So, by Claim

6, Yk =
⋃
{F k

n (p, q) : n, p, q = 1, 2, ..}. According to Claim 7, all maps
Φn

kpq = Φkpq|F k
n (p, q) : F k

n (p, q) → [Hk]
q are continuous. Moreover,

since Y ⊂
⋃

k Yk, Y ⊂
⋃
{F k

n (p, q) : n, p, q, k = 1, 2, ..}.

Claim 8. The fibers of Φn
kpq : F

k
n (p, q) → [Hk]

q are finite.
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We follow the arguments from the proof of [7, Theorem 4.2]. Fix
z ∈ F k

n (p, q) for some n, p, q, k and let A = {y ∈ F k
n (p, q) : Kkp(y) =

Kkp(z)}. Since Φn
kpq is a perfect map, A is compact. Suppose A is

infinite, so it contains a convergent sequence S = {ym} of distinct
points. Because E(Y ) contains a QS-algebra Γ on Y , for every ym
there exist its neighborhood Um in Y and a function gm ∈ Γ, gm : Y →
[0, 2p] such that: Um ∩ S = {ym}, gm(ym) = 2p and gm(y) = 0 for
all y ̸∈ Um. Since φ is c-good, for each m there is fm ∈ E(X) with
φ(fm) = gm|Y = gm and ||fm|| ≤ c||gm||. So, ||fm|| ≤ 2pc, m = 1, 2, ..
and the sequence {fm} is contained in the compact set [−2pc, 2pc]H .
Hence, {fm} has an accumulation point in [−2pc, 2pc]H . This implies
the existence of i ̸= j such that |f i(x)− f j(x)| < 1 for all x ∈ Kkp(z).

Consequently, since Kkp(yj) = Kkp(z), |αyj(f j) − αyj(f i)| ≤ p. On

the other hand, αyj(f j) = φ(fj)(yj) = gj(yj) = 2p and αyj(f i) =

φ(fi)(yj) = gi(yj) = 0, so |αyj(f j)− αyj(f i)| = 2p, a contradiction.
Now, we can complete the proof of Proposition 2.1. Suppose H has

a property P satisfying conditions (a)− (c). Then so does Hq
k for each

k, q because Hq
k is closed in Hq. We claim that the space [Hk]

q also has
the property P . Indeed, let C be a countable base of Hk. For every
q-tuple (U1, .., Uq) of elements of C with pairwise disjoint closures, the
closed set

W (U1, .., Uq) = {{x1, .., xq} : xi ∈ U i, i = 1, ..., q} ⊂ [Hk]
q

is homeomorphic to the closed subset U1 × × U q of Hq
k . Hence,

W (U1, ..., Uq) ∈ P . Clearly, the space [Hk]
q can be covered by count-

ably many sets of the form W (U1, .., Uq), therefore it belongs to P .
Finally, since the maps Φn

kpq : F k
n (p, q) → [Hk]

q are perfect and have

finite fibers, each F k
n (p, q) has the property P . Therefore, by condition

(b), Y∞ =
⋃
{F k

n (p, q) : n, p, q, k = 1, 2, ..} has the property P .
It remains to show that all powers of Y∞ also have the property P .

Simplifying the notations, we observed that Y∞ =
⋃∞

m=1 Fm, where
every Fm is a compact set admitting a map Φm with finite fibers onto
a compact subset of Hm. Then for every k we have

Y k
∞ =

⋃
(m1,m2,...,mk)

Fm1 × Fm2 × ...× Fmk
.

Consequently,
∏k

i=1Φmi
:
∏k

i=1 Fmi
→ Hm1+m2+..+mk is a map which

fibers are products of k-many finite sets. Hence, the fibers of
∏k

i=1 Φmi

are finite. Because Hm1+m2+..+mk ∈ P , so is
∏k

i=1 Fmi
. Finally, by

property (b), Y k
∞ ∈ P . □
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All definitions below, except that one of (m−C)-spaces, can be found
in [3]. A normal space X is called strongly countable-dimensional if
X can be represented as a countable union of closed finite-dimensional
subspaces. Recall that a normal space X is weakly infinite-dimensional
if for every sequence {(Ai, Bi)} of pairs of disjoint closed subsets of X
there exist closed sets L1, L2, .. such that Li is a partition between Ai

and Bi and
⋂

i Li = ∅. A normal space X is a C-space if for every
sequence {Gi} of open covers of X there exists a sequence {Hi} of
families of pairwise disjoint open subsets of X such that for i = 1, 2, ..
each member of Hi is contained in a member of Gi and the union

⋃
i Hi

is a cover of X. The (m−C)-spaces, where m ≥ 2 is a natural number,
were introduced by Fedorchuk [5]: A normal space X is an (m − C)-
space if for any sequence {Gi} of open covers of X such that each Gi

consists of at most m elements, there is a sequence of disjoint open
families {Hi} such that each Hi refines Gi and

⋃
i Hi is a cover of X.

The (2− C)-spaces are exactly the weakly infinite-dimensional spaces
and for every m we have the inclusion (m+1)−C ⊂ m−C. Moreover,
every C-space is m− C for all m.
It is well known that the class of metrizable strongly countable-di-

mensional spaces contains all finite-dimensional metrizable spaces and
is contained in the class of metrizable C-spaces. The last inclusion fol-
lows from the following two facts: (i) every finite-dimensional paracom-
pact space is a C-space [3, Theorem 6.3.7]; (ii) every paracompact space
which is a countable union of its closed C-spaces is also a C-space [9,
Theorem 4.1]. Moreover, every C-space is weakly infinite-dimensional
[3, Theorem 6.3.10].

In the class of σ-compact metrizable spaces the zero-dimensionality
satisfies all conditions (a)− (c), see Theorems 1.5.16, 1.2.2 and 1.12.4
from [3]. The strong countable-dimensionality also satisfies all these
conditions, condition (c) follows easily from [3, Theorem 1.12.4]. For C-
space this follows from mentioned above fact that a countable union of
closed compact C-spaces is a C-space [9, Theorem 4.1] and the following
results of Hattori-Yamada [10]: the class of compact C-spaces is closed
under finite products any perfect preimage of a C-space with C-space
fibers is a C-space. Finally, if a σ-compact space X is weakly infinite-
dimensional, then obviously every closed subset of X, as well as any
countable union of closed subsets of X have the same property, see [3,
Theorem 6.1.6]. Condition (c) follows from the following result of Pol
[20, Theorem 4.1]: If f : X → Y is a continuous map between compact
metrizable spaces such that Y is weakly infinite-dimensional and each
fiber f−1(y), y ∈ Y , is at most countable, then X is weakly infinite-
dimensional. The validity of conditions (a) − (c) for (m − C)-spaces
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in the class of σ-compact metrizable spaces follows from the following
results [5] : The (m− C)-space property is hereditary with respect to
closed subsets, a countable union of closed (m−C)-spaces is alsom−C.
Moreover, for (m− C)-spaces Krupski [13, Lemma 4.5] established an
analogue of the cited above Pol’s result. Therefore, condition (c) holds
for the property m− C in the class of σ-compact metrizable spaces.

3. Uniformly continuous surjections

In this section we prove Theorem 1.1 and Theorem 1.3.
For every space X let FX be the class of all maps from X onto second

countable spaces. For any two maps h1, h2 ∈ FX we write h1 ≻ h2 if
there exists a continuous map θ : h1(X) → h2(X) with h2 = θ ◦ h1.
If Φ ⊂ C(X) we denote by △Φ the diagonal product of all f ∈ Φ.
Clearly, (△Φ)(X) is a subspace of the product

∏
{Rf : f ∈ Φ}, and

let πf : (△Φ)(X) → Rf be the projection. Following [8], we call a
set Φ ⊂ C(X) admissible if the family π(Φ) = {πf : f ∈ Φ} is a
QS-algebra on (△Φ)(X). We are using the following facts:

(3.1) dimX ≤ n if and only if for every h ∈ FX there exists a h0 ∈ FX

such that dimh0(X) ≤ n and h0 ≻ h [19].
(3.2) If dimX ≤ n and Φ ⊂ C(X) is countable, then there exists a

countable set Θ ⊂ C(X) containing Φ with dim(△Θ)(X) ≤ n.
Moreover, it follows from the proof of [8, Lemma 2.2] that we
can choose Θ ⊂ C∗(X) provided that Φ ⊂ C∗(X).

(3.3) For every countable Φ′ ⊂ C(X) there is a countable admissible
set Φ containing Φ′ such that (△Φ)(X) is homeomorphic to
(△Φ′)(X). According to the proof of [8, Lemma 2.4], Φ could
be taken to be a subset of C∗(X) if Φ′ ⊂ C∗(X). Moreover,
we can assume that Φ′ satisfies condition (2.3), so π(Φ) also
satisfies that condition.

(3.4) If {Ψn} is an increasing sequence of admissible subsets of C(X),
then Ψ =

⋃
n Ψn is also admissible, see [8, Lemma 2.5].

We also need the following lemmas:

Lemma 3.1. Let X be a 0-dimensional separable metrizable space and
E(X) be a countable subfamily of C∗(X). Then there exists a metriz-
able 0-dimensional compactification X of X such that each f ∈ E(X)
can be extended over X.

Proof. Let X0 be a metrizable compactification of X and for every
f ∈ E(X) denote by Zf the closure of f(X) in R. Consider the diagonal
product h of the maps j and △{f : f ∈ E(X)}, where j : X ↪→
X0 is the embedding. Then the closure X1 of h(X) in the product
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X0 ×
∏

f∈E(X) Zf is a compactification of X such that every f ∈ E(X)
can be extended over X1. Let θ : βX → X1 be the map witnessing
that βX is a compactification of X larger than X1. Since dim βX = 0,
by the Mardešić factorization theorem [3, Theorem 3.4.1] there is a
metrizable compactum X and maps ν : βX → X and η : X → X1 such
that dimX = 0 and θ = η ◦ ν. Evidently, ν|i(X) is a homeomorphism,
where i : X ↪→ βX is the embedding, so X is a compactification of X.
Because every f ∈ E(X) is extendable to a function f : X1 → R, the
composition f ◦ η is an extension of f over X. □

Lemma 3.2. Let X be a separable metrizable space and E(X) be a
countable subfamily of C(X). Then there exists a metrizable com-
pactification X of X such that each f ∈ E(X) can be extended to a
map f : X → R. Moreover, if dimX = 0, then we can assume that
dimX = 0.

Proof. The proof is similar to the proof of Lemma 3.1. The only dif-
ference is that for every f ∈ E(X) we consider Zf to be the closure of

f(X) in R. □

Proof of Theorem 1.1. Let T : Dp(X) → Dp(Y ) be a uniformly
continuous c-good surjection. Everywhere below for f ∈ C∗(X) let
f ∈ C(βX) be its extension; similarly if g ∈ C(Y ) then g ∈ C(βY,R) is
the extension of g. According to (3.1), it suffices to prove that for every
h ∈ FY there is h0 ∈ FY such that dimh0(Y ) = 0 and h0 ≻ h. So, we

fix h ∈ FY and let h : βY → h(Y ) be an extension of h, where h(Y ) is
a metrizable compactification of h(Y ). We will construct by induction
two sequences {Ψn}n≥1 ⊂ C(βX) and {Φn}n≥1 ⊂ C(βY,R) of count-
able sets, countable QS-algebras An on (△Ψn)(βX) and countable

QS-algebras Λn on Y ′
n = (△Φ′

n)(βY ), where Φ′
n = {T (f) : f ∈ Ψn},

satisfying the following conditions for every n ≥ 1:

(3.5) Φ1 ⊂ C(βY ) is admissible and △Φ1 ≻ h;
(3.6) Φn ⊂ Φn+1 = Φ′

n ∪ {λ ◦ (△Φ′
n) : λ ∈ Λn};

(3.7) Each Ψn is admissible, dim(△Ψn)(βX) = 0 and Ψn ⊂ Ψn+1;
(3.8) An is a QS-algebra on (△Ψn)(βX) satisfying condition (2.3);
(3.9) Λn+1 contains {λ ◦ δn : λ ∈ Λn}, where δn : Y ′

n+1 → Y ′
n is the

surjective map generated by the inclusion Φ′
n ⊂ Φ′

n+1;

(3.10) For every g ∈ Φn ∩ C(βY ) there is f g ∈ Ψn with ||fg|| ≤ c||g||
and T (fg) = g.

Since h(βY ) is a separable metrizable space, by (3.3), there is a
countable admissible set Φ1 ⊂ C(βY ) with △Φ1 ≻ h. Choose a count-
able set Ψ′

1 ⊂ C(βX) such that for every g ∈ Φ1 there is f g ∈ Ψ′
1
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with ||fg|| ≤ c||g|| and T (fg) = g. Next, use (3.2) to find countable
Θ1 ⊂ C(βX) containing Ψ′

1 such that dim(△Θ1)(βX) = 0. Finally,
by (3.3), we can extend Θ1 to a countable admissible set Ψ1 ⊂ C(βX)
such that (△Ψ1)(βX) is homeomorphic to (△Θ1)(βX) and the QS-
algebra A1 = π(Ψ1) on (△Ψ1)(βX) satisfies condition (2.3). Evidently,
dim(△Ψ1)(βX) = 0.

Suppose Φk and Ψk are already constructed for all k ≤ n. Then
Φ′

n = {T (f) : f ∈ Ψn} is a countable set in C(βY,R). Because Ψn−1 ⊂
Ψn, Φ

′
n−1 ⊂ Φ′

n. So, there is a surjective map δn−1 : Y ′
n → Y ′

n−1, see
(3.9). Since △Φ′

n ≻ △Φ′
n−1 we have δn−1(y) = △Φ′

n−1((△Φ′
n)

−1(y))
for all y ∈ Y ′

n. Choose a countable QS-algebra Λn on Y ′
n containing the

family {λ◦ δn−1 : λ ∈ Λn−1} and let Φn+1 = Φ′
n∪{λ◦ (△Φ′

n) : λ ∈ Λn}.
Next, take a countable set Ψ′

n+1 ⊂ C(βX) containing Ψn such that

for every g ∈ Φn+1 ∩ C(βY ) there is f g ∈ Ψ′
n+1 with ||fg|| ≤ c||g||

and T (fg) = g. Then, by (3.2) there is countable Θn+1 ⊂ C(βX)
containing Ψ′

n+1 with dim(△Θn+1)(βX) = 0. Finally, according to
(3.3), we extend Θn+1 to a countable admissible set Ψn+1 ⊂ C(βX)
such that (△Ψn+1)(βX) is homeomorphic to (△Θn+1)(βX) and the
QS-algebra An+1 = π(Ψn+1) on (△Ψn+1)(βX) satisfies condition (2.3).
This completes the induction.

Let Ψ =
⋃

n Ψn, X0 = (△Ψ)(X), Xn = (△Ψn)(βX) and X0 =

(△Ψ)(βX). Similarly, let Φ =
⋃

nΦn, Y0 = h0(Y ) and Y 0 = (△Φ)(βY ),
where h0 = (△Φ)|Y . Both Ψ and Φ are countable and Ψ is an admis-
sible subset of C(βX), see (3.4). Hence, the family E(X0) = {πf :

f ∈ Ψ} is a countable QS-algebra on X0. Moreover, the family
E(Y0) = {πg|Y0 : g ∈ Φ} is extendable over Y 0. Since Ψn ⊂ Ψn+1

for every n, there are maps θn+1
n : Xn+1 → Xn. Because Ψ =

⋃
nΨn,

the space X0 is the limit of the inverse sequence SX = {Xn, θ
n+1
n } with

dimXn = 0 for all n. Hence, X0 is also 0-dimensional, see [3, Theorem
3.4.11]. Observe also that E(X0) =

⋃∞
n=1{h ◦ θn : h ∈ An}.

Let us show that E(X0) ia a QS-algebra satisfying condition (2.3).
Because E(X0) is the union of the increasing sequence of the families
{h ◦ θn : h ∈ An} and each An is a QS-algebra, E(X0) is closed
under sums, multiplications and multiplications by rational numbers.
It remains to show that for every x ∈ X0 and every its neighborhood
U ⊂ X0 there is f ∈ E(X0) such that f(x) = 1 and f(X0\U) = 0.
But that follows from the proof of the more general condition (2.3).
To show that E(X0) satisfies (2.3), take a compact set K ⊂ X0 and
an open set W ⊂ X0 containing K. Because X0 is the limit of the
inverse sequence SX = {Xn, θ

n+1
n }, there are n, a compact setKn ⊂ Xn
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and an open set Wn ⊂ Xn containing Kn such that K ⊂ θ−1
n (Kn) ⊂

θ−1
n (Wn) ⊂ W , where θn : X0 → Xn denotes the n-th projection in SX .
Then, according to condition (3.8), there is fn ∈ An with fn|Kn = 1,
fn|(Xn\Wn) = 0 and fn : Xn → [0, 1]. Finally, observe that the
function f = fn ◦ θn : X0 → [0, 1] belongs to E(X0) and f satisfies the
conditions f |K = 1 and f |(X0\W ) = 0.

It follows from the construction that Φ = {T (f) : f ∈ Ψ} and for
every g ∈ Φ∩C(βY ) there is f g ∈ Ψ with T (fg) = g and ||fg|| ≤ c||g||.
Observe that for all f ∈ Ψ and g ∈ Φ we have f = πf ◦ (△Ψ)|X and
g = πg ◦ (△Φ)|Y . Therefore, there is a surjective map φ : Ep(X0) →
Ep(Y0) defined by φ(πf ) = πT (f), where πf and πg denote, respectively,
the functions πf |X0 and πg|Y0. Moreover ||f || = ||πf || and ||g|| = ||πg||
for all f ∈ Ψ and g ∈ Φ ∩ C(βY ). This implies that φ is a c-good
surjection.

Let’s show that φ is uniformly continuous. Suppose

V = {πg : |πg(yi)| < ε ∀i ≤ k}
is a neighborhood of the zero function in Ep(Y0). Take points yi ∈ Y

with h0(yi) = yi, i = 1, 2, .., k, and let Ṽ = {g ∈ Dp(Y ) : |g(yi)| <
ε ∀i ≤ k}. Since T is uniformly continuous, there is a neighborhood

Ũ = {f ∈ Dp(X) : |f(xj)| < δ ∀j ≤ m}

of the zero function in Dp(X) such that f − f ′ ∈ Ũ implies T (f) −
T (f ′) ∈ Ṽ for all f, f ′ ∈ Dp(X). Let xj = (△Ψ)(xj) and

U = {πf : |πf (xj)| < δ ∀j ≤ m}.

Obviously, πf − πf ′ ∈ U implies f − f ′ ∈ Ũ . Hence, T (f)− T (f ′) ∈ Ṽ ,
which yields φ(πf )− φ(πf ′) ∈ V .

Finally, we can show that E(Y 0) contains a QS-algebra on Y 0. Since
Λn ⊂ C(Y ′

n) is a QS-algebra on Y ′
n, it separates the points and the

closed sets in Y ′
n. So, Y

′
n is homeomorphic to (△Λn)(Y

′
n). This implies

that Yn+1 = (△Φn+1)(βY ) is homeomorphic to Y ′
n. Therefore, Λn

can be considered as a QS-algebra on Yn+1. On the other hand Y 0

is the limit of the inverse sequence SY = {Yn+1, γ
n+2
n+1 , n ≥ 1}, where

γn+2
n+1 : Yn+2 → Yn+1 is the surjective map generated by the inclusion

Φn+1 ⊂ Φn+2. According to condition (3.9), we can also assume that
Λn+1 contains the family {λ ◦ γn+2

n+1 : λ ∈ Λn}. Denote by γn+1 :

Y 0 → Yn+1 the projections in SY , and let Γn = {λ ◦ γn+1 : λ ∈ Λn}.
Then {Γn}n≥1 is an increasing sequence of countable families and Γn ⊂
E(Y 0) = {πg : g ∈ Φ} for every n. We claim that Γ =

⋃
n Γn is a

QS-algebra on Y 0. Indeed, Γ is closed under addition, multiplication
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and multiplication by rational numbers. Because for every y ∈ Y 0 and
its neighborhood V ⊂ Y 0 there is n and an open set Vn ⊂ Yn+1 such
that yn = γn+1(y) ∈ Vn and γ−1

n+1(Vn) ⊂ V , there exists λ ∈ Λn with
λ(yn) = 1 and λ(Yn+1\Vn) = 0. Then g = λ ◦ γn+1 ∈ Γ, g(y) = 1 and
g(Y 0\V ) = 0.

To prove Theorem 1.1, we apply Proposition 2.1 withH = X0 to find
a σ-compact set Y∞ ⊂ Y 0 containing Y0 with dimY∞ = 0. Therefore,
by [3, Proposition 1.2.2], dimY0 = 0. 2

Proposition 3.3. [14] For every linear continuous surjective map T :
C∗

p(X) → C∗
p(Y ) there is c > 0 such that T is c-good.

Proof. By the Closed Graph Theorem, T considered as a map between
the Banach spaces C∗

u(X) and C∗
u(Y ), both equipped with the sup-

norm, is continuous. Then T induced a linear isomorphism T0 between
C∗

u(X)/K and C∗
u(Y ), where K is the kernel of T . So, for every g ∈

C∗
u(Y ) we have ||T−1

0 (g)|| ≤ ||T−1
0 || · ||g||. Because

||T−1
0 (g)|| = inf{||f − h|| : h ∈ K},

where f ∈ C∗
u(X) with T (f) = g, there exists hg ∈ K such that

||f − hg|| ≤ 2||T−1
0 (g)||. Hence, ||f − hg|| ≤ 2||T−1

0 || · ||g||. Since
T (f−hg) = T (f) = g, we obtain that T is c-good with c = 2||T−1

0 ||. □

Proof of Theorem 1.3. Following the proof of Theorem 1.1, we con-
struct two sequences {Ψn}n≥1 ⊂ C(βX) and {Φn}n≥1 ⊂ C(βY,R)
of countable sets and countable QS-algebras An on △Ψn(βX) and
Λn on Y ′

n = (△Φ′
n)(βY ) satisfying the conditions (3.5) − (3.10) ex-

cept (3.7). Because X and Y are separable metrizable spaces, we can
choose countable sets Ψ1 and Φ1 such that (△Φ1)|Y and (△Ψ1)|X are
homeomorphisms.

Then, following the notations from the proof of Theorem 1.1, we have
that X0 and Y0 are homeomorphic to X and Y , respectively. Moreover,
there exists a uniformly continuous c-good surjection φ : Ep(X0) →
Ep(Y0) such that E(X0) is a QS-algebra on X0 satisfying condition

(2.3), E(Y 0) ⊂ C(Y 0,R) and E(Y 0) contains a countable QS-algebra
Γ on Y 0. According to the proof of Proposition 2.1 with H = X0, there
is a σ-compact set Y∞ ⊂ Y 0 containing Y0 which a countable union of
closed sets F ⊂ Y∞ such that F admits a map with finite fibres into a
finite power ofX0. Let Y0 =

⋃
m Ym with each Ym being compact. Then

Y0 can also be represented as a countable union of compact sets each
admitting a map with finite powers into a finite power of X0. Now
we apply the following fact which was actually used in the proof of
Proposition 2.1: Assume all powers of a σ-compact metrizable space P
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have a property P satisfying conditions (a)− (c). If a metrizable space
Z is the union of countably many compact sets Zn such that each Zn

admits a map with finite fibres into a finite power P kn , then all finite
powers of Z also have the property P . Since all finite powers of X0 have
the property P , where P is either weakly infinite-dimensionality or the
(m − C)-space property, by mentioned above fact, all finite powers of
Y0 are either weakly infinite-dimensional or have the (m − C)-space
property. 2

4. Proof of Theorem 1.4

We consider topological properties P of separable metrizable spaces
satisfying conditions (b) from the introduction section plus the follow-
ing three:

(a′) If X ∈ P , then F ∈ P for every subset F ⊂ X;
(c′) If f : X → Y is a perfect map between metrizable spaces with

0-dimensional fibers and Y ∈ P , then X ∈ P ;
(d′) P is closed under finite products.

The 0-dimensionality, the countable-dimensionality and the strong count-
able dimensionality satisfy these conditions, see [3].

If E(X) ⊂ C(X) is a QS-algebra on X, then the family LE(X) of

all finite linear combinations
∑k

i=1 λi · fi with fi ∈ E(X) and λi ∈ R is
called the linear hull of E(X).

Proposition 4.1. Let X and Y be separable metrizable spaces and
E(X) ⊂ C(X) be a countable QS-algebra on X and E(Y ) ⊂ C(Y ) be
a countable family. Suppose there are metrizable compactifications X
and Y of X and Y and a countable base B of X such that:

• Every f ∈ E(X) can be extended to a map f : X → R and for
every finite open cover γ = {Ui : i = 1, 2, .., k} of X with ele-
ments from B there exists a partition of unity {f i : i = 1, 2, ., k}
subordinated to γ with fi ∈ E(X);

• Every g ∈ E(Y ) can be extended to a map g : Y → R and the
set of all real-valued elements of Ep(Y ) = {g : g ∈ E(Y )} is
dense in Cp(Y );

• For every compact set K ⊂ X and every open set W ⊂ X con-
taining K there is f ∈ E(X) such that f(K) = 1, f(X\W ) = 0
and f(x) ∈ [0, 1] for all x ∈ X.

If X has a property P satisfying conditions (a′), (b), (c′) and (d′), and
φ : Ep(X) → Ep(Y ) is a linear continuous surjection such that φ can
be continuously extended over LEp(X), then Y ∈ P.
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Proof. Let E(X) = {f : f ∈ E(X)}. Every y ∈ Y generates a map

ly : E(X) → R, ly(f) = φ(f)(y). Assuming the equalities from (2.4),

for any f 1, f 2 ∈ E(X) and x ∈ X, we can write f 1(x) + f 2(x) but not
always f 1 + f 2 = f1 + f2. Also, if f 1 + f 2 ∈ E(X), it is possible that
ly(f 1 + f 2) ̸= ly(f 1) + ly(f 2). If λ ∈ R\{0} and λ · f ∈ E(X), then

ly(λ · f) = λ · ly(f) (here, λ · (±∞) = ±∞ if λ > 0 and λ · (±∞) = ∓∞
if λ < 0). In case λ = 0, we have ly(0 · f) = 0. More general, if

h ∈ C(X) such that h · f ∈ E(X) for some f ∈ E(X), then ly(h · f) is
well defined.

The support of ly, y ∈ Y , is defined to be the set supp(ly) of all
x ∈ X satisfying the following condition [23]: for every neighborhood
U ⊂ X of x there is f ∈ E(X) such that f(X\U) = 0 and ly(f) ̸= 0.
Obviously, supp(ly) is closed in X.

Claim 9. supp(ly) is non-empty for all y ∈ Y .

Indeed, because the set of real-valued functions from E(Y ) is dense
in Cp(Y ), for every y ∈ Y there is g ∈ E(Y ) with g(y) ̸= 0. Then

take fy ∈ E(X) such that φ(fy) = g|Y , so ly(f y) = g(y). If supp(ly) =

∅, every x ∈ X has a neighborhood Vx such that ly(f) = 0 for any

f ∈ E(X) with f(X\Vx) = 0. Passing to smaller neighborhoods, we
can assume that Vx ∈ B for all x. Hence, there is a finite open cover
γ = {Vx1 , .., Vxk

} of X and a partition of unity µ = {h1, .., hk} ⊂ E(X)
subordinated to γ. Then fy · hi ∈ E(X) and fy · hi|(X\Vxi

) = 0 which

implies ly(fy · hi) = 0 for all i. Because µ is a partition of unity,

f y =
∑k

i=1 fy · hi. So, ly(f y) =
∑k

i=1 ly(fy · hi) = 0, a contradiction.

Claim 10. Let U ⊂ X be a neighborhood of supp(ly) and f, g ∈ E(X)

with f |U = g|U . Then ly(f) = ly(g). In particular, f(U) = 0 implies

ly(f) = 0.

First, let f(U) = 0 for some f ∈ E(X). We can assume that U
is a finite union of open sets Vi from B, i = 1, .., k. Every x ∈ X\U
has a neighborhood Vx such that ly(g) = 0 for any g ∈ E(X) with
g(X\Vx) = 0. As in the proof of Claim 9, we can assume that Vx ∈ B,
and choose another neighborhood Ux ∈ B with Ux ⊂ Vx. Take a finite
open cover {Ux1 , .., Uxm} of X\U . Then γ = {V1, .., Vk, Ux1 , .., Uxm} is
an open cover of X consisting of elements from B. Hence, there exits a
partition of unity {h1, ., hk, θ1, .., θm} ⊂ E(X) subordinated to γ. Then

hi · f, θj · f ∈ E(X) for all i, j and f =
∑k

i=1 hi · f +
∑m

j=1 θj · f . Take
a sequence {yn} ⊂ Y with limn yn = y. So, φ(f)(yn) =

∑k
i=1 φ(hi ·

f)(yn) +
∑m

j=1 φ(θj · f)(yn). Observe that (hi · f)(x) = 0 for all x ∈ X,
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so φ(hi · f) is the zero function on Y and φ(hi · f)(yn) = 0, i = 1, .., k.
Hence, φ(f)(yn) =

∑m
j=1 φ(θj ·f)(yn). On the other hand, (θj ·f)(x) = 0

for all x ∈ X\Uxj
. So, (θj · f)(x) = 0 for all x ∈ X\Vxj

because

X\Vxj
⊂ X\Uxj

. This implies that ly(θj · f) = 0 for all j = 1, ..,m.

Since, ly(θj · f) = limn φ(θj · f)(yn) = 0, we have

ly(f) = lim
n

φ(f)(yn) = lim
n

m∑
j=1

φ(θj · f)(yn) = 0.

Suppose now that f |U = g|U for some f, g ∈ E(X). Then f(x)−g(x) =
0 for all x ∈ U ∩X. Consequently, (f − g)(x) = 0 for all x ∈ U and,
according to the previous paragraph, ly(f − g) = 0. Hence, for every
sequence {yn} ⊂ Y converging to y we have

ly(f − g) = lim
n

φ(f−g)(yn) = lim
n

φ(f)(yn)−lim
n

φ(g)(yn) = ly(f)−ly(g).

Claim 11. If supp(ly0) ∩ U ̸= ∅ for some open U ⊂ X and y0 ∈ Y ,
then y0 has a neighborhood V ⊂ Y such that supp(ly)∩U ̸= ∅ for every
y ∈ V .

Let x0 ∈ supp(ly0) ∩ U and f ∈ E(X) be such that f(X\W ) =

0 and ly0(f) ̸= 0, where W is a neighborhood of x0 with W ⊂ U .
Assuming the claim is not true we can find a sequence {yn} ⊂ Y
converging to y0 such that supp(lyn)∩U = ∅ for every n. Since X\W
is a neighborhood of each supp(lyn), by Claim 10, lyn(f) = 0. Because

limn lyn(f) = ly0(f), we have ly0(f) = 0, a contradiction.
Following the notations from the proof of Proposition 2.1, for every

y ∈ Y we define

a(y) = sup{|ly(f)| : f ∈ E(X) and |f(x)| < 1 ∀x ∈ supp(ly)}.

Claim 12. If y ∈ Y then supp(ly) = {x1(y), x2(y), .., xq(y)} is a finite
non-empty subset of X. Moreover, there exist real numbers λi(y), i =
1, .., q, such that

∑q
i=1 |λi(y)| = a(y) and ly(f) =

∑q
i=1 λi(y)f(xi(y))

for all f ∈ E(X).

Let φ̃ : LEp(X) → LEp(Y ) be the continuous extension of φ. Then
every ly, y ∈ Y , can be continuously extended to a linear functional

l̃y : LEp(X) → R, l̃y(
∑k

i=1 λi ·fi) =
∑k

i=1 λi ·ly(fi). Since φ̃ is uniformly
continuous, according to the proof of Claim 1 from Proposition 2.1, for
every y ∈ Y there exists a finite set K = {x1(y), x2(y), .., xq(y)} ⊂ X
such that

sup{|l̃y(f)| : f ∈ LE(X) and |f(x)| < 1 ∀x ∈ K} < ∞.
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Because l̃y is linear, we can show that l̃y(g) = 0 for any g ∈ LE(X) with
g(xi(y)) = 0, i = 1, .., q. Since E(X) is a QS-algebra, for every i there
is a function gi ∈ E(X) such that gi(xi(y)) = 1 and gi(xj(y)) = 0 with
j ̸= i. Now, for every f ∈ E(X) the function g = f −

∑q
i=1 gi · f(xi(y))

belongs to LE(X) and g(xi(y)) = 0 for all i. So, l̃y(g) = 0 and ly(f) =∑q
i=1 λi(y)f(xi(y)), where with λi(y) = ly(gi). Because y ∈ Y , we can

also write

ly(f) =

q∑
i=1

λi(y)f(xi(y))

with λi(y) = ly(gi). Note that each λi(y) is a real number because

ly(gi) = φ(gi)(y). The last equality is valid for all f ∈ E(X) and shows
that supp(ly) = {xi(y) : λi(y) ̸= 0} ⊂ K. Note that, by Claim 9,
supp(ly) ̸= ∅.

To complete the proof of Claim 12, assume that supp(ly) = K,
and for every natural k take a function fk ∈ E(X) with fk(xi(y)) =
εi(1 − 1/k), where εi = 1 if λi(y) > 0 and εi = −1 if λi(y) < 0.
Clearly, |fk(xi(y))| < 1 for all i, k and limk ly(fk) =

∑q
i=1 |λi(y)|. Hence∑q

i=1 |λi(y)| ≤ a(y). The reverse inequality a(y) ≤
∑q

i=1 |λi(y)| follows
from ly(f) =

∑q
i=1 λi(y)f(xi(y)), f ∈ E(X).

For every p, q ∈ N let Yp,q = {y ∈ Y : |supp(ly)| ≤ q and a(y) ≤ p}.

Claim 13. Every set Yp,q is closed in Y .

Let {yn} be a sequence in Yp,q converging to y ∈ Y . Suppose y ̸∈
Yp,q. Then either supp(ly) contains at least q + 1 points or a(y) >
p. If supp(ly) contains at least q + 1 points x1, x2, .., xq+1, we choose
disjoint neighborhoods Oi of xi, i = 1, .., q+1. By Claim 11, there is a
neighborhood V of y such that supp(lz) ∩ Oi ̸= ∅ for all i and z ∈ V .
This implies that supp(lyn) has at least q+1 points for infinitely many
n’s, a contradiction.

If y ̸∈ Yp,q and a(y) > p, then there exists f ∈ E(X) such that

|f(x)| < 1 for all x ∈ supp(ly) and |ly(f)| > p. Take a neighborhood

U of supp(ly) with U ⊂ {x ∈ X : |f(x)| < 1}. Choose another
neighborhood W of supp(ly) with W ⊂ U . Next, there is h ∈ E(X)

such that h(W ) = 1, h(X\U) = 0 and h(x) ∈ [0, 1] for all x ∈ X.
Then g = h · f ∈ E(X) and |g(x)| < 1 for all x ∈ X. Moreover,
g|W = f |W . So, by Claim 10, |ly(g)| = |ly(f)| > p. Therefore, V =
{z ∈ Y : |lz(g)| > p} is a neighborhood of y in Y with V ∩ Yp,q = ∅, a
contradiction.

According to Claim 12, for every y ∈ Y then there exist p, q ∈ N
and real numbers λi(y) such that for all f ∈ E(X) we have ly(f) =
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20∑q
i=1 λi(y)f(xi(y)) with a(y) =

∑q
i=1 |λi(y)| ≤ p, where {x1(y), .., xq(y)}

is the support supp(ly). Hence, Y ⊂
⋃
{Yp,q : p, q ∈ N}. For every p ≥ 1

and q ≥ 2 we define

M(p, 1) = Yp,1 and M(p, q) = Yp,q\Y2p,q−1.

Some of the sets M(p, q) could be empty, but Y ⊂
⋃
{M(p, q) : p, q =

1, 2, ..}. Indeed, by Claim 12, there exist p, q with |supp(ly)| = q and
a(y) ≤ p. Then y ∈ M(p, q). Since each Yp,q is closed, M(p, q) =⋃∞

n=1 F
′
n(p, q) such that each F ′

n(p, q) is a compact subset of Y . We de-

fine Fn(p, q) = Y ∩ F ′
n(p, q). Then Y ⊂

⋃
{Fn(p, q) : n, p, q = 1, 2, ..}.

Obviously, supp(ly) consists of q different points for any y ∈ M(p, q).
So, we have a map Sp,q : M(p, q) → [X]q, Sp,q(y) = supp(ly). Ac-
cording to Claim 11, Sp,q is continuous when [X]q is equipped with the
Vietoris topology. For every y ∈ M(p, q) let Sp,q(y) = {xi(y)}qi=1. Ev-
erywhere below we consider the restriction Sp,q|Fn(p, q) and for every
z ∈ Fn(p, q) denote by A(z) = {y ∈ Fn(p, q) : Sp,q(y) = Sp,q(z)} the
fiber S−1

p,q (Sp,q(z)) generated by z. Since Fn(p, q) is compact and Sp,q is
continuous, each A(z) is a compact subset of Fn(p, q).

Claim 14. Let z ∈ Y ∩ Fn(p, q). Then for every y ∈ A(z) there are
real numbers {λi(y)}qi=1 such that ly(f) =

∑q
i=1 λi(y)f(xi(z)), where

Sp,q(z) = {xi(z)}qi=1, and
∑q

i=1 |λi(y)| ≤ p for all f ∈ E(X). Moreover,
each λi is a continuous real-valued function on A(z).

Choose neighborhoods Oi of xi(z) in X with disjoint closures and
functions gi ∈ E(X) with gi|Oi = 1 and gi|Oj = 0 if j ̸= i (this can be
done by choosing gi ∈ E(X) with gi(Oi ∩X) = 1 and gi(Oj ∩X) = 0
when j ̸= i). According to the proof of Claim 12, for every y ∈ A(z)∩Y
and the real numbers λi(y) = ly(gi) we have ly(f) =

∑q
i=1 λi(y)f(xi(z))

for all f ∈ E(X). Let’s show this is true for all y ∈ A(z). So, fix
y ∈ A(z)\Y and take a sequence {ym} ⊂ Y ∩ Fn(p, q) converging to
y. Then, by Claim 12, Sp,q(ym) = {xi(ym)}qi=1 ⊂ X and there are real

numbers {λi(ym)}qi=1 such that lym(f) =
∑q

i=1 λi(ym)f(xi(ym)) for all

f ∈ E(X). On the other hand, since the map Sp,q is continuous, each
sequence {xi(ym)}∞m=1 converges to xi(y) = xi(z), i = 1, .., q. So, we can
assume that {xi(ym)}∞m=1 ⊂ Oi. Consequently, lym(gi) = λi(ym) and
limm λi(ym) = ly(gi). Since {ym} ⊂ Y ∩Yp,q,

∑q
i=1 |λi(ym)| ≤ p for each

m (see Claim 12). Hence,
∑q

i=1 |ly(gi)| ≤ p. Denoting λi(y) = ly(gi),
we obtain

∑q
i=1 |λi(y)| ≤ p. The last inequality means that all λi(y)

are real numbers. Since limm f(xi(ym)) = f(xi(y)) for all f ∈ E(X)
and each f(xi(y)) is a real number (recall that z ∈ Y , so by Claim 12,
xi(z) = xi(y) ∈ X), we have ly(f) = lim lym(f) =

∑q
i=1 λi(y)f(xi(y)).
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Finally, the equality λi(y) = φ(gi)(y) implies that λi are continuous
on A(z).

Claim 15. Let A(z) = {y ∈ Fn(p, q) : Sp,q(y) = Sp,q(z)} with z ∈
Y ∩Fn(p, q). Then there is a linear continuous map φz : Cp(Sp,q(z)) →
Cp(A(z)) such that φz(C(Sp,q(z))) is dense in Cp(A(z)).

Following the previous notations, for every h ∈ C(Sp,q(z)) and y ∈
A(z) we define φz(h)(y) =

∑q
i=1 λi(y)h(xi(z)). Because λi are con-

tinuous real-valued functions on A(z), so is each φz(h). Continuity
of φz with respect to the pointwise convergence topology is obvious.
Let’s show that φz(C(Sp,q(z))) is dense in Cp(A(z)). Indeed, take
θ ∈ Cp(A(z)) and its neighborhood V ⊂ Cp(A(z)). Then extend θ

to a function θ ∈ C(Y ). Because the set of real-valued elements of
Ep(Y ) is dense in Cp(Y ), there is g ∈ Ep(Y ) with g|A(z) ∈ V , so
g(y) ∈ R for all y ∈ Y . Next, choose f ∈ E(X) such that φ(f) = g.
Since z ∈ Y , each xi(z) ∈ X. So, all f(xi(z)) are real numbers.
Then h = f |Sp,q(z) ∈ C(Sp,q(z)) and, according to Claim 14, we have
φz(h) = g|A(z).

Claim 16. The fibers A(z) of the map Sp,q : Fn(p, q) → [X]q are 0-
dimensional for all z ∈ Y ∩ Fn(p, q).

Since |Sp,q(z)| = q, Cp(Sp,q(z)) is isomorphic to Rq. Hence, Claim 15
together with basic facts from linear algebra imply that |A(z)| ≤ q, in
particular A(z) is zero-dimensional.

Now, we can complete the proof of Proposition 4.1. As in the proof
of Proposition 2.1, using that X

q ∈ P , we can show that [X]q ∈ P .
Therefore, condition (c′) implies that each Fn(p, q) has also the property
P , and so does Yn(p, q) = Fn(p, q)∩ Y . Finally, since Y is the union of
its closed subsets Yn(p, q), we conclude that Y ∈ P . □

Lemma 4.2. For every countable set Φ′ ⊂ C(βY,R) there is a count-
able set Φ ⊂ C(βY,R) containing Φ′ such that (△Φ)(βY ) is home-
omorphic to (△Φ′)(βY ) and the set of real-valued elements of EΦ =
{πg : g ∈ Φ} is dense in Cp((△Φ)(βY )).

Proof. Let ϕ′ = △Φ′. Since Φ′ is countable, ϕ′(βY ) is a metrizable
compactum. Hence, by [8, Proposition 1.2], there is a countable QS-
algebra E ⊂ C(ϕ′(βY )). Let Φ = Φ′ ∪ {g ◦ ϕ′ : g ∈ E}. Since
the functions of E separate the points and closed subsets of ϕ′(βY ),
(△Φ)(βY ) is homeomorphic to ϕ′(βY ). Since E is a QS-algebra on
ϕ′(βY ), E is a dense subset of Cp(ϕ

′(βY )). Clearly E is a subset of EΦ

and consists of real-valued functions. □
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Lemma 4.3. Let X be a 0-dimensional space and Ψ′ ⊂ C(X) be a
countable set. Then there is a countable admissible set Ψ ⊂ C(X)
containing Ψ′ and a 0-dimensional metrizable compactification XΨ of
XΨ = (△Ψ)(X) having a countable base B such that:

• XΨ = (△Ψ)(βX) with Ψ = {f : f ∈ Ψ} ⊂ C(βX,R);
• Each πf , f ∈ Ψ, is extendable to a map πf : XΨ → R;
• E(XΨ) = {πf : f ∈ Ψ} is a countable QS-algebra on XΨ and
E(XΨ) = {πf : f ∈ Ψ} contains a countable QS-algebra on XΨ

satisfying condition (2.3);
• For every finite open cover γ of XΨ with elements from B the
family E(XΨ) contains a partition of unity subordinated to γ.

Proof. We first choose a countable admissible set Ψ0 ⊂ C(X) such that
dim(△Ψ0)(X) = 0 and Ψ′ ⊂ Ψ0, see (3.2) − (3.3). Then, by Lemma
3.2 there is a metrizable compactification Z0 of X0 = (△Ψ0)(X) with
dimZ0 = 0 such that each πf , f ∈ Ψ0, is extendable to a map

πf : Z0 → R. Choose a countable QS-algebra C0 ⊂ C(Z0) satisfy-
ing condition (2.3) (that can be done because Z0 has a countable base,
see the explanations in (2.3)). Let B0 be a countable base for Z0 and
for every finite open cover γ of Z0 consisting of open sets from B0 fix
a partition of unity αγ subordinated to γ. Because the family Ω0 of
all finite open covers of Z0 consisting of elements of B0 is countable,
so is the family E(Z0) = {f : f ∈ Ψ0} ∪ {αγ : γ ∈ Ω0} ∪ C0. The
set E0 = {h|X0 : h ∈ E(Z0)} may not be a QS-algebra on X0 but,
according to [8, Proposition 1.2], there exists a countable QS-algebra
Θ1 on X0 containing E0 as a proper subset. For every h ∈ Θ1 the func-

tion h ◦ (△Ψ0) : X → R can be extended to a map h̃ : βX → R and

let Ph = h̃(βX). Because {h|X0 : h ∈ C0} ⊂ Θ1 and it separates the
points and the closed sets of X0, by Lemma 3.2, there is a metrizable
compactification Z1 of X0 such that dimZ1 = 0, each h ∈ Θ1 is extend-
able to a map h : Z1 → R. The compactification Z1 is a closed subset of
the product Z0 ×

∏
h∈Θ1

Ph. Then the projection Z0 ×
∏

h∈Θ1
Ph → Z0

provides a map θ10 : Z1 → Z0 such that θ10 ◦ j1 = j0 with j1 : X0 → Z1

and j0 : X0 → Z0 being the corresponding embeddings.
Next, fix a base B1 on Z1 containing all sets (θ10)

−1(U), U ∈ B0,
which is closed under finite intersections, and consider the family Ω1

of all finite open covers of Z1 consisting of sets from B1. For each
γ ∈ Ω1 fix a partition of unity αγ subordinated to γ and let E(Z1) =

{h : h ∈ Θ1} ∪ {αγ : γ ∈ Ω1} ∪ C1 and E1 = {f |X0 : f ∈ E(Z1)},
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where C1 ⊂ C(Z1) is a countable QS-algebra of Z1 satisfying condi-
tion (2.3) such that {h ◦ θ10 : h ∈ C0} ⊂ C1. We construct by in-
duction an increasing sequence {Θn} of countable QS-algebras on X0,
0-dimensional metrizable compactifications Zn of X0 with a countable
base Bn, countable QS-algebras Cn ⊂ C(Zn) on Zn, countable families
E(Zn) ⊂ C(Zn,R) and surjective maps θn+1

n : Zn+1 → Zn such that:

(1) Bn+1 contains all inverse images (θn+1
n )−1(U), U ∈ Bn, and is

closed under finite intersections;
(2) Cn+1 satisfies condition (2.3) and {h ◦ θn+1

n : h ∈ Cn} ⊂ Cn+1;
(3) Every Zn+1 is a 0-dimensional metrizable compactification of

X0 such that every h ∈ Θn+1 is extendable to a map h ∈
C(Zn+1,R);

(4) E(Zn+1) = {h : h ∈ Θn+1}∪{αγ : γ ∈ Ωn+1}∪Cn+1, where Ωn+1

is the family of all finite open covers γ of Zn+1 with elements
from Bn+1 and αγ is a partition of unity subordinated to γ;

(5) En = {f |X0 : f ∈ E(Zn)} ⊂ Θn+1.

If the construction is performed for all k ≤ n, let En = {h|X0 : h ∈
E(Zn)} and Θn+1 be a countable QS-algebra on X0 with En ⊂ Θn+1.
For every h ∈ Θn+1 the function h ◦ (△Ψ0) : X → R can be extended

to a map h̃ : βX → R and let Ph = h̃(βX). By Lemma 3.2, there
exists a metrizable compactification Zn+1 of X0 such that dimZn+1 = 0
and each h ∈ Θn+1 is extendable to a map h : Zn+1 → R. The
space Zn+1 is a closed subset of Zn ×

∏
h∈Θn+1

Ph. So, the projection

Zn ×
∏

h∈Θn+1
Ph → Zn determines a map θn+1

n : Zn+1 → Zn such that

θn+1
n ◦ jn+1 = jn, where jn+1 : X0 → Zn+1 and jn : X0 → Zn are
the corresponding embeddings. Next, choose a base Bn+1 of Zn+1, a
countableQS-algebra Cn+1 ⊂ C(Zn+1) and a countable family E(Zn+1)
satisfying condition (1)− (5).

Since {Θn} is an increasing sequence of QS-algebras on X0, Θ =⋃
n Θn is also a countable QS-algebra on X0, and the limit space Z of

the inverse sequence S = {Zn, θ
n
n−1} is 0-dimensional. Because θn+1

n ◦
jn+1 = jn with jn+1 : X0 → Zn+1 and jn : X0 → Zn being embeddings,
there is an embedding j : X0 → Z such that θn ◦ j = jn, where
θn : Z → Zn is the projection in S. So, Z is a compactification of

X0 and every h ∈ Θ is extendable to a map h : Z → R. Indeed, if

h ∈ Θn, then h can be extended to a map h : Zn → R and h = h ◦ θn
is an extension of h over Z. Hence, Θ = {g|Z : g ∈ E(Z)}, where
E(Z) =

⋃
n{h ◦ θn : h ∈ E(Zn)}.

Denote C ′
n = {h ◦ θn : h ∈ Cn}, n ≥ 0. Because {h ◦ θnn−1 : h ∈

Cn−1} ⊂ Cn, the sequence {C ′
n} is increasing and C =

⋃
nC

′
n is closed
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under multiplications, additions and additions by rational numbers. To
show it a QS-algebra on Z we need to prove that for every point z ∈ Z
and its neighborhood U ⊂ Z there is h ∈ C such that h(z) = 1 and
h(Z\U) = 0. But that follows from condition (2.3), so let show that
C satisfies condition (2.3). To this end, take a compact set K ⊂ Z
and an open set W ⊂ Z containing K. Then there exist n, a compact
set Kn ⊂ Zn and open set Wn ⊂ Zn containing Kn such that K ⊂
θ−1(Kn) ⊂ θ−1(Wn) ⊂ W . Since Cn satisfies condition (2.3), there is
h ∈ Cn with h|Kn = 1, h|(Zn\Wn) = 0 and h(z) ∈ [0, 1] for all z ∈ Zn.
Then h′ = θn ◦ h ∈ C, h′ : Z → [0, 1], h′|K = 1 and h′|(X\W ) = 0.

Recall that all finite intersections U =
⋂k

i=1 θ
−1
i (Ui) with Ui ∈ Bi

form a base B for Z. Because of the choice of all Bi, see condition
(1), B consists of all sets of the form U = θ−1

n (Un) with Un ∈ Bn,
n ∈ N. Let’s show that for any finite open cover γ of Z consisting of
sets from B, the set E(Z) contains a partition of unity subordinated to
γ. Indeed, for any such a cover γ = {U1, .., Uk} there is n and a cover
γn = {Un

1 , .., U
n
k } ∈ Ωn such that Ui = θ−1

n (Un
i ). So, there is a partition

of unity αγn = {hn
i : i = 1, .., k} subordinated to γn with αγn ⊂ E(Zn).

Then {hn
i ◦ θn : i = 1, ..., k} is a partition of unity subordinated to

γ and it is contained in E(Z). Finally, let Ψ = {h ◦ △Ψ0 : h ∈ Θ},
Ψ = {f : f ∈ Ψ} ⊂ C(βX,R) and XΨ = (△Ψ)(βX). Since C is
a QS-algebra on Z, it separates the points and the closed sets in Z.
Moreover, C ⊂ E(Z), which means thatXΨ is homeomorphic to Z. □

Proof of Theorem 1.4. Let T : Cp(X) → Cp(Y ) be a continuous
linear surjection and dimX = 0. To show that dimY = 0, it suffices
to prove that for every h ∈ FY there exists h0 ∈ FY with h0 ≻ h and
dimh0(Y ) = 0. To this end, fix h ∈ FY . Following the proof of The-
orem 1.1 and using Lemmas 4.2-4.3, we are constructing two increas-
ing sequences of countable sets {Ψn} ⊂ C(βX,R), {Φn} ⊂ C(βY,R),
metrizable compactifications Xn = (△Ψn)(βX) and Y n = (△Φn)(βY )
of the spaces Xn = (△Ψn)(X) and Yn = (△Φn)(Y ), where Ψn = Ψn|X
and Φn = Φn|Y , countable bases B′

n and B′′
n for Xn and Y n and contin-

uous surjections θn+1
n : Xn+1 → Xn, δ

n+1
n : Y n+1 → Y n satisfying the

following conditions (everywhere below, if f ∈ C(X) then f : βX → R
denotes its extension):

(4.1) △Φ1 ≻ h, Φn ⊂ {T (f) : f ∈ Ψn} ⊂ Φn+1 and Ψn ⊂ Ψn+1;
(4.2) Each πf , f ∈ Ψn, is extendable to a map πf : Xn → R;
(4.3) Ψn is admissible, dimXn = 0 and B′

n satisfies condition (1)
from Lemma 4.3;
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(4.4) E(Xn) = {πf : f ∈ Ψn} contains a countable QS-algebra Cn ⊂
C(Xn) onXn such that Cn satisfies condition (2) from the proof
of Lemma 4.3;

(4.5) For every finite open cover γ of Xn, consisting of sets from
B′
n, there exists a partition of unity αγ subordinated to γ with

αγ ⊂ E(Xn);

(4.6) Every πg, g ∈ Φn, is extendable to a map πg : Y n → R;
(4.7) B′′

n contains all inverse images (δnn−1)
−1(U), U ∈ B′′

n−1, and is
closed under finite intersections;

(4.8) The set of real-valued functions from E(Y n) = {πg : g ∈ Φn} is
dense in Cp(Y n).

Since h(Y ) is a separable metrizable space, there is a countable set
Φ′

1 ⊂ C(Y ) with h = △Φ′
1. Let Φ′

1 = {g : g ∈ Φ′
1} ⊂ C(βY,R).

By Lemma 4.2, there is a countable set Φ1 ⊂ C(βY,R) containing Φ′
1

such that (△Φ1)(βY ) is homeomorphic to (△Φ′
1)(βY ) and {πg : g ∈

Φ1} contains a dense subset of Cp(Y 1), where Y 1 = (△Φ1)(βY ). Let
Φ1 = {g : g ∈ Φ1}, Y1 = (△Φ1)(Y ) and E(Y 1) = {πg : g ∈ Φ1}.
So, Φ1 satisfies conditions (4.6) − (4.7). Next, choose a countable set
Ψ′

1 ⊂ C(X) with T (Ψ′
1) = Φ1 and apply Lemma 4.3 to find a countable

admissible set Ψ1 containing Ψ′
1 and a metrizable compactification X1

of X1 = △Ψ1(X) satisfying conditions (4.2)− (4.5).
Suppose the construction is done for all k ≤ n. Let Φ′

n+1 ⊂ C(Y )

be a countable set containing T (Ψn) and denote Φ′
n+1 = {g : g ∈

Φ′
n+1} ⊂ C(βY,R). By Lemma 4.2, there is a countable set Φn+1 ⊂

C(βY,R) containing Φ′
n+1 such that (△Φn+1)(βY ) is homeomorphic

to (△Φ′
n+1)(βY ) and {πg : g ∈ Φn+1} contains a dense subset of

Cp(Y n+1), where Y n+1 = (△Φn+1)(βY ). Let Φn+1 = {g : g ∈ Φn+1}
and Yn+1 = (△Φn+1)(Y ). Note that Φn ⊂ Φn+1 because Φn ⊂ T (Ψn).
Next, choose a countable set Ψ′

n+1 ⊂ C(X) with T (Ψ′
n+1) = Φn+1

and apply Lemma 4.3 to find a countable admissible set Ψn+1 con-
taining Ψ′

n+1 ∪Ψn and a metrizable compactification Xn+1 of Xn+1 =

(△Ψn+1)(X) satisfying conditions (4.1) − (4.5). Because Ψn ⊂ Ψn+1,
△Ψn+1 ≻ △Ψn. Hence, there exists a map θn+1

n : Xn+1 → Xn defined
by θn+1

n = △Ψn((△Ψn+1)
−1(x)). This completes the induction.

As in the proof of Theorem 1.1, we denote X0 = (△Ψ)(βX), Y 0 =
(△Φ)(βY ) and h0 = △Φ, where Ψ =

⋃
nΨn and Φ =

⋃
nΦn. Clearly,

Φ = {T (f) : f ∈ Ψ}. Since X0 is the limit space of the inverse sequence
SX = {Xn, θ

n+1
n } and dimXn = 0 for all n, dimX0 = 0. Moreover,

E(X0) = {πf : f ∈ Ψ} is a countable QS-algebra on X0 such that

every πf is extendable to a continuous map πf : X0 → R. Denote
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E(X0) = {πf : f ∈ Ψ}. Let also C =
⋃

n{h ◦ θn : h ∈ Cn} ⊂ E(X0).
The same arguments as in the proof of Lemma 4.3 show that C is a
QS-algebra on X0 satisfying condition (2.3). Let B′ be the base of X0

generated by the bases B′
n. The arguments from the proof of Lemma

4.3 also provide that for every finite open cover γ of X0, consisting of
open sets from B′ there exists a partition of unity αγ subordinated to
γ with αγ ⊂ E(X0).

Because Φn ⊂ Φn+1, Φn ⊂ Φn+1. This implies △Φn+1 ≻ △Φn. So,
for every n there is map δn+1

n : Y n+1 → Y n defined by δn+1
n (y) =

△Φn((△Φn+1)
−1(y)). Then Y 0 is the limit of the inverse sequence

SY = {Y n, δ
n+1
n }. Let E(Y0) = {πg : g ∈ Φ} and E(Y 0) = {πg :

g ∈ Φ}. We claim that the set of real-valued elements of Ep(Y 0) is
dense in Cp(Y 0). Indeed, every projections δn : Y 0 → Y n induces a
continuous map δ∗n : Cp(Y n) → Cp(Y 0) defined by δ∗n(h) = h ◦ δn.
Because the set of real-valued functions from E(Y n) = {πg : g ∈ Φn}
is dense in Cp(Y n) and Ep(Y 0) =

⋃
n δ

∗
n(E(Y n)), it suffices to show

that
⋃

n δ
∗
n(Cp(Y n)) is dense in Cp(Y 0). To this end, let O = {f ∈

Cp(Y 0) : |f(yi) − f0(yi)| < εi, i = 1, .., k} be a neighborhood of some
f0 ∈ Cp(Y 0), where all yi are different points from Y 0. Since the base
B′′ of Y 0 consists of all sets of the form δ−1

n (Un), Un ∈ B′′
n, there is n and

different points yi ∈ Y n such that δn(yi) = yi and δ−1
n (Ui) ⊂ f−1

0 (Vi),
where Ui ∈ B′′

n and Vi is the open interval (f0(yi)−εi, f0(yi)+εi). Then
the set W = {h ∈ Cp(Y n) : h(yi) ∈ Vi, i = 1, 2, .., k} is open in Cp(Y n).
So, it contains a function h0 ∈ E(Y n). Hence, h0 ◦δn is a function from⋃

n δ
∗
n(Cp(Y n))∩O. So, the set of all real-valued functions from E(Y 0)

is dense in Cp(Y 0).
Because T is linear, so is the map φ : Ep(X0) → Ep(Y0) defined

by φ(πf ) = πT (f). The arguments from the proof of Theorem 1.1
show that φ is continuous, but we are going to prove the more general
fact that φ has a continuous extension over the linear hull LEp(X0).
For every f ∈ LE(X0) let f ∗ = f ◦ (△Ψ) ∈ C(X). Evidently, if

f =
∑k

i=1 λi ·fi ∈ LE(X0), then f ∗ =
∑k

i=1 λi ·f ∗
i . So, we have another

description of the map φ: φ(f) = πT (f∗), f ∈ E(X0).

Claim 17. Let f =
∑k

i=1 λi · fi ∈ LE(X0) with fi ∈ E(X0) for all i.

If y∗ ∈ Y and (△Φ)(y∗) = y, then T (f ∗)(y∗) =
∑k

i=1 λi · T (f ∗
i )(y

∗) =∑k
i=1 λi · φ(fi)(y).

It suffices to show that T (f ∗)(y∗) = φ(f)(y) for all f ∈ E(X0). And
that is true because f ∗ ∈ Ψ, so T (f ∗) ∈ Φ and T (f ∗)(y∗) = φ(f)(y).
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We define φ̃ : LE(X0) → LE(Y0) by φ̃(
∑k

i=1 λi ·fi) =
∑k

i=1 λi ·φ(fi),
where λi ∈ R and fi ∈ E(X0). The continuity of φ̃ with respect
to the pointwise topology is equivalent of the continuity of all linear

functionals l̃y : LEp(X0) → R defined by l̃y(f) = φ̃(f)(y), y ∈ Y0. So,

fix y0 ∈ Y0 and f0 =
∑k

i=1 λi · fi ∈ LE(X0) with fi ∈ E(X0) such that

l̃y0(f0) ∈ V for some open interval V ⊂ R. Then f ∗
0 =

∑k
i=1 λi · f ∗

i and,
by Claim 17 we have

T (f ∗
0 )(y

∗
0) =

k∑
i=1

λi · T (f ∗
i )(y

∗
0) =

k∑
i=1

λi · φ(fi)(y0) = l̃y0(f0),

where y∗0 ∈ Y with (△Φ)(y∗0) = y0. Consequently, there is a neighbor-
hood W ∗ = {g ∈ Cp(X) : |g(x∗

j)− f ∗
0 (x

∗
j)| < ηj, j = 1, 2, ..,m} of f ∗

0 in
Cp(X) such that T (g)(y∗0) ∈ V for all g ∈ W ∗. Observe that

f ∗
0 (x

∗
j) =

k∑
i=1

λi · f ∗
i (x

∗
j) =

k∑
i=1

λi · fi(xj) = f0(xj),

where xj = (△Ψ)(x∗
j). So, W = {f ∈ LE(X0) : |f(xj) − f0(xj)| <

ηj, j = 1, 2, ..,m} is a neighborhood of f0 in LEp(X0). If g ∈ W , then
g =

∑m
s=1 λs · gs for some gs ∈ E(X0). Hence, g

∗ =
∑m

s=1 λs · g∗s ∈ W ∗

which means that T (g∗)(y∗0) ∈ V . Finally, according to Claim 17,

T (g∗)(y∗0) =
∑m

s=1 λs · φ(gs)(y0) = l̃y0(g) ∈ V . Thus, φ̃ : LEp(X0) →
LEp(Y0) is continuous.

Therefore, the spaces X0, X0, Y0 and Y 0 satisfy the assumptions of
Proposition 4.1. So, we apply Proposition 4.1 withX = X0 and Y = Y0

to conclude that dimY0 = 0. That completes the proof of Theorem 1.4.
2
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