
Cite this article: Baschin, J., Schmidt, R., Schneider, D., Vietor, T., Kizgin, U. V. (2023) ‘Linking Cross-Domain
Information to Support the Development of Complex Systems’, in Proceedings of the International Conference on
Engineering Design (ICED23), Bordeaux, France, 24-28 July 2023. DOI:10.1017/pds.2023.246

ICED23 2455

INTERNATIONAL CONFERENCE ON ENGINEERING DESIGN, ICED23
24-28 JULY 2023, BORDEAUX, FRANCE

ICED

LINKING CROSS-DOMAIN INFORMATION TO SUPPORT THE
DEVELOPMENT OF COMPLEX SYSTEMS

Baschin, Julian (1);
Schmidt, Ronald (2);
Schneider, David (1);
Vietor, Thomas (1);
Kizgin, Umut Volkan (1)

1: TU Braunschweig;
2: fme AG

ABSTRACT
Due to an expanding number of mechatronic functionalities in modern technical products, the proportion
of software and electronic components is also increasing. As a result, the products are developed by
different engineering domains in complex development processes. To handle the growing complexity,
Systems Engineering (SE) is increasingly important for development organizations of enterprises.
System Engineering (SE) is understood as an approach to network the individual engineering domains
and shall lead to a collaborative development of complex systems. Model-Based System Engineering
(MBSE) expands SE by using common models and software tools to describe und visualize the systems.
However, MBSE is not widely established in enterprises today. On the one hand, the introduction
requires a distinct and consistent system understanding and collaborative way of working. On the other
hand, the application of the existing tools requires extensive tool competencies due to many possible
functions and features. Therefore, this paper presents a concept and a software based tool for a lean
implementation of SE/MBSE to support the collaborative development of complex technical systems in
small and medium-sized enterprieses.

Keywords: Systems Engineering (SE), Product modelling / models, Process modelling, Functional
modelling, Design methods

Contact:
Baschin, Julian
TU Braunschweig
Germany
j.baschin@tu-braunschweig.de

https://doi.org/10.1017/pds.2023.246 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.246

2456 ICED23

1 INTRODUCTION

1.1 Motivation

Products in mechatronic engineering become more and more complex and varied today. Due to an

expanding number of mechatronic functionalities, the proportion of software and electronic components

is also increasing. As a result, many technical products have no longer a predominantly mechanical

design. Rather, the products have to be understood as a comprehensive system, which is developed by

different engineering domains such as mechanic, electronics and software (Eckert et al., 2004). For

example, a cooking machine was previously a simple product consisting of mechanical and a few

electronic components. The only function was the controlling of the dough hook with a few different

speed settings. Modern smart cooking machines offer users significantly more functions today. For

example, the cooking machines have special kneading and mixed programs with intervals of left and

right rotation, different cooking programs, and integrated scales. This trend can be observed in a similar

form at many products (Huth and Vietor, 2020). Furthermore, the separate development teams of the

engineering domains are often distributed locally, which complicates the communication. Complex and

dynamic product development processes arise, in which many design data have to be exchanged for the

harmonization of the product (Baschin et al., 2020). To handle the growing complexity of modern

products and development processes, new approaches are important in development organizations of

enterprises to support collaborative design (Noël and Roucoules, 2008). For example, Systems

Engineering (SE) addresses these challenges. SE is as an approach to network the individual engineering

domains and shall lead to a collaborative development of complex systems (Walden et al., 2015). For an

effective exchange of extensive design data and technical requirements, Model-Based System

Engineering (MBSE) expands SE by using common models and software tools to describe und visualize

the systems (Alt, 2012). However, MBSE is not widely established in enterprises today. On the one

hand, the introduction of MBSE requires a distinct and consistent system understanding and

collaborative way of working (Gausemeier et al., 2015). On the other hand, the application of the

existing software tools requires extensive tool competencies due to many possible functions and features

(Kauffeld and Paulsen, 2018).

1.2 Aim of the paper

Based on the motivation, the aim of the paper is to develop a lean and applicable concept to support

collaborative design in product development projects to introduce SE. The concept shall enable the

connection of project information (product, process and method data) to indicate, which product data has

to be available at what time in the development process and how can this be supported methodically?

The implementation of the concept shall be supported by using a software-based tool, which is

developed parallel within a research project. To evaluate the work, the concept is applied in a real

development project of a mechatronic engineering enterprise via using the software tool.

1.3 Content of the paper

The following paper is structured as follows: chapter 1 shows the motivation, the aim and the content of

the paper. Chapter 2 presents the state of the art of systems thinking, SE and MBSE. In chapter 3, the

contribution or the paper is described. Chapter 4 presents the concept and the software tool that are

developed on the findings of chapter 2 and chapter 3. In chapter 5, the concept and the software tool are

applied. For this purpose, a case study in the environment of a product development in mechatronic

engineering is presented. Finally, chapter 6 summarizes the findings and gives a critical reflection and an

outlook for further research.

2 STATE OF THE ART - SYSTEM ORIENTED PRODUCT DEVELOPMENT

2.1 Characteristics of systems thinking and systems engineering (SE)

According to Ropohl (2012), a system is a form of representation by which a part of reality is depicted.

Humans subdivide reality itself into perspective constructions and interpretations (Ropohl, 2012). This

means, that humans divide reality from their subjective perspective into systems, respectively networks

of connections. These connections between some elements are thereby demonstrably present, but not

https://doi.org/10.1017/pds.2023.246 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.246

ICED23 2457

between others. Elements, between which a connection is clearly identifiable, are called "wholeness".

The wholeness is the object of investigation of the general system theory (Ropohl, 1975). By the system

theory, systems are built from the wholeness, which comprise the relevant part of the wholeness

(Ropohl, 2012). Systems are not natural constructs, but models of human thought (Ropohl, 2012).

Hereby, general systems theory becomes an "operational theory about how to build models of any whole

fields of experience" (Ropohl, 2012). As a result, in terms of general systems theory, a system is a model

of a wholeness. "A system represents a wholeness, but considers only selected properties of the

wholeness and is relevant only for a part of people for a certain time and certain forms of thinking and

acting" (Ropohl, 2012). Such a model or system has to be able to withstand critical review, only then it

can serve the requested purpose. General systems theory introduces three formal concepts for systems.

Each of them represents different content and is thus suitable for different objectives:

• functional system concept: The actual system is as a black box. Only the inputs and outputs of the

system are known or visible from the outside. The function of the system is defined as the

(reproducible) relation that the system generates between the inputs and outputs. "Functional

systems thinking explicitly refrains from the material concretization and the internal structure of the

system and is limited to the behaviour of a wholeness in its environment" (Ropohl, 2012).

• structural system concept: In this concept, a system is understood as a set of different elements. A

multiplicity of relations can exist between the elements. "On the one hand, the structural approach

is based on the high variety of possible relation networks, which exist in a given set of elements and

thus can lead to different system properties. On the other hand, it is about the properties of the

elements, on which it depends how well they can be integrated into a system" (Ropohl, 2012). In

the structural system concept, the individual elements are not considered on their own, but in their

context and interaction with other elements.

• hierarchic system concept: This system concept serves to represent different levels of abstraction

and concretization. Because a considered system (A) can consist of elements, which are also

systems in themselves (from the point of view of (A) it is its subsystems). Otherwise, the system

(A) itself can be part of a superordinate system (From the point of view of (A) it is its superordinate

system). Depending on the view of the hierarchic system, the details or the essential connections are

focussed. "Systems thinking is open to both strategies, for the ever more detailed analysis as well as

for the superordinate synthesis of interrelationships" (Ropohl, 2012).

The mentioned system concepts are not exclusive to each other, but can also be combined to describe

systems with a specific objective of experience" (Ropohl, 2012). The three system concepts previously

explained the terms of the system and the term of the model are important in the context of systems

engineering. The International Council of Systems Engineering (INCOSE) defines Systems Engineering

as follows: "Systems Engineering is a transdisciplinary and integrative approach to enable the successful

realization, use, and retirement of engineered systems, using systems principles and concepts, and

scientific, technological, and management methods. […] Systems Engineering focuses on:

• establishing, balancing and integrating stakeholders’ goals, purpose and success criteria, and

defining actual or anticipated customer needs, operational concept and required functionality,

starting early in the development cycle;

• establishing an appropriate lifecycle model, process approach and governance structures,

considering the levels of complexity, uncertainty, change, and variety;

• generating and evaluating alternative solution concepts and architectures;

• baselining and modelling requirements and selected solution architecture for each phase of the

endeavour;

• performing design synthesis and system verification and validation;

• while considering both the problem and solution domains, taking into account necessary enabling

systems and services, identifying the role that the parts and the relationships between the parts play

with respect to the overall behaviour and performance of the system, and determining how to

balance all of these factors to achieve a satisfactory outcome.

Systems Engineering provides facilitation, guidance and leadership to integrate the relevant disciplines

and specialty groups into a cohesive effort, forming an appropriately structured development process that

proceeds from concept to production, operation, evolution and eventual disposal. Systems Engineering

considers both the business and the technical needs of customers with the goal of providing a quality

solution that meets the needs of users and other stakeholders, is fit for the intended purpose in real-world

https://doi.org/10.1017/pds.2023.246 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.246

2458 ICED23

operation, and avoids or minimizes adverse unintended consequences. The goal of all Systems

Engineering activities is to manage risk, including the risk of not delivering what the customer wants and

needs, the risk of late delivery, the risk of excess cost, and the risk of negative unintended consequences.

One measure of utility of Systems Engineering activities is the degree to which such risk is reduced.

Conversely, a measure of acceptability of absence of a System Engineering activity is the level of excess

risk incurred as a result (INCOSE, 2022)."

The definition summarizes many characteristics of systems engineering. A key characteristic of Systems

Engineering is interdisciplinary. In the sense of systems engineering at least the disciplines of mechanics,

electrics/electronics and information technology/software development work together as a team during

the development of technical systems. The focus on the customer is another essential characteristic. In

Systems Engineering, product development begins with the recording of the customer's requirements

with regard to product and its functionalities. Based on this, the requirements of other stakeholders as

well as boundary conditions, resulting from the possible use cases, are recorded systematically. In the

further development process, these requirements are an important input for the individual development

activities and serve as a basis for realization of the product. The requirements serve also as a basis for the

tests to be performed during the validation of the product, in order to ensure matching of the initially

requirements and customer's needs. Systems Engineering can also be understood as a meta-discipline

that supports the flow of information between the individual disciplines (e.g., software, electronics, and

mechanical development) by providing suitable interfaces and processes and aims to develop the best

possible solution under the specified constraints (Weilkiens, 2014; Friedenthal et al., 2015). To achieve

this goal, Systems Engineering considers not only pure technical development, but also aspects of project

management are taken into account in interaction (Haberfellner et al., 2019). Other systems engineering

approaches focus the development organization in the enterprise as a system and try to describe it with

its elements (processes, roles, humans, product information, methods and tools). These approaches shall

support the introduction of Systems Engineering in enterprises (Huth et al., 2018). Martin (1996) also

describes systems engineering as the interaction between processes, methods, tools, the environment,

existing technologies and the employees. Systems Engineering is thus not a specific (product

development) method but is increasingly becoming an own discipline due to the diversity of different

approaches (Gausemeier et al., 2015; Walden et al., 2015).

2.2 Model-based systems engineering (MBSE) as advancement of systems
engineering (SE)

In order to compensate the weaknesses of earlier document-based systems engineering approaches (e.g.,

lack of traceability of dependencies between requirements and system elements as well as decisions

during development), approaches to Model-based Systems Engineering (MBSE) have been developed

(Alt, 2012). The goal of Model-based Systems Engineering is to integrate the results of different

development activities in a central common system model. It helps to generate context-specific views

for this information and its dependencies (e.g., to answer the following questions during product

development: "Which customer requirements are important for the development?" or "Which elements

are relevant for the functionality of the product?). Model-based Systems Engineering thus promotes the

transition from heterogeneous, document-based product models to consistent and cross-linked product

models. The disciplines involved use the models as a source of information in order to document their

work results and to relate them to other model elements (Alt, 2012). The modelling of the system is of

fundamental importance for Model-based Systems Engineering. For this modelling, the concepts of

systems theory and SE are applied and are extended by additional frameworks (e.g. MBSE-Grid, RFLP)

and their views (e.g. component behaviour) (Şahin et al., 2021). The modelling is based on the three

elements language, tool and method. The methods specify a systematic procedure as well as a definition

of the aspects of the technical system to be represented in the model (cf. approaches in the previous

chapter). Existing standards for modelling languages such as UML (Object Management Group, 2017a)

or SysML (Object Management Group, 2017b) define the semantics and syntax to be used, and form the

basis for modelling within the framework of the method. Using software-based modelling tools (e.g.

Enterprise Architect, iQUAVIS, Cameo Systems Modeler TM) the models are created in compliance with

the semantics and syntax, and analyses (such as the relationship between customer requirements) are

performed. The languages, used in model-based systems engineering, are of a generic character in order

to support the representation of different types of systems (e.g., kitchen machines and vehicle systems) in

https://doi.org/10.1017/pds.2023.246 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.246

ICED23 2459

the same way. Model-based Systems Engineering formalizes the Systems Engineering by using models

to support the following goals (Borky and Bradley, 2019):

• "Ensuring accuracy, repeatability, and manufacturability in systems engineering processes (e.g.,

decision traceability during development ensures accuracy and repeatability).

• Fostering quality, completeness, and correctness in system design (e.g., traceability/assignment of

requirements to addressed elements of the product supports the correctness in the system design).

• Risk minimization in requirements analysis, design, integration and testing as well as in other

activities (e.g. deriving relevant test cases, based on customer requirements, reduces the risk of

developing the product without matching the customer's needs).

• Expansion of communication and synchronization of activities across the organization and

disciplines (e.g., technical changes for the elements of the other disciplines can be derived from the

models and the common development of alternatives can be initiated)."

Therefore, Model-based Systems Engineering is the consistent combination of Systems Engineering with

the principles of model-based object-oriented software development and thus offers additional

possibilities for manageable development of complex systems. However, for effective collaborative

working, human aspects also have to be taken into account and the different models have to be linked to

the surrounding business models (Noël and Roucoules, 2008).

3 CONTRIBUTION OF THE PAPER - SYSTEMS ENGINEERING IN

PRACTICE

Surveys on Systems Engineering have shown that the establishment of SE and MBSE in the

development of mechatronic engineering varies significantly between different branches of industry. SE

is firmly established in the aerospace industry. In the automotive industry, SE is seen as an enabler. It is

becoming increasingly important and is promoted by the OEMs. However, Systems Engineering is rarely

used in small and medium-sized mechatronic engineering industry, despite its high importance

(Gausemeier et al., 2015). The reasons for the missing use of SE are very different. The most cited

reasons are the difficult quantification of the benefits of Systems Engineering approaches and the lack of

availability of methods for implementation of Systems Engineering approaches (Gausemeier et al.,

2015). Furthermore, the lack of skills of the employees, according to systems thinking and new

introduced software tools, has to be addressed through competence building (Gausemeier et al., 2015;

Kauffeld and Paulsen, 2018). Existing software tools support the introduction of SE and MBSE by

creating complex models. However, these tools are very extensive with a large number of functions. This

leads to an immense tool competency, that is necessary to use the tools, and complicates the

implementation of SE in the development process. In addition, the data basis in the enterprises is mostly

insufficient to build the models. Therefore, the data has to be elaborately prepared and implemented in

the tools. Furthermore, the targeted transfer of information between stakeholders has to be supported in

case of inconsistencies and dependencies.

Therefore, there is a need for a concept that enables a lean implementation of SE/MBSE in small and

medium-sized enterprises (SMEs). On the one hand, comprehensible procedures have to be created,

which make it possible to aggregate the essential developmental information for a systemic view. On the

other hand, the application of the concept has to be supported by an intuitive software tool. This shall

quickly show the added value of Systems Engineering and shall enable a sustainable implementation of

the new approach. This leads to the following research questions:

• Which views in development projects have to be combined to enable Systems Engineering in SMEs

in a lean way?

• How can a software tool support the modelling of complex technical systems and collaborative

design in a lean way and which functionalities are necessary for that?

To answer the research questions, the following chapters will present a concept and a tool for a lean

implementation of Systems Engineering in the development of small and medium-sized enterprises of

mechatronic engineering industry.

https://doi.org/10.1017/pds.2023.246 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.246

2460 ICED23

4 LINKING CROSS-DOMAIN INFORMATION TO SUPPORT THE

DEVELOPMENT OF COMPLEX SYSTEMS

4.1 Concept to support cross-domain collaboration

In the following, a concept for a lean implementation of SE is presented (s. fig. 1). As highlighted by

Martin (1996) and Huth et al. (2018), the combination of product, process and methods/tools forms the

basis for the introduction of Systems Engineering. Accordingly, the essential development information

can be represented via a product model (what?), a process model (when and who?) and a method model

(how?) that are generated by a software tool. The information about these three fields (subsystems) has

to be related to each other. By considering the models in an integrated way, it is possible to determine

which product data has to be available at what time and how it can be created. This shall support the

implementation of SE into the development process by effective collaboration between different

stakeholders and engineering domains. In addition, analysis can be performed to identify information

gaps and data inconsistencies to improve the process. The product model, the process model and the

method model are the scope of the elaborated concept, which can be generated by five implementation

stages (s. below).

Figure 1. Concept for linking process, product and method data

• Information provision. First, the existing data in the enterprise is compiled. The exact data to be

collected depends on the issue to be addressed. For example, if there are often problems with the

transfer and documentation of requirements, the focus should be on requirements documentation. In

addition, it can also be considered, for example, at which stages in the process a requirement has to

be provided or implemented. In this case, existing process data should also be compiled in order to

link the requirements and the process later. If possible, the information should already be structured

hierarchically (top down, for requirements e.g. assigned to the system levels of the product, for

processes e.g. different process levels such as reference processes and individual tasks). Because

structured data is often not available or only partially available in this way, individual documents

can also be provided according to the bottom-up principle and can be continuously expanded later.

In addition, method descriptions can be provided to support the developer in the creation of product

data and process data. This can be helpful, for example, to describe the procedure for defining or

structuring requirements. The method descriptions thus provide guidance on how to proceed with

certain development activities and create artefacts. The development data built the basis for the

following creation of the meta models.

• Creating meta models. In this stage, the information of the fields (product, process, method) is

related separately for each field. For the field of product, this means the connection and

dependencies of certain components (system architectures, hierarchical product structures) or

functions (function structures, function sequences, logical connections). For the field of process,

https://doi.org/10.1017/pds.2023.246 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.246

ICED23 2461

this means the relationships of sequential and/or parallel activities, stages, gates and releases (time

sequences, logical sequences). For the field of methods, this means possible links between

interrelated methods and its tools (e.g. benchmarking can be a basis for requirements description,

house of quality is needed for quality function deployment) or the individual procedure steps of a

discursive method.

• Linking product, process and method model. In this stage, the created meta models are related to

each other to generate a common model, that represents the development context. Connections

between product data, process data and method data are established. The following example

illustrates the procedure: with the help of a requirements analysis (Method. How?), the

requirements for a product can be described systematically. As a result, a requirements description

(Product. What?) is created in the form of a model or text-based document. The additional

information, which requirement has to be completed for which release or who is responsible for the

completion of the requirement, can also be used to make a link to the process (Process. When and

who?). Therefore, the generated model contains the information, what is processed, how until when

and by whom?

• Analysis and Optimization. Through the joint model, accumulations of information and information

gaps can be identified. It is obvious whether necessary information is provided consistently to the

stakeholders. For example, if there is no link between the requirements and the process, there may

be confusion about responsibilities or deadlines. If, on the other hand, there are a large number of

links between them, there is a risk that decisions will be made differently and not in a reproducible

way, because there is no clear procedure defined. Accordingly, the data can be adapted to remove

the known weaknesses (e.g. adding of roles and responsibilities, deleting of inconsistent data).

• Collaboration between engineering domains. Finally, the objective of the concept is to make the

collaboration between the different engineering domains more effective. By deriving individual

views, the required information is filtered and is visualized depending on the problem case. This

way, only the information that is needed by the developer is provided. For example, only the

product can be visualized in general. Additional information such as milestones are linked with the

product model (e.g. milestone for a CAD-prototype or a software feature). This allows developers

from different engineering domains to work on a harmonized model. For example, dependencies

between requirements can be displayed in order to estimate how an adaptation of a requirement

affects other domains (e.g. test cases) and timelines.

4.2 Software tool for linking process, product and method data

Based on the presented concept, a software-based tool has been developed that supports the user in

providing development data, creating and linking meta-models, analysing the development data and

sharing information with other development domains (collaboration). The tool is designed to support

development activities in small and medium-sized enterprises. No special systems engineering language

skills or modelling expertise are required for the use of the tool. By using the tool, the SE processes of

project management, requirements management, architecture management, configuration management,

release management and quality management shall be optimized. The principle of the tool is based on

linking individual elements (development information such as requirements) to create complex graphs

that show the relationships of the individual elements to each other. Analogous to the presented concept,

the following describes how the five stages have been realized in the tool to enable the implementation

of approaches of SE:

• Information provision. It is possible to set up product and process data (requirements, functions,

functional structures, solution approaches, variants, product structures, process structures, activity

sequences, etc.) at different levels (system, module, component) and phases (requirements analysis,

design, testing, etc.). Here, the data generation is based on the single point of truth principle. To

support the process methodically, different functions and features are implemented. For example,

requirements can be captured systematically in a predefined requirements list. The implemented

methods and tools will be extended step by step.

• Creating meta models/Linking product, process and method model. There are template functions

for generating and linking product and process data. By entering the data in predefined input masks

and tables, the generation and linking of the data can be done without extensive modelling

knowledge. The links between the individual elements are specified separately one by one (e.g.

https://doi.org/10.1017/pds.2023.246 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.246

2462 ICED23

related parts of a module, input/output). The model is generated automatically in the background by

expanding it with the data. In this way, the creation and linking of the individual models (see phases

two and three of the concept) is carried out in one step. The generated model and the entered data

can be edited and can be visualized by using 2D/3D graphs (linked components or activities with

described dependencies), structures or tables.

• Analysis and Optimization. By the linked graphs, dependencies between the individual elements

(e.g. requirements, parts, etc.) can be monitored. For example, the completeness of requirements

and interrelations to functions can be checked to minimize risks. In addition, there is the possibility

of integrative change management, whereby the effects of technical changes to requirements or

functional structures are visible immediately in the different views.

• Collaboration between engineering domains. Finally, the derivation of special views for the

different domains (hardware, software, electronic) or phases can be made by the graphs. The

individual views are used for discussion and solution finding between the domains for cross-

domain requirements or problems during the development process. So, the tool supports the cross-

domain integration and verification processes. The main structure of the tool is shown in Figure 2.

Figure 2. Structure of the tool for linking process, product and method data

5 CASE STUDY - STRUCTURING TECHNICAL REQUIREMENTS

The tool has been tested at an enterprise that develops, produces, and sells hydraulic presses. In

development, problems arose frequently in the communication and transmission of important product

requirements between the individual stakeholders (costumer, sales, engineering domains; requirements

management is only one possibility to use the tool). On the one hand, the requirements were previously

captured in several text-based documents, which made transparency difficult. On the other hand, there

was no standard document for all stakeholders to follow. In addition, changes in the documents were not

consistently captured and shared. Therefore, the product structure was mapped with the help of a

template at the different product levels (system, modules, components/parts). Then, the requirements

were captured systematically at the various levels of the product structure from the perspective of the

customer, sales, development (mechanics, hydraulics, software, sensor technology) and production. The

next step is the creation of functional flows on the different levels of the product structure to link the

requirements with the function structures (over the same product structure). After that, new solution

alternatives and product configurations could be derived with the help of the created models. Based on

requirements criteria (e.g. costs, weight, cycle times etc.), these alternatives could then be evaluated by

showing the impact of changes on the requirements and functions. Finally, the derivation of cross-

domain views follows as a basis for discussion to resolve arising conflicts. The implementation of the

described procedure in the tool is shown in figure 3.

https://doi.org/10.1017/pds.2023.246 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.246

ICED23 2463

Figure 3. Systematic assignment of product requirements via the tool

6 CONCLUSION AND OUTLOOK

In this paper, a concept for linking product, process and method data has been presented based on

approaches of Systems Engineering and Model-based Systems Engineering. Through the coherent

consideration of the three views (product, process, method), holistic linked models can be derived that

enable an integrated cross-domain view in product development. This approach was implemented in a

software-based tool. The tool was tested in a real development project of the mechatronic engineering

industry. It was possible to demonstrate that the tool made complex dependencies between technical

contexts visible that could not be identified by the individual developer. In addition, information sharing

between stakeholders and engineering domains could be facilitated. However, the entering of the

development information into the tool requires an additional initial effort. But the effort is relativized

when using the tool for a longer time due to the mentioned advantages. By further developing of the

functions, features and the user interface, the effort can also be reduced. It should be noted that the

results are not representative for the entire mechatronic engineering industry, because only one case

study has been conducted at this time. Therefore, the tool has to be tested and further developed in

additional development projects of different enterprises. If necessary, the concept has also to be reviewed

again to ensure better applicability.

https://doi.org/10.1017/pds.2023.246 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.246

2464 ICED23

ACKNOWLEDGEMENTS

“This research and development project is funded by the German Federal Ministry of Education and

Research (BMBF) within the “Innovations for Tomorrow’s Production, Services, and Work” Program

(funding number 02J19B140) and implemented by the Project Management Agency Karlsruhe (PTKA).

The author is responsible for the content of this publication.”

REFERENCES

Alt, O. (2012), Modellbasierte Systementwicklung mit SysML, Carl Hanser, Munich.

Baschin, J., Huth, T., Vietor, T. (2020), “An Approach for Systematic Planning of Project Management Methods

and Project Processes in Product Development”, International Conference on Industrial Engineering and

Engineering Management (IEEM 2020), online, 14-17 December 2020, IEEE, Singapore, pp. 1037-1041.

10.1109/IEEM45057.2020.9309809

Borky, J.M., & Bradley, T. H. (2019), Effective model-based systems engineering, Springer, Cham.

Eckert, C., Clarkson, P.J., Zanker, W. (2004), “Change and customisation in complex engineering domains”,

Research in Engineering Design, Vol. 15, No. 1, Available at: https://link.springer.com/article/10.1007/

s00163-003-0031-7 (25th November 2022). https://doi.org/10.1007/s00163-003-0031-7

Friedenthal, S., Moore, A., & Steiner, R. (2015), A practical guide to SysML: The systems modeling language,

Morgan Kaufmann, Burlington.

Gausemeier, J., Dumitrescu, R., Steffen, D., Czaja, A., Wiederkehr, O., & Tschirner, C. (2015), Systems

Engineering in der industriellen Praxis, IEM Fraunhofer. Available at: https://www.iem.fraunhofer.de/

content/dam/iem/de/ documents/Studie%20Systems%20Engineering_deutsch.pdf (25th February 2019).

Haberfellner, R., de Weck, O., Fricke, E., & Vössner, S. (2019), Systems engineering, Springer, Cham.

Huth, T., Inkermann, D., Wilms, R., & Vietor, T. (2018), “Model-based process engineering - an approach to

integrated product system and process modelling”, Tag des Systems Engineerings, 5-7 November 2018,

tdse, Berlin.

Huth, T., Vietor, T. (2020), „Systems Engineering in der Produktentwicklung: Verständnis, Theorie und Praxis

aus ingenieurswissenschaftlicher Sicht“, Gruppe. Interaktion. Organisation. Zeitschrift für Angewandte

Organisationspsychologie (GIO), Vol. 51, No. 1, Available at: https://link.springer.com/article/10.1007/

s11612-020-00505-1 (25th November 2022). https://doi.org/10.1007/s11612-020-00505-1

INCOSE (2022), Systems Engineering. International Council of Systems Engineering (INCOSE), Available at:

https://www.incose.org/about-systems-engineering/system-and-se-definition/systems-engineering-definition

(25th November 2022).

Kauffeld, S., Paulsen, H. (2018), Kompetenzmanagement in Unternehmen. Kompetenzen beschreiben, messen,

entwickeln und nutzen, Kohlhammer, Stuttgart.

Martin, J. N. (1996), Systems Engineering Guidebook: A Process for Developing Systems and Products, CRC

Press, Inc., Boca Raton, FL.

Noël, F., Roucoules, L. (2008), “The PPO design model with respect to digital enterprise technologies among

product life cycle”, International Journal of Computer Integrated Manufacturing, Vol. 21, No. 2, pp. 139-

145, https://dx.doi.org/10.1080/09511920701607782

Object Management Group (2017a), OMG systems modeling language (OMG SysML™), OMG. Available at:

https://www.omg.org/spec/SysML/1.5/ (25th November 2022).

Object Management Group (2017b), OMG Unified Modeling Language (OMG UML), OMG. Available at:

https://www.omg.org/spec/UML/2.5.1/ (25th November 2022).

Ropohl, G. (1975), Systemtechnik – Grundlagen und Anwendung, Hanser, Munich.

Ropohl, G. (2012), Allgemeine Systemtheorie: Einführung in transdisziplinäres Denken, edition sigma, Berlin.

Şahin, T., Raulf, C., Kizgin, V., Huth, T., Vietor, T. (2021), “A Cross-domain System Architecture Model of

Dynamically Configurable Autonomous Vehicles”, Proceedings of 21st Internationales Stuttgarter

Symposium, Stuttgart, Germany, 30-31 March 2021, Springer, Wiesbaden. https://doi.org/10.1007/978-3-

658-33521-2_40

Walden, D.D., Roedler, G. J., Forsberg, K., Hamelin, R.D., Shortell, T.M. (2015), INCOSE Systems Engineering

Handbook: A Guide for System Life Cycle Processes and Activities, INCOSE, San Diego, CA.

https://doi.org/10.1017/pds.2023.246 Published online by Cambridge University Press

https://doi.org/10.1017/pds.2023.246

	pds.2023.0246.0
	pds.2023.0246

