DERIVATIVES AND INTEGRALS WITH RESPECT TO A
BASE FUNCTION OF GENERALIZED BOUNDED
VARIATION

H. W. ELLIS AND R. L. JEFFERY

1. Introduction. In this paper we consider measures determined by
arbitrary functions G(x) for which finite right and left limits exist everywhere
and indicate how some of these measures permit the definition of generalized
integrals of constructive or Denjoy type. These definitions are related to
corresponding descriptive definitions based on the Perron approach as given by
Ward (6) and Henstock (2). An exposition of the introductory theory is given
in (1).

2. We shall denote by {§ the space of functions G(x) that are defined on
X = (— », «) such that:

(1) G(x*) and G(x™) exist and are finite everywhere.

(2) For every x, either G(x~) < G(x) < G(xt) or G(xt) < Gx) < G(x™).
In (1), (2) is called the Intermediate Value Property (IVP) and this space is
called . Fsv and §F sy will denote the subsets of § consisting of functions of
bounded variation and functions that are of bounded variation on every finite
interval, respectively.

Following Munroe let G denote the covering class of finite open intervals, G,
for arbitrary d > 0 the covering class of open intervals of length less than d.
Defining 7(@) = 0, 7(a, b) = G(b~) — G(a*) leads to Method I outer measures
uw¥ ¢.wr ¥ ¢,q corresponding to C and G,. For any sequenced; |0 (i.e.d1 > d,. ..,
limd; = 0) define

p*(4) = p¥eo(d) = }in}) e (d) < o
for every subset 4 of X (4 € P(X), the collection of all subsets of X). Then u*
is a Method II outer measure independent of the sequence chosen. If G is
monotone, then all of the above outer measures coincide.
As shown in (1), Condition 2 ensures that if G € § and |G| (x), G*(x), G~ (x)
denote the total, positive, and negative variation functions of G(x) — G(0)
(1, §2), then

=¥ = w¥ie = wrer + u¥on,
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and the p*-measurable sets S coincide with the intersection S+ M S¢- of the
u* g+- and u* ;--measurable sets. There exists X, € S with

_ /~‘*G+<A)y A CXOr
p,*(A) - {#*G—(A)y A C CX,

The signed measure u; is then defined on S by

(Hahn decomposition).

e = uFer — uFe-.

Since for each G € §, u*isa Method 11 outer measure:

1. w*isa metric outer measure (5, Theorem 13.3).

II. Every Borel set is Carathéodory measurable for u* (5, Corollary 13.2.1).

II1. If 4, T 4, then p*(4,) Tu*(4) < o (5, Corollary 12.1.1). If 4, | 4,
A, € S, and there exists # with u(4,) < «, then u(4,) | u(4).

IV. Given A there exists a Gsset B, B D A, with u(B) = u*(4), i.e. u*isa
regular outer measure (5, p. 108).

From IIl and IV we obtain

V. If there exists an open set U containing 4 with u(U) < «, then, given
e > 0, there existsan openset U’ D A with p*(4) < u(U’) + e

The existence of right and left limits everywhere leads to a simple analogue of
the Vitali Covering Theorem.

THEOREM 2.1 (the p*-Vitali Covering Theorem). Let A be any subset of a finite
wnterval (a, b) with u(a, b) < . Suppose that each x € A is the left end of a
sequence of intervals vy, = [x, x + hy, ] with lim,, h,,; = 0. Let V denote this
Sfamily of intervals {v,,;,, x € A,1 = 1,2,...} which cover A in the Vitali sense.
Then, given € > 0, there exists a finite disjoint subcollection {v;} with

2 A Nv) >p*d) — e X ul) <u*d) + e
Proof. Given e¢ > 0 there exists (by V) an open set U, (a, ) D U D 4, with

p*(A) < w(U) < p*4) + e
Writing

U = U (ai)bi)y
1
let

Uq

U (@, b: — d),

(i:bi—ai>ad)
Ay = {x € A: there exists h,,; > d with [x, x + k] C Ug.

Since 44 T A asd | 0, then p*(4,) T u*(4) asd | 0 by I1I and, for d sufficiently
small,

pH(A) — e < p*(da) < p*(4).
Note also that for each x (x, x;) | 0if x; — x and by (III)
[.L(x, xi) lO
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Let x'y = inf {x € A,}. If 'y € 4,4, then set x; = ¥’y and fix hy = h,,,; with
hy > d and vy = [x1, 01 4+ h] C U,y If &'y € A4,, then there exists a sequence
{#'1,4 in A4 with &'y,; | &1; we fix x; = «/y,; with ¢ sufficiently large so that
w(x’'1, x1) < €¢/4 and choose /; and v; as before.

Let ¥’y = inf{x € A, M (x1 + by, ©)}. If ¥’y = %1 + &y € 4, then we can
enlarge v; to an interval with &; > 2d. Otherwise we proceed as for x; and
obtain x2 > %', h2 > d, v2 C Uy and u(x’y, x2) < ¢/8. We can continue this
process to obtain a sequence of disjoint intervals {v; = [x;, x; 4+ %]}, all in the
Vitali covering V and contained in U, with each %; > d. Since U, C (a, b), the
process terminates in a finite number of steps. The points of 4, not contained in
these intervals are contained in the intervals (x’;, x;) and thus in a set with
u-measure not exceeding €/2.

Since the intervals v; are disjoint and all contained in U,

2 @) <u(lUs) <p(U) <p*4) + e
On the other hand
LA Nv) > p*(daN (Vi) > u*(da) — ¢/2 > p*(4) — e
COROLLARY. The theorem extends to arbitrary A € P(X) if G € Fuv or Fsv.
It can be shown that if
A, = AN (—n,n), A, T4, and w4 — 4,) 10,

the theorem applies to each 4, and can be established for 4 by firstapproximat-
ing A by 4,.

3. Derived numbers and derivatives with respect to a function
G € §.ForF,G € §,x < y,define

(Fy*) — F(x™) .o o,
DoF@y) ={Gh7 — Gy 1G&)=G0M,

-0, otherwise,
DgFf(x) = lim Dg F(x,y), D¢ F (y) = lim Dg F(x,y)
y->T =Y

when these limits exist. When D4 Ft(x) = D F~(x) with their common value
finite, we write D¢ F(x) and call it the derivative of F with respect to G at x.
Using upper and lower right and left limits, there are similar definitions of
upper and lower right and left derivatives

D¢ Ft(x), D¢ Ff(x), DgF (x), D¢ F(x).

Remarks. 1f G(x) is non-decreasing, then G(y*) — G(x~) = ulx, y] and we
sometimes write D, Ffor D, F.
If x is a point of discontinuity of G (x), then the limits exist and

D¢ F(x) = [F(xt) — F))/[Gx) — Gx7)].
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If F € §svand G(x) is non-decreasing, arguments similar to those used for
Lebesgue measure (G(x) = x) show that D¢ F(x) exists and is finite almost
everywhere (u*) and is measurable (u*).

GivenG € §,let E* = {x: plx, x + k] < o forsomeh > 0}. Thenifx € EF,
wlx,x + k] | w({x}) as & [ 0. Let Eqt = {x € E*: u[x,x + #'] = 0 for some
k' > 0}. Itis notdifficult to show that u(E¢*) = 0. Forx € Et — Egtaset 4 is
said to have right G-density D+ (4, x) atx if

D*(4,x) = lim (4 O [y 4 B)) /uler, % 4 ]

exists (necessarily <1). With [x, x + %] replaced by [x — &, x], 2 > 0, there
are similar definitions of left G-density D~ (4, x) of A atx. When

D+(A,x) = D~(4, x)

we denote the common value by D (4, x) and call it the density of A at x.
Approximate derivatives with respect to G, AD¢ Ft, ADg F~, AD¢ F, may
now be defined in terms of G-density by analogy with the classical case
(Gx) = x).

We note that if u(ae, b) < =, then (a,b) C EYNE™, and if G € gy or
T wv, then EF = £ = X.

THEOREM 3.1. If G € §'wv, then at almost all (u*) points of an arbitrary set /A
the G-density of A 1s 1. If A is measurable (u*), then at almost all points of A the
density of CA 1s0.

The argument for the Lebesgue case (G(x) = x) (4, §5.2) applies with
minor changes, using Theorem 2.1.

THEOREM 3.2. Let G € §'sv and let S denote the u*-measurable sets. Then if
feLMX, S, u) and

Fx) = [(cwm fdn,
D¢ F(x) = D, F(x) = f(x) almost everywhere (u*).
Proof. (i) Let f(x) be simple, i.e.

f(x) = ZI: Ci Xeir € E S1 I‘L(ei) < .
Then, if x € ¢y,

Dy F(x,y) = [I'(y") — F(x)]/ulx, ¥]
=2 ¢if e Xe: du/ulx, y)
= 2 ciules N [x, ¥])/ulx, y]
if ulx, 9] # 0; D, F(x,y) = 0 otherwise. Thus D, Ft(x) = ¢;and D, F—(x) = ¢;
a.e. in ¢;; they vanish a.e. in C(\J} ¢;) by Theorem 3.1, and Theorem 3.2 is a
direct consequence of the density theorem if f(x) is a simple function.
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(i) Assume next that f(x) > 0. There is then a sequence {f,} of simple
functions with f, T fand, for each [x, ],

f[z.u] fn dﬂ szo=1 f[z,y] fdp.

Since
Dy F,y) = e [ du/ulx, y1 > [ fodu/ulx, 3],  n=1,2,...,
it follows that
D, F£(x) > f,(x) a.e., n=12...,

and thus D, F£(x) > f(x) a.e.
(ii1) Assume next that 0 < f(x) < M < =, i.e. that f(x) in (ii) is bounded.
We can then assume that

<flx) = fule) <1/m,  n=12....
Then
f[r,l/]fd.“/”[xy y < f [z,9] (fn + 1/”) d“/“[x 3’]
=fr1/]fnd#/ﬂx vl + 1/n;
and it follows that
D, F+(x) < fo(x) + 1/n < f(x) + 1/n, n=12...ae.,
D, Fx(x) < f(x) a.e.,
completing the proof of the theorem when f(x) is bounded and non-negative.
(iv) When f(x) is non-negative but unbounded it is sufficient with (ii) to
show that D, F£(x) < f(x) a.e. Let E, = {x: f(x) > n}. Then f(x) = f,(x) in
CE,and u(E,) =0, [z, fdu—0asn — o.
Let x be a point of CE, at which the density of £, is zero. Then

,! [z,y] fdl‘ ' [z,1 Jn dﬂ + fEn[a:,y] fd#

ulx, ] nlx, y] ulx, y]

and the limit of the first term on the right as y — x is f,,(x) = f(x) at almost all
such points x. Now

fEn[IyZ/] fd“ = fE,. +ilz, vl f du + fEnncEn +ilz,u] fdﬂy

and for each ¢,

0 <fEnnCEn+l[1'7/]fd/‘L < ( +1/)M(E m [x y])

ulx, 7] ulx, 5] sy
Let
6i(x) = Hr;fEnn[z,y]fd#/#[xy y].
Y-z
Then 6;(x) > 8;01(x), 2 =1,2,....1f8,(x) | 0, given ¢ > 0, we can first fix ¢

with 6, < ¢, and then obtain
D, F+(x) < f(x) + ¢
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for almost all x, with similar arguments giving the same inequality for D, F'=(x)
atalmost all x.
Assume that there exists a set ¢’ with x*(¢’) > 0in which

lim §,(x) = 6(x) > 0.

There then exists d > 0 and asubset e C ¢ with 6(x) > dforall x € eand with
u¥(e) > 0.Forx € ethereexists a sequence y,(x) | x with

fEn +i[I.yj]fdl'L >d . ulx, y,l

These intervals for all x, y;(x) cover e in the Vitali sense and thus there is a
finite disjoint subset

{xjvyj]y j:112r---rnr
with
2 ulx,y] > w(e) — e
Thus
n n
I En+ifd:“' > Z‘i fEn+i[xj,yj]fd“ > d 21: ﬂ{xjy 3’]] > d(ﬂ*(e) - 6),

giving a contradiction for ¢ sufficiently large.

(v) Finally the general case is obtained by considering /(x) as the difference
between the integrals of the positive and negative parts of f(x).

Assume that G € v, define p; = pg+ — pe- on S, the p*-measurable sets,

and let Xy be a measurable set as given by the Hahn decomposition (§2). Set
LY(X, S, us) = LY (X, S, u) and, if f is measurable (S), write

F(x) = f(——oo,rlfdl‘s = f(—m,z]fdl‘«(x““ - f(—w,Z] fdll'(}—y
where itisdefined (in particular forall x if f € L1(X, S, u,)).

THEOREM 3.3.

DG = 0,66 = | ie
Note that
Dig G(x) = lim [G(&'") — G@)I/[IG] ") — G(x)]

' >

= IEm U[z,x’] Xxo Ay — f[z,z’] Xcxo dﬂ]/u[x, x,]
2’5z

and apply Theorem 3.2.
THEOREM 3.4. Iff € LY(X, S, py) and F(x) = [ (—w.n f dus, then

D F(x) = f(x) ae. (u*).
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Proof.
DG F"'(x) = l’im+ [f[z,z:]fdpGa, — f[zyz']fdﬂe-]/[G(x'+) _ G(x_)]
= lim [tz f dugr "f[x,a:’]_fdﬂa—/G(x'+) G )

z' szt ﬂ[x, x,]

_{ﬁ1=f a.e. in X,
T \—f/=1=f ae. in CX,.

Analogous theorems hold if G € §'gv.

4. Derivatives with respect to G ¢ § where G is BV or BV* on a
closed set E. A function G(x) is of bounded variation (BV) on a set E if there
exists M < « with

2IG) =G| <M
for every finite collection { (x;, ¥;)} of non-overlapping intervals with end points
in £,

G (x) is BV* on a closed set E if it is BV on E and if, in addition, where

CE = U (ayby), Z 0; < o where §; = sup |F(y) — F(x)l
1 1

ai<z<y<bi

(8 1s called the oscillation of G (x) on (a;, b)).
Let £ be an arbitrary closed set,

a =inf{x € E} > — =, b=supfx € E} <
Assume that G € § and that G is BV on E. Then define

G(x) in E,
G(x) =<G(a) if x <a,
G@)  ifx >0
and define G (x) to be linear and given by the line segment joining (e, G (a:+))
and (b, G(b;)), 1 =1,2,..., in CE. Then G € Fpv and determines finite

positive measures g* = u¥*z, BT* = p¥*z+,and gF = uz-*asabove.

THEOREM 4.1. Assume that G € § and that G 1s BV on the closed set E. Then,
defining G and g* as above, G(E) > u(E).

Proof. We observe that for every x € E,
pda}) = g(a}) = [G@t) — G|

Thus there is no loss of generallty in assuming that E has no isolated points.
Now E = E N [a, b] is closed. Let \U;(a;, b;) denote the complement of I
relative to [a, 8], 4 = {a,b,a,, 0,7 =1,2,...}. Then4 C E and

ad) = pd) = Ziplad) + Zin(dd) + ulla) + p(d}) < B(E) < =,
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Let [a;, 8:),7=1,2,...,%n 4 1 denote the closed intervals on [a, 8] comple-
mentary to\J? (a;, b;). Then

g(E) = &la, 0] - Z i@ bs)
n+1 ® © ©
= M(A) + Z ﬁ(aiy 61) - Z ll({ Z ”( Z (aiybi)y
1 n+1 n+1 n+1
n+1
BE—A4)— X 5@, 8)—0 asn— o,
1
Let B = {x;} denote the points of E that are points of discontinuity of G (x).
Thenpu(B) = g(B) < g(E) < o and
> w(xd) = 2 |G — G —0 asn — ©.
Note also that

e

Z gla;, b)) =0 asn— ®,

n

Let € > 0 be fixed and fix § > 0 with
(1) w*es(E) > u(E) — e
Fix #n sufficiently large such that

(ii) b; —a; < 68/4, 1> n
(i) > wled) <

(iv) 3 ab) <«

v) BE — )~ 5 A B)

By (1, Theorem 4.1), @(ay, 8:) = VG(ay 8:). Thus there exist partitions
{[Xi <an<...< X < 61 (k = k(’b))} with

k—1
wloy, Be) > ; |G (xi01) — Qi) > VG(ay Bi) — e = flay, Bi) — ¢
Z €; < €,

and the same inequality holds for any refinement of this partition. We replace
this partition by a doubly infinite partition for which the intervals [x;;, x;,41]
cover E M (ay, B;) for each 7, and assume that x;,,41 — x4, < 8/4 for every r
and 1.

Using an argument similar to (1, Theorem 5), we can replace the points of
%, that coincide with points x;, j < #, by points of continuity without chang-
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ing the sums by more than e. Thus the points x;, which are points of discon-
tinuity are included in {x; j > #} and, using (iii),

n+1

™) ; ey Bi) > Zl: ZT I(;’(xi,r-l-l) - G(xir)l — €
> 2 2 0@nm) — GEE)| — 3e

Our next step is to replace G in (*) by G. This can be done at once for the
points x;, € E. Assume that x;, ¢ E. Then a; < x,;, < b, for some j > n. If
X441 < by, omit the interval (x;,, %4, r41).

Assuming x;,,4+1> b, lety; | a;, yrapointof continuity of G(x), 2 =1,2, . ...
Then

G () — G| < |Gl) + G e + |Gn) — GlaF)| =0 asj— .
Then
[é(x“i.rﬂ) - G(yk)] < IG_(x_z‘,H-l) - é(x+i,r)| + a(a;, by) + ]G(yk) - G(yk)],

Xir01 — Yi < 38. We can make |G(y;) — G (y)|arbitrarily small by choice of &.
We can modify intervals with right end point not in E in a similar manner.
Denoting the modified intervals by (¢4, £i,,41), we have t; 41 — t;., < 8/2,

n+1 - -
; Bl B) > X2 |GE 1) — Gl™,)| — 3e
> 22 |GW i) — G(t+i,r)| —4e— 2 ;1 E(as, by)
> Zi Z]’ [G(t—i,H—l) - G(l+i.r)[ - 66» by (iV),
and suitable choices of the points y;. Then
Ui,r [ti,n ti,r+1] D) Ui [E M (o‘ir Bz)]

We next show that if ¢;, € E, we can modify one of (¢;,,_1, t;.r), (ti.r) ti.r41) tO
cover t; ,. If t;, € E, itis alimit on the right or left of points of E. Assume that
there is a sequence s; | ¢;,, withs; € E. Then
IG(S,7+) - G(t—i,r—l)[ < IG(t+i.r) - G(t—i.r—d)I + IG(SjJr) - G(t+z‘.7)|y
where the last term can be made arbitrarily small by taking j sufficiently large.
Then ¢,,,is covered by the interval (¢;,,_1, s;) and we can assume that
S]' - ti,T—‘l < %5.

Having modified the intervals to cover the points of E that are limit points on
the right of points of E we can apply a similar process to the points that are

points of E on the left keeping the length of the intervals <4. Denoting the
final intervals by (¢',,, ¢';,,11), their union covers

U BN @8]
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and

n+1l
Zl Blan B) > i i [GE 1) — GUF il — 6e
> 25 GE ) — GUD — Te
n+1

21: wraslE N (o, )] — Te

n+1

> > wlEN Ula, B)] — 8¢ by (i),

1

\Y

n4+1

EE—A4)> 2 plEN Ula, 8] —9% by (v).

1
Lettingn — =,

n+1

\IJ [EN (o 6i)]lE~A
whence, by 111,
Bl —A4)>uE—4) —9e
Since eis arbitrary, g(££ — 4) > u(E — A4),whence g(E) > u(E).
THEOREM 4.2. If G € §is BV* on a closed set E, then g(E) = u(E).
Proof. Using Theorem 4.1, we need only prove that g(E) < u(£), and 111

shows that we may assume that (a, b) is finite.
Given ¢ > 0, there exists § with

ﬂ(b) > /-"*d(—E) - 6/2y d <3 (M*d = M*(:,d)~

Since E is compact, there is a finite covering of E by intervals (¢}, d,) in Cd
with

**) wa(E) > 2 |Gd;77) — Geb)| — ¢/2

and, as in (1, Theorem 4.1), we can assume that each point of X is contained in
at most two of these intervals.
Fix n sufhciently large that

)

D 0, < e/

n+1

For the points ¢, d; in E we can replace G by G in (**). The remaining points
fall in the intervals (a;, ;), complementary to E, and no such interval can
intersect more than four of the (¢, d;) intervals assuming that each of the
latter intersects E.

Assume thata, < ¢; < b; < d;, 7 < n. Then, since G(b;~) = G(b,7),

G(eit) — GleD)| <[|GOm) — Gle)| + [Gbi) — Gle)|
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and this is near zero if d has been fixed sufficiently small. It follows that d can be
fixed small enough that G can be replaced by G for the ¢,, d; falling in the
intervals (@, ), ¢ < », without increasing the sum in (**) by more than e/2.
If(L, < Cy < biorai < dj < bi,i > n,
|G(cit) — GcY)| <20, or |G(d;) — G(d;)| < 20,
Thus for d < 8, d sufhiciently small, ¢;and/or d,in
U (aivbi)y
n+1
lZlG(dl_) - G(Cj+)] - Z'G-(d]_) - G_(Cj-'—)H < 4 ; 01' < €,
w(E) > wa (E) = ¢/2> X |Gle;) — Gle;N)| — 2
> wg.d*(E) — 2¢ > B(E) — 3e.
THEOREM 4.3. If G is BV on the closed set E and A C E, then g*(A) > u*(4).
IfGis BV*on Eand A C E, then g*(4) = u*(4).

Proof. A minor modification of the argument of Theorem 4.1 gives
g(A4) = u(4) if A is closed. We show that if U is open, 4 closed, then
EANU) =udNU). Let

U= U (@b,
Then
AN (anb)) =gAdNay,b]) —alad) — a((dd)
> u(d Nay b)) —ulad) —w(dd) = uld N (ay, b))

and g(4 N\ U) > u(4 M U) is obtained from the countable additivity of u and
g. If B is an arbitrary subset of E there exists (using §2, IV) a sequence of open
sets U,, U, | U’ D B with g(U’") = g*(B). Now U, N E | U MNE with
U' DU MNEDBsothatg(U' NE) = g*(B). Nowu(U, NE) K u(E)< =
so that, by I11, u(U, N E) | u(U' N E) > u*(B), whence

g*(B) = lim g(U, N E) = lim x(U, N E) > u*(B).

N—00 n->00

To prove the last part let E' C E be closed, CE' = \U, (a’;, b';). Then
E = El f-\ (UlE m (a/i, b/l)) and

p(E) = B(E) = pE) + Xiu(EN (@, 00) = B(E) + Zim(EN (@3, 07)).
With the first part this implies that
w(E) =mE),  wEN @, 00) =aEN(@y0)).
It is then easy to show that forany 4 C E,
) = g(ENT) = w(ENT) > p*d)
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as in the first part. If 4 is measurable (g*),

pEN U —4) <p(ENU —4)) =0

and g(4) = u(4). Thus u = g on the Borel sets. If 4 is an arbitrary subset of
E, IV implies that there exists a G set B containing 4 with u(B) = u*(4). We
can assume that B C Esothat g(B) = u(B). Then

*(4) < a(B) = w(B) = p*(4).

It follows that the p*- and @*-null and measurable subsets of £ coincide. In the
following almost everywhere in E, measurable subset of £ will refer to both u*
and g*.

THEOREM 4.4. Assume that G 1s BV* on the closed set E. Then Dg G(x) = 1a.e.
in E.

Proof. At a point of discontinuity in £
GE') — G@)/[GE) — G@)] = [Gt) — GE))/[Gt) — G)] = 1,

since G (x+) = G(x+), G(x~) = G(x~). The end points of the intervals comple-
mentary to E that are points of continuity of G form a null set. At an interior
point of E the result is trivial. Thus we need only consider the set E* of points
of E that are points of continuity of G, limit points of both £ and CE on the
right and left, and points of G-density of E. It follows that 4Dy G(x) = 1 a.e.
in E. This result remains valid if the BV* condition is replaced by the weaker
BV condition on E. To prove the theorem we need

LeEmMA 4.1. For almost points x € E* where CE = \U (a;, b;),
# lim 0:/5(E N (x,a:]) = 0.
Proof. For n > 0 let 7

E, = {x € E*:mai—n*' oz/ﬁ(E N (.’)C, az]) > 77}
and assume that there exists n with @*(£,) > 0. Fix ¢ > 0 and é such that

(##) > 6 <e
(i:0i—ai<d)
For each x € E, there is a sequence {a;} = {a¢;u} with ¢; — x*, b; — a; < 3,
and

0,/B(E N (x, as]) > 0.

By Theorem 2.1 there is a finite set of disjoint closed intervals v; = [x,, a’;],
x; € E,for which

> B (E,Nvy) > m*(E,) — ¢
0.> 2,0; >0 ; 5(ENvy) >0, 85(E, Nv;) > n@*(E,) — ).

(i:bi—ai<d)
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This contradicts (**) if eis sufficiently small.
To complete the proof of the theorem, let X, denote the Hahn decomposition
set for Gand set £y = £ M X,. By Theorem 3.3,

a.e. in E,,

o 1
Dig G(x) = -1 a.e. in E — E,.

Thus

{ Dz Gx) a.e. in E,,

D;G(x) = D1z G(x)/Dig Gx) = \—Diz G(x) a.e in E — E,.

Let x € E*NME, bf_: a point where (*) holds. Then if ¢; < &’ < b, x" is a
point of continuity of G’ and

_ n_ Gl) -G | GE&)— Gl
P66 = G160y 1616 T ia16 - 16

Now the first term on the right is

Ga) = G) G — G alw.ay) _
Gy — Ge) 101@h) — Q@) aGoxy @Ry

Now P = lsincea;, x € E; Q—1 asaiﬁx,xEEg,Q?—l,er—Eg,
and R = g(E N (x,x'))/@(x, x’) — 1 since x is a point of G-density of . Now

G@) = Glah)
Gl = 1G] ()

G@') — Gla,h)
2(EN (x,a4)

< 0./(EN (x,a;]) —0as s —«x".

ﬁ@mwmw
B, x")

Write fgz(x) = f(x)x5, where xz denotes the characteristic function of E.

Forfy € LY(X, S, u) set

Fe@) = [ wnfedis =[wnfodi®™ — [ wnfsdi

COROLLARY 4.1. Almost everywherein E, D¢ Fg(x) = f(x).

Proof. By Theorem 3.2, Dg Fg(x) = f(x) a.e. in E. By Theorem 4.4,
Dz G(x) = lae.in E. Thusa.e.in E,

D¢ Fg(x) = Dg Fg(x)/Dg G(x) = f(x).

5. Integrals with respect to base functions G ¢ § which are BVG*. A
function G is BVG* on X if

n=1

with each set E, closed and with G(x) BV* on each E,.

https://doi.org/10.4153/CJM-1967-015-6 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1967-015-6

238 H. W. ELLIS AND R. L. JEFFERY

To each E, corresponds G, € Fwy, finite positive measures f,, g, &, b
and Hahn decomposition sets £, C E, asin f4 with

o JErA), A CEu,
7, () = u(d) —{ D

. Jﬁlt_(A)y A C En - En()v
= 0 ifAC Eu

Let X, = \U, E,¢. Notethatif 4 C E,o M\ Epg, @n(4d) = @n(4d) = u(A) with
similar relations if A C (E, — En) M (En — Ene). Suppose that

44 = En() f\ (Em - Emo)
Thena.e.in 4, Dg, G(x) = 1, Dg, G(x) = —1by Theorem 4.3. Thus a.e. in .1
Dz, Gn(x) = Dg,G(x)/D5,G(x) = —1.

However, this is false at a point of discontinuity of G and at any point x thatisa
limit point of points of 4. In the latter case there is a sequence x; — x with
Dz, G(x;, x) or Dg, G, (x, x;) = 1. Itfollows thatif u(4) = 0, then

p(XoM (E, = En)) =0, w(Lno M CX,o) = 0; n=12,....
Thus,if 4 C E,,

ﬁn,s(A) = ﬁn(A M EnO) - lan(A M (En - Enl)))
B (A M Xo) — 5 (4 M CXy)
=pA N Xy — puld N CXy).

Il

We use this expression to extend the definition of signed measures by setting
ps(d) = u(d M Xo) — pu(d N CXo)

for the sets 4 in S for which the right side is defined in the extended reals, that
is except for the case where both terms on the right are infinite. In particular
the right side will be defined and finite if 4 can be covered by a finite number of
the sets F,.

We call an S-measurable function f(x) absolutely integrableif f € L1(X, S, u),
which implies that [f| € L1(X, S, u). We denote by L1(X, S, u,) the space of
absolutely integrable functions considered with respect to u, rather than u and
set

Fs(x) = f(—oo,r]fdﬂs = f(—ao,:c] on d,u, - f(—oo,r] fCXo d#~

The last expression can be written in terms of sums of the positive and negative
measures @," and z,”.

THEOREM 5.1, If f € LY (X, S, us), D¢ Fo(x) = f(x) almost everywhere (u*).
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Proof. Since for non-overlapping intervals (x;, x’;)
TIFW) = Fod)] = Z (foieafdu] < Z[eiwalfl du < [|f| du,
Fyis BV on X and therefore BV*onevery E,. If x € E,,

Fi(x) = f(—m,z] Sfr.dus — f<_m,11 fer, du..

By Corollary 4.1, the derivative with respect to G of the first expression on the
right is f(x) and of the second 0 almost everywhere in E,.

To conclude this paper we consider Denjoy type extensions of the absolute
integrals with respect to u and u; when these measures are determined by
functions G in § that are BVG*. The generalized integral of an S g-measurable
function with respect to u, will be defined in a finite or transfinite number of
steps and will be denoted by G (J, e) for suitable measurable sets e.

Definition 1. 1f e C E,,G(f, €) = [f. dp,.

Since each point is in some set E,, G(f,{x}) is defined and finite for every
point if f(x) is finite at every point of discontinuity of G. As is usual for non-
absolutely convergent integrals, G (f, ¢) may fail to be defined or may be defined
but not finite over some measurable sets. We require it to be defined and finite
over intervals and additive over disjoint intervals and points, i.e. we require

A) G(f,(a, b)) = G(f,(a,x]) + G(f,(x,0)) = G({,(a, %)) + G(f,[x, b)),
G(f,(a,x]) = G({,(a,x)) + G(f{x}), etc.

Definition 2. Suppose that G(f,(e,’ b’)) has been defined over every interval
(@', b") C (a, b) (and satisfies (A)). Thenif fora < xo < b,

lim G(f, (@, x0)) = @, lirTn G(f, o, 0")) = B
a'va b 1o
exist, we define
G(f)(a! b)) = a + ﬁ + G(jv{xo})

Itis then easy to verify that G(f) satisfies (A) on (a, b).

Definition 3. Let (/, m) be an interval such that for some # with

U (aiy bl) = CE?L m (lr m),
G(f, (a4 b;)) has been defined for every 7 and
Zioi < o, 0; = sup IG(f, (az‘r x]) - G(fv (aiy])[-

ai<z<y<bi
Then define
F(f, ,m) = [manam fdus + i G(f, (ay, b2)).
Again it is easy to verify that G (f) satisfies (A) on (/, m).
A measurable function f will be called G-totalizable if
I.fg, € LY (X, S, us),m=1,2,....
II. Thelimits in (2) always exist.

https://doi.org/10.4153/CJM-1967-015-6 Published online by Cambridge University Press


file:///f/dfj
https://doi.org/10.4153/CJM-1967-015-6

240 H. W. ELLIS AND R. L. JEFFERY

I11. fis such that if 4 is any closed set for which G(f,(a;, b:)) has been deter-
mined for all open intervals (a;, b;), CA = \U,(ay, b;), there exists (/, m) with
A N (I, m) non-empty and X" m 0; < ®. (If a; <1 < b, for some 7, then 6;
will mean the oscillation over (/, ;). A similar convention will hold if
a; <m<b)

THEOREM 5.2. If f is G-totalizable, G(f,(— », ®)) can be determined in o
countable number of steps and G(f) is additive over finite sets of disjoint intervals
and points.

Proof. Let A1 denote the set of points for which there is no neighbourhood
over which f is absolutely integrable. Clearly A4, is closed. If (@, d) is any
interval, Baire's Theorem implies that there is a subinterval ([, m) and an
integer # with (!, m) = E, M (I, m). By (I), f is absolutely integrable over
(I, m). Thus A1is nowhere dense.

Let CAy, = U, (d'4, ;). Then associated with each x € CA; is an open
interval containing x over which fis absolutely integrable. If ¢’; < a < 8 < ¥,
then [a, 8] is covered by a finite set of such open intervals and thus f is absolutely
integrable over (e, 8). Condition II and Definition 2 then extend G(f) to
G(f, (/4 b)) forevery 4.

Let 4, denote the points x for which there is no neighbourhood (a, 8) of x
over which f4, is absolutely integrable and > ,5 0: < «. Again 4,is nowhere
dense in 4 and closed. If CA, = \U; (a2 b:2) and ¢ < a < 8 < b2, there are
a finite number of points in [«, 8] for which the corresponding neighbourhoods
cover [a, B]. It follows that Definition 3 applies to determine G (f, (@, 8)). Then
Condition II and Definition 2 determine G(f, (a¢:?, b:*)) for each . Standard
procedures apply to give G(f, (—®, «)) in a finite or countable number of
steps; cf. (4, Theorem 5.6).

If f is G-totalizable, then f; = fx(—w,: s G-totalizable and thus

F(x) = G(fy (_Oo)x]) = G(f;,;, (—oo, OO))
is defined and finite for every x.
THEOREM 5.3. If f is G-totalizable, D ¢ F(x) = f(x) almost everywhere.
Proof. With the notation of the preceding theorem consider
(a)B)y ali<a<6 <b/,
Then fx@,5 € L'(X, S, us) and a.e. in (a, 8), writing
P Pxam @) = G (@ x)),
De F(x) = Dg F*(x) = f(x),
by Theorem 5.1. It follows that D¢ F(x) = f(x) a.e.in CA4,.
Consider [a, 8], a* < a < B < b2 Set f* = fxrag, F*(x) = G(f*,(— =, x]).

Then in (o, B) F(x) — I*(x) = G(f, (— =, a)) so that D F(x) = D¢ I'*(x).
Now, fora < x < 8,

F*(x) = [ antap f s + Ziaal 0
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with 2 .6 0; < . For any sequence { (x;, ¥;)} of non-overlapping intervals
with xy, v, € Ay,

2| F*(ye) — F*(x))| < J aintass) If] du + 2 ial 6.

It follows that F*(x) is BV* on 41 M [, B]. As in Theorem 4.4 and Corollary
4.1,D¢ F*(x) = f(x) a.e. in A1\ (e, B). It now follows easily that D ¢ F(x) =f(x)
a.e. in CA,. Similar arguments apply at each extension stage and, since only a
countable number of extensions are required to exhaust X, the final exceptional
set is u-null.
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