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Abstract The operator Cauchy dual to a 2-hyperexpansive operator T , given by T ′ ≡ T (T ∗T )−1,
turns out to be a hyponormal contraction. This simple observation leads to a structure theorem for the
C∗-algebra generated by a 2-hyperexpansion, and a version of the Berger–Shaw theorem for 2-hyper-
expansions.

As an application of the hyperexpansivity version of the Berger–Shaw theorem, we show that every
analytic 2-hyperexpansive operator with finite-dimensional cokernel is unitarily equivalent to a compact
perturbation of a unilateral shift.
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1. Preliminaries

Completely hyperexpansive operators were introduced in [4] and studied extensively by
Athavale and co-workers (see [5–8,25]) as well as by Jabloński and Stochel (see [14–18]).
The class of completely hyperexpansive operators is closely related to the theory of neg-
ative definite functions on abelian semigroups, and it is in some sense antithetical to
the class of subnormal contractions. In the present paper, we deal with the superclass
of complete hyperexpansions of 2-hyperexpansions and exploit the theory of hyponor-
mals to reveal some interesting facts about 2-hyperexpansions. The notion of the Cauchy
dual operator introduced by Shimorin [24] enables us to think of the theory of 2-hyper-
expansions as an antithesis of the theory of hyponormal contractions. For all the elemen-
tary results pertaining to hyponormal operators, the reader is referred to [10,20].

Unless stated otherwise, all the Hilbert spaces occurring below are complex, infinite
dimensional and separable, and for any such Hilbert space H, B(H) denotes the algebra
of bounded linear operators on H. In what follows, for any bounded linear operator T

on H, we denote the spectrum, the point spectrum, the approximate point spectrum and
the essential spectrum of T by σ(T ), σp(T ), σap(T ) and σe(T ), respectively. The symbols
null(T ) and ran(T ) will stand for the null-space and the range-space of T , respectively. If
W is a subset of H, then linspanW will stand for the smallest linear manifold generated

637

https://doi.org/10.1017/S0013091505001124 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091505001124


638 S. Chavan

by W . By ∨{w : w ∈ W}, we mean the smallest closed linear manifold generated by W . If
{en}n�0 is an orthonormal basis for a Hilbert space H, then a weighted shift operator T in
B(H) with the weight sequence {αn}n�0 is defined through the relations Ten = αnen+1

for every n � 0. We will assume that αn are positive for all n � 0. We will use the
notation T : {αn}n�0 to indicate a weighted shift. An excellent reference for the basic
properties of weighted shifts is [23].

Recall that S in B(H) is subnormal if there exist a Hilbert space K containing H and
a normal operator N in B(K) such that Nh = Sh for every h ∈ H. Agler proved in [1]
that S in B(H) is a subnormal contraction (that is, S is subnormal and ‖S‖ � 1) if and
only if

Bn(S) ≡
∑

0�p�n

(−1)p

(
n

p

)
S∗pSp � 0 for all integers n � 0. (1.1)

If, for a positive integer m, an operator S in B(H) satisfies the inequalities in (1.1) for
1 � n � m, then S is said to be m-hypercontractive.

The operator Cauchy dual to a 2-hyperexpansion, which is a hyponormal contraction,
turns out to be the key observation in our analysis of the present paper. We illustrate how
this observation can be used to unravel some interesting facts about 2-hyperexpansions
such as a rich supply of non-zero ∗-homomorphisms on the C∗-algebra generated by
a pure 2-hyperexpansion and a realization of an analytic finitely multicyclic 2-hyper-
expansion as a compact perturbation of a unilateral shift. This paper is an attempt to
develop a theory of 2-hyperexpansive operators parallel to the theory of hyponormals.

2. The Cauchy dual operator

Definition 2.1. Let T be in B(H). Then T is said to be completely hyperexpansive if

Bn(T ) ≡
∑

0�p�n

(−1)p

(
n

p

)
T ∗pT p � 0 for all integers n � 1. (2.1)

Let m be a positive integer. If T satisfies the inequalities in (2.1) for 1 � n � m,
then T is said to be m-hyperexpansive. If T satisfies Bm(T ) = 0, then T is said to
be m-isometric. T is said to be expansive (respectively isometric) if T is 1-expansive
(respectively 1-isometric).

Remark 2.2. Note that an expansive operator is left-invertible.

Definition 2.3. Let T in B(H) be left-invertible. Then the operator T ′ ≡ T (T ∗T )−1

is said to be the operator Cauchy dual to T .

Remark 2.4. Note that, for any left-invertible T in B(H), one has T ′∗T ′ = (T ∗T )−1.
Hence, the Cauchy dual operator T ′ is left-invertible, and the operator Cauchy dual to
T ′ is T , that is, (T ′)′ = T .
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The following example justifies the terminology used for T ′ [24, § 1].

Example 2.5. Let T : {αn}n�0 be a weighted shift operator. Note that T : {αn}n�0

is left-invertible if and only if the infimum infn�0 αn of the weight sequence {αn}n�0 is
positive. In the case when infn�0 αn > 0, it is easy to see that the operator Cauchy dual
to the weighted shift T : {αn}n�0 is given by the weighted shift T ′ : {1/αn}n�0.

Let α be a non-negative real number and let Γ be the standard gamma function. Let
Hα denote the Hilbert space of analytic functions on the unit disc D with the inner
product

〈f, g〉α =
∞∑

n=0

Γ (α + 1 + n)
Γ (α + 1)n!

anb̄n,

where f =
∑∞

n=0 an(·)n and g =
∑∞

n=0 bn(·)n. Then the Hilbert space Cauchy dual to
Hα is the Hilbert space H−α of analytic functions on the unit disc D with the inner
product

〈f, g〉−α =
∞∑

n=0

Γ (α + 1)n!
Γ (α + 1 + n)

anb̄n;

the dual pairing between Hα and H−α is given by

(f, g) =
∞∑

n=0

anb̄n,

where f ∈ Hα, g ∈ H−α. Let Mα
· be the operator of multiplication by the coordinate

function ‘·’ on Hα. For 0 � α � 1, the operator Mα
· on Hα is completely hyperexpansive,

while the Cauchy dual operator (Mα
· )′ = M−α

· on H−α is a subnormal contraction [25].
For −1 < β � 0, one can easily check that the operator Mβ

· on Hβ is completely hyper-
expansive; in fact,

〈Bp(Mβ
· )em, em〉 =

β(1 + β) · · · (p − 1 + β)
(m + 1 + β) · · · (m + p + β)

,

where

em =
(·)m

‖(·)m‖β

for m � 0, · being the coordinate function ·(z) = z, z ∈ D, while the Cauchy dual
operator (Mβ

· )′ = M−β
· on H−β is a subnormal contraction (see Proposition 2.6, below).

The association T �→ T ′ is studied by Athavale [4] in the context of weighted shift
operators, while the notion of Cauchy dual operator (Definition 2.3) is introduced by
Shimorin in [24]. Note that the operator Cauchy dual to an expansion is a contraction.
For some special expansive operators more can be said; in [4], it is proved that the
operator Cauchy dual to a completely hyperexpansive weighted shift is a contractive
subnormal weighted shift. Indeed, we have the following.
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Proposition 2.6 (Athavale [4, Proposition 6]). Let T : {αn}n�0 be a weighted
shift. Set β0 = 1 and βn = α2

0 . . . α2
n−1, n � 1. Then T is completely hyperexpansive if

and only if

St :
{√

t(βn − 1) + 1
t(βn+1 − 1) + 1

}
n�0

is a contractive subnormal weighted shift for every t > 0.

One more motivation for studying the operator Cauchy dual to a left-invertible oper-
ator T lies in the fact that T ′ = T (T ∗T )−1 forms a complete unitary invariant for T . In
view of this remark and Proposition 2.6, it is interesting to know more about operators
Cauchy dual to non-isometric left-invertible operators. One such result is established
in [24], namely, the operator Cauchy dual to a 2-hyperexpansion is 2-hypercontractive.
Indeed, it is observed in [24] that, for a 2-hyperexpansive T in B(H), the Cauchy dual
operator T ′ = T (T ∗T )−1 satisfies

‖T ′x + T ′y‖2 � 2(‖x‖2 + ‖T ′2y‖2), x, y ∈ H

(see the remark following [24, Corollary 3.7]).
The following proposition sheds light on the spectral behaviour of 2-hyperexpansions.

The proof rests on the simple observation that the operator Cauchy dual to an expansion
is a contraction.

Proposition 2.7. Let T in B(H) be a 2-hyperexpansion. The following are then true.

(1) For every µ in the point spectrum σp(T ) of T , the null-space null(T −µI) of T −µI

reduces T and T |null(T−µI) is unitary.

(2) If f1 and f2 are eigenvectors corresponding to distinct eigenvalues of T , then
〈f1, f2〉 = 0.

If in addition T is pure (that is, T has no proper normal direct summand), then

(3) σp(T ) = ∅ and

(4) the Cayley transform C : ran(T + I) → ran(T − I) given by

C(T + I)h = (T − I)h, h ∈ H,

is accretive (that is, 〈Cx, x〉 + 〈x, Cx〉 � 0 for any x ∈ H).

Proof. Suppose that T in B(H) is 2-hyperexpansive. The point spectrum σp(T ) of T

is contained in the unit circle ∂D ≡ {z ∈ C : |z| = 1} of the complex plane C [25, Remark
3.4]. Let µ ∈ C be such that |µ| = 1 and let h ∈ H be such that Th = µh. Thus, T ∗Th =
µT ∗h, h = µT ′∗h. Since µT ′∗ is a contraction, by [26, Proposition 3.1, Chapter 1],
one has h = µ̄T ′h. Using T ∗T ′ = I, one has T ∗h = µ̄h. Consequently, null(T − µI)
reduces T and T |null(T − µI) is normal for every µ ∈ σp(T ). Since the restriction of
a 2-hyperexpansion to an invariant subspace is a 2-hyperexpansion, T |null(T − µI) is a
normal 2-hyperexpansion. Hence, T |null(T −µI) is an invertible 2-hyperexpansion and is
unitary [25, Remark 3.4]. This completes the proof of (1). Part (3) is now obvious.
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Next let f1, f2 ∈ H be such that Tf1 = µ1f1 and Tf2 = µ2f2 for some µ1, µ2 ∈ C. An
examination of the preceding paragraph reveals that T ∗f2 = µ̄2f2. Then

µ1〈f1, f2〉 = 〈Tf1, f2〉 = 〈f1, T ∗f2〉 = µ2〈f1, f2〉.

Hence, 〈f1, f2〉 = 0 if µ1 �= µ2. This establishes part (2).

To prove (4), assume in addition that T is pure. Since T is pure, by part (1),
null(T + I) is trivial. Thus, the Cayley transform C is well defined. Also, the real part of
〈C(T + I)h, (T + I)h〉 is non-negative: if Re z denotes the real part of a complex num-
ber z, then

〈C(T + I)h, (T + I)h〉 + 〈(T + I)h, C(T + I)h〉 = 2 Re〈(T − I)h, (T + I)h〉
= 2(‖Th‖2 − ‖h‖2)

� 0

for every h ∈ H. �

Remark 2.8. The proof of part (1) above shows that if an expansive operator T ∈
B(H) fixes a point h in H, then so does T ∗. Also, from the proof of part (4) above, it is
clear that the Cayley transform C of any pure expansive T is accretive. If in addition T

is invertible, then it can be seen that C is m-accretive (that is, C has no proper accretive
extension in H) [26].

An operator S in B(H) is said to be hyponormal if the self-commutator [S∗, S] =
S∗S − SS∗ of S is a positive operator. Recall that S is hyponormal if and only if there
exists a contraction C in B(H) such that S∗ = CS [20].

Theorem 2.9. Let T in B(H) be 2-hyperexpansive and let T ′ be the operator Cauchy
dual to T . There then exists a contraction C similar to an isometry such that T ′∗ = C∗T ′.
Thus, the operator Cauchy dual to a 2-hyperexpansion is a hyponormal contraction.

Proof. Let T be a 2-hyperexpansion and let T ′ be the operator Cauchy dual to T .
Since

(I − T ∗T )2 + T ∗2T 2 − (T ∗T )2 = I − 2T ∗T + T ∗2T 2,

and I − 2T ∗T + T ∗2T 2 � 0, one has T ∗2T 2 � (T ∗T )2. Thus, ‖T 2x‖ � ‖T ∗Tx‖, x ∈ H.
Since T = T ′(T ′∗T ′)−1 and T ∗T = (T ′∗T ′)−1, one has

‖TT ′(T ′∗T ′)−1x‖ � ‖(T ′∗T ′)−1x‖, x ∈ H.

Thus,

‖TT ′y‖ � ‖y‖, y ∈ H.

Hence, TT ′ is a contraction. Since (TT ′)∗T ′ = T ′∗, the desired C is TT ′ provided that
TT ′ is similar to an isometry. To prove that TT ′ is similar to an isometry, by [19,
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Corollary 1.16] (and the discussion following it), it suffices to show that there exist some
positive constants m, M such that

m‖x‖ � ‖(TT ′)nx‖ � M‖x‖, n � 0. (2.2)

First we check that T ′T is expansive. Because of the 2-hyperexpansivity, one has

‖x‖ ‖T 2x‖ � 1
2 (‖x‖2 + ‖T 2x‖2) � ‖Tx‖2, x ∈ H.

Thus,
‖x‖ ‖T 2x‖ � ‖Tx‖2, x ∈ H.

Using T = T ′(T ′∗T ′)−1, one has

‖x‖ ‖TT ′(T ′∗T ′)−1x‖ � ‖T ′(T ′∗T ′)−1x‖2, x ∈ H.

Thus,
‖T ′∗T ′y‖ ‖TT ′y‖ � ‖T ′y‖2, y ∈ H. (2.3)

Since T ∗T ′ = I, we must have

‖T ′y‖2 = 〈T ′y, T ′y〉 = 〈T ∗T ′(T ′y), T ′y〉 = 〈T ′2y, TT ′y〉 � ‖T ′2y‖ ‖TT ′y‖, y ∈ H.

By (2.3) and the previous inequality, one has

‖T ′∗T ′y‖ ‖TT ′y‖ � ‖T ′y‖2 � ‖T ′2y‖ ‖TT ′y‖, y ∈ H.

Since TT ′ is injective, one has ‖T ′∗T ′y‖ � ‖T ′2y‖, and hence ‖y‖ � ‖T ′2(T ′∗T ′)−1y‖
for every y ∈ H. Using T = T ′(T ′∗T ′)−1, one has ‖y‖ � ‖T ′Ty‖, y ∈ H, that is T ′T is
expansive.

Now we check that (2.2) holds for some positive constants m and M . Since TT ′ is a
contraction, one can choose M = 1. Also, since T and T ′T are expansive, one has

‖(TT ′)nx‖ = ‖T (T ′T )n−1T ′x‖ � ‖(T ′T )n−1T ′x‖ � ‖T ′x‖, x ∈ H.

Since T ′ is bounded below, (2.2) follows. �

Remark 2.10. In view of the proof of the preceding theorem, for any left-invertible T

in B(H), one has
T ∗[T ∗, T ]T � 0 =⇒ [T ′∗, T ′] � 0.

If T is a pure left-invertible operator, then it can easily be seen that the Cauchy dual
operator T ′ is pure. From the remark following Proposition 2.6, it follows readily that
any complete set of unitary invariants for T ′ forms a complete set of unitary invariants
for T . In view of these observations, Theorem 2.9 and [20, Proposition 3.8, Chapter II],
the operator-valued function C∗(·)C(·) : C × C → B(ran(D)) given by

(T ′∗ − z̄I)C(z) = D1/2, C∗(z)|null(T ′∗ − z̄I) = 0,

D = (T ′∗ − z̄I)(T ′ − zI) − (T ′ − zI)(T ′∗ − z̄I),

}
z ∈ C,

is a complete unitary invariant for any pure 2-hyperexpansive T .
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Question 2.11. Is the operator Cauchy dual to a completely hyperexpansive operator
a subnormal contraction?

Corollary 2.12. If S in B(H) satisfies ‖Sx + y‖2 � 2(‖x‖2 + ‖Sy‖2), x, y ∈ H, then
S is a hyponormal contraction.

Proof. Suppose that S in B(H) satisfies ‖Sx + y‖2 � 2(‖x‖2 + ‖Sy‖2), x, y ∈ H.
It is recorded in the proof of [24, Theorem 3.6] that the Cauchy dual operator S′ is
2-hyperexpansive. Since (S′)′ = S, one may appeal to Theorem 2.9. �

2.1. Applications

In this subsection, we give several applications of Theorem 2.9 to the theory of hyper-
expansive operators. These are an alternative proof of a result of Richter [22] on the
wandering subspaces of analytic 2-hyperexpansions (Corollary 2.18), a structure theorem
for the C∗-algebra generated by a 2-hyperexpansion (Proposition 2.16), and a version of
the Berger–Shaw theorem for 2-hyperexpansions (Proposition 2.21). The arguments to
follow rely heavily on the theory of hyponormal operators as expounded in [10,20].

For S ∈ B(H), let C∗(S) denote the C∗-algebra generated by S, that is, C∗(S) is the
norm closure in B(H) of the linear manifold of all non-commutative polynomials p in S

and S∗ such that p(0, 0) = 0. We do not assume that the identity operator I belongs to
C∗(S).

Lemma 2.13. Let T in B(H) be left-invertible and let T ′ be the operator Cauchy
dual to T . Then the identity operator I belongs to C∗(T ) and C∗(T ′) = C∗(T ).

Proof. Let T in B(H) be left-invertible and let T ′ be the operator Cauchy dual to T .
In order to establish the equality C∗(T ′) = C∗(T ), in view of (T ′)′ = T it suffices to
check that C∗(T ′) ⊂ C∗(T ). Since T ∗T is an invertible positive operator, σ(T ∗T ) is
a compact subset of the open interval (0,∞). By a straightforward application of the
Stone–Weiestrass theorem [11, Corollary 8.2, Chapter V] one has

the uniform closure of linspan{(·)n : n � 1} = C(σ(T ∗T )),

the sup-normed Banach space of all continuous complex functions on σ(T ∗T ), where the
function (·)n defined on σ(T ∗T ) is given by (·)n(t) = tn, t ∈ σ(T ∗T ), n ∈ N. Thus, one
can approximate the function

1
(·) : σ(T ∗T ) → (0,∞),

1
(·) (t) =

1
t
, t ∈ σ(T ∗T ),

by functions in linspan{(·)n : n � 1} in the sup-norm. Hence, by the spectral theorem one
can approximate (T ∗T )−1 by operators in linspan{(T ∗T )n : n � 1} in the operator norm.
Therefore, T ′ belongs to C∗(T ) and we have the inclusion C∗(T ′) ⊂ C∗(T ). Since T ∗T ,
(T ∗T )−1 are in C∗(T ), one has I ∈ C∗(T ). This completes the proof of the lemma. �

The following lemma, which is crucial in our analysis, is of independent interest.
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Lemma 2.14. Let T in B(H) be a 2-hyperexpansion and let T ′ be the operator Cauchy
dual to T . Let D and ∂D denote the open unit disc {z ∈ C : |z| < 1} and the unit circle
{z ∈ C : |z| = 1} in the complex plane C, respectively. Then the following are true.

(i) σ(T ′) = σ(T ) ⊂ D̄ and σap(T ′) = σap(T ) ⊂ ∂D.

(ii) σ(T ′) = D̄ and σap(T ′) = ∂D, provided that T is not invertible.

Proof. Let T in B(H) be a 2-hyperexpansion and let T ′ be the operator Cauchy dual
to T . If T is invertible, then T is unitary [25, Remark 3.4]. In this case, T ′ = T and
(i) follows. So we assume that T is not invertible. It is known that σ(T ) = D̄ and σap(T ) =
∂D hold for any non-invertible 2-hyperexpansion [22,25]. We claim that σ(T ′) = D̄ and
σap(T ′) = ∂D.

Let µ ∈ σap(T ′). By Theorem 2.9, the operator T ′ is a hyponormal contraction. Hence,
by a result due to Bunce [10, Proposition 12.1, Chapter II], there exists a non-zero
∗-homomorphism φ on C∗(T ′) such that φ(T ′) = µ. By Lemma 2.13, C∗(T ′) = C∗(T ).
Since φ(T ′) �= 0 and TT ′∗T ′ = T ′, one has φ(T )φ(T ′) = 1. Therefore, φ is a non-zero
∗-homomorphism on C∗(T ) such that φ(T ) = µ̄−1. It is easy to see that if S is a bounded
linear operator on H, then φ(S) ∈ σap(S) for every non-zero ∗-homomorphism φ on
C∗(S). Consequently, µ̄−1 ∈ σap(T ) = ∂D and hence σap(T ′) ⊂ ∂D. Since the boundary of
the spectrum is always contained in the approximate point spectrum and since 0 ∈ σ(T ′),
σap(T ′) ⊂ ∂D, one has σ(T ′) = D̄. Therefore, σap(T ′) = ∂D. This completes the proof of
the claim as well as the lemma. �

The following proposition says that the non-abelian C∗-algebra C∗(T ) generated by
a pure 2-hyperexpansive T in B(H) possesses quite a rich supply of non-zero ∗-homo-
morphisms.

Proposition 2.15. If T is a pure 2-hyperexpansion, then for every µ ∈ ∂D there
exists a non-zero ∗-homomorphism φµ on the C∗-algebra C∗(T ) generated by T such
that φµ(T ) = µ.

Proof. Suppose that T is a pure 2-hyperexpansion. Then T is not invertible [25].
Hence, by Lemma 2.14 σap(T ′) = ∂D. An examination of the proof of this lemma gives
the following: for every µ ∈ σap(T ′), there exists a non-zero ∗-homomorphism φµ on the
C∗-algebra C∗(T ) generated by T such that φµ(T ) = µ̄−1. The result now follows. �

Let JS denote the commutator ideal of C∗(S), that is, JS is the norm closed ideal of
C∗(S) generated by the set of all elements of C∗(S) of the form AB−BA, A, B ∈ C∗(S).
Let C(σap(S)) denote the C∗-algebra of continuous functions on the approximate point
spectrum σap(S) of S.

Proposition 2.16. Let T in B(H) be a 2-hyperexpansion. Let C∗(T ) be the C∗-
algebra generated by T and let JT be the commutator ideal of C∗(T ). There then exists
an isometric ∗-isomorphism φ : C∗(T )/JT → C(σap(T )) such that φ(T + JT ) = ·, where
· is the identity function ·(z) = z, z ∈ σap(T ).
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Proof. Let T in B(H) be a 2-hyperexpansion and let T ′ be the operator Cauchy
dual to T . By Theorem 2.9, the Cauchy dual operator T ′ is hyponormal. Hence, by [10,
Corollary 12.4, Chapter II], there exists an isometric ∗-isomorphism φ : C∗(T ′)/JT ′ →
C(σap(T ′)) such that φ(T ′+JT ′) = ·, where ·(z) = z, z ∈ σap(T ), is the identity function.
Now the desired conclusion follows from the preceding lemmas. �

An operator S in B(H) is analytic if
⋂

n�0 SnH = {0}. Every weighted shift operator
is analytic [23].

Proposition 2.17. Let T in B(H) be an analytic left-invertible operator satisfying
T ∗[T ∗, T ]T � 0. If σap(T ) ⊂ ∂D, then H =

∨
n�0 Tn(null(T ∗)).

Proof. We use the technique developed by Shimorin [24] in his work on the Beurling-
type theorem for invariant subspaces of the Bergman shift (see also [12, Chapter 6]).
Let T in B(H) be an analytic left-invertible operator such that T ∗[T ∗, T ]T � 0 and
σap(T ) ⊂ ∂D. By Remark 2.10, the Cauchy dual operator T ′ is a hyponormal contraction.
Using σap(T ) ⊂ ∂D, and imitating the proof of Lemma 2.14 (see the second paragraph
thereof), it can easily be seen that σap(T ′) ⊂ ∂D.

Set H′
u =

⋂
n�0 T ′nH. It is easy to check that H′

u is invariant under T ′ and T ′H′
u =

H′
u. Since T ′|H′

u
is bounded below, T ′H′

u = H′
u implies that T ′|H′

u
is invertible. Since

σap(T ′|H′
u
) ⊂ σap(T ′), the preceding discussion leads to σap(T ′|H′

u
) ⊂ ∂D. Invertibility

of T ′|H′
u
, together with σap(T ′|H′

u
) ⊂ ∂D, forces σ(T ′|H′

u
) ⊂ ∂D. Also, the restriction of

a hyponormal operator to an invariant subspace is hyponormal [10]. Thus, T ′|H′
u

is a
hyponormal operator such that σ(T ′|H′

u
) ⊂ ∂D. By Putnam’s inequality [10, Theorem

3.1, Chapter IV], T ′|H′
u

is normal and hence unitary. Hence, it follows that PH′
u
T ′∗T ′h =

h for any h ∈ H′
u, where PH′

u
is the orthogonal projection from H onto H′

u. Therefore, for
any h ∈ H′

u, 〈h − T ′∗T ′h, h〉H = 〈h − PH′
u
T ′∗T ′h, h〉H′

u
= 0. Since T ′ is a contraction,

we must have ‖(I − T ′∗T ′)1/2h‖H = 0 for any h ∈ H′
u. Hence, T ′∗T ′h = h for any h ∈ H′

u.
This observation, together with T ′H′

u = H′
u, leads to T ′∗H′

u = H′
u. The rest of the proof

is identical to that of [12, Theorem 6.14]. �

The preceding proposition enables us to present an alternative proof of [22, Theorem 1].

Corollary 2.18 (Richter [22, Theorem 1]). Let T in B(H) be an analytic oper-
ator such that I − 2T ∗T + T ∗2T 2 � 0. If M is an invariant subspace of T , then
M =

∨
n�0 Tn(M ∩ (TM)⊥).

Proof. Let T in B(H) be such that
⋂

n�0 TnH = {0} and I − 2T ∗T + T ∗2T 2 � 0.
By [22, Lemma 1], T is expansive. Hence, T is an analytic 2-hyperexpansion. Since⋂

n�0 TnM = {0} for any invariant subspace M of T and since restriction of a 2-hyper-
expansion to an invariant subspace is again 2-hyperexpansive, it suffices to treat the case
in which M = H. Since a 2-hyperexpansive T satisfies T ∗[T ∗, T ]T � 0 (see the proof of
Theorem 2.9) and σap(T ) ⊂ ∂D (see Lemma 2.14 (i)), the desired conclusion follows from
Proposition 2.17. �
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We mention that essentially all the results derived in the remainder of the paper are
known in the special case of weighted shift operators. Recall that an operator S in B(H)
is trace class if and only if

∑
n�0〈(S∗S)1/2en, en〉 is finite for every choice of orthonormal

basis {en}n�0. The number ‖S‖1 ≡
∑

n�0〈(S∗S)1/2en, en〉 is independent of the choice
of orthonormal basis and is called the trace norm of S. In the case when S is a trace class
operator, the trace of S given by tr(S) =

∑
n�0〈Sen, en〉 is independent of the choice of

orthonormal basis and is finite. Recall that every trace class operator is compact [10].
An operator S in B(H) is said to be finitely multicyclic if there are a finite number of

vectors h1, . . . , hm in H such that

H = ∨{Skh1, . . . , S
khm : k � 0}. (2.4)

For a positive integer m, S is said to be m-multicyclic if it satisfies (2.4) for some set
{h1, . . . , hm} of m vectors in H and no set of m−1 vectors has property (2.4). S is cyclic
if it is 1-cyclic. In that case, there exists a vector e0 ∈ H such that H = ∨{Ske0 : k � 0}.
The vector e0 is referred to as a cyclic vector for S. For the basic properties of finitely
multicyclic operators, the reader is referred to [13].

Since there are 2-hyperexpansive operators with trace class self-commutators (e.g. the
Dirichlet shift), and since the only hyponormal 2-hyperexpansions are isometries (justifi-
cation: if T is a hyponormal 2-hyperexpansion, then ‖T‖ = the spectral radius of T [10]
and the spectral radius of T is equal to 1 (Lemma 2.14 (i)), forcing T to be an isometry),
a version of Berger–Shaw theorem for 2-hyperexpansions is desirable. First, a lemma.

Lemma 2.19. Let T in B(H) be an analytic 2-hyperexpansion and let T ′ be the
operator Cauchy dual to T . The following statements are then equivalent:

(i) T is finitely multicyclic;

(ii) T ′ is finitely multicyclic;

(iii) null(T ∗) is finite dimensional.

If T satisfies one of the preceding conditions, then the following statements hold:

(a) σe(T ) = σe(T ′) = ∂D, and

(b) index(T − µI) = index(T ′ − µI) = −m(T ) = −m(T ′) for every µ ∈ D, where m(T )
and m(T ′) denote multiplicities of T and T ′, respectively.

Proof. Let S be an m-multicyclic operator for some positive integer m. By [13, Propo-
sition 1 (i)], nullity(S∗ − µI) � m for every µ ∈ C. Hence, (i) ⇒ (iii) and (ii) ⇒ (iii)
follow.

Let T in B(H) be an analytic 2-hyperexpansion and let T ′ be the Cauchy dual operator.
By Richter’s theorem (Corollary 2.18), one has H =

∨
n�0 Tn(null(T ∗)). Thus, (iii) ⇒ (i)

holds. Also, by [24, Proposition 2.7 (ii)], one has( ⋂
n�0

TnH
)⊥

=
∨
n�0

T ′n(null(T ′∗)).
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Since T is analytic and null(T ′∗) = null(T ∗), it follows that H =
∨

n�0 T ′n(null(T ∗)).
The implication (iii) ⇒ (ii) is now obvious.

Now suppose that T is an analytic finitely multicyclic 2-hyperexpansion with multi-
plicity m(T ) and that T ′ is the Cauchy dual operator with multiplicity m(T ′). Since
T is analytic, T is not invertible. Hence, by Lemma 2.14 (ii), T − µI and T ′ − µI

are left semi-Fredholm operators for every µ ∈ D. Also, since nullity(T ∗ − µI) < ∞
and nullity(T ′∗ − µI) < ∞ for every µ ∈ D (see the first paragraph of the proof),
we must have σe(T ) ∩ D = σe(T ′) ∩ D = ∅. It is recorded in [25] that ∂D ⊂ σe(T ).
Since σ(T ′) = D̄ (Lemma 2.14 (ii)), it follows from the elementary Fredholm theory
that ∂D ⊂ σe(T ′) (see, for example, [11, Theorem 6.8, Chapter XI]). Hence, σe(T ) =
σe(T ′) = ∂D and (a) follows. Using the continuity of the index, it is easy to see that
index(T − µI) = index(T ′ − µI) = − nullity(T ∗), µ ∈ D. Finally, by [13, Theorem 1 (i)],
one has nullity(T ∗) = m(T ′) = m(T ) and (b) follows. This completes the proof of the
lemma. �

Remark 2.20. Note that if T is an analytic 2-hyperexpansion, then T is Fredholm
if and only if T − µI is Fredholm for every µ in the unit disc D. Also, we remark that
the equivalence of (i), (ii) and (iii) in the preceding lemma holds for any analytic left-
invertible T in B(H) satisfying T ∗[T ∗, T ]T � 0 and σap(T ) ⊂ ∂D (see Remark 2.10 and
Proposition 2.16).

It is recorded in [4] that the self-commutator of a completely hyperexpansive weighted
shift operator is trace class. Here is a substantial refinement.

Proposition 2.21. Let T in B(H) be an m-multicyclic 2-hyperexpansion and let T ′

be the operator Cauchy dual to T . Then T and T ′ have trace class self-commutators.
If in addition T is analytic, then

tr[p(T ′, T ′∗), q(T ′, T ′∗)] = tr[p(T, T ∗), q(T, T ∗)] =
m

π

∫
D

(
∂p

∂z̄

∂q

∂z
− ∂p

∂z

∂q

∂z̄

)
(z, z̄) dA(z)

for all polynomials p, q in two complex variables.

Proof. Suppose that T is an m-multicyclic 2-hyperexpansion. By the Wold-type
decomposition theorem for 2-hyperexpansions [24, Theorem 3.6], one has

T = U ⊕ A on H = Hu ⊕ Ha, (2.5)

where U is unitary on Hu and A is an analytic 2-hyperexpansion on Ha. Since [T ∗, T ] =
0 ⊕ [A∗, A], it suffices to check that [A∗, A] is a trace class operator. Since T is finitely
multicyclic, null(T ∗) is finite dimensional. Since null(A∗) ⊂ null(T ∗) and A is analytic,
by the previous lemma A′ is finitely multicyclic. Also, by Theorem 2.9, A′ is hyponormal.
Thus, A′ is a finitely multicyclic hyponormal operator. By the Berger–Shaw theorem [10,
Theorem 2.1], we must have ‖[A′∗, A′]‖1 < ∞, where ‖ · ‖1 denotes the trace norm. It is
easy to check that

[A∗, A]A = −A∗A([A′∗, A′]A)A∗A.
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Since ‖XY ‖1 � ‖X‖ ‖Y ‖1 and ‖Y X‖1 � ‖Y ‖1‖X‖ for a bounded linear operator X and
a trace class operator Y , the operator [A∗, A]A is trace class. Hence, [A∗, A]AA′∗ is a trace
class operator. But AA′∗ = I − Pnull(A∗) and Pnull(A∗) is a finite-rank operator. Thus,

[A∗, A]AA′∗ = [A∗, A](I − Pnull(A∗)) = [A∗, A] − [A∗, A]Pnull(A∗).

Consequently, [A∗, A] is a finite-rank perturbation of the trace class operator [A∗, A]AA′∗.
Hence, [A∗, A] is a trace class operator as well.

Let T ′ be the operator Cauchy dual to T . Using the decomposition (2.5) of T , it is
easy to see that

T ′ = U ⊕ A′ on H = Hu ⊕ Ha. (2.6)′

Since A′ has a trace class self-commutator (as observed in the preceding paragraph) and
U is unitary, T ′ has a trace class self-commutator.

To prove the remaining part, assume in addition that T is analytic and let p and q be
any polynomials in two complex variables. Since T has a trace class self-commutator, by
a result due to Carey et al . [20, Theorem 2.4] one has

tr[p(T, T ∗), q(T, T ∗)] =
1
π

∫
σ(T )

{(
∂p

∂z̄

∂q

∂z
− ∂p

∂z

∂q

∂z̄

)
(z, z̄)

}
· GT (z) dA(z)

for all polynomials p, q in two complex variables, where GT stands for the Pincus principal
function and dA denotes the Lebesgue planar measure. Since T is a non-invertible 2-
hyperexpansion, σ(T ) = D (Lemma 2.14). Also, since σe(T ) = ∂D, index(T − zI) = −m,
z ∈ D (Lemma 2.19) and since GT (z) = − index(T − zI) for every z /∈ σe(T ) [21, p. 540]
one has

tr[p(T, T ∗), q(T, T ∗)] =
m

π

∫
D

(
∂p

∂z̄

∂q

∂z
− ∂p

∂z

∂q

∂z̄

)
(z, z̄) dA(z).

Also, since T ′ has a trace class self-commutator, using Lemmas 2.14, 2.19 and arguing
similarly, one can see that

tr[p(T ′, T ′∗), q(T ′, T ′∗)] =
m

π

∫
D

(
∂p

∂z̄

∂q

∂z
− ∂p

∂z

∂q

∂z̄

)
(z, z̄) dA(z)

for all polynomials p, q in two complex variables. This completes the proof of the propo-
sition. �

Example 2.22. Let D be the open unit disc {z ∈ C : |z| < 1} of the complex
plane C and let R

+ be the set of positive reals. Let L2(D, w) denote the Lebesgue space
of measurable square-integrable functions with respect to the weighted area measure
w dA with an area summable weight function w : D̄ → R

+. Let L2
a(D, w) be the weighted

Bergman space {f ∈ L2(D, w) : f is analytic on D}. Suppose that 1/w : D̄ → R
+ is con-

tinuous. Arguing as in the unweighted case, it can be checked that L2
a(D, w) is a Hilbert

space [10, § 8, Chapter II]. Let S be the Bergman operator, that is the operator of multi-
plication by the coordinate function · on L2

a(D, w). The following proposition (essentially
due to Shimorin) provides a partial converse to Theorem 2.9; we refer the reader to [6]
for the partial converse of Proposition 2.6.
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Proposition 2.23. Let S be the Bergman operator on L2
a(D, w). If the weight func-

tion w is such that log w is subharmonic, then S is left-invertible and the operator Cauchy
dual to S is 2-hyperexpansive.

Proof. The desired conclusions follow from [12, Proposition 9.3] and the remark in the
last paragraph of [24, p. 168] (see also the discussion following [24, Corollary 4.2]). �

Choose the weight function w such that

(1) log w is subharmonic, and

(2) polynomials are dense in L2
a(D, w).

By (1) and Proposition 2.23, S′ is 2-hyperexpansive. By (2), the multiplication operator
S on L2

a(D, w) is cyclic with cyclic vector 1. Additionally, it can be easily derived from [24,
Proposition 2.7] that the Cauchy dual operator S′ is analytic. Hence, by Lemma 2.19,
the Cauchy dual operator S′ is cyclic. Now it follows from Proposition 2.21 that S and
S′ have trace class self-commutators, and that

tr[p(S, S∗), q(S, S∗)] = tr[p(S′, S′∗), q(S′, S′∗)] =
1
π

∫
D

(
∂p

∂z̄

∂q

∂z
− ∂p

∂z

∂q

∂z̄

)
(z, z̄) dA(z)

for all polynomials p and q in two complex variables.

Corollary 2.24. If T in B(H) is an m-multicyclic 2-hyperexpansion and T ′ is the
Cauchy dual operator, then T, T ′ have trace class self-commutators and

tr[T ′∗, T ′] = tr[T ∗, T ] � m

π
area(σ(T )) =

m

π
area(σ(T ′)). (2.6)

If in addition T is analytic, then

tr[T ′∗, T ′] = tr[T ∗, T ] = m.

Proof. Let T in B(H) be an m-multicyclic 2-hyperexpansion and let T ′ be the Cauchy
dual operator. Consider decompositions (2.5), (2.6)′. If Ha = {0}, then T is unitary and
T = T ′. Hence, equality holds in (2.6). Suppose that Ha �= {0}. It is clear from (2.5), (2.6)′

that [T ′∗, T ′] = 0⊕[A′∗, A′], [T ∗, T ] = 0⊕[A∗, A]. Since A is an analytic finitely multicyclic
2-hyperexpansion with multiplicity m(A), by Proposition 2.21 we obtain tr[A′∗, A′] =
tr[A∗, A] = m(A). Since T extends A, one has m(A) � m. Thus, tr[T ′∗, T ′] = tr[T ∗, T ] �
m. Since σ(T ′) = σ(T ) = D̄ (Lemma 2.14), the inequality in (2.6) follows. This completes
the proof of the corollary. �

Remark 2.25. For hyponormal operators, one can easily deduce the Putnam inequal-
ity from the Berger–Shaw theorem [10]. In view of the preceding corollary, one may expect
a version of Putnam’s inequality for 2-hyperexpansions.

Surprisingly,

‖T ∗T − TT ∗‖ � 1
π

area(σ(T )) (2.7)
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holds true for a 2-hyperexpansive T in B(H). Moreover, equality holds in (2.7) for a
2-hyperexpansive T if and only if T is an isometry. One may argue as follows. Let T be a
2-hyperexpansion. Consider the decomposition (2.5). If Ha = {0}, then T is unitary and
equality holds in (2.7). Assume that Ha �= {0}. Thus, one can choose h ∈ H such that
‖h‖ = 1 and A∗h = 0. Hence,

‖T ∗T − TT ∗‖ = ‖A∗A − AA∗‖ � |〈(A∗A − AA∗)h, h〉| = ‖Ah‖2 � ‖h‖2 = 1. (2.8)

Also, (1/π) area(σ(T )) = 1 (Lemma 2.14). Hence, ‖T ∗T − TT ∗‖ � (1/π) area(σ(T ))
follows. To prove the ‘moreover’ part, suppose that T is an isometry. Then T is hypo-
normal as well as 2-hyperexpansive. Hence, by Putnam’s inequality and (2.7), equality
holds in (2.7). Now suppose that equality holds in (2.7) for a 2-hyperexpansive T in
B(H) and that Ha �= {0}. Note that equality in (2.7) leads to ‖A∗A − AA∗‖ = 1. An
examination of (2.8) yields ‖Ah‖ = ‖h‖, h ∈ null(A∗). Using the 2-hyperexpansivity of A,
it can easily be seen that ‖Akh‖ = ‖h‖, h ∈ null(A∗), k � 0. Since A is expansive, one has
A∗kAkh = h for every h ∈ null(A∗), k � 0. Hence, Am null(A∗) ⊥ An null(A∗) for every
m, n � 0 such that m �= n. Imitating the proof of the von Neumann–Wold–Kolmogorov
decomposition theorem for isometries, it can now be seen that A is a unilateral shift of
multiplicity nullity(A∗) [10]. Hence, T is an isometry.

In the proof of Proposition 2.21, we did not use the full strength of the Berger–Shaw
theorem. The general version of the Berger–Shaw theorem says that every rationally
cyclic hyponormal has a trace class self-commutator [20]. This and Proposition 2.21
suggest the following conjecture.

Conjecture 2.26. Every rationally cyclic 2-hyperexpansive operator has a trace class
self-commutator.

Corollary 2.27. Let T in B(H) be a finitely multicyclic analytic irreducible 2-hyper-
expansive operator and let C∗(T ) be the C∗-algebra generated by T . If C(H) denotes the
algebra of compact operators on H, then we have an exact sequence of C∗-algebras

0 �→ C(H)
i

↪→ C∗(T ) π�→ C(∂D) �→ 0,

where i : C(H) ↪→ C∗(T ) is the inclusion map and π : C∗(T ) → C(∂D) is the unital
∗-homomorphism defined by π(T ) = ·, where · is the identity function ·(z) = z, z ∈ ∂D.

Proof. Let T in B(H) be a finitely multicyclic analytic irreducible 2-hyperexpansion.
By Corollary 2.24, the self-commutator of T is compact. It now follows from [10, Lemma
12.9, Chapter II] that the commutator ideal of T is C(H), the algebra of compact operators
on H. Since 0 ∈ σ(T ), by Lemma 2.14 (ii), σap(T ) is equal to the unit circle ∂D. The
desired conclusion now follows from Proposition 2.16. �

Corollary 2.28. If T in B(H) is an m-multicyclic 2-hyperexpansion, then

T = T0 ⊕ T1 ⊕ · · · on H = H0 ⊕ H1 ⊕ · · · ,

where T0 is unitary and, for n � 1, Tn is an mn-multicyclic irreducible 2-hyperexpansion
operator on the infinite-dimensional space Hn for some integer mn � m.

Except for the ordering of the summands, this decomposition is unique.
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Proof. Let T in B(H) be an m-multicyclic 2-hyperexpansion. By Corollary 2.24 the
self-commutator of T is compact. Since a normal 2-hyperexpansion is unitary, the required
result follows from [10, Theorem 5.4, Chapter IV]. �

It was pointed out by the referee that an explicit model for cyclic completely hyper-
expansive operators is given by Aleman [3]. The following result known in the case of
weighted shift operators [8,17] asserts that an analytic m-multicyclic 2-hyperexpansion
is essentially the unilateral shift of multiplicity m.

Corollary 2.29. Every analytic finitely multicyclic 2-hyperexpansive T in B(H) is
unitarily equivalent to a compact perturbation of a unilateral shift.

Proof. Suppose that T in B(H) is an analytic m-multicyclic 2-hyperexpansion. By
Lemma 2.19, σe(T ) = ∂D and index(T − µI) = −m, µ ∈ D. Also, by Corollary 2.24, the
self-commutator of T is compact. Clearly, the unilateral shift U of multiplicity m has
compact self-commutator and U satisfies σe(U) = σe(T ), index(U −µI) = index(T −µI),
µ ∈ C\∂D [10]. The desired conclusion now follows from the following result of Brown et
al . [9]: if S1, S2 ∈ B(H) are essentially normal operators, then S1 is unitarily equivalent
to a compact perturbation of S2 if and only if σe(S1) = σe(S2), and index(S1 − µI) =
index(S2 − µI) for every µ ∈ C \ σe(S1). �

Remark 2.30. Let T in B(H) be an m-multicyclic 2-hyperexpansion. It follows
from (2.5) and Corollary 2.29 that ∆T ≡ T ∗T − I and ∆T ∗ ≡ TT ∗ − I are compact.
This generalizes [2, Proposition 1.24]. If, in addition, T is analytic, then it is clear from
Corollary 2.29 that the Weyl spectrum σw(T ) of T is equal to the Weyl spectrum σw(U)
of a unilateral shift U of multiplicity m. Since σw(U) = D̄ [10], one has σw(T ) = D̄.

A necessary condition for an operator T in B(H) to be unitarily equivalent to a compact
perturbation of a unilateral shift U is that the essential spectrum of T is equal to the
essential spectrum of U . Also, if the multiplicity of U is equal to nullity(T ) for an analytic
2-hyperexpansive T , then, by the continuity of index, one has σe(U) = σe(T ). Hence it
is interesting to consider the following question.

Question 2.31. Is every analytic 2-hyperexpansive operator unitarily equivalent to a
compact perturbation of a unilateral shift?
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häuser, 1997).
20. M. Martin and M. Putinar, Lectures on hyponormal operators, Operator Theory:

Advances and Applications, Volume 39 (Birkhäuser, 1989).
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