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Tensor Square of the Minimal
Representation of O(p, q)

Alexander Dvorsky

Abstract. In this paper, we study the tensor product π = σmin ⊗ σmin of the minimal representation

σmin of O(p, q) with itself, and decompose π into a direct integral of irreducible representations. The

decomposition is given in terms of the Plancherel measure on a certain real hyperbolic space.

1 Introduction

Let G be a real reductive group. The problem of decomposing a given unitary rep-
resentation π of G into a direct sum (or direct integral) of irreducible representa-
tions is one of the fundamental questions of abstract harmonic analysis. An in-
teresting special case of this problem arises for π = σ1 ⊗ σ2 (or, more generally,

π = σ1 ⊗ σ2 · · · ⊗ σk), where σ1, σ2, . . . , σk are unitary irreducible representations
of G. Though in general this problem is far from being solved, in some special cases
the tensor product decomposition was calculated, and the corresponding Plancherel
measure written down explicitly. Among others, the following cases are known:

• G = Sp(2n, R), π = ω⊗k, where ω is the oscillator (Weil) representation of G.
As shown in [KV], the decomposition of π gives Howe duality for the compact
case, i.e., the duality correspondence between the unitary representations of O(k)
and the highest weight representations of Sp(2n, R). More generally, one can study

π = ω⊗p ⊗ ω⊗q and recover the duality correspondence for the pair (O(p, q),
Sp(2n, R)).

• G = Sp(2n, R), σ1 and σ2 – holomorphic discrete series representations [Re].
• G = SU (2, 2), σ1 – any holomorphic representation, σ2 – antiholomorphic [ØZ].
• G = U (p, q), σ1 is a minimal representation of G, σ2 = σ1 [Z].
• G= conformal group of a real Jordan algebra N , σ1 and σ2 – certain unipotent

representations of G [DS1, DS2])

The results of [Z, DS2] demonstrate that even for σ1 and σ2 minimal, the spec-
trum of π = σ1 ⊗ σ2 is already quite nontrivial. In particular, the spectrum may

contain a discrete part, and the representations arising in the decomposition will
provide some new examples of unipotent irreducible representations of G.

In this note, we use an explicit realization of the minimal representation σmin of
G = O(p + 1, q + 1), given recently by Kobayashi and Ørsted [KØ1], to offer a simple

approach to decomposing its tensor square π = σmin ⊗ σmin. As was observed by
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many authors, minimal representations are surprisingly “rich objects”, with numer-
ous application to physics (cf. [KPW]) and number theory, and the structure of π is

also quite interesting. We will use the approach of [DS1] (with some arguments ap-
propriately modified, and some simplifications) to show (Theorem 5.1) that the mea-
sure for the direct integral decomposition of π can be given in terms of a Plancherel
measure for the real hyperbolic space (hyperboloid) SO0(p, q−1)/SO0(p−1, q−1).

These rank 1 reductive symmetric spaces were studied by many authors, and the anal-
ysis on them is well understood, e.g., [M, Ro].

2 Minimal Representation σmin

Let G = O(p + 1, q + 1), p + q ∈ 2N (i.e., p and q have the same parity), p ≥
q. With some modifications, the discussion below applies to the case q = 1, G =

O(p + 1, 2), but since the results for this case were obtained in [DS1], we will impose
the condition q ≥ 2.

The group G can be viewed as the conformal group of a non-Euclidean Jordan
algebra N = R

p,q. Here N = R ⊕ R
p,q−1 endowed with a Jordan multiplication

(λ, u)(µ, v) = (λµ + B(u, v), λv + µu),

where B is a bilinear form of signature (p, q − 1). Then e = (1, 0) is the unit of this

algebra, and e = c + c ′, where c = ( 1

2
, w), c ′ = ( 1

2
, w) and B(w, w) =

1

4
. Note that c

and c ′ are orthogonal indecomposable idempotents in N (cf. [FK, p. 63]).

Note that P = MN , M = R
∗×O(p, q) is a maximal parabolic subgroup of G. The

group M acts on the nilradical N and also on the opposite nilradical N. If we endow

N with the Jordan algebra structure as above, M is the structure group of this Jordan
algebra. The orbits of the action of M on N (besides the zero orbit) are C = M · c

(the light cone in R
p,q) and the open orbit M · e. Of course the orbit M · c ′ also gives

us the same cone C , but it will be convenient to use the notation M · c ′ = C ′.

Another parabolic subgroup of G is P ′
= M ′A ′N ′, where M ′

= SL(2) ×
O(p − 1, q − 1), A ′

= R
∗ and the unipotent radical N ′ is the Heisenberg group

of dimension 2(p + q) − 3;

Let σmin be the minimal representation of G. The condition on the parity of p

and q ensures that σmin exists. Among the several models for the minimal represen-

tation given in [KØ1, KØ2], there is a realization of σmin on L
2(C, dµ). Here dµ is

an M-equivariant measure on C , which transforms by a certain positive character δ
of M.

Fix a Killing form ( , ) on the Lie algebra g of G. Since N and N are abelian, we

identify them with their Lie algebras (n and n, respectively), and the form ( , ) gives a
non-degenerate pairing between N ≃ n and N ≃ n. We write 〈y, x〉 = exp(2πi(y, x))
for y ∈ N and x ∈ N . Representing an element in C as r · c (r ∈ M), we can write for
f ∈ L2(C, dµ)

σmin(l) f (r · c) = δ−1/2(l) f ((l−1r) · c), l ∈ M,

σmin(n) f (r · c) = 〈r · c, n〉 f (r · c), n ∈ N.
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This defines a unitary irreducible representation of P = MN on L2(C, dµ), and
this representation extends to the unitary representation of G, which is precisely the

minimal representation [KØ2].

3 Von Neumann Algebra VN(π, G)

From now on, we denote by VN(κ, Z) the von Neumann algebra of a unitary rep-
resentation κ of the group Z. Here Z is some subgroup of G (usually κ is in fact a
representation of some larger subgroup of G, restricted to Z). We remark that all the
groups arising in this paper are type I groups, so all direct integral decompositions in

this and the following sections are unique.
Let ρt (t 6= 0) be the unitary irreducible representation of the Heisenberg group

N ′, corresponding to the character χt (a) = exp(2πiat) on R (the center of N ′). It is
known that a minimal representation is irreducible when restricted to any parabolic

subgroup. In particular, restriction of σmin on P ′
= M ′A ′N ′ is irreducible as well.

On the other hand, it is easy to understand all irreducible representations of P ′ via
Mackey theory. Since the factors SL(2) and O(p − 1, q − 1) in M ′ form a dual
pair inside Sp(2p + 2q − 4, R), we can use the oscillator representation ω1 to extend

ρ1 to an irreducible representation ρ̃1 of M ′N ′. Then for any unitary irreducible
representation κ of M ′, we consider IndP ′

M ′N ′(κ⊗ ρ̃1). This representation is unitary
and irreducible.

The minimal representation, according to the explicit construction of [KØ1], cor-

responds to κ = 1, and we obtain

IndP ′

M ′N ′(1 ⊗ ρ̃1) ≃ σmin|P ′ .

Restricting it back to M ′N ′, one gets a direct integral decomposition

σmin|M ′N ′ =

∫ ⊕

ρ̃t dt,

where a direct integral is taken over R
×

= R\{0}, and ρ̃t is obtained by extending a
representation ρt of N ′ to M ′N ′ via the corresponding oscillator representation ωt .

This decomposition allows us to write down a similar direct integral decompo-

sition of π|M ′N ′ , where π = σmin ⊗ σmin. It is well known that for t + t ′ 6= 0,
ρt ⊗ ρt ′ ≃ ρt+t ′ ⊗ 1, where 1 is a multiple of the trivial representation of N ′. Also,
ωt ⊗ωt ′ ≃ ω±⊗ω±, where ω± are the two nonisomorphic oscillator representations
(ω+ and ω−) of Sp(2p + 2q − 4, R), restricted to M ′. Hence

ρ̃t ⊗ ρ̃t ′ ≃ ρ̃t+t ′ ⊗ ω̃±,

where ω̃±|N ′ acts trivially on L2(R
p+q−2), and ω̃±|M ′ acts by ω+ or ω−, depending on

the signs of t, t ′ and t + t ′.

Collecting the terms with t + t ′ = s in a double integral for the tensor product
σmin ⊗ σmin, obtain a direct integral over R

×:

π|M ′N ′ ≃

∫ ⊕

ϑs ⊗ ρ̃s ds,
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where ϑs|M ′ is a multiple of ω− ⊕ ω+ (it has Gelfand–Kirillov dimension p + q − 1,
compared with p + q − 2 for ω− ⊕ ω+).

The spectrum of ω+|M ′ is given by the Howe duality correspondence for the pair
(SL(2), O(p − 1, q − 1)), and it is well known that this spectrum is simple. More-
over, no representation of O(p − 1, q − 1) enters ω+|M ′ more than once. Combin-

ing this with the fact that unitary irreducible representations of SL(2) remain irre-
ducible when restricted to the Borel subgroup B of SL(2), we see that VN(ω+, M ′) =

VN(ω+, Q), where Q = B×O(p−1, q−1) is a subgroup of M ′. Similarly, VN(ω−⊕
ω+, M ′) = VN(ω− ⊕ ω+, Q).

Finally, we can summarize the results of the preceding discussion in the following

Lemma 3.1 Let π be the tensor square of the minimal representation of G. Then

π|M ′N ′ ≃
∫ ⊕

ϑs ⊗ ρ̃s ds, and for each s ∈ R
× one has VN(ϑs, M ′) = VN(ϑs, Q).

We now study a restriction of π on the subgroup QN ′ of G. In proving the theo-

rem below, we use the approach of [L].

Theorem 3.2 VN(π, G) = VN(π, P).

Proof It suffices to check that VN(π, M ′) ⊆ VN(π, QN ′). Indeed, a subgroup QN ′

of P ′ is also contained in P, and P and M ′ together generate G (since P is a maximal
subgroup).

First of all, ρs (s 6= 0) is a unitary irreducible representation of the Heisenberg

group N ′, hence its von Neumann algebra VN(ρs, N ′) is simply the algebra of
bounded operators on L2(R

p+q−2). Therefore, the algebra VN(ϑs ⊗ ρ̃s, QN ′) con-
tains a set B of all operators of the form ϑs(x) ⊗ u, where x ∈ Q and u is an arbitrary
bounded operator on L2(R

p+q−2).

Consider a von Neumann algebra V generated by B. By Lemma 3.1 VN(ϑs, M ′) =

VN(ϑs, Q) and we see that, in particular, V contains all operators of the form ϑs(m)⊗
ρ̃s(m), m ∈ M ′. Since these operators generate the algebra VN(ϑs ⊗ ρ̃s, M ′), we

obtain an inclusion

VN(ϑs ⊗ ρ̃s, M ′) ⊆ VN(ϑs ⊗ ρ̃s, QN ′).

Then

VN(π, M ′) ⊆

∫ ⊕

VN(ϑs ⊗ ρ̃s, M ′) ds ⊆

∫ ⊕

VN(ϑs ⊗ ρ̃s, QN ′) ds.

Since all representations ρ̃s are nonisomorphic,

∫ ⊕

VN(ϑs ⊗ ρ̃s, QN ′) ds = VN(π, QN ′)

and VN(π, M ′) ⊆ VN(π, QN ′), as claimed.
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Statements about von Neumann algebras similar to that of Theorem 3.2 are typical
when one deals with low-rank representations (in the sense of [L]). Though π is not

low-rank as a representation of P, Theorem 3.2 will allow us to derive the conclusions
about the decomposition of π by considering its restriction π|P and studying the
spectrum of this restriction.

4 Decomposition of π|P

We start by taking two copies of σmin and realizing the first one on L2(C, dµ) and the
second one on L2(C ′, dµ), where C ′

= M · c ′. To distinguish these copies, we denote

them by σ and σ ′, respectively. Then for r ∈ M, l ∈ M, n ∈ N , f ∈ L
2(C, dµ) and

f ′ ∈ L2(C ′, dµ) one has

σ(l) f (r · c) = δ−1/2(l) f ((l−1r) · c),

σ ′(l) f ′(r · c ′) = δ−1/2(l) f ′((l−1r) · c ′),

σ(n) f (r · c) = 〈r · c, n〉 f (r · c),

σ ′(n) f ′(r · c ′) = 〈r · c ′, n〉 f ′(r · c ′).

Set C =C × C ′ and c = (c, c ′) ∈ C. We now realize π ≃ σ ⊗ σ ′ on L
2(C, dν),

where dν is the M-equivariant product measure on C × C ′. Since c + c ′ = e (where
e = (1, 0) is a unit in a Jordan algebra N), for φ ∈ L2(C, dν) we obtain:

π(l)φ(r · c) = δ−1(l)φ((l−1r) · c),

π(n)φ(r · c) = 〈r · e, n〉φ(r · c).

Let S and H be the subgroups of M = R
∗ × O(p, q) stabilizing e ∈ N and c ∈

N × N , respectively. Then, S ≃ SO(p, q − 1) and H is a symmetric subgroup of S.

Denote by χ the unitary character of N defined by the element e ∈ N. The proof
of the following lemma is similar to the argument in [DS1, p.18].

Lemma 4.1 π|P ≃ IndP
HN(1 ⊗ χ).

Proof Denote the unitarily induced representation in the right-hand side by τ .
Then τ acts on the space W, where W consists of the square-summable functions
on P = MN satisfying the equivariance relation:

W = { f : P → C | f (xhn) = χ(n)−1 f (x), x ∈ P, h ∈ H, n ∈ N},

and the action of τ on W is then given by

τ (l) f (rn) = δ−1(l) f (l−1rn),

τ (n ′) f (rn) = f (n ′
−1

r n)
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for rn ∈ MN , l ∈ M, n ′ ∈ N . The factor δ−1(l) in the first formula arises since
we perform unitary induction, and the M-equivariant measure on M/H = C × C ′

transforms by the character δ2 of M.
Now the map F : L2(C, dν) → W, given by

[Fφ](r n) = χ(n)−1φ(r · c)

is well defined and gives an isometry between these two spaces. It remains to check
that F also intertwines the actions of π and τ , and this can be verified by direct cal-
culation.

For n ′ ∈ N we get

[(τ (n ′)F)φ](rn) = [Fφ](n ′
−1

r n) = [Fφ](r(r−1n ′
−1

rn))

= χ(r−1n ′
−1

r)−1χ(n)−1φ(r · c)

= χ(n)−1〈r · e, n ′〉φ(r · c) = [(Fπ(n ′))φ](r · c).

The verification of the identity [(τ (l)F)φ](rn) = [(Fπ(l))φ](r · c) is even more
straightforward, and we conclude that F gives us the desired intertwining operator.

Since the character χ is by definition S-invariant, we can perform induction in
stages, and write

π|P ≃ IndP
HN(1 ⊗ χ) ≃ IndP

SN((IndS
H 1) ⊗ χ).

Recall that S is simply a stabilizer of e ∈ R
p,q in M, and H stabilizes both idempotents

c and c ′ (and, of course, e = c + c ′ as well). Then H is a symmetric subgroup of S,

and the quotient space S/H can be identified with the rank one reductive symmetric
space X = SO0(p, q − 1)/SO0(p − 1, q − 1). For example, if G = SO(3, 3), then
X = SO0(2, 1)/SO0(1, 1) is the hyperboloid of one sheet in R

3. In general, all spaces
X are real hyperbolic spaces [F].

Let dη be the Plancherel measure for the hyperbolic space X, i.e.,

IndS
H 1 ≃ L2(X) ≃

∫ ⊕

κ dη(κ).

Here κ ranges over H-spherical representations of S, and every representation enters
into this decomposition with multiplicity (at most) one [M, Theorem 30.3]. Put

κ̃ = IndP
SN(κ ⊗ χ).

We arrive at the following

Proposition 4.2 A direct integral
∫ ⊕

κ̃ dη(κ) (where dη(κ) is the Plancherel measure

for the hyperbolic space X) gives a decomposition of π|P into unitary irreducible repre-

sentations of P. All these representations are nonisomorphic, and the decomposition is

multiplicity-free.
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Proof The existence of the decomposition follows from Lemma 4.1 and the discus-
sion above. It remains to check that the representations κ̃ are irreducible and pairwise

nonisomorphic for different κ. All this follows immediately from standard Mackey
theory.

5 Decomposition of π

We now combine the results of Theorem 3.2 and Proposition 4.2 to express the de-
composition of π in terms of the Plancherel measure dη on X.

Theorem 5.1 Let κ be an H-spherical representation of S. For almost every (with

respect to the measure dη) representation κ, the representation κ̃ = IndP
SN(κ ⊗ χ)

extends uniquely to the unitary irreducible representation θ(κ) of G, and

(1) π ≃

∫ ⊕

θ(κ) dη(κ).

Proof Let π =
∫ ⊕

γ dλ(γ) be the decomposition of π into irreducibles. By Theo-
rem 3.2, VN(π, G) = VN(π, P). This is possible only when the following is true for
(almost) any γ in the decomposition:

• γ|P is irreducible;
• if γ|P ≃ γ ′|P, then γ ≃ γ ′.

Therefore, the Plancherel measure dλ in the decomposition of π coincides with
the measure dη for π|P. In other words, almost every κ̃ extends to a unitary represen-
tation of G, and the P-decomposition obtained in Proposition 4.2 lifts to G-decom-
position (1), as claimed.

One of the interesting features of the decomposition (1) is the existence of the dis-

crete part of the spectrum. It is known that for p 6= q the quasiregular representation
of SO0(p, q − 1) on L2(X) contains the representations of the relative discrete series
[M]. It follows from Theorem 5.1, that any such representation κ (the qualifier “al-
most” can be dropped in this case), can be lifted to a representation θ(κ) of G. Then

the representation θ(κ) enters formula (1) as a discrete summand. One can compare
this fact with the results of [Z], where a similar discrete spectrum was discovered in
the case of σ ⊗ σ, σ – minimal (holomorphic) representation of U (p, q). It would
be interesting to study these representations θ(κ) and understand their place in the

unitary dual of G.

Remark 1 One can also consider the restriction of π to the parabolic subgroup
P ′ ′

= [GL(q + 1) × O(p − q)] × N ′ ′, where N ′′ is a nilpotent subgroup with cen-
ter ZN ′ ′

= Λ
2

R
q+1 (N ′ ′ is abelian if p = q). It follows from [L] that for q ≥ 3

all representations θ(κ) arising in (1) are rank 2 representations (σmin itself is rank

1, and π has rank 2), and they can be obtained by considering Howe duality for the
pair (Sp(4, R), G). The discrete spectrum for this stable range dual pair is described
in [A].
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