
JFP 13 (1): 173–178, January 2003. © 2003 Cambridge University Press

DOI: 10.1017/S0956796803001813 Printed in the United Kingdom

Chapter 16

Arrays

module Array (
module Ix, -- export all of Ix for convenience
Array, array, listArray, (!), bounds, indices, elems, assocs,
accumArray, (//), accum, ixmap) where

import Ix

infixl 9 !, //

data (Ix a) => Array a b = ... -- Abstract

array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b
listArray :: (Ix a) => (a,a) -> [b] -> Array a b
(!) :: (Ix a) => Array a b -> a -> b
bounds :: (Ix a) => Array a b -> (a,a)
indices :: (Ix a) => Array a b -> [a]
elems :: (Ix a) => Array a b -> [b]
assocs :: (Ix a) => Array a b -> [(a,b)]
accumArray :: (Ix a) => (b -> c -> b) -> b -> (a,a) -> [(a,c)]

-> Array a b
(//) :: (Ix a) => Array a b -> [(a,b)] -> Array a b
accum :: (Ix a) => (b -> c -> b) -> Array a b -> [(a,c)]

-> Array a b
ixmap :: (Ix a, Ix b) => (a,a) -> (a -> b) -> Array b c

-> Array a c

173

https://doi.org/10.1017/S0956796803001813 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001813

174 CHAPTER 16. ARRAYS

instance Functor (Array a) where ...
instance (Ix a, Eq b) => Eq (Array a b) where ...
instance (Ix a, Ord b) => Ord (Array a b) where ...
instance (Ix a, Show a, Show b) => Show (Array a b) where ...
instance (Ix a, Read a, Read b) => Read (Array a b) where ...

Haskell provides indexable arrays, which may be thought of as functions whose domains are iso-
morphic to contiguous subsets of the integers. Functions restricted in this way can be implemented
efficiently; in particular, a programmer may reasonably expect rapid access to the components. To
ensure the possibility of such an implementation, arrays are treated as data, not as general functions.

Since most array functions involve the class Ix, this module is exported from Array so that mod-
ules need not import both Array and Ix.

16.1 Array Construction

If a is an index type and b is any type, the type of arrays with indices in a and elements in b
is written Array a b. An array may be created by the function array. The first argument of
array is a pair of bounds, each of the index type of the array. These bounds are the lowest and
highest indices in the array, in that order. For example, a one-origin vector of length 10 has bounds
(1,10), and a one-origin 10 by 10 matrix has bounds ((1,1),(10,10)).

The second argument of array is a list of associations of the form (!� ��, �"#��). Typically, this
list will be expressed as a comprehension. An association (i, x) defines the value of the array at
index i to be x. The array is undefined (i.e. �) if any index in the list is out of bounds. If any two
associations in the list have the same index, the value at that index is undefined (i.e. �). Because
the indices must be checked for these errors, array is strict in the bounds argument and in the
indices of the association list, but nonstrict in the values. Thus, recurrences such as the following
are possible:

a = array (1,100) ((1,1) : [(i, i * a!(i-1)) | i <- [2..100]])

Not every index within the bounds of the array need appear in the association list, but the values
associated with indices that do not appear will be undefined (i.e. �). Figure 16.1 shows some
examples that use the array constructor.

The (!) operator denotes array subscripting. The bounds function applied to an array returns
its bounds. The functions indices, elems, and assocs, when applied to an array, return lists
of the indices, elements, or associations, respectively, in index order. An array may be constructed
from a pair of bounds and a list of values in index order using the function listArray.

If, in any dimension, the lower bound is greater than the upper bound, then the array is legal, but
empty. Indexing an empty array always gives an array-bounds error, but bounds still yields the
bounds with which the array was constructed.

https://doi.org/10.1017/S0956796803001813 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001813

16.2. INCREMENTAL ARRAY UPDATES 175

-- Scaling an array of numbers by a given number:
scale :: (Num a, Ix b) => a -> Array b a -> Array b a
scale x a = array b [(i, a!i * x) | i <- range b]

where b = bounds a

-- Inverting an array that holds a permutation of its indices
invPerm :: (Ix a) => Array a a -> Array a a
invPerm a = array b [(a!i, i) | i <- range b]

where b = bounds a

-- The inner product of two vectors
inner :: (Ix a, Num b) => Array a b -> Array a b -> b
inner v w = if b == bounds w

then sum [v!i * w!i | i <- range b]
else error "inconformable arrays for inner product"

where b = bounds v

Figure 16.1: Array examples

16.1.1 Accumulated Arrays

Another array creation function, accumArray, relaxes the restriction that a given index may ap-
pear at most once in the association list, using an accumulating function which combines the values
of associations with the same index. The first argument of accumArray is the accumulating
function; the second is an initial value; the remaining two arguments are a bounds pair and an as-
sociation list, as for the array function. For example, given a list of values of some index type,
hist produces a histogram of the number of occurrences of each index within a specified range:

hist :: (Ix a, Num b) => (a,a) -> [a] -> Array a b
hist bnds is = accumArray (+) 0 bnds [(i, 1) | i<-is, inRange bnds i]

If the accumulating function is strict, then accumArray is strict in the values, as well as the
indices, in the association list. Thus, unlike ordinary arrays, accumulated arrays should not in
general be recursive.

16.2 Incremental Array Updates

The operator(//) takes an array and a list of pairs and returns an array identical to the left argument
except that it has been updated by the associations in the right argument. (As with the array
function, the indices in the association list must be unique for the updated elements to be defined.)
For example, if m is a 1-origin, n by n matrix, then m//[((i,i), 0) | i <- [1..n]] is
the same matrix, except with the diagonal zeroed.

accum � takes an array and an association list and accumulates pairs from the list into the array
with the accumulating function � . Thus accumArray can be defined using accum:

accumArray f z b = accum f (array b [(i, z) | i <- range b])

https://doi.org/10.1017/S0956796803001813 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001813

176 CHAPTER 16. ARRAYS

-- A rectangular subarray
subArray :: (Ix a) => (a,a) -> Array a b -> Array a b
subArray bnds = ixmap bnds (\i->i)

-- A row of a matrix
row :: (Ix a, Ix b) => a -> Array (a,b) c -> Array b c
row i x = ixmap (l’,u’) (\j->(i,j)) x where ((_,l’),(_,u’)) = bounds x

-- Diagonal of a matrix (assumed to be square)
diag :: (Ix a) => Array (a,a) b -> Array a b
diag x = ixmap (l,u) (\i->(i,i)) x

where
((l,_),(u,_)) = bounds x

-- Projection of first components of an array of pairs
firstArray :: (Ix a) => Array a (b,c) -> Array a b
firstArray = fmap (\(x,y)->x)

Figure 16.2: Derived array examples

16.3 Derived Arrays

The two functions fmap and ixmap derive new arrays from existing ones; they may be thought
of as providing function composition on the left and right, respectively, with the mapping that the
original array embodies. The fmap function transforms the array values while ixmap allows for
transformations on array indices. Figure 16.2 shows some examples.

16.4 Library Array

module Array (
module Ix, -- export all of Ix
Array, array, listArray, (!), bounds, indices, elems, assocs,
accumArray, (//), accum, ixmap) where

import Ix
import List((\\))

infixl 9 !, //

data (Ix a) => Array a b = MkArray (a,a) (a -> b) deriving ()

https://doi.org/10.1017/S0956796803001813 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001813

16.4. LIBRARY ARRAY 177

array :: (Ix a) => (a,a) -> [(a,b)] -> Array a b
array b ivs =

if and [inRange b i | (i,_) <- ivs]
then MkArray b

(\j -> case [v | (i,v) <- ivs, i == j] of
[v] -> v
[] -> error "Array.!: \

\undefined array element"
_ -> error "Array.!: \

\multiply defined array element")
else error "Array.array: out-of-range array association"

listArray :: (Ix a) => (a,a) -> [b] -> Array a b
listArray b vs = array b (zipWith (\ a b -> (a,b)) (range b) vs)

(!) :: (Ix a) => Array a b -> a -> b
(!) (MkArray _ f) = f

bounds :: (Ix a) => Array a b -> (a,a)
bounds (MkArray b _) = b

indices :: (Ix a) => Array a b -> [a]
indices = range . bounds

elems :: (Ix a) => Array a b -> [b]
elems a = [a!i | i <- indices a]

assocs :: (Ix a) => Array a b -> [(a,b)]
assocs a = [(i, a!i) | i <- indices a]

(//) :: (Ix a) => Array a b -> [(a,b)] -> Array a b
a // new_ivs = array (bounds a) (old_ivs ++ new_ivs)

where
old_ivs = [(i,a!i) | i <- indices a,

i ‘notElem‘ new_is]
new_is = [i | (i,_) <- new_ivs]

accum :: (Ix a) => (b -> c -> b) -> Array a b -> [(a,c)]
-> Array a b

accum f = foldl (\a (i,v) -> a // [(i,f (a!i) v)])

accumArray :: (Ix a) => (b -> c -> b) -> b -> (a,a) -> [(a,c)]
-> Array a b

accumArray f z b = accum f (array b [(i,z) | i <- range b])

ixmap :: (Ix a, Ix b) => (a,a) -> (a -> b) -> Array b c
-> Array a c

ixmap b f a = array b [(i, a ! f i) | i <- range b]

instance (Ix a) => Functor (Array a) where
fmap fn (MkArray b f) = MkArray b (fn . f)

instance (Ix a, Eq b) => Eq (Array a b) where
a == a’ = assocs a == assocs a’

instance (Ix a, Ord b) => Ord (Array a b) where
a <= a’ = assocs a <= assocs a’

https://doi.org/10.1017/S0956796803001813 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001813

178 CHAPTER 16. ARRAYS

instance (Ix a, Show a, Show b) => Show (Array a b) where
showsPrec p a = showParen (p > arrPrec) (

showString "array " .
showsPrec (arrPrec+1) (bounds a) . showChar ’ ’ .
showsPrec (arrPrec+1) (assocs a))

instance (Ix a, Read a, Read b) => Read (Array a b) where
readsPrec p = readParen (p > arrPrec)

(\r -> [(array b as, u)
| ("array",s) <- lex r,

(b,t) <- readsPrec (arrPrec+1) s,
(as,u) <- readsPrec (arrPrec+1) t])

-- Precedence of the ’array’ function is that of application itself
arrPrec = 10

https://doi.org/10.1017/S0956796803001813 Published online by Cambridge University Press

https://doi.org/10.1017/S0956796803001813

