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EXTENSION OF CR STRUCTURES ON THREE
DIMENSIONAL PSEUDOCONVEX CR MANIFOLDS

SANGHYUN CHO!

Abstract. Let M be a smoothly bounded orientable pseudoconvex CR mani-
fold of finite type and dimpgM = 3. Then we extend the given CR structure on
M to an integrable almost complex structure on S;” which is the concave side
of M and M C bS] .

§1. Introduction

Let M be a smooth orientable manifold of dimension 2n — 1 and let
MC Mbea smoothly bounded CR manifold with a given CR structure S of
dimension n — 1. Since M is orientable, there are smooth real nonvanishing
1-form 7 and smooth real vector field Xy on M so that n(X) = 0 for all
X € S and 7(X) = 1. We define the Levi form of S on M by in([X’,Y”]).

In [4], Catlin has considered an extension problem of a given CR struc-
ture on M to an integrable almost complex structure on a 2n-dimensional
manifold Q with boundary so that the extension is smooth up to the bound-
ary and so M lies in bQ2. Under certain conditions on the Levi form (cf.,
[4, Theorem 1.1, Theorem 1.3]), this leads to a solution of the Kuranishi
problem [1, 9, 13|, which is to show that an abstract CR manifold can be
locally embedded in C".

In this paper, we consider an extension problem of a given CR structure
on M when M is a pseudoconvex CR manifold of finite type and dimg M =
3. For a given positive continuous function g on M, where g = 0 on bM,
we define

Sy = {(z,t) € M x [0,00); 0 <t < g(x)}.

Then our main result is the following theorem:

THEOREM 1.1. Let M C M be a smoothly bounded orientable pseu-
doconver CR manifold of finite type with given CR structure S on M and
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dimg M = 3. Then there exists a positive continuous function g on M
and a smooth integrable almost complex structure L on S; such that for all
x €M, LioyNCT'M = S;. Furthermore, if JL;:TS; — TS;’ s the map
associated with the complex structure L, then dt(Jz(Xo)) < 0 at all points
of My = {(z,0); z € M}.

Note that we extend the given CR structure on M to the concave side
(instead of convex side) of M. We also note that if M is strongly pseudo-
convex, this case was handled in [4, Theorem 1.1]. Theorem 1.1, in general,
would not imply the local embedding of M into C? (cf., [2, 6]). But we
have the following theorem as an application of Theorem 1.1.

THEOREM 1.2. Let D be a complex manifold with C*® boundary and
dimgD = 2. Suppose that the almost complex structure on D extends
smoothly to a manifold M C bD where M is compact pseudoconvexr CR
manifold of finite type with smooth boundary and dimg M = 3. Then D can
be embedded in a larger complex manifold Q so that M lies in the interior
of Q as a real hypersurface.

Remark 1.3. In [5], the author showed that any smooth compact pseu-
doconvex complex manifold D of finite type with dim¢ D = n, n > 2, can
be embeded into a larger complex manifold 2. Theorem 1.2 is a generaliza-
tion of this result to non-compact complex manifolds of complex dimension

2.

In [4], Catlin has introduced certain nonlinear equations which come
from deformation theory of an almost complex structure. The linearized
forms of these equations are simply the d-operator from A%! ® T1O to
A%? ® T10. The solutions of these equations represent sucessive correc-
tions that must be made in the iterative process of solving the nonlin-
ear equation. To overcome difficulties in subelliptic estimates for & near
bM, we choose a Hermitian metric on S;' so that S;’ takes on the form
Se = M x [0,¢], where M is a complete noncompact manifold. To this end,
we choose, for each o € M, a noneuclidean ball that is of size § = g(zo)
in the transverse holomorphic direction and of size 7(z,6) in the tangen-
tial holomorphic direction. Some technical difficulties in constructing the
quantity 7(zg, d) is handled in Section 3. Here we introduce special coor-
dinate changes (Proposition 3.1) so that the tangential vector field L; can
be written in a suitable form. These change of coordinates will have an
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independent interest in studying the CR manifolds of finite type. To study
the behavior of 7(zo, 6), we introduce a smoothly varying function p(z, 6)
which is defined invariantly. Then it follows that 7(z, ) = u(z,8) (Propo-
sition 3.2), and hence 7(z, ) is defined invariantly. Also 7(z,8) satisfies
“doubling property” (Corollary 3.3), which is one of a crucial property of
7(z,8). Equipped with all of these necessary properties of 7(z, ), we per-
form some careful subelliptic estimates of the & type equation on each of
these noneuclidean balls (Section 4). Then this will give us the estimates so
called “tame estimates”, which are required in the Nash-Moser method for
the approximate solution to the linearized equation. Then the rest of the
procedure is similar to those of Catlin’s, which uses the simplified version
of Nash-Moser theorem [12].

I would like to thank David Catlin for his helpful discussion during the
preparation of this paper.

§2. Deformation of almost complex structures

Let M be a CR manifold as in section 1 and set 2 = M x (—1,1). In
this section we extend a given CR structure on M to an almost complex
manifold €2, and we consider a deformation problem of an almost complex
structure on  so that the new (deformed) amost complex structure is
integrable (or close to be integrable).

Since 2 is an almost complex manifold of dimg Q = 4, there is a sub-
bundle £ of CTQ of dimension 2 (over C) such that LN L = {0}. Let A
be a smooth section of I''(£) = A%} (L) ® £, where A%!(L) denotes the set
of (0,1) forms with respect to £. Observe that if A is sufficiently small,
then the bundle £4 = {L + A(L); L € L} defines a new almost complex
structure and if I’ and I" are sections of Z, then T +A(L) and '+ AT
are sections of £A. Similarly, if w is a section of A1%(L), then w — A*w is a
section of A°(L£A) where the adjoint A* maps from A»?(£) to A®(L) and
is defined by
(2.1) (A"w)(L) = w(A(L)),

forall LT € £ and w € AY°, We want to choose A so that
(w—A*w)([L" + A(L), L" + A(L")]) = 0.

By linearizing, i.e., by ignoring terms where A or A* appear more than
once, we obtain

(2.2) w([L', A(L")]) + w([A(L), L"]) = A"w([L', L"]) = —w([L', L"]).
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Let L = L' + L" denote the decomposition of a vector L € CT, where
L' € £, and L" € C,. For sections _L—l, L, of Z, we define

(2.3)  (D2A)(L1,Ly) = [L1, A(L2)' = [L2, A(L))' = A([Ly, Lo]").

Note that this definition is linear in L; and L, so DsA is a section of
I'? = A%2(L)® L. It follows from (2.1) and (2.3) that (2.2) is equivalent to
the equation

(2.4) DyA = —F,

where F is a section of I'? defined by
(2.5) F(Ly,Ly) = [Ly, Ly

Note that F' measures the extend to which £ fails to be integrable. If £
defines a CR structure on M C b2 and if we want £4 to define the same
CR structure on M, then this means that A must satisfy A(f’) = 0 on
M whenever L is a section of £ that is tangent to M. This is a Dirichlet
condition on some of the components of the solution of (2.4).

Since dimc Q = 2, it follows that D3B = 0 for all B € I'?, where
D3:T? — T is defined by

D3B(Ly, Ly, L3)
= [L1, B(L, Ls)]' — [L2, B(Ly, Ls)]" + [L3, B(L1, Ly))’
— B([L1,Ls)", Ls) + B([L1, Ls]", Ls) — B([Le, Ls)", IL1).

Now set 2 = M x (—1,1). Then we have the following formal solution
of the extension problem [4, Theorem 4.1].

THEOREM 2.1. Suppose that M is an orientable CR manifold of di-
mension 2n — 1 such that the CR dimension equals n —1. Then there exists
an almost complez structure L* on Q = M x (—1,1) such that L* is an ex-
tenston of the CR structure on M, and such that it is integrable to infinite
order at M in the sense that if w is a section of AY0(L*) and Ly, Ly are
sections of L', then w([L1, L,]) vanishes to infinite order along M.

The next theorem shows that the above formal extension is essentially
unique.
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THEOREM 2.2. ([4, Theorem 4.2]) Let M and Q be as in Theorem 2.1.
Suppose that L and X are almost complex structures on Q that extend the
CR structure on My = {(z,0);x € M}, and that are integrable to infinite
order on My as in Theorem 2.1. Then, there exists a diffeomorphism G of Q
onto itself that is the identity when t = 0 and such that G X approzimates
L to infinite order near My in the sense that if X is a section of L, then
G X differs from a section of L by a vector field which vanishes to infinite
order on M.

Now assume that dimg M = 3 and let @ = M x (—1,1). By Theo-
rem 2.1, we have an almost complex structure £* that is integrable to infi-
nite order along My = {(z,0); = € M}. Let n be a smooth non-vanishing
one form on M that satisfies n(L) = 0 for all L € S; = € M, and that
defines the Levi form of M as in Section 1. We can clearly extend 7 to
all of Q so that it still annihilates S, ;) for all (z,t) € 2, where S(; ;) now
denotes the space of vectors in E(kz,t) that are tangent to the level set of the
auxiliary coordinate t.

Choose a smooth real vector field Xy on 2 that satisfies Xot = 0 and
7(Xo) =1 1in Q. Set Yy = —J¢+(Xo) so that Xy + iYp is a section of L£*
that is transverse to the level set of t. Let G: Q2 — € be a diffeomorphism
such that G fixes My and

G.Yy = —o
U0 Ot|(z,0)
Since M is orientable, we may assume that dt(Jz~(Xo)) is always negative.
Thus dt(Yy) > 0 along My, which shows that G preserves the sides of My;
ie., G maps Q% = {(z,1);0 < t < 1} into itself. If we set L% = G.L*, then

clearly Z = —iG, (Xo +iYp) is a section of £° such that along My,

~ 1o}
Z-—~—7.X()+5;

If we write Z = X + g(w,t)%, where Xt = 0, then we set Ly = g‘lz.
Then Ly = Z% + X where Xt = 0. We fix a smooth metric ( , )¢ that is
Hermitian with respect to the structure £° on €, and let {L1, L2} be an
orthonormal frame defined in a neighborhood of p € M. Note that along
M, we have Ly = & —iXp and dt = §(dt + in) + 1(dt — in), which implies
that 8t = 1(dt + m) Hence 9t(L) = 1dt(L) + 217(L) and

(2.6) 21([X1, Xol) = Sn((%1, K]
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for all X1, X5 € S5, along M.

DEFINITION 2.3. We say p € M is of finite type if there exist a list
of vector fields L!,...,L™, with L! = Ly or Ly, i = 1,2,...m, so that
ot([L™,[L™1,...[L? LY]...]) # 0 at p. The smallest integer m satisfying
ot([L™, [L™Y,...[L? LY]...]) # 0 is called the type at p € M.

It is obvious that this definition is an open condition. Observe also
that, if p € M is of type m, then Ly, Ly, [L™,...,[L? L']...] span all local
vector fields tangent to M because 9t(L;) = 0.

83. Special Frames for Almost—Complex Structures

Let M, Q, Xo, L1, Ly and £° be as in Section 2. In this section, we will
construct special coordinate functions defined in a neighborhood of zy € M.

First, we note that Xot = 0 on Q and hence there is a neighborhood
V.o of zp such that there exist coordinates (ui,ug, u3, us) with the property
that ug = t and ug(u/,t) = uk(v',0), £ < 4 for (v';t) € V,,, and that
9/0uz = —Xj at all points of M NV,,. For any point g € V,, N M, we
define an affine transformation Cy,: R* — R* so that if (zf,0) € R* are
the coordinates of xp, then

Cxo(ulat) = (on(u' - xfl)at)a

where the 3 X 3 constant matrix Py, is chosen so that if new coordinates
z = (z1,...,x4) are defined by = Cy,(u), then
o .0 0

— v, and Xolzo = '—%;.

(3.1) leo = 3z; ~ “ony

Note that the second equality actually implies that Xy = —5% at all points

of V;, " M and that Ly = % — ia%g, along M NV,,. We also note that
the matrix Py, is uniquely determined by (3.1) and depends smoothly on
Zo € Vzo nM.

PRroPOSITION 3.1. For each zy € V,,NM and positive integer m, there
are smooth coordinates x = (x1,x2,x3,4), (xo) = 0, defined near o such
that in = coordinates the vector field Ly can be written as

2
(32) L= (5% — z%) + ;bl(x)é% + (e(z) +ia(z)) 52;,
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where by (0) = by(0) =0, and e(z), a(z) are real functions satisfying

Itk ok
__i(x_o)z(] j+k<m, and a(xo)

3.3 : : <
(33) ox] Ok ozk

=0, k<m.
Proof. Let us write the vector field L; in terms of the coordinate
functions (z1, z2, z3,t) satisfying (3.1):

2
(3.4) L= (5‘% + Z b}(w)% + e(x)a%)
( Zb (x)———i—a( )—)

where e(z), a(z) and b}, 1 < i, I < 2 are smooth real valued functions
satisfying e(0) = a(0) = b¥(0) = 0. Therefore (3.3) holds for j + k < 0. By
induction, assume that we have coordinate functions x1, 2,3 and t such
that L; can be written as (3.4), where the coefficient functions e(x) and
a(z) satisfy:

oi+ke k

a
0)=0, j+k<I1l-1, and, 0)=0, k<Il-1.
T ® =0 1 0

(3.5)

Set

1 =21, T9 = T9, and

~ 1 8 6(0) j+1
T3 = T3 — Z - xl :1:2.
o2, G+ 1)k 9] 9ok

Then, in terms of Z-coordinates, L; can be written as:

2
L= (5%+2511($)38 +8(@) 5= )

=1

where

aj+k~ 8k~
———(0)=0, 1<j+k<1, and ~‘,:(0)=0,k§l—1.
3.’1:{3 oz,
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We also perform another change of coordinates:

~ 2 .
(1+1)! 3z}

Ty = 2Ty, Ty =Ty, T3 = T3 —

Then, in terms of z-coordinates, L; can be written as in (3.4) satisfying
(3.5) with  — 1 replaced by l. If we proceed up to m steps, we will have
coordinate functions (z1, z2, z3,t) defined near zo € M NV, satisfying (3.2)
and (3.3). 0

We first construct continuously varying non-isotrophic balls that are
defined invariantly. Let {x,},er be a partition of unity subordinated to the
coordinate neighborhoods {U, },er of Q. Let m be a given positive integer.
Let us fix 6 > 0 for a moment. For any j, k with j > 0, define

_ T i 1=k —
£5,00n(2) = 5L Tin([Ly, Th))(2), = € U,

CY(z)= Y |£4409(z)’, 1=1,...,m, and,
J+k=l

z) = ZXqu(w)

vel

Set M = (m 4+ 1)! and define

—-1/2M
(36) (Z CM/H'l )6——2M/l+1) .

By (2.6) and Proposition 2.4 it follows that Y ;~; Ci(z) > 0 if the type at
z is less than or equal to m. Therefore p(z,6) is defined intrinsically and
it is a smooth function of § > 0 and z for z satisfying Y =, Ci(z) > 0.

We want to define another quantity, 7(z¢, ), related to the coordi-
nate functions defined in Proposition 3.1. Let zo € M be a point whose
type is less than or equal to m. Let us take the coordinate functions
z = (z1,%2,x3,t) defined near zyo where the vector field L; has the rep-
resentation as in (3.2), where the coefficient functions e(z) and a(z) of
0/0z3 satisfy the estimates in (3.3).

Set

a(z) = —a(m) Re [;z—l-a(:r)] ,
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and set z; = (1 — iz3) and 22 = 3(t — iz3). Since a(zo) = 0, the Taylor
expansion of a(z) at zo has the expression (in terms of (21, 23)-coordinates)

as:
)= Y. G(wo)dZh + O(u|™ + |zl l2l), 2= (21, 2).
0<j+k<m—1
Now set
Ay(zo) = max{|ax(zo)|; j+k=1},1=0,1,...,m—1,
and set
3.7) 7(20,6) = Osggirfll_l{(‘S/Al(mo))l/lH}-

Assuming that the type at zo is less than or equal to m, it follows that
ajk(zo) # 0 for some j+ k =1 < m —1 and hence 7(xo, 6) is well defined.
It also satisfies the estimate:

8% < 1(mo,8) S 8™,
Let us consider the following balls defined in terms of 7(zg,6):
Qs(z0) = {(z1, 22, 3, 1): |21}, |22| < T(20,6), |23], [t| < 6}

We want to study the relations between 7(zo, §) and p(z,§) for z € Qs(xo),
where u(z,8) is defined as in (3.6). Set D; = 8/9z; for a convenience. If
we combine the definition of 7(zg, §) and the fact that (L) = 0, we obtain
by induction that

-k o
(3.8) |D{Dyn(

5. (@)l S 87(0,8) "D forj + k <m, i=1,2.
1

Note that n([L1, L1]) can be written as

— b3} 0
. = (—2: Re[— —
(3.9) (L1, L)) = (=2 Re[5—al)n(5~) + Ro,
where Ry satisfies, from the estimates in (3.3) and (3.8) that,
(3.10) |DID¥ Ro(z0)| < 67(x0,6) U+, j+k+1<m.
Combining (3.7)-(3.10), we get:

\DIDn([L1, Th))(0)| S 67(x0,8) " UHFHD) j 4+ k42 < m.

https://doi.org/10.1017/5S0027763000006814 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000006814

106 S. CHO

Similarly, by applying L; or L; to n([Li,L1]) sucessively, we obtain by
induction that

ik 9
(3.11) Ljpn(z) = D7D} lRe(Dla)ﬂ(%)J + Ejik-1,
where E; ;. satisfies

(3.12) IDfﬁiEHk_l(zo)\ < 67(wg, §) U S k4 s+t <m.

Therefore for any j, k, s, t with j + k+ s +t < m, it follows from (3.11)
that
(3.13) |D{D, L kn(wo)| S 87 (o, 6) (T +k+D),

If we use the Taylor series method and the estimates in (3.13), we obtain
that _
L en(z)| S 67(z0,6) U 2 € Qs(ao).

Since this implies that
Ci(z) < 827 (x0,8) 2D 2 € Qs(zo), 1 < m,
we conclude from the definition of u(z, ) in (3.6) that
(3.14) 7(z0,8) < u(z,8) when z € Qs(zo).
Conversely, let us prove that p(z,8) < 7(z,6). Define
(3.15) T(zo,6) = min{l: (6/Ay(x0)) /2 = 7(xo, 6)}.

By the definition of 7(zg, 6) and T'(zo, 6), there must exist integers 7, k with
(J—1)+k=T(xo,6), j > 1, so that
~ 1 i—1=<k T
[a;—1,k(z0)| = lmD{ D [Re Dia] ()| = &7(0,6) 7 7*1.

If we apply the estimates in (3.12) and (3.13) with s + ¢t = 0 and the fact
that 7(zo,6) < 1 if 6 is small, it follows that

1 .
|£5,6n(z0)| 2 5j!k!67’(m0,5)—]—k—1'
Then, again by using the estimates in (3.13) and the Taylor series method,

we obtain that ‘
|£j,k77(x)l ~ 67—(‘20, 6)_J—k-—1a
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which implies that
(3.16) w(z,8) < 1(x0,6), = € Qs(xo)-
If we combine (3.14) and (3.16), we have proved the following proposition.
PROPOSITION 3.2. If z € Qs(x0), then
(3.17) 7(z0,90) = p(z,9).
COROLLARY 3.3. Suppose = € Qg(x¢). Then
7(z0,06) =~ 7(z, ).

Proof. If we set z = z¢ in (3.17), then we see that u(zo, ) = 7(xo, d).
Since this holds for z¢ = z, it follows that p(z,8) = 7(z,8). Hence we have
7(z0,6) = 7(x, ). 0

Remark 3.4. p(z,6) is defined intrinsically, that is, independent of co-
ordinate functions. Therefore, Proposition 3.2 shows that the quantity
T(xzo,6) is defined invariantly, up to a universal constant, with respect to
coordinate functions.

Assume M C M and let ¢ € C®(M) be a smooth real-valued function
such that p(z) > 0 for ¢ € M, and ¢(z) = 0, dp(z) # 0 for x € bM. We
can extend ¢ to by requiring that it be independent of t. Let us denote
by T, the type at a point p € M and define

T(M) = max{Ty; p € M}.

Since type condition is an open condition, we see that T(M) is well defined
and is finite. In the sequal, we assume that T(M) = m < co. We define
r € C®(Q) by r(z,t) = t(¢(z))~?™ and for any ¢, 0, 0 < e < 0 < 1, we
define

Seo = {(z,t) € Q5 p(xz) >0and 0 < r(z,t) < ecr“m—l}.

The quantities € and ¢ will be fixed later. If we set g(z) = - 032" " .
¢(z)?™, then S, , will be the required manifold S; of Section 1. We define
a subbundle of £° on S, , by letting Rz ={L € E(()m’t); Lr = 0}. Clearly
the map H defined by H(L) = L — (L7)(Lar)~! Ly defines an isomorphism
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of S onto R (at all points of S¢ ;). We define a weighted metric { , ) on £°
by the relations

(H(Ly), H(L1)) = p(z,e¢(2)*™)"*(Ly, L1)o,
(Lo, La) = e 2p(2)™*™, and
(L2, H(L1)) = 0,

where Ly € S. Since p(z, ) is a smooth function of z and 8, it follows that
(, ) is a smooth Hermitian metric on £°.

We now show how S, can be covered by special coordinate neighbor-
hoods such that on each such neighborhood there is a frame £ that satisfies
good estimates:

PROPOSITION 3.5. There exist constants €9 and og such that if 0 <
e < g and 0 < o < 09, then on S, there exist for all xo € M with
¢(xo) > 0 a neighborhood W (xzo) C S, , with the following properties:

(i) On W(xg) there are smooth coordinates yi,...,ys so that W(zg) =
W ] < 0,0 < ys < 0¥2""}, where y' = (y1,y2,ys) is independent
of t and where the function y, is defined by yy, = e L p(x)~?™t. Thus,
MynW(zo) and M;NW (xo) correspond to the points in W (zo) where
ys = 0 and 03277, respectively. Moreover, the point (,0) €
(which we identify with zo) corresponds to the origin.

(ii) The above coordinate charts are uniformly smoothly related in the
sense that if W(pg) and W(xg) intersect, and if § and yo are the
associated coordinates, then

(3.18) ID*(F o (y0)™H)| < Clay

holds on that portion of R* where § o (yo)~! is defined. The constant
Clq| 15 independent of po and To.

(iii) On W (xy), there exists a smooth frame Ly, Ly for L such that if w!,
w? is the dual frame, and if Ly and w* are written as Z;%:l bk].g’i—j
4
Zj:l dijdy;, then

sup {|Dybr;(y)| + [Dydi;(¥)|} S Clas
yEW (z0)

and

where C|,| 1s independent of zo, j, k.
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(iv) There are independent constants ¢ > 0 and C > 0 such that if By(z)
denotes the ball of radius b about x € S, , with respect to the metric

(, ), then

(3.19) By (z0) C W(zo) C Beo(zo),
and if Vol By(zo) denotes the volume of By(zo) with respect to { , ),
then )

(3.20) b®a¥?™ " < Vol By(wg) < CH30>2™”

Proof. We first cover M by a finite number of neighborhoods V,,, v =
1,...,N, in © such that in each V|, there exist coordinates (ui,...,us)
with the property that uy = t and that ug(u',t) = ux(v,0), k < 4, for
(v/,t) € V,, and that 3%3 = —Xp at all points of M NV,,.

For any point 2o € MNV,,, we take coordinate functions z = (z1,...,z4)
constructed as in Proposition 3.1. In terms of z-coordinates, LY and LY can
be written as:

(321) Ll = —3?1 - EL‘; Z—: , and

L’2’-——2 Z 83:1

where a3(z) = e(z) +1a(z), and where e(z), a(z) satisfy estimates in (3.3).
Set z; = 1/2(z1 — iz2) and 29 = 1/2(t — iz3). Since az(zo) = 0, the Taylor
expansion of az(z) at z¢ has the expression:

(322)  as(@)= Y a(e0)dZ + Oz + |z |2)).
1<j+k<m
Set 6 = ed(x9)?™, and set
Tm(z) = Z ajk(mo)zlz’f = Tpn(z1, 2,0,0)
1<j+h<m

for a convenience. We take the quantity u(zo,8) and the corresponding
quantity 7(zo, 6), for the function a3(z) (or a(z) = 8/0z1a(x)), as defined
n (3.6) and (3.7). By virtue of Proposition 3.1, and by the definition of
7(xo, 8), it follows that |a;k(z0)| < §7(z0,6)™7F~1, j + k < m, and hence
Proposition 3.2 implies that

(3.23) lajk(z0)| S 6p(zo, ) F 1.
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We define new coordinates y = (yi,...,y4) by means of dilation map
chole4 — R%:

Y= DE,EO(:U)

= (u(z0,6) a1, u(z0, 6) " aa, e p(m0) "Mz, e () TH™

.’124),
where () is the function ¢ expressed in the z-coordinates of zo. In terms
of the y-coordinates, we define an open set Wy(zg) by

Wi(z0) = {2 € Vo N .05 ly(e)] < b, k=1,2,3, 0 < ga(e) < o*2" 7'},

3.2m-1

Note that in Wy(zg), y4 = 0 and y4 = o coincide with 7 = 0 and
3'2m'—1

r = ¢eo , respectively, the boundaries of S, ,. We define a frame Ly,
Lo in Wy(zo) by setting

(3.24) Ly = p(z, 6)(LY — dLy) = p(z,6)H(LY), and
Ly = ep(z)*™ L5,

where d = (LYr)(Ly7)~!. Assuming that L¥ and L} have the expressions as
in (3.21) in V,,, we set A;(y) = a;jo D} (y), D(y) = do D} , ® = ¢o D]

&,T0 £€,Z0? £€,x0)

Bi(y) = bjo D7} (y), and &; = %‘lﬁ o D7l . Then we conclude that in the

£€,Z0 £,x0"

y-coordinate of Wjy(zo),

2
& loe o 9
l

3.25 L, = -—
(3.25) 1T ulz0,08) |0y O P

+ u(z, 6)6~1 (A3 — D(Bs — 1)) 5‘;.

Observe that since the diameter in the z-coordinates of Wy (zg) is
O(bu(zxo, 8)) < p(xo), it is clear that u(x,8)u(zo,8)™! and ®p(x)~! are
very close to 1 in Wy(zo) if b is small. We set

|f lim, Wi (z0) = suP{I Dy f(¥)]; y € Wa(o), la] < m},

and we extend this norm to vector fields and 1-forms by using the coefficients
of aiyj or dy;. From the expression of a3(z) in (3.22) and by virtue of the
estimates in (3.3) and (3.23), it follows that

P_r% |5_1N(96, 5)A3(y) - Tm(y)lk,Wb(zo) =0,
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when b < /0. Similarly, by direct calculation, one obtains that

(3.26) Do T2y (@y +i®y + S AD)
1+ 2iem®2m—1®,y, — Z?zl 2em®2m-18,y,

Note that u(z,68) = 7(x0,8) < /™t p(20)?™/ ™+ <« (1), and hence it
follows that

lim |67 (e, ) Dk w20 = 0.

Combining all these facts, we conclude that if b < /o,

0 7] 0]

3.27 lim (L; — { — —t— + T, —) =0,
( ) o—0 ! <8y1 8y2 (y) ay3 k,Wb(-’L'o)
where T, (y) = Trn(y1,72,0,0), and that

o]
lim |Ly — (—z-—a— + ——) =0.
oc—0 8y3 8y4 k,Wj(z0)

Setting W (zo) = Wy(x0), for sufficiently small o, we obtain (i) and (iii).
By Proposition 3.2, it follows that 7(zo,6) = p(z,é) for x € W(=zg). Since
Ly, L, is orthonormal with respect to (, ), we conclude that if o is small,
then (3.19) and (3.20) hold.

To prove (3.18), we note that 7(xo,8) =~ 7(z,6) if £ € W(z) and that
7(z0,6) is defined independent (up to a universal constant) with respect to
coordinate functions (Remark 3.4). These two facts give us (3.18). U

We need the following proposition to prove the subelliptic estimates
for @ equation in dilated coordinates y. We take the orthonormal frame
{Ly, Ly} and its dual frame {w!,w?}.

PROPOSITION 3.6. There exist a constant cg > 0, independent of xg,

and a list of vector fields {L°,L*7',... L'}, where I = Ly or L;, 1 < j <
s, s < m, such that

(3.28) lw2([L, [L°7Y, ..., [L% LY .. ]) ()| > 2¢co,

for all x € W(xy).
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Proof. Set L° = L; and L' = L;. For (i1 ---15) of an s-tuple of 0’s
and 1’s, we define inductively by L) = [Lf L(iv%s-1)] and set

(3.29) Xt (y) = w(L 7)), and
A _
Cixw?(y) = I Lyw? (L1, L)) ().

Let I, be the ideal generated by A0 = w?([L;, L]), and I, be the ideal
generated by I,_; and both A% By induction, it is not hard to show
(see [8, 10]) that

(3.30) A0 (1) = £ 4w (y), mod I,_q,
where j is the number of 0’s in (10- - - 7y).
Set 75 = 6~ 1n and set wy = 1/2(y; — iy2), wo = 1/2(y4 — iy3), Dy =

8/0wy, k = 1,2. Then it follows that 75(8/0y3) = 1 along M NV, and
L;xw?(y) = i/2L; xns(y). From the estimates in (3.8), we have:

—k .
(3.31) |D1D1n6(8/0yi)(w0)| < Cjp, i =1,2,

for some constants Cj x, independent of xg. Note that L; has the represen-
tation as in (3.25). Therefore, as in the proof of Proposition 3.2, it follows
that

_ i—1=k —
£;4%(y) = ~67 (o, 8) | D™D (Im Dy As)ns(0/9ys) | + By ont,
where Ej ;1 satisfy, by virtue of (3.26) and (3.31), that
(332)  |D{DiEjik-(w0)] S w(o,6), j+k+s+t<m.

Note that we may write As(y) = E(y) + tA(y), where E(y) satisfies the
estimates as in (3.32). If we combine the definition of 7(zo, §) and the fact
that 7(zo,8) =~ p(zo,d), it follows that there exist a constant ¢; > 0 and
integers j1, k1, (j1 — 1) + k1 = T'(xo, §), such that

(3.33) |67 (w0, ) DJ ' DY (Im D1 A3)(0)| > 3y
Here T(zy,6) is defined as in (3.15). Combining (3.32) and (3.33), we get:

(3'34) |‘Cj1,k1 w2(0)| > 2¢,
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provided that § is sufficiently small. Set j; + k; = 71 and assume that
g1 € It _1. Then by virtue of (3.29) and (3.30), we can write

T1-1

(3.35) =Y, Y fHLiwt(v),

p=1 j+k=p
where fJ’.j i s are bounded (by M > 0) independent of xo. If for all j+k < T1,

¢
SUPW (o) £k - 271

|Ljp?(0)] <

then by (3.30), it follows that

A0 (0)] > e,
for some list {L*,L571 ..., L'} of L; or L;. If not, then there exist ja, k2
with jo + ko = Ty < T such that

C1

= 3cs.
SUPW (z) | f}, £, | + 27

| ke 0?(0)] 2

For gy € Ir,, we represent g, as in (3.35) and proceed as above with ¢;, T}
replaced by ¢y and T3 respectively. Note that if we iterate down to 1, then
the required inequality vacuously holds. Therefore there exist a constant
co > 0, independent of zo, and a list {L?,..., L'} of L; and L such that

w2 (L5, (L5, ... (L3, LY. . ])(@0)| > 3co.

Now, by a simple Taylor’s theorem argument, it follows that (3.28) holds
for all z € W,(z) provided that o is sufficiently small. a

Using the special frames constructed above, we now want to define L2-
operators with mixed boundary conditions. We first define nearby almost
complex structures in terms of these special frames. We define a norm
| Alk,w(zo) for the restriction of A to W (zo) by writing A = Z?,l:l At ®L;
and then by defining

2
AWl = > D IDZA(y)l,

le|<k 3id=1
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and |Alg w(ze) = suP{|A(y)lx; ¥ € W(zo)}. It is obvious that there exists
€0 > 0 so that if |A|g w(z,) < €0, then we can define an almost-complex
structure in W (zg) by

L'={T+AT); T el z€ 5.}
In terms of the frame Ly, Lo, w!, w? in W (zo), we define
X} =L +A(Ly), j=1,2,
and let nf4 be the dual frame. Set
(3.36) L = X — (X{r)(Xr)71X3, LY = X4, and

wh =l WA = (ni ; (Xi“r)(XzAT)‘lni)-

Obviously, the frame wf4, 1 =1,2, is dual to L;‘, j=1,2,and L{{r = 0. If

we set
— - ZZI(_L_Zyél)
hA = (X{r)(X$r) ™t = (Xfya) (Xfya) ! = =,
! 2 ! i) Loys + Az (Lays)
then it follows that
2
(3.37) Lf = L1 —hALz + Z(Zjl - hAij)Ij, and,

Jj=1
2
Ly =Ly + Y AjpL;.
i=1
In order to measure how L}f‘, j =1,2 depend on A, we define

N
(3.38) P(y; A)= > |AY) ]k, -
1

kyyeeey kn v=
lky |+ +lk | <k

LEMMA 3.7. If A satisfies |Alow(ce) < €0 for sufficiently small e,
then the following pointwise estimates hold for y € W(x):

(3.39) |L3' - Lj|x < CxPe(4;y), and
(3.40) |y — Wt < CrPe(Asy), 5,0=1,2.
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Proof. If we differentiate the expressions in (3.37), then we obtain sums
of terms, each of which contains a finite product of derivatives of A, as in
(3.38). Hence we get (3.39). Similarly, we can get (3.40). a

Suppose that A satisfies
(3.41) | Almts,w(z0) < €0
Then it is clear that there is an independent constant C' > 0 such that
|L§1|m+5,W(zo) <C, lwg,m-i-s,W(:co) <C, jl=12.
In terms of L’f, L‘24, and w!, w? frame, we define inductively by
L(il...i,) _ [Li’ L(il--'is—l)] and )\il"'ia( ) _ w2 (L(il'"is))
A = psdiy 5 y N4 Y) =walliy P

where LY = L, L}4 = L 4. Using Proposition 3.6 and Lemma 3.7, we prove
the following proposition which is crucial in proving subelliptic estimates
in Section 4.

PROPOSITION 3.8. Assume that (3.41) holds for sufficiently small ey >
0. Then there exist a constant ¢y > 0, independent of zo, and T = T(zo),
2 < T < 'm, such that for some j + k =T we have:

(3.42) AL T ()] > co, y € W (o).
Proof. By Lemma, 3.7, it follows that we can write, for each s > 1, as:
N (y) = A (y)] < CsPy(y; A),

where \i1"%(y) is defined as in (3.29). From Proposition 3.6, there is T =
T(20), 2 < T < m, such that |A0T(y)| > 2¢o for all y € W(z). Hence
(3.42) follows provided that g > 0 is sufficiently small. 0

Next, we show that there exists a smooth Hermitian metric on S; , such
that for all zo € M the frame L{, L4 given by (3.24) is orthonormal. For
L e £°and A € T%(S, ;) satisfying (3.31), define a bundle isomorphism
Pa: L% — LA by P4(L) = L + A(L). Define a homomorphism H,: £4 —
RA, where R4 = {L € £#; Lr =0}, by

Lr Lys 4
Hy(L)=L- ——X=L- L.
a(@) X2 Ly, *
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Then H4 o Py is an isomorphism of R onto R4. We define a metric (,)a
on £A by

((Hao Pa)Ly,(Hao Pa)Li)a = (L1,L1), L1,€ R,
(L4, L84 =1, and
(HaoPa)L1,L3)a=0, Ly € R.

Note that L4 is actually globally defined, so that the above conditions
determine a metric on £4. Since Lj, j = 1,2, defined in (3.24) are an
orthonormal basis of £, it follows that L;‘, j = 1,2 are an orthonormal
basis of £4 with respect to (, )4.

Let dV denote the volume form associated with the Riemannian metric
{, ). In the coordinates (y1,...,ys) in W(zp), we can write dV = V (y)dy,
where dy = dy; - - - dy,s, and where V satisfies

|V|k,W(m0) < C, and Einf V(y) >c>0,
Y

W(zo)

where ¢ is independent of o, €, and zg. We will define the inner product
for two functions g, h € C*(S;,,) by

(g,h) = /gEdV-

Then the following lemma follows from the Divergence Theorem.

LEMMA 3.9. Let L{f, L be the frame constructed in W(zg). Then
there exist functions e; € C®(W(xo)), j = 1,2, and a function P =
(L, v) € C®(W(zg)), v a unit normal vector, such that for all g, h €
COO(W(:BO)))

(343)  (Lilg,h) = —(g, L1 h) — (exg, h), and
(344)  (Ldg,h) = (0, Toh) — (eag h) - / Py dS + / PgRds,

o

where dS = Vds, My = {z; v(z) = 0} and M, = {z; r(z) = ea®?""'}.
The function P satisfies ¢ < P(y) < C, y € W(x), where ¢ and C are
independent of €, o, and xg.
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Let A%9(S, ,; A) denote the space of (0, ¢)-forms with respect to £4 on
Se,o, and set

T%9(S, 5; A) = A%9(S. »; A) ® LA,

Now let us define, for a given structure £4 satisfying (3.41) for small &, the
L?-operators corresponding to Dy and its adjoint. We define £ (Se.0;A)
to be the set of smooth sections U of I'%9(S, ,; A) such that support of U
is a compact subset of S, ;. Let Sg ’q(SE,U;A) denote the set of sections of
& "9(S¢ »; A) with compact support in the interior of S ,. Suppose that
U= 212:1 Z|J|:q U/w) - L{* is an element of I'%9(S, ,; A) with compact
support in W(zy). We define

2
(3.45) P = /S Y Wi,

<o I=1 |J|=¢

where dV is the volume form given by the metric of £°. Since L{}, Lg‘ is
an orthonormal frame, the quantity in (3.45) is independent of the frame
neighborhood W(zg). Thus, by using a partition of unity, it follows that
the norm in (3.45) extends to all of ['%9(S, ,; A). Let Lg(SE,U,T}l’O) denote
the set of sections of I'%9(S, ,; A) such that (3.45) is finite.

Define B? (S ,;A) to be the set of forms in Sg’q(SE,a;A) such that
U/ vanishes on My whenever 2 ¢ J. (This is also independent of the frame
neighborhood W (zo).) Similarly, define B (S, ,; A) to be the set of forms in
& "9(Se »; A) such that UlJ vanishes on M, whenever 2 € J. We now define
the formal adjoint D/, of Dy on £2%(S; 43 A) by DU = G € £077(S; 05 A)
if for all V € £771(S, »; A),

(U,D,V) = (G,V),

where (, ) corresponds to the norm in (3.45). Also, by Dy we obviously
mean the operator defined in (2.3) for the structure £4. By combining
(2.3) and (3.43)-(3.44), it follows that if U = 3. U,z - L € T'%%(Se; A)
is supported in W(zg), then

2 2

(3.46) DU =" |3V, =Y [0 (L4, TV + oty (L4, Ty )wh | | L,

v=1 p,:l
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where
(3.47) 8'U, = (LlU + e1U,)@%4 — (LAU, + e2U,)TY

We now extend the definition of the operator D, and D; to the L2-spaces.
We define an operator
1(Sea; Ty) = LU(Se,os T4°)

by the condition that U € Dom(T) and TU = F € Lg(S’E,g,T}l’O) if for all
V € BY(S; ;A), we have

(U, DLV) = (F,V).

Similarly, if U € L2(S.q; T5°), then U € Dom(S) and SU = G €
L2, (Se0; TAO) if for all V € BIYY(S, 4 A),

(U,D.,,V) = (G, V).

Note that these definitions imply that if U € Dom(T') (or Dom(S)), then
TU = DgU (or SU = Dg41U) as in the sense of distribution theory.
Let T* L2(Se0;T1°) — L2_1(Se0;T3°) and S*: L2, (S.0;Ty°%) —
L2(S6 a,Tl 0) be the Hilbert space adjoints of T and S respectively. It
follows that if U € Dom(T™), then T*U = DyU and that if U € Dom(S*),
then S*U = Dy U, as in the sense of dlstrlbutlons Therefore it follows
that

E2171 (82,03 A) N Dom(T) = BY ™ (Sc,05 4), and,
gg’q(se,a; A)NDom(T*) = BL(S: 5 A).

Similar relations hold for S. Set
Bi(Sc0; A) = Bi(Se,a; A)N B?_(SE,U; A).

Then we can approximate U € Dom(S) N Dom(T*) by U, € BY(S;+; A) in
the graph norm of S and T* [4, Lemma 6.4]:
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LEMMA 3.10. Let U € Dom(S) N Dom(T*). Then there exists U, €
BY(S, »; A) such that
Jim (U, = Ull +|SU, = SU|| + | T, = T*U)) = 0.
Finally suppose that we have proved the estimate
(3.48) IU1* < c(IT*U|? + |ISU|1%)

for all U € BI(S; ,;A). Then Lemma 3.10 shows that (3.48) holds for all
U € DomT* NDom S. Then from the usual &-Neumann theory it follows
that for all G € Lg(SE,(,—;Tj’O), there exists an element NG € Dom(7T™) N
Dom(S) such that

NG| < C*lG,

and
(G,V)=(T*(NG), T*V)+ (SNG,SV), V € Dom(T*) N Dom(S).
We will call N the Neumann operator associated with D,.

§4. The Subelliptic Estimate for D,

In this section we prove a subelliptic estimate for the Dj-Neumann
problem with almost-complex structure £4.

We first define tangential norms that will be used in the estimates. For
any s € R, set

A = /0

where f(€,y4) = Jgs e~ W€ f(y' ys)dy'. For any integer k¥ > 0 and any

m—1
03~2

V€ w1+ €y de o,

s € R, set
k ; 2
of
A1, =D W=l -
Finally for any integer m > 0 and f € C®°(W(z')), set
Il = > IDg I
o] <m

By using the coefficients of U, we can easily define all of the above norms
for any section U of ['"4. We define A(S, ) to be the space of sections
A € T%(S, ,;0) such that along My, A(L) = 0 whenever L € T%' NCT M,.
Then the goal of this section is to prove the following subelliptic estimate:
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THEOREM 4.1. Suppose T(M) = m < oo and that A is a section
of A(Se,s) that satisfies (3.41) for some small g > 0. Then there exist
small positive constants o1 and €1 so that if € < €1, if 0 < o1, and if
|Almts,W(zo) < €, then the Dy-Neumann problem on S; , for the almost-
complex structure LA satisfies the following estimate for all forms U €
B%(S: s; A) that are compactly supported in W (zo):

41) U+ LAU) + U3,y < CUSUI? +IT*UY),
where LA(U) is defined by

—A
(4.2) LAW) = |L{U|? + Ly U + I3 U

Now set X; = Re L{! = 22:1 alkg‘Z:, Xo=ImL{ = 22:1 azk%, and
llat||r = Zi:l laikllr, © = 1,2. Assume that A satisfies (3.41). Then the
restriction of L to the level set y4 = X is a C™5-vector field uniformly in

A

PROPOSITION 4.2. Let X1, X2 be smooth compactly supported vector
fields in R* and suppose that there exists a set K € R* and a constant ¢ > 0
and vector fields X',...,X™, X* = X; or Xp,4=1,2,...,m, so that for
allz € K,

2
(4.3) inf{z ()] + In(IX™, XL, X2, XYL )

Jj=1
T —) =0 =1 .
776 x) 77(84) )M‘ }>C

Then there exists a constant C independent of X1, Xo so that for all U €
C°(R*) with suppU C K,

2m

2
(44) Ul3-m <C {14 N/ 124s | (IXUI? + 1 XU)% + |UI?).
j=1

Proof. The proof is similar to that of [7]. We just observe carefully
how the coefficient functions depend. Then we can show, by induction, that
the coefficient functions a’ of X;, X, appear as in the right hand side of
(4.4).
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If we combine Proposition 3.8 and Proposition 4.2, we have the follow-
ing corollary.

COROLLARY 4.3. Assume that T(M) < m and that (3.41) holds for a
sufficiently small g > 0. Then for all f € C(W (")),

A
(4.5) A5 < CULLFIP + NZLFI%) + CUAII,
where C is independent of ' and eq.

Proof. Since we are assuming (3.41), the coefficients a;;, of X;, 1 =1,2
satisfy ||aik|lm+s < C'. Therefore by virtue of the estimates in (3.42), the
corollary follows from Proposition 4.2.

For convenience, in all that follows in this section, we omit the notation
A from the frames L{f, L4, and w}, w%. Note th?t in W(zq), we have
32™7% coincide with 7 = 0
, respectively, the boundaries of S, ,. Then the following

lemma can be proved by modifying the proof of Lemma 7.7 in [4].

technically chosen so that y4 = 0 and y4 = o

om—1
and r = go3?

LEMMA 4.4. Suppose that f € C§°(W (xo)) and that f vanishes on My
or on M,. If o is sufficiently small, say 0 < o1, then there exists a constant
C independent of €, o, and o so that for all f € C§°(W(zo)),

(4.7) a2 IfI1P < CUT2f NP + Lo f 12 + 1 fII), and
(4.8) oI fI? < CUIL2 P + 1L f 1P + ITa f11).-

We now return to the proof of Theorem 4.1. If U € B?(S,, A), then U
can be written as U = Zle Uw! Aw? - L;, where Uy = 0 on M,, | =1,2.
This fact makes us easy to handle the boundary terms occuring when we

integrate by parts. Assume that suppU € W (zp). Then it is obvious that
SU =0, and it follows from (3.46) and (3.47) that

T*U = DU = BU + O(|U)),

where \

(4.9) BU = - (LU + LyUw") - L.
=1

Hence it follows that

(4.10) |BU|® < 2| T*U|* + C|U P,
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and we conclude from (4.9) that
IBU|* = ZZ I1Z; Uil

=1 j5=1

If we use Lemma 3.9 and the boundary conditions, we get, for U = U, that

|LLU|? = (I1U, LiU) = —(L, LU, U) — (LU, e, U)
—(L1L U, U) + (L1, LU, U) — (L1U, e1U)
= (LU, LU) + (LU, & U) — (LU, e1U) + ([L1, L]0, U).

Note that we can write

(L1, Li] = sz([Ll,Ll] i+ ZD’([Ll,Ll])L

=1 =1

Set ¢t = w¥([L1,L1]), and &%, = @*([L1, L1]). Then

2 2
(L1, U, U) = Y (&, LU, U) + Y _(d5, LU, U),
=1

1=1

and hence
|L1U11? = [L1U|1? + (¢}, LU, U) + (3, LU, U) + O((| L U || + | T U DT ).
Note that
= — =2
(@4, LU, U) = —(U, Ly(d,U)) — (U, 3y, U) — /M d},|U|* ds,
0

because U = 0 on M,. Therefore it follows that

1 1 - 1
SIBUIE = SITUI - 5 [ ahjulds + 0leLAW)) + O~ UP)
Mo

and hence from (4.2) we have

1 1,—
IBUI* = SILUI* + SILUY* + | LU

1 _
~3 /M LU ds + O(LAU)) + O |UIP)
0
> 31AU) - 5 [ P ds - co P,
3 2 Ju,
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provided that o is sufficiently small. Note that d?, = —c?, = —w?([Ly, L1])
< 0 on My because M is pseudoconvex. Therefore we get

(4.11) IBU|?* > zL4(U) - Co~H|U|%.

W =

By combining (4.10) and (4.11) we get

(4.12) LIAW) ~ Co U < 2|02
From (4.5) and Lemma 4.4, it follows that

(4.13) TNf5-m + e 2T < CLAW).

If we combine (4.10), (4.12) and (4.13) we obtain for sufficiently small o
that

414)  oUIP + LAU) + Uz < CUITUI? + ISUI?).

For the estimates of the non-tangential derivatives of U, we note that L =
-aay—4 + X, where X = Z?:l bj(y)gz—]. Therefore a standard argument yields
the inequality

(4.15) |Il lll 142-m < C(1+Z|b 15wy s N F =+ T2 F 1% + [ £117),

for all f € Cg"(W(mo)), where W(wg) is a neighborhood containing W (zy).
This inequality can be applied with f = U; and one obtains (4.1) combining
(4.13)—(4.15). This completes the proof of Theorem 4.1.

We now define Sobolev spaces for sections of I%4(S, ; A). Recall that
the open sets By(zo) satisfy (3.19) and (3.20) for each zy € M. Choose a
set T, = {27 € M, i € I} such that the sets B.,/o(z7), @ € I, cover S¢q,
and such that no two points z{ and zf satisfy |z] — 27| < co/4 where | | is
the distance function on S, ,. It follows that the sets W (xz?), i € I, cover
Se» and that there exists an integer N such that no point of S, , lies in
more than N of the open sets W(z?). Furthermore, there exist functions
Gi, ¢! (that are independent of y2,) € C§°(W (7)) such that Y, (? = 1,
such that if z € supp (;, then

(4.16) Cz, =1lin Bc’a(w)’
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and such that both (; and (] satisfy
(4.17) |Gile,waz) + 1k wiag) < Cro™™.

Now let F be any section of I'%9(S, ;; A). We define

IFI 4= Z ”Cz'F”i,A,W(mg)’
iel

where

2
IGFIR awary = D2 D0 NG I weas),

i=11J]=q

and where F = 212.21 Z' =g F]f] @y - Lf is the decomposition of F in terms
of the L{, L4, wi, w% frame of W(z). Moreover, the Sobolev norm
| llz,w(z) is taken with respect to the y-coordinates of W (). We define

H,?’q(SE,,,;T;’O) to be the set of all sections F' of I‘O’q(Se,a;A) for which
|1Fllk,a < co. If we define L2(S: 03 T4") to be the set of all F € T%4(S, ,; A)
such that |F||? < oo, then it is obvious that the norms || || and || [|o 4 are
equivalent on Lg(SE,,,;T}l’O). We also define A(S,,) to be the space of
sections A € T%!(S, ,;0) such that along My, A(L) = 0 whenever L €
T%! N CTMo. Since A(Sc,;) C I'% (S, 5;0), we define ||A||x = ||A|lx,0, and
we define Hy (S ;. A) to be the set of A € A(S; ) such that ||Al|x < co.

We want to get an estimate in global form. Define Q(U,U) = ||T*U||? +
ISU||2. By using the partition of unity as defined above satisfying (4.16),
(4.17), and the estimates in Theorem 4.1, we obtain:

COROLLARY 4.5. Suppose that A satisfies (3.41) for all zg € M. Then
there exists a fixred small o and a constant €1 > 0 such that for all £,0 <
e < e1, and all U € Dom(T*) N Dom(S),

(4.18) IU1I* < cQ,U).

Now let us fix o > 0, satisfying Corollary 4.5 and set W (zo) = Wy (z0).
Using Theorem 4.1 and the standard “bootstrap” method, we can get reg-
ularity estimates for the linearized equation. The proof follows the method
similar to the proof in Section 9 of [4].

THEOREM 4.6. Suppose that (3.41) holds and that U 1is the solution of
OU = G, where G € H,?’z(SE;T}"O) for all k > 0. Then for all integers
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k > 1 and each pair of functions ¢, {' in C(W(zo)) as in (4.16) and
(4.17), U, D3U satisfy
(419) KUk S N¢'Gllk—25 + (1 + | Alle+1)(IC'Glls + IC'UY)) and
IKD3U Nk S NC'Gllk + (1 + 1 Alle+2) (IG5 + IC'TT).
Note that N(j) = {i € I; W(z7) N W(z7) # 0} is bounded by a fixed

number N >1. Also it follows from (3.18) and Lemma 3.7 that the frames
L in W(29) and Ly in W (), k = 1,2, are related by

L = iB,ﬁ’j"L{"i, k=1,2,
=1

where Bé’ji satisfies

(4.20) IDEBig™'| S 1+ P (A)-

Similarly if wﬁ’j, j = 1,2, is the dual frame of L,’:’j, then there exists a
matrix bl‘?’ji such that Eﬁ’j = lezl b,/:”ljiwf“’i, k =1,2, where bkA,’lji satisfies
(4.21) D7 7| S 1+ Prnjas (A).

Therefore it follows from (4.20) and (4.21) that for a section V' in Fg’q(Se; A),

g = 1,2, and for functions (j, ; € C§°(W;) satisfying (4.16), (4.17), we
have:

(422) IGVIEwen S D UGV wier) + IAIRIGYIE ws)):
iEN(J)
We now state the estimate (4.19) in global form.

THEOREM 4.7. Assume that OU = G, where G € H,S’z(Se;T}"O) for
all k and that A satisfies (3.41). Then

(4.23) ID3Ulk S NIGlle + (1 + [|Alle+2)1Gls.

Proof. Set ¢ = (; € Cg°(W(z7)) in (4.19) and sum up over j and then
apply (4.22). Then we get

DUk S NGk + (1 + [[Alle+2)(I1Gls + U]
Since (4.18) holds, it follows that

1+ 1Alle+DIUN S A + [|Allx+2) 1Gls,
and this proves (4.23). 0
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§5. Extension of CR structures

In this section we will prove Theorem 1.1 and Theorem 1.2 using the
estimates in Section 4. If A € A(S) is sufficiently small and if we set
Po(L) = LT+ A(L), then £4 = {Po(L);L € L}. If we set Qu(w) =
w—A*w, then AL’O = {Qa(w); w € AYY(L)}. We define a nonlinear operator
®: A(S. ;) — I'%%(S, ;) as follows:

(5.1) ®(A) I, I",w) = Qa(w)([Pa(T'), Pa(L")).

Obviously, if ®(A) = 0, then L4 is an integrable almost complex structure
on Se .

Note that there is a natural map Pg: I’?f — I'%2 defined as follows: if
B € T%?, we define P4B by

(PaB)(L1, L, w) = B(Pa(L1), Pa(Ls), Qa(w)).

Therefore it follows from the definition of F4 in (2.5) that ®(A) = P4(F4).
We note also that if d and A are small sections of A on S, ,, then there
exist sections Aj;’ 4 and AZ, g of A?‘l’l ® Ti’o and Ag’l ®T 2’1, respectively, so
that

Patd(L) = Pa(L) + A} 4(Pa(L)) + A 4(Pa(L)).

Similarly, there exist sections 61', s and 6, 5 of Hom (A}A’O, A}A’O) and
Hom(Ai{O, A?L{l), respectively, so that
Qata(w) = Qa(w) — 1 4(Qa(w)) — 85 4(Qa(w)).

Then it follows that A%(d) = A% ; both depend linearly on d and that the
coefficients depend smoothly on A, and that the mapping d — A4(d) =
Al (d)+ A (d) is invertible. Then ®'(A)(d), as an element of "2, satisfies

(5.2) ®'(A)(d) = (P4 o D3 o A})(d) — Pa(ha(d)(F*)),

where h4(d): T}l’n — T}l’o denotes the adjoint of §3 (d): /&114’0 — T}l’o. Since
®(A) = Po(F4), we let Uy be the solution of OU4 = —F4 and then set
Vi = (D4)*Uys and then set d4 = A;'(V4). Since D3 = 0, it follows that
D4V, = —FA. Hence we have from (5.2) that

(5.3)  ®(A) + ®'(A)da = Pa(FA + D§Va) — Pa(ha(da)(FA))
= —Pa(ha(da)(F).
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Using the representations in (5.2) and (5.3), we can now obtain that (as in
Section 11 in [4]), ®(A)+ ®'(A)(d 4) vanishes in second order in ®(A). This
is a key property in the Nash-Moser approximation process.

We recall that F4 vanishes in infinite order along M (in 2-coordinates!)
This can be stated in y-coordinates as follows. The proof is similar to that
of Lemma 6.2 in [4].

LEMMA 5.1. Suppose that there exists a section F € F0’2(§+) where
Q= {(z,t) € Q; 0 <t <1} such that F and all its derivatives vanish to
infinite order along M. Then for all k, N =0,1,2,..., and all o € M,

(5.4) 1Pk w(zo) < Crne™o(z0)Y,

where F° means that F is written out in W (o) according to the frame LY,
LY, wi, w? of £L° (LA with A =0).

We can now prove the main theorems of this paper:

Proof of Theorem 1.1. We will show that ||®(0)||p < b for the small
b > 0 and the integer D which are appeared in the variant of Nash-Moser
theorem [4, Theorem 13.1]. As in Section 11 of [4], the rest of the proper-
ties for the ®(A) in the hypothesis of Nash-Moser theorem can be proved
using the relations in (5.2) and (5.3), and the estimates for O operator in
Section 4.

Note that (4.17) and (5.4) imply that for each ¢ € I,

IGFOlE o < Crve™eo(al)Y

so that after summing up over z7,

(5.5) IFZ 00 < Chn D o(af)NeM.
el

Since the choice of the points that was made before (4.17) shows that the

balls B%(xg), i € I, are all disjoint, we can obtain an upper bound on

N(1), which is defined to be the number of ¢ € I such that 27/ < o(z?) <
27!, In fact, in terms of the ( , )o-metric introduced in Section 2, the
volume of Bez (z7) is roughly bounded below by 33T ) (£7)6m

30314279 —6lm 514 the (, )o-volume of the region in S , with 271 <
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o(x) < 27 is roughly bounded above by eg2" " .2~2ml
that

(5.6) N(l) S e 207324,
Thus (5.5) and (5.6) imply that if N = 4ml + 1, then

. Thus, we conclude

12(A)llx = 1F%llk0 S Ck -

for sufficiently small . In particular, if we set £k = D, and choose £ to be
sufficiently small, then it follow that ||®(A)||p < b. 1]

Proof of Theorem 1.2. Since M C bD is a compact pseudoconvex CR
manifold of finite type, we conclude from Theorem 1.1 that there exist a
continuous nonnegative function g and an integrable almost complex struc-
ture £ on

S§={(z,t)e M xR; 0<t<g(z)}.

Moreover, since £ is a small perturbation of £° which satisfies dt(J0(Xo))
< 0, it follows that dt(J+(Xp)) < 0.

Let £~ be the integrable almost complex structure on D. We can
smoothly extend £t and £~ to S; = S U S, where S; = {(z,t) €
M x R; —g(x) <t < 0}. It follows that £+ and £~ are integrable to
infinite order along M € bD. Hence, Theorem 2.2 implies that there is a
diffeomorphism G:S; — S, so that G.(L*) = L~ to infinite order along
M. Since £* both satisfy dt(Jz+(Xo)) < 0, the proof of Theorem 4.2 in [4]
shows that G’ maps S to S; . Thus, if we define £ on S, by £, = (G«LY),
if z € S and £, = £ if z € S, then L is integrable on S;. 0
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