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MODELS OF TORSORS AND THE FUNDAMENTAL
GROUP SCHEME

MARCO ANTEI and MICHEL EMSALEM

Abstract. Given a relative faithfully flat pointed scheme over the spectrum

of a discrete valuation ring X → S, this paper is motivated by the study of

the natural morphism from the fundamental group scheme of the generic fiber

Xη to the generic fiber of the fundamental group scheme of X. Given a torsor

T →Xη under an affine group scheme G over the generic fiber of X, we address

the question of finding a model of this torsor over X, focusing in particular on

the case where G is finite. We provide several answers to this question, showing

for instance that, when X is integral and regular of relative dimension 1, such a

model exists on some model X ′ of Xη obtained by performing a finite number

of Néron blowups along a closed subset of the special fiber of X. Furthermore,

we show that when G is étale, then we can find a model of T →Xη under the

action of some smooth group scheme. In the first part of the paper, we show

that the relative fundamental group scheme of X has an interpretation as the

Tannaka Galois group of a Tannakian category constructed starting from the

universal torsor.

§1. Introduction

1.1 Aim and scope

Let S be a Dedekind scheme of dimension 1, and let η = Spec(K) be

its generic point; let X be a scheme, let f :X → S be a faithfully flat

morphism of finite type, and let fη :Xη→ η be its generic fiber. Assume

that we are given a finite K-group scheme G and a G-torsor Y →Xη. So

far, the problem of extending the G-torsor Y →Xη has consisted in finding

a finite and flat S-group scheme G′ whose generic fiber is isomorphic to

G, and a G′-torsor T →X whose generic fiber is isomorphic to Y →Xη

as a G-torsor. Some solutions to this problem, from Grothendieck’s first

ideas until the present, are known in some particular relevant cases that we
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MODELS OF TORSORS AND THE FUNDAMENTAL GROUP SCHEME 19

briefly recall. Grothendieck proved that, possibly after extending scalars,

the problem has a solution when G is a constant finite group, and S is

the spectrum of a complete discrete valuation ring with algebraically closed

residue field of positive characteristic p, with X proper and smooth over S

with geometrically connected fibers and p - |G| (see [11, Exposé X]). When

S is the spectrum of a discrete valuation ring of residue characteristic p,

and X is a proper and smooth curve over S, then Raynaud suggested a

solution, possibly after extending scalars, for |G|= p (see [22, Section 3]).

When S is the spectrum of a discrete valuation ring R of mixed characteristic

(0, p), Tossici provided a solution, possibly after extending scalars, for G

commutative, when X is a regular scheme, faithfully flat over S, with

some extra assumptions on X and Y (see [24, Corollary 4.2.8]). Finally,

in [2, Sections 3.2 and 3.3], the first author provided a solution for G

commutative, when S is a connected Dedekind scheme and f :X → S is

a smooth morphism satisfying additional assumptions (in this last case it

is not needed to extend scalars). In [3], the case where G is solvable is

treated. However, a general solution does not exist. Moreover, we know

that it can even happen that G does not admit a finite and flat model.

(See [17, Appendix B, Proposition B.2] for the positive equal characteristic

case or [20, Section 3.4] for the mixed characteristic case.) What is always

true is that G admits at least an affine, quasi-finite (then, of finite type,

according to our conventions, see Section 1.2), flat R-group scheme model.

Indeed, G is isomorphic to a closed subgroup scheme of some GLn,K (see

[25, Section 3.4]); then, it is sufficient to consider its schematic closure in

GLn,S . In this paper, we explain how to solve the problem of extending any

G-torsor when G is any algebraic group scheme over K up to a modification

of X. We obtain, for instance, the following theorem.

Theorem 3.9. Let S be the spectrum of a Henselian discrete valuation

ring R with function field K and with algebraically closed residue field. Let

X → S be a smooth and surjective morphism with X a connected scheme.

Let G be an affine K-group scheme of finite type, and let f : Y →Xη be a

G-torsor; then, there exists, possibly after extension of scalars, a connected

scheme X ′ smooth and surjective over S, a model map λ :X ′→X and a

G0-torsor f ′ : Y0→X ′ extending the given G-torsor Y for some affine finite

type and flat S-group scheme G0. If, moreover, G is finite, then G0 is quasi-

finite, and there exists an open subscheme X1 ⊆X such that X\X1 has

codimension > 3 in X, and such that X ′ can be obtained from X1 after a

finite number of Néron blowups.
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20 M. ANTEI AND M. EMSALEM

When X is a relative curve, this modification is represented by a finite

number of Néron blowups of X in a closed subscheme of the special fiber

of X. For more precise statements, we refer the reader to Section 3. The most

interesting case is certainly the case whereG is finite. If we were able to prove

that every finite and pointed torsor over Xη admits a model over X, then

the natural morphism ϕ : π(Xη, xη)→ πqf(X, x)η (which is always faithfully

flat, see [4, Section 7]) between the fundamental group scheme of Xη and

the generic fiber of the quasi-finite fundamental group scheme of X would

be an isomorphism. It is known that ϕ becomes an isomorphism when we

restrict to the abelianized fundamental group scheme (cf. [2]). Here, we find a

partial answer, extending all finite torsors, but instead of providing a model

over X, we provide a model over some X ′ obtained by slightly modifying

X, as explained. Furthermore, when G is finite étale, then we can iterate

our techniques (we keep on Néron blowing up X, if necessary) in order to

obtain a model for the given torsor under the action of a smooth group

scheme (cf. Corollary 3.10); this is sharp in the sense that several examples

of étale torsors whose models over X are never smooth are known. In order

to approach the question from a different point of view, it would be of great

interest to have a Tannakian description for πqf(X, x), π(X, x) and their

universal torsors X̂qf →X and X̂ →X. In [15], Mehta and Subramanian

provided a first construction which works only for schemes defined over some

non-Noetherian Prüfer rings whose function field is algebraically closed.

In Section 2, we give a different Tannakian description, simply choosing

the category of vector bundles on X trivialized by the universal torsor,

whose existence is now known. An intrinsic description, independent from

the existence of the universal torsor, would be strongly appreciated.

1.2 Notations and conventions

Let S be any scheme, let X be an S-scheme, let G be a (faithfully) flat,

affine1 S-group scheme, and let Y be an S-scheme endowed with a right

action σ : Y ×G→ Y . An S-morphism p : Y →X is said to be a G-torsor

if it is faithfully flat, G-invariant, and the canonical morphism (σ, prY ) :

Y ×G→ Y ×X Y is an isomorphism. Let H be a flat, affine S-group scheme,

and let q : Z→X be an H-torsor; a morphism between two such torsors

is a pair (β, α) : (Z, H)→ (Y, G), where α :H →G is an S-morphism of

1We do not need G to be affine in order to define a G-torsor, but it is the only type
we encounter in this paper.
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group schemes, and β : Z→ Y is an X-morphism of schemes such that the

following diagram commutes:

Z ×H
β×α

//

H-action
��

Y ×G

G-action
��

Z
β

// Y

(thus Y is isomorphic to the contracted product Z ×H G through α, cf.

[6, III, Section 4, 3.2]). In this case, we say that Z precedes Y .

When S is irreducible, η will denote its generic point and K its function

field k(η). Any S-scheme whose generic fiber is isomorphic to some K-

scheme Tη will be called a model of Tη. Any morphism that is generically

an isomorphism will be called a model map.

Throughout the whole paper, a morphism of schemes f : Y →X will be

said to be quasi-finite if it is of finite type, and for every point x ∈X, the

fiber Yx is a finite set. Let S be any scheme, and let G be an affine S-group

scheme. Then, we say that G is a finite (resp. quasi-finite) S-group scheme

if the structural morphism G→ S is finite (resp. quasi-finite).

Let R be a commutative ring with unity, and let G be an affine and flat R-

group scheme; we denote by RepR,tf (G) the category of finitely generated

R-linear representations of G, and by Rep0
R,tf (G) the full subcategory of

RepR,tf (G) whose objects are free (as R-modules).

§2. A Tannakian construction

Throughout this section, R will always be a discrete valuation ring, with

uniformizing element π, with field of fractions K := Frac(R) and residue

field k :=R/πR. The generic and special points of Spec(R) will often be

denoted by η and s, respectively.

Lemma 2.1. Let X be a Noetherian scheme over R, and let T = lim←−i∈ITi
be a projective limit of X-schemes fi : Ti→X affine over X. We assume

that for all i ∈ I, H0(Ti,OTi) =R. Then, H0(T,OT ) =R.

Proof. This follows from [13, III, Proposition 2.9].

Lemma 2.2. Let j : T → Spec(R) be a quasi-compact and quasi-

separated faithfully flat morphism, and let us assume that the generic fiber

Tη of T is such that H0(Tη,OTη) =K. Then, H0(T,OT ) =R.
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Proof. We first observe that either H0(T,OT ) =R or H0(T,OT ) =K.

Indeed,

R⊂H0(T,OT )⊂H0(T,OT )⊗R K 'H0(Tη,OTη) =K,

the last isomorphism being a consequence of [23, Lemma 29.5.2], and it is not

difficult to check that an R-algebra containing R and contained inK is either

R or K. However, if H0(T,OT ) =K, f would not be surjective because

of the canonical factorization of f : T → Spec(R) into T → Spec(OT (T ))→
Spec(R).

We apply these remarks to the theory of the (quasi-finite) fundamental

group scheme and its universal torsor which we briefly recall.

Definition 2.3. Let X → S be a morphism of schemes endowed with

a section x ∈X(S). We say that X has a fundamental group scheme (resp.

a quasi-finite fundamental group scheme) if there exist an S-group scheme

π(X, x) (resp. πqf(X, x)) and a pointed π(X, x)-torsor X̂ (resp. πqf(X, x)-

torsor X̂qf) such that for any finite (resp. quasi-finite) torsor Y →X over

X, pointed over x, there is a unique morphism of pointed torsors X̂ → Y

(resp. X̂qf → Y ).

In [4, Sections 4, 5.1 and 5.2], we proved the following existence theorems.

Theorem 2.4. Let S be a Dedekind scheme, let X → S be a faithfully

flat morphism locally of finite type, and let x ∈X(S) be a section. Let us

moreover assume that one of the following assumptions is satisfied:

(1) for every s ∈ S, the fiber Xs is reduced;

(2) for every z ∈X\Xη, the local ring OX,z is integrally closed.

Then, X has a fundamental group scheme.

Theorem 2.5. Let S be a Dedekind scheme, let X → S be a faithfully

flat morphism locally of finite type, and let x ∈X(S) be a section. Let us

moreover assume that X is normal, and that for each s ∈ S, the fiber Xs is

normal and integral. (Note that these conditions imply that X is integral.)

Then, X has a quasi-finite fundamental group scheme.

Notation 2.6. In order to simplify the exposition, from now on we

only consider the case where X satisfies the assumptions of Theorem 2.5.

However, the statements proved for the universal πqf(X, x)-torsor will also

hold for the universal π(X, x)-torsor, and the proofs are exactly the same.
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Definition 2.7. We say that a quasi-finite G-torsor over X pointed

over x is quasi-Galois if the canonical morphism ρ : π(X, x)qf →G is

schematically dominant (that is, R[G]→R[π(X, x)qf ] is injective). It is

furthermore called Galois, if ρ : π(X, x)qf →G is faithfully flat.

Lemma 2.8. Consider a faithfully flat morphism X → Spec(R) of finite

type. Let us assume that H0(X,OX) =R. Let G be a quasi-finite and flat

group scheme, and let T →X be a quasi-Galois G-torsor pointed over x.

Then, H0(T,OT ) =R.

Proof. It is sufficient to notice that the generic fiber Tη of T is Galois

over Xη (cf. [4, Section 7, Lemma 7.6]). Hence, H0(Tη,OTη) =K (cf. [18,

Chapter 2, Proposition 3]). The conclusion follows by Lemma 2.2.

Corollary 2.9. Consider a faithfully flat morphism X → Spec(R) of

finite type. Let us assume that H0(X,OX) =R. Then, H0(X̂qf ,O
X̂qf ) =R.

Proof. First, we observe that for any quasi-finite and flat R-group

scheme G, any G-torsor over X pointed over x is preceded by a quasi-

Galois torsor: it is sufficient to factor the canonical morphism πqf(X, x)→G

as πqf(X, x)→G′→G, where πqf(X, x)→G′ is a schematically dominant

morphism and G′→G is a closed immersion. Then, the contracted product

X̂qf ×πqf(X,x) G′ gives the desired quasi-Galois torsor. Hence, the universal

torsor is isomorphic to a projective limit of quasi-Galois torsors, and the

conclusion follows using Lemmas 2.8 and 2.1.

Theorem 2.10. With the same assumptions as in Corollary 2.9, the
universal π(X, x)qf-torsor X̂qf →X induces an equivalence of categories
Rep0

R,tf (πqf(X, x))→T qf , where T qf denotes the category of vector bundles

on X trivialized by X̂qf →X.

Let θ :X → Spec(R) denote the structural morphism, and let j : T →X
be any G-torsor for some affine and flat R-group scheme G, then we denote
by G−Vec tT the category of G-sheaves over T whose objects are locally
free as OT -modules. It is known that the functor j∗ : Vec tX →G−Vec tT
is an equivalence of categories, and we denote by ρ :G−Vec tT →Vec tX
a quasi-inverse. As usual, we naturally associate to j : T →X the functor
FT : Rep0

R,tfG→T , where T denotes the category of vector bundles on
X trivialized by T →X, given by ρ ◦ (j∗ ◦ θ∗). Thus, Theorem 2.10 is
a consequence of the following more general statement, which somehow
generalizes an analog result for torsors over fields (cf. [18, Chapter II,
Proposition 3]).
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Lemma 2.11. Consider a faithfully flat morphism X → Spec(R) of finite

type. Let G→ Spec(R) be a flat affine group scheme, and let j : T →X be

a G-torsor such that H0(T,OT ) =R. The functor FT : Rep0
R,tfG→T is an

equivalence of categories.

Proof. First, we observe that the functor FT is fully faithful if and

only if (j∗ ◦ θ∗) is fully faithful. Let V1, V2 be two objects of Rep0
R,tfG.

Then, Hom(Rep0R,tfG)(V1, V2) = (V ∨1 ⊗R V2)G. Analogously, if F1, F2 are two

objects of G−Vec tT , then

HomG−VecT (F1, F2) =H0(T, F∨1 ⊗OT F2)
G.

Thus, FT is fully faithful if and only if, for any object W of Rep0
R,tfG, the

natural map

(†) WG→H0(T, j∗θ∗(W ))G

is an isomorphism. We have the following sequence of isomorphisms (by

means of the projection formula):

H0(T, j∗θ∗(W ))

'H0(Spec(R), (θ ◦ j)∗(θ ◦ j)∗(W ))'H0(Spec(R), (θ ◦ j)∗OT ⊗RW )

'H0(Spec(R), (θ ◦ j)∗OT )⊗RW 'H0(T,OT )⊗RW

as representations of G. Then, (H0(T, j∗θ∗(W )))G ' (H0(T,OT )⊗RW )G

=WG, since we assumed H0(T,OT ) =R, whence we have the desired

isomorphism (†). In order to prove the essential surjectivity, we argue as

follows. Let us take a vector bundle E on X trivialized by j : T →X. That

implies the existence of a finitely generated free R-module M such that

E := j∗E ' (θ ◦ j)∗M . Again applying the projection formula, we obtain

(θ ◦ j)∗(θ ◦ j)∗M = (θ ◦ j)∗OT ⊗RM =M.

It follows that

E ' (θ ◦ j)∗(θ ◦ j)∗(θ ◦ j)∗M ' (θ ◦ j)∗(θ ◦ j)∗E ' (θ ◦ j)∗H0(T, E).

We now observe that the previous isomorphism (θ ◦ j)∗(θ ◦ j)∗E → E is G-

equivariant, and thus FT (H0(T, E))' E.
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Remark 2.12. Lemma 2.11 can be generalized further as follows. Let

R be any commutative and unitary ring, and let q : T → Spec(R) be a

morphism of scheme such that H0(T,OT ) =R. Let moreover G be any flat

and affine R-group scheme, acting on T , and let F be any G-sheaf, trivial

as an OT -module. Then, H0(T, F) is an R-linear representation of G, and

F 'H0(T, F)⊗R OT as G-sheaves.

Remark 2.13. With notations as in Lemma 2.11, the Tannakian

category C over R (cf. [7] for a modern and detailed overview) associated to

T is the category of those OX -modules whose pullback over T is isomorphic,

as OT -module, to a finite direct sum of OT and OT /πn, where π denotes a

uniformizer of R and n is a natural integer. In this way, T would coincide

with the full subcategory C0 of C of rigid objects of C; that is, objects

isomorphic to their double dual. It would be very interesting and useful

to have an inner description of the objects of T (or equivalently of C)
independent from the universal torsor.

§3. Existence of a model

3.1 Quotients and Néron blowups

In this section, we recall some results ensuring the existence of quotients of

schemes under the action of some group schemes, under certain assumptions.

These results are essentially contained in [11, Exposé V, théorème 7.1]

and [21, théorème 1, (iv)] for the finite case, and [21, théorème 1, (v)] and [1,

théorème 7, appendice 1] for the quasi-finite case. The fact that quotients

(under the action of finite type group schemes) commute with base change

is ensured by [11, Exposé IV, 3.4.3.1].

Theorem 3.1. Let T be a locally Noetherian scheme, let Z be a T -

scheme locally of finite type, and let H be a flat T -group scheme acting on

Z in such a way that Z ×T H → Z ×T Z is a closed immersion. Then, if

one of the following conditions is verified:

(1) H → T is finite and Z→ T is quasi-projective,

(2) H → T is quasi-finite and Z→ T is quasi-finite,

the sheaf (Z/H)fpqc is represented by a scheme Z/H. Moreover, the

canonical morphism Z→ Z/H is faithfully flat, and the natural morphism

Z ×T H → Z ×Z/H Z is an isomorphism.

Theorem 3.2. Let T be any locally Noetherian scheme, let Z be a T -

scheme locally of finite type, and let H be a flat T -group scheme acting on Z
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such that the natural morphism Z ×T H → Z ×T Z is a closed immersion.

Then, there exists a largest open U of Z for which the sheaf (U/H)fpqc is

represented by a scheme U/H. Moreover, U is dense in Z and contains

the points of Z of codimension 6 1. Furthermore, the canonical morphisms

U → U/H is faithfully flat.

Proof. It was first stated in [21, Théorème 1(i)], and a proof is

contained in [1, Proposition 3.3.1]. The last assertion is just [21, Section 4,

Proposition 2].

The conclusion is that, in both cases (Theorems 3.1 and 3.2), Z→ Z/H

and U → U/H are H-torsors.

Corollary 3.3. Let S be a Dedekind scheme with function field K, and

let X → S be a faithfully flat morphism of finite type. Moreover, let G′ be an

affine and flat S-group scheme, let Z be a faithfully flat S-scheme of finite

type provided with a right G′-action σ : Z ×S G′→ Z, and let g : Z→X be

a G′-invariant (that is g ◦ σ = g ◦ prZ)S-morphism such that the natural

morphism Z ×S G′→ Z ×X Z is a closed immersion inducing a G′η-torsor

structure on Zη over Xη. Let U be the largest open of Z as in Theorem

3.2 such that U/G′ is a scheme; then, X ′ := U/G′ is faithfully flat and of

finite type over S, and the natural morphism λ :X ′→X is a model map.

In particular, U →X ′ is a G′-torsor extending the G′η-torsor Zη→Xη.

Proof. By Theorem 3.2, U contains the points of Z of codimension2 6 1,

so in particular it contains, for all closed points s ∈ S, the generic points

of the irreducible components of Zs. As U is the largest open of Z such

that U/G′ is a scheme, so in particular it contains Zη. Thus, U is surjective

over S. Hence, X ′ is surjective over S too, and it is S-flat and of finite type

because U has the same properties (inherited by Z). Thus, X ′→X gives

rise to the desired model map. The last assertion is clear.

We now recall the definition of Néron blowup. Unless stated otherwise,

from now until the end of Section 3.1, we only consider the following

situation.

Notation 3.4. We denote by S the spectrum of a discrete valuation ring R

with uniformizing element π, and with fraction and residue field respectively

denoted by K and k. As usual, η and s denote the generic and special points

2The codimension of a point is defined as the codimension of its closure.
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of S, respectively. Finally, we denote by X a faithfully flat and separated

S-scheme of finite type.

According to [5, Section 3.2 Proposition 1] or [1, II, 2.1.2(A)], the

following statement holds.

Proposition 3.5. Let S be the spectrum of a discrete valuation ring R

with uniformizing element π. Let X be a faithfully flat S-scheme of finite

type, let C be a closed subscheme of the special fiber Xs of X, and let I
be the sheaf of ideals of OX defining C. Let X ′→X be the blowup of X at

C, and let u :XC →X denote its restriction to the open subscheme of X ′,

where I · OX is generated by π. Then:

(1) XC is a flat S-scheme of finite type, u is an affine model map;

(2) for any flat S-scheme Z and for any S-morphism v : Z→X such that

vk factors through C, there exists a unique S-morphism v′ : Z→XC

such that v = u ◦ v′.

Definition 3.6. The morphism XC →X (or simply XC) as in Propo-

sition 3.5 is called the Néron blowup of X at C, and property (2) is often

referred to as the universal property of the Néron blowup.

Now, we explain how to Néron blow-up torsors.

Proposition 3.7. Let G be an affine, algebraic and flat S-group

scheme, and let H be a closed subgroup scheme of Gs. Let Y be a G-torsor

over X, and let Z be an H-torsor over Xs, subtorsor of Ys→Xs. Then,

there exist a faithfully flat S-scheme of finite type X ′, and a model map

λ :X ′→X such that Y Z →X ′ is a GH-torsor generically isomorphic to

Yη→Xη. If, moreover, G is quasi-finite, then λ can be obtained from X

after a finite number of Néron blowups.

Proof. From the universal property of Néron blowups, we first obtain an

action of GH on Y Z . Indeed, Y Z ×GH → Y ×G→ Y (the last morphism

is the action of G on Y ) specially factors through Z, whence we have a

morphism Y Z ×GH → Y Z that gives the desired action. Under this action,

Y Z →X is GH -invariant; then, we have a natural morphism Y Z ×GH →
Y Z ×X Y Z . Moreover, Y Z ×X Y Z → Y ×X Y ' Y ×S G specially factors

through Z ×H; then, we obtain a morphism Y Z ×X Y Z → Y Z ×GH . As

Y Z ×GH is S-flat, the generic fiber (Y Z ×GH)η is schematically dominant

in Y Z ×GH . As Y Z ×GH is separated over S and the composition

morphism Y Z ×GH → Y Z ×X Y Z → Y Z ×GH is generically the identity,
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according to [23, Lemma 28.7.10], it is the identity; hence, Y Z ×GH →
Y Z ×X Y Z is a monomorphism and is proper according to [14, Proposition

3.3.16(e)], and is thus a closed immersion. Using Corollary 3.3, one gets the

conclusion. If G is quasi-finite, the open U in Corollary 3.3 is the whole Y Z .

In this case, λ : Y Z/GH =X ′→X is affine and can be expressed as a finite

number of Néron blowups (cf. [26, Theorem 1.4]).

3.2 Construction of a model

Given an algebraic G-torsor Y →Xη, we do not know whether or not we

can find a torsor over X whose generic fiber is isomorphic to the given one.

In Section 1.1, we recall the most important and recent results that partially

solve this problem when G is finite. Here, we suggest a new approach in a

much wider context, including the case G of finite type.

Theorem 3.8. Let S be the spectrum of a discrete valuation ring R with

function field K. Let X → S be a faithfully flat morphism of finite type, with

X a regular and integral scheme of absolute dimension 2 endowed with a

section x ∈X(S). Let G be a finite K-group scheme, and let f : Y →Xη

be a G-torsor pointed in y ∈ Yxη(K); then, there exist an integral scheme

X ′ faithfully flat and of finite type over S, a model map λ :X ′→X and a

G0-torsor f ′ : Y0→X ′ extending the given G-torsor Y for some quasi-finite

and flat S-group scheme G0. Moreover, Y0 comes with a R-point y0 ∈ Y0(R),

whose restriction to Xη is the given point y. Furthermore, X ′ can be obtained

from X after a finite number of Néron blowups.

Theorem 3.9. Let S be the spectrum of a Henselian discrete valuation

ring R with function field K and with algebraically closed residue field. Let

X → S be a smooth and surjective morphism, with X a connected scheme.

Let G be an affine K-group scheme of finite type, and let f : Y →Xη be a

G-torsor; then, there exist, possibly after extension of scalars, a connected

scheme X ′ smooth and surjective over S, a model map λ :X ′→X and a

G0-torsor f ′ : Y0→X ′ extending the given G-torsor Y for some affine finite

type and flat S-group scheme G0. If, moreover, G is finite, then G0 is quasi-

finite, and there exists an open subscheme X1 ⊆X such that X\X1 has

codimension > 3 in X and such that X ′ can be obtained from X1 after a

finite number of Néron blowups.

The following corollary explains how to find models under the action of

an étale group scheme when the given torsor is smooth.

https://doi.org/10.1017/nmj.2016.67 Published online by Cambridge University Press

https://doi.org/10.1017/nmj.2016.67


MODELS OF TORSORS AND THE FUNDAMENTAL GROUP SCHEME 29

Corollary 3.10. Let S be the spectrum of a discrete valuation ring R

with function field K. Let X → S be a separated and faithfully flat morphism

of finite type, with X a regular and integral scheme of absolute dimension 2

endowed with a section x ∈X(S). Let G be a finite étale K-group scheme,

and let f : Y →Xη be a G-torsor pointed in y ∈ Yxη(K); then, there exist

an integral scheme X̃ faithfully flat and of finite type over S, a model map

λ : X̃ →X and a G̃-torsor f̃ : Ỹ → X̃ extending the given G-torsor Y for

some quasi-finite and smooth S-group scheme G̃. Moreover, Ỹ comes with an

R-point ỹ ∈ Ỹ (R), whose restriction to Xη is the given point y. Furthermore,

X̃ can be obtained from X after a finite number of Néron blowups.

Proof. Let X ′, G0, Y0→X ′ and y0 ∈ Y0,x(R) be as in Theorem 3.8.

It is known that G0 can be smoothened after a finite number of Néron

blowups (see [1, Théorème 2.1.1]). We first Néron blow-up G0 at some H1 6
G0,s (here, G0,s stands for the special fiber of G0) in order to obtain GH1

0 ,

then we Néron blow-upGH1
0 atH2 6 (GH1

0 )s, and so on, obtaining a sequence

Gn→Gn−1→ · · · →G0 of models of G where Gn is smooth. The group

schemes Gi that are flat models of finite type of the finite group G are quasi-

finite. Therefore, clearly, if G0 is smooth there is nothing to do. Otherwise,

we first observe that we can always assume the special fiber Y0,s→X ′s of

Y0→X ′ to be trivial; if not, it is sufficient to consider the Néron blowup

X ′′ of X ′ at x′s (the image in X ′s of y0,s ∈ Y0,s, which is closed in the special

fiber) and to pull back Y0→X ′ over X ′′. Then, we can Néron blow it up at

the trivial sub-H1-torsor by means of Proposition 3.7, thus obtaining a GH1
0 -

torsor over some X ′′′, model of the given torsor. We go on like this, using

the sequence of group schemes Hi, i= 1, . . . , n introduced before. At each

step, one gets a model Yi→Xi of the original torsor of Y →Xη endowed

by the universal property of Néron blowup, with sections xi ∈Xi(R) and

yi ∈ (Yi)xi(R), whose restrictions to the generic fiber are xη and y.

A result similar to Corollary 3.10, mutatis mutandis, can be claimed under

the assumptions of Theorem 3.9 too. Details are left to the reader.

Before proceeding with the proofs of Theorems 3.8 and 3.9, we need some

preliminary results.

Lemma 3.11. Let S be a Dedekind scheme with function field K, and

let X → S be a faithfully flat morphism of finite type with X regular and

integral. For any vector bundle V on Xη, there exist an open subscheme

X1 ⊆X containing Xη, where X\X1 has codimension > 3 in X, such that
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X1 is faithfully flat and of finite type over S, and a vector bundle W on X1

such that W|Xη ' V . If, moreover, dim(X) = 2, then we can choose X1 =X.

Proof. Let us denote by j :Xη→X the natural open immersion. First

of all, we observe that there exists a coherent sheaf F on X such that

j∗(F)' V (cf., for instance, [13, II, Example 5.15]). Then, F∨∨, that is the

double dual of F , is a coherent reflexive sheaf (see [12, Corollary 1.2]). That

j∗(F∨∨)' V follows from the well-known fact that j∗(F∨∨)' j∗(F)∨∨ ' V
(see, for instance, [12, proof of Proposition 1.8]). If dim(X) = 2, then, by

[12, Corollary 1.4], we set W := F∨∨, which is a vector bundle, and this is

the last assertion. As for the higher-dimension case we know, again by [12,

Corollary 1.4], that the subset C of points where F∨∨ is not locally free is

a closed subset of codimension > 3. We call X1 the complementary open

subset of C in X to which we give the induced scheme structure, and we

thus know that X1 contains Xη and has nonempty intersection with Xs for

any closed point s ∈ S, whence we have the first assertion.

Let T be any scheme. Following [9, (11.6)], we associate to any locally free

sheaf V of rank n over T the sheaf IsomOT (O⊕nT , V ), which is a GLn,T -torsor

IsomOT (O⊕nT , V )→ T , thus obtaining a bijective map between isomorphism

classes of locally free sheaves of rank n over T and isomorphism classes of

GLn,T -torsors over T . It is an exercise to prove that this construction base

changes correctly (that is, if i : T ′→ T is a morphism of schemes, then

i∗(IsomOT (O⊕nT , V ))' IsomOT ′ (O⊕nT ′ , i
∗(V ))

as GLn,T ′-torsors).

Proof of Theorem 3.8. We do the following construction. We take any

closed immersion ρ :G ↪→GLn,K for a suitable n (by [25, Section 3.4]).

The contracted product Z := Y ×G GLn,K via ρ is a GLn,K-torsor; then,

Z ' IsomOXη (OnXη , V ) for a suitable vector bundle V on Xη (for instance,

one can choose V := f∗(OY )) of rank n. Let W be a vector bundle on

X, as in Lemma 3.11, whose restriction to Xη is isomorphic to V ; let

Z ′ := IsomOX (OnX , W ) be the corresponding GLn,S-torsor extending Z. Let

us denote by Y and G the schematic closures of Y in Z ′ and G in GLn,S ,
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respectively. We thus obtain the following diagrams:

(1)

Y //

��

� p

  

Y

��

� o

  
Z //

~~

Z ′

��
Xη

//

��

X

��
η // S

G //

��

� q

""

G

��

� p

""
GLn,K

||

// GLn,S

||
η // S

In general, neither Y →X nor Y → S will be faithfully flat. However,

we can modify the embedding G ↪→GLn,K in order to obtain at least the

surjectivity of Y → S (which will be thus faithfully flat). As we will see,

this is sufficient to conclude. Let us now pull back the GLn,S-torsor Z ′→X

over x : Spec(R)→X. We obtain a trivial torsor (see [16, III, Lemma 4.10]),

whence we have the existence of a section z′ ∈ Z ′x(S) whose generic fiber

is z′η ∈ Zxη(K). Let us now call z ∈ Zxη(K) the image of y through the

closed embedding i : Y ↪→ Z constructed in diagram (1). In general, unless

we are extremely lucky, it will not coincide with z′η, but, as they both live

over xη, there exists g ∈GLn,K(K) such that z′η = z · g. Let us consider

the isomorphism of Xη-schemes ϕg : Z→ Z, z0 7→ z0 · g. The composition

λ := ϕg ◦ i : Y ↪→ Z is a closed immersion sending y to z′η, and it turns out

to be a morphism of torsors, which is commuting with the actions of G

and GLn,K if we consider the new embedding σ :G ↪→GLn,K defined as σ :

g0 7→ g−1ρ(g0)g. If we now consider Y
′
and G

′
, respectively, as the closure of

λ : Y ↪→ Z in Z ′ and the closure of σ :G→GLn,K in GLn,R, then we observe

that the natural morphism u : Y
′ ×S G

′→ Y
′ ×X Y

′
is a closed immersion.

This follows from the commutative diagram

Y
′ ×S G

′ u //
� v

i ))

Y
′ ×X Y

′
� _

j

��
Z ′ ×S GLn,S ' Z ′ ×X Z ′,
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the fact that both i : Y
′ ×S G

′
↪→ Z ′ ×S GLn,S and j : Y

′ ×X Y
′→ Z ′ ×X Z ′

are closed immersions and [23, Lemma 28.3.1(3)]. Moreover, by construction,

the closure of y in Y
′
has image z′ in Z ′, so in particular Y

′
is surjective (and

thus faithfully flat) over S. According to Theorem 3.1, we set X ′ := Y
′
/G
′
,

Y0 := Y
′

and G0 :=G
′

in order to conclude. The fact that X ′→X can be

obtained as a finite number of Néron blowups follows from [26, Theorem 1.4]

and the fact that it is affine. Indeed, Ȳ →X is affine as the composition of

the closed immersion Ȳ ↪→ Z ′ and the GLn,R-torsor Z ′→X, and Ȳ →X ′ =

Ȳ /Ḡ′ is also affine.

Proof of Theorem 3.9. We repeat the first part of the proof of The-

orem 3.8 in order to obtain a morphism of torsors i : Y ↪→ Z, which is

a closed immersion, from the given G torsor to a GLn,K-torsor Z :=

IsomOXη (OnXη , V ) for some vector bundle V over Xη. Now, let X1 be as in

Lemma 3.11, and let W be a vector bundle on X1 whose restriction to Xη is

isomorphic to V ; let Z1 := IsomOX1
(OnX1

, W ) be the corresponding GLn,S-

torsor extending Z. Let us denote by Y and G the schematic closures of Y

in Z1 and G in GLn,S , respectively. We thus obtain the following diagrams:

(2)

Y //

��

� o

  

Y

��

� p

  
Z //

��

Z1

~~
Xη

//

��

X1

��
η // S

G //

��

� q

""

G

��

� p

""
GLn,K

||

// GLn,S

||
η // S

As R is Henselian with algebraically closed residue field, and as X1→ S is

smooth and surjective, there exists a section x1 ∈X1(S). If necessary, after

a finite extension of scalars K ↪→K ′, YK′ is pointed over x1,η; we can thus

translate the problem to R′, the Henselian ring obtained as the integral

closure of R in K ′. In order to ease notations, we assume R=R′ from

now on and we fix a point y ∈ Yx1,η . Arguing as in the proof of Theorem

3.8, we can (and we actually do) assume that i(y) = z1,η ∈ Zx1,η(K), where
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z1 ∈ Z1x1(R) is an R-section of Z1→ S, which always exists, as we have

seen before; hence, Y → S is faithfully flat. As in the proof of Theorem 3.8,

Ȳ ×S Ḡ→ Ȳ ×X1 Ȳ is a closed immersion. Using Corollary 3.3, there exists

a largest open U of Ȳ , faithfully flat over S, such that U → U/G is a G-

torsor extending the given one. If we set X ′ := U/G, G0 :=G and Y0 := U ,

then we obtain the desired result. If G is finite, the fact that U = Y (we

apply to the previous construction Theorem 3.1 instead of Corollary 3.3)

implies the last assertion.
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une base de dimension 1, Mém. Soc. Math. Fr. (N.S.) 33 (1973), 5–79.

[2] M. Antei, On the abelian fundamental group scheme of a family of varieties, Israel
J. Math. 186 (2011), 427–446.

[3] M. Antei, Extension of finite solvable torsors over a curve, Manuscripta Math. 140(1)
(2013), 179–194.

[4] M. Antei, M. Emsalem and C. Gasbarri, Sur l’existence du schéma en groupes
fondamental, preprint, 2015, arXiv:1504.05082 [math.AG].

[5] S. Bosch, W. Lütkebohmert and M. Raynaud, Néron Models, Springer, Berlin, 1980.
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